SATORI — A FAST SEQUENTIAL SAT ENGINE FOR CIRCUITS
M. K. lyer G Parthasarathy K.-T. Cheng

Department of ECE, Room 4108,
University of California — Santa Barbara, , CA 93106
{madiyer,gpartha,timcheng}@ece.ucsb.edu

ABSTRACT assigns internal variables, that typically force binary values on state
. . . . variables. This is a problem when it is used in a true-sequential ap-
We describe the design and implementation afGR| —a fast sequen- hrach, where a solution for a time-frame is used to bound the search
tial justification engine based on state-of-the-art SAT and ATPG tech- i, future time-frames.

nigues. We present several novel techniques that progeb@ to a
demonstrable 10x improvement over a commercial engine. Tradition d in SAT is relativelv | than in ATPG. H impli
sequential justification based on ATPG or, on a bounded model of thePrOCEAUres IN SATIS refatively lower than in - hence, implica-
sequential circuit using SAT, has diverging strengths and weaknesses. I;%(m Iproc%dures In A-Fl;PG are _typltéaFIJy_sI%v'\&grr than the corresponding
this paper, we contrast these techniques and describe how their strengt| 00 gan onstraint ropagatlo(rB)in : .

are combined in SroRI. We use conflict-based learning in each time- Learning : ~ Modern SAT algorithms have more powerful conflict-
frame and illegal state learning across time-frames. This enables botHPased learning than typical ATPG algorithms, which makes SAT faster
combinational and sequential back-jumping. We experimentally ana-than ATPG on hard combinational problems, especially in UN-SAT
lyze the main features ofASORI by comparing &TORI's performance cases [9].

against a state-of-the-art SAT solver -€AFF [13] using a bounded

model, and a commercial sequential ATPG engine performin 'ustificac’-ATORI 's Focus It would be .Of tremendous interest to combine the
tion. Additional results are pr?asented fOXI®RI vgrsuspthe comr%tjercial strengths of both these techniques to solve the general problem of se-

:)) . quential SAT. 8TORI addresses this goal by combining key advantages
?Ii?s(;]‘o?nzfr:n:pglri]gagcl)i %GE]tsc;r(]erltiSo%i?]e?:gkiggd ITC'99 benchmark CIFof both ATPG and SAT for efficiency and completeness. The key com-

ponents of TORI are:

1 Introduction 1. Efficient implications using SAT-style implications.

Sequential SADr justificationis the problem of finding anrdered se- 2. Use of the circuit structure to guide the decision strategy.
quenceof input assignments to a sequential circuit, such that the d8- True sequential search on a single time-frame at a time.
sired objective is satisfied, or proving that no such sequence exists. This Conflict-based sequential learning and back-jumping.

is well known to be NP-complete, which makes exhaustive search 8f Efficient state caching using a SAT database.

the circuit state space computationally impractical for large sequenti@ Efficient sequential bounding with minimal state cubes and a unique
circuits. state-space avoiding clause scheme.

A well-known application of Boolean SAT isutomatic Test Pat- paper Outline We describe some of the background in SAT and ATPG
tern Generation(ATPG). ATPG is an approach that uses variants ofelevant to 3ToR! in Section 2. We present the basic architecture and
DPLL[8] on a structural representation of the circuit. ATPG solutlon§|gorithms used in SroR! in Section 3. We also analyze the key com-
have to satisfy the condition that a modeled fault on a lirextitedby ponents in 8ToR! in this Section. We describe relevant prior work
setting a value on the line, apopagated, by ensuring that the circuit in Section 4. In Section 5, we present experimental results on the
with and without the fault differ by at least one Boolean output valugSCAS'89 benchmarks to demonstrate the speed and capacity perfor-
ATPG is used primarily for manufacturing-fault test-vector generatiormance of 3ToRI as compared to a state-of-the-art commercial engine

but has found applications in logic synthesis and bounded model chegfd the model-checker, VIS, v1.4. Finally, we present our conclusions
ing [3, 12]. The algorithms in exciting a fault correspond directly to then Section 6.

sequential SAT problem, and hence can be used to augment a traditional L .
SAT engine. 2 Preliminaries

Boolean SAT finds applications in many areas of circuit design ang this section, we describe some of the background on the basic SAT
verification such as Bounded Model Checking [1], Redundancy Iderjgorithm and on gate-level justification. The basic SAT algorithm de-
tification, and Equivalence Checking [15]. State-of-the-art SAT algoermines the satisfiability of a given problem @onjunctive Normal
rithms, as implemented in tools such asHAFF [13] , have demon- Form (CNF). Here, we briefly describe the key components of generic
strated that very hard SAT problems can now be solved in reasonalaT aigorithms using conflict-based learning to allow understanding of

time. Bounded Sequential Search using SAT has been shown to be v@{¥ algorithms that follow. Interested readers may refer.¢o[11, 13]
effective inmodel checking. However, its biggest weakness is that @br a more detailed description.

completeness in general sequential search. We demonstrate that ATPG .) - .
techniques can close the loop to create a sequential SAT solver that Notation — Given a finite set of variables/, over the set of Boolean
tains the efficiency of SAT, while being complete. valuesB € {0,1}, aliteral, I/l is a variabley/-v € 7. A clause ¢, is a

The trade-offs between ATPG and SAT are summarized in Tabbd{sjunction of literals (Vl2..., vln). Aformulaf, is a conjunction of
and are described below: clauses; Acy..., Ach. A clause is considered assatof literals and a

formula, as &etof clauses. An assignmeatfor a formulaf, is satisfy-

Circuit Information: ATPG guides the search process using strucdng when the value of givenAis 1. An assignment is calledaximal
tural information. ATPG typically finds solutions to satisfiable prob-When its domain is”. Following the convention in [13], we equate an
lems faster than SAT. However, SAT performs much better than ATP&signment with a disjunction of literalss, Vv € domain@), where
on hard SAT problems, due to conflict-based learning. SAT can ddVi) = 0, and—v;,vv € domainfA), whereA(v;) = 1. For example,
quite well on manufacturing test-pattern generation and logic anal{€ assignmenfva(0),vx(1)} = (v1 VV2). A state clausés a clause
sis [15], once it has access to structural information. consisting only of state variables.

Solution Size: SAT assigns more primary inputs than ATPG wherBoolean Constraint Propagation (BCP) The generic SAT algorithm
finding a satisfying pattern. This is due to its decision strategy thatecides on a sequence of variable assignments addleidions, which

allmplication Complexity: Implementation complexity of implication

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ICCAD’03, November 11-13, 2003, San Jose, California, USA. 320
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

[| Feature [SAT | ATPG | Advantage

1 | Conflict-Based learning | Yes Minimal SAT
2 | Efficient Implications Yes No SAT
3 | Structural information Some Yes ATPG
4 | Decision Ordering Appearance in clauses Probabilistic || ATPG/SAT for sat./unsat. casgs
5 | Algorithm Complexity Low High SAT
6 | Size of SAT assignments High Low ATPG

Table 1: SAT and ATPG feature comparison

generate additional variable assignmentsmglications These impli- Structural Algorithm Termination ~ An ATPG algorithm typically
cations are found bioolean Constraint Propagati¢BCP). BCP is a finds less than maximal assignments since it uses a 3-valued logic and
simple process for clauses since the only rule to be satisfied is that, giyeath-based justification based on the concept &frantier. However,
an assignmend, and a clausg; in the formula, a variable; takes an there is no guarantee that these assignments wiflibenal Chengetal.,
implied value of 1iff, all but one of the literals in the are false. [7] describes a procedure for finding minimal assignments in ATPG

) . . . o search. The algorithm requires search during the decision procedure
Conflicts and Analysis A conflictis the simultaneous implication of gnd can be expensive, but is complete.
opposite Boolean values on a variable. Given a conflict at a vangble A minimalassignment is of great importance to a sequential SAT pro-
a conflicting assignment is a subset A of an assignmen, such that ceqyre, since every additional assignment on a state variable reduces the
evaluatingf|a is sufficient to cause the same conflictvat A conflict gearch space covered by the state vector by a factor of 2. Hetie,
clauseis the clause corresponding & Given a CNF formuldf and @) state variable requirements can help terminate a search quicker. We

conflict clausex, then the new formuld’ = f Ak, is satisfiableff, fis gnal explore these concepts in greater detail with experimental analysis
satisfiable [11]. in Section 3.3.

SAT Algorithm Termination Most SAT engines determine that a !N the following section, we describe how8oRri combines key con-
SAT instance is solved when the assignmanis maximal and impli- cepts from ATPG and SAT to perform efficient sequential search.
cation of these values can find no conflict [13]. Hence, by definition, 2 SATORI
traditional SAT engine finds maximal assignments at state variables.

o) The key bottlenecks in a sequential SAT engine are: (a)iffpdica-
2.1 Structural Decision Strategies tion engine (b) Thedecision strategyand (c) Thestate space pruning

ATPG engines differ in algorithms and data-structures, but they all shjﬂgategy We shall describe each of these componentsAnogi and

one common feature — they all explicitly use the structure of the circu

to guide the search process. The fault excitation part of an ATPG

gorithm can be contrasted directly with general SAT solvers though .1 The Implication Engine

requires a 3-valued logic systeff,1,X}. Henceforth, we use the terms . o

— sequential justification and sequential SAT interchangeably. The implication engine in &TORI operates on a SAT-style data-base of
clauses for speed. Consider a gate-level cirCuit {S, G,L}, whereS,

Back-Tracing Back-tracing is a structural circuit traversal methodis a set of state elements,is a set of primitive Boolean gateSAND,

that selects a gate from a restricted subset of gates callgddtifica- OR, NOT, NOR, NAND}, andL, is the set of signal lines interconnect-

tion frontier or J-frontier. The signals in the justification frontier satisfy ing g,g € {SUG}. GivenC, we can convert it into a CNF formul,

the property that the original justification objective is satisffe@very whose variables correspond to each gate oufpatG U S and whose

signal in the justification frontier is satisfie@ack-tracingselects one clauses preserve the functionality of the gate. There is a one-to-one

of the gates in thé-frontier and recursively selects an unassigned inputnapping from a value assignment and its implicatigqg)g in the cir-

of the gate, using a 3-valued algel&rd0, 1, X}, in a depth-first manner cuitC, and the corresponding,, Iy in the formulafc.

until a valid decision point is reached [12]. Several heuristics exist in The efficiency of implications is significantly higher in a CNF for-

the literature [12] that can bias the assignment strategy towandrihe mulation than in a gate-level circuit though the number of clauses is

mary inputs(Pls), or toward state variables (also calfesgtudo-primary greater than the number of lines in the circuit. The main cost of the

inputs(PPIs)), that can be more easily justified in time. implication engine comes from evaluating when a gate is ready for im-

plication. A SAT engine usingvatchedliterals [13] can do this very

efficiently. However, a gate-level implementation of watched-literals is

cEot as efficient since the update of the watched-literals is complicated

y the multiple implication rules for a gate level circuit.

perimentally evaluate the efficiency of engineering the solver in this
anner.

Circuit-level Implications BCP, or more commonlimplication, for
a Boolean gate is more complex than for a CNF formula.oAtrolling
valuecg is an input value that uniquely determines the output value
a gate. For example, dDR gate has a controlling value of 1. The non-
controlling value iscy. A gatesinversion parityig = 1, if the output of 3.2 The Decision Engine

the gate is a negated primitive Boolean function. For exanipe\D, . . - . . .
NOR has an inversion parity of 1. Thaitput non-controlling/alue,n2, The decision engine makes decisions on primary inputs and state vari-

. s . 0 ables for a user-defined number of decisions using back-tracing. The
of a gate iscy ®ig. Similarly, theoutput controllingvalue,cg, of a gate choice of decision variable is guided by sequential controllability mea-

iscg®i9. o) sures [12]. If a satisfying assignment cannot be found by the cut-off
The implication rules for a gagare as follows: number of decisions, the decision strategy changes to a VSIDS [13]-
1. An output is implied to a controlling/non-controlling value, if any SY!€ approach, which weights the decision variables based on the num-
of the inputs are at aontrolling valueor if all of the inputs are at €' Of clauses in which a literal appears, on an exponentially decay-
non-controlling values ing scale over time. At this stage, all gates are considered as potential
2. Allinputs are implied tanon-controllingvalues if the output is at an d€cision points. SToRlI incorporates conflict-based learning [13] and
output non-controllingalue. back-jumping for efficiency in both the combinational and sequential
3. If the the output is at aputput controllingvalue and all but one of S€&rch space. The interested reader is referred to [11] for more details
the inputs are at non-controlling values, then the remaining input & conflict-based learning and back-jumping. .
implied to acontrolling value. Once a satisfying assignment for an objective in a time-frame is found,
the assignments at the independent variabéesPls and PPIs are used
As we can see, any gate-level implication routine would have to be sutm- form a conflict clause, which represents the state that is required to
stantially more complex than BCP on a CNF formula in order to supposatisfy the objective in the given time-frame. Thiate clausés used to
these rules over multiple primitive Boolean gates. prune the sequential search space as described in the following section.

321

3.3 State Space Pruning 3.3.2 State Clause learning

In this section, we describe the algorithms iaT8RI that allow us to SATORI uses conflict clauses to record the state requirements for a given
perform sequential SAT efficiently. We describe a novel algorithm ttime-frame. Given an assignmeAt that satisfies the objectives for
solve the problem of minimizing the set of assignments made to staisme-framet;, the recorded clause is

variables in a time-frame so that we can find a minimal state-clause for

justification. We also describe how we use a clause-based mechanism Ci = REDUCEASSIGNMENTSA) \ {vi € Pls} (2)

for storing visited states and for pruning the sequential search space.

. . . This corresponds to a set of states, in the state space due to X-values in
3.3.1 Assignment Reduction Algorithm a= REDUCEASSIGNMENTYA;), which cover several states at once.

We now describe RDUCEASSIGNMENTS which is a heuristic based

on list propagation from the set of assignments on state variables that . Input Assignments
satisfies the given state objective for a time-frame. The algorithm takes ° Hlegal "1 RIRRE
as inputs a topologically sorted circ@kt, an assignment vectéy, and . R = vo
a set of objectivesbj; and produces a new assignmangiven by: @ Legal "L o]
. . . I Illegal
aCAs.t fe(a)Aobj= 1,iff fc(A)Aobj=1 1) @ Trace ”’”g“’v1T0’ v5 Y1 o
‘ 1

propagating sets afiecessanassignments. If there is no initial state ,@

specified, all the state variables in an assignnAezdn be quantified out

only if adoes not have any necessary state-variable assignments. Given

a satisfying assignme# there can exist several subsats...,ay € A,

with different sets of state variables quantified out, and each of which ‘\\

satisfy the objective in the given time-frame. e
Figure 2: Different Types of State Clauses

The state clauses is stored in a state cache. The state cache can be
conceptualized as a graph representing the state sets visited so far as
shown as shown in the Figure 2. They can be classified as follows:

1. Legalstates are statelk,c L, which can be reached from the speci-
fied initial state or from all states, if no initial state is specified(
9in Figure 2).

2. lllegal states are stateis < |, that are proved combinationally unsat-
isfiable in a time-framé. This implies that they cannot be reached
from any other legal statee(g. 5,6), or if they can be reached only
from states which are truly combinationally unsatisfialele (4).

3. Trace-illegal states are stateg,c T, that are reachable only from
states already visited and illegal states,, it is in a strongly con-
nected component (SCC) and the trace has explored the SCC, with-
out finding a solutiong.g.8).

REDUCEASSIGNMENTSIs conceptually equivalent to existentially
quantifying out the state variables in the formd¢a\ obj, one by one, v v2 v3 ¢
in a given time-frame. In practice, the algorithm parallelizes this by e

v9

6
Initial State v8 IR .

Trace-Illegal

~

[Go] . 4. Possibly legaktates are states, € X, that are visited in time-frame
GO []

[Go] [ad] © state Variable i, but not classified as illegal or trace-illegad.g. 3).

Figure 1: Example of RDUCEASSIGNMENTS If the problem is satisfiable in a given time-framesT®RI reduces un-

If the value on the gate is a controlling value, then the PI/PPI thattecessary assignments on the state variables usiogy&ASSIGN-
uniquely sets the gate value is chosen irrespective of whether it isMENTS and does a fast lookup to check if the state requirement covers a
Pl or a PPI. On the other hand, if there exists a choice between tyoeviously visited state. The results of the lookup are used to determine
controlling input variables, then we pick the first assigned Pl with &:
controlling value in the lists that has been propagated to the inputs of
the gate. If the gate is at a non-controlling value, then the lists at the
inputs of the gate are merged at the output of the gate. Gates that gr
an unknown or X value are ignored. The final list at the justification o i
objective gives the desiradinimal assignment set We keep only one copy of the circuit in memory at a time. If we

This is illustrated in the Figure 1. The justification objectiv&isd= continue search in time, the formulg.; for the next time-frame is
1. Assume that the decision procedure sets the valug60f G1, G2, generated from the currerif, and the learned state clausgg |1} as
G3, G5, G6, G¥ = {101100%, which satisfies the objective. The gatesfollows: ,
in the input cone of514 are marked in bold. The traversal starts at the fiia=fin{tieTiA{iicl} 3)
Pls and PPIs with unit lists, which are propagated forward. When t
traversal reacheS8, the algorithm choose30, since itis a Pl oveG6,

the decision procedure should terminate, or
backtrack to an earlier time-frame, or
Backtrack in the current time-frame and continue the search.

r]ﬁ practice, this amounts to adding a few clauses to the current net-list.

which is a PPI, though both are at the same value. When the traverg%lim'f'egm(fgal ?tqtttlesf, Wh'tchh cfanno} t;ga justified further back in time,
reache$515, the input lists are merged sinG&5 is at a non-controlling avoided implicitly from the formulatiof,...

value of 0. There are no more merges till we reach the objective site aBdcktrack Clauses If we backtrack to an earlier time-frame, we cre-
the final set consists @0, G7. The time complexity of the algorithm is ate aback-trackclauseb; corresponding to the literals in the last state
O(VE), whereV is the number of gates arklis the number of signal clause learned in that time-frame and the value assignments on the Pls.
lines in the input cone of the justification objective. The space complexience f/ = fi Abj. f/ creates the constraint that the last satisfying
ity is O(V EK), wherek is the sum of the PIs and state variables in thessignment cannot be repeated. Conflict analysis produces a conflict-
input cone, since we might in the worst case, have to propagate listsadoiding clause which is used to maintain the decision tree in the time-
all the Pls and state variables. framei and continue search for the next satisfying assignment. Any

322

newly found illegal state clauses are addedfitdo further prune the Experiments were conducted on the sample benchmarks in order to
search space. illustrate the distinction between back-tracing (described earlier in Sec-
A back-track clause corresponds tcciat in the circuit with value tion 2.1) and a good SAT style decision strategy, VSIDS [13] (described
assignments that guarantee that all decisions that imply or decide thas&ection 3.2). Objectives of a Boolean 0 and 1 were set on each signal-
value assignments will lead to a solution that has already been fourithe in each benchmark circuit, and checked one-by-one using the 2
This approach differs from prior art in two key points: competing strategies. Almost all the objectives are satisfiable, though

e Earlier approaches [6] relied on using an expensive, Iookup-tabY}é'th extensive search. The main points analyzed are:
based scheme to avoid revisiting decision spac@so8I’s clause- 1. How does back-tracing compare with VSIDS on time-frame expanded
based scheme saves the cost of lookup and is correspondingly moresequential circuits? How does true sequential search compare with
efficient. search on time-frame expanded circuits?

e [6] used the state of theearch-frontieras a key for the lookup. 2. How does back-tracing compare with VSIDS when used in true se-
SATORI's clause-based mechanism predicates search-bounding only quential search?
on a combination ofalue assignmentsvhich have been made be-
fore.

g A typical DPLL back-tracking procedure will backtrack to the last Cts Ra | ZCHAFF TF+Back§¢;§)§| True Seq
ecision made in the decision tree in a given time-frame and continue
search. However, with the addition of back-tracking clausdisge- s1238 4 5.79 1.29 0.49
cisions that lead to the same state-cube that are already explored in | s1488| 13 | 75.37 28.7 1.69
the same time-frame are avoided or detected before a new state-cube | s1494| 21 | 245.02 28.99 1.64
is found, with a minimum of conflicts in the decision procedure. s344 || 10 1.94 0.59 0.15
. s349 10 2.6 0.59 0.13
3.3.3 Loop Detection s386 9 3.37 292 0.13
SATORI performs DFS-search in the sequential state space. Hence, it | s420 19 36.39 4.93 0.21
is necessary to check for revisited states in order to avoid getting stuck | s510 11 18.32 11.91 2.03
in sequential loops. It would be correct to add the learned state clauses | s820 17 38.63 6.14 0.33
that are not classified as illegal in order to avoid loops. s838 19 | 221.98 19.67 0.83
The problem with this formulation is that these state clauses may im- s953 21| 116.52 43.37 17.21

ply values on state variables. Experiments showed that this typically : :
takes the search on long state paths and significantly degraded perfor- Table 2: Sequential Search v/s Bounded SAT
mance. back-tracing typically finds much smaller paths, since we haack-Tracing on Unfolded Circuits In this set of experiments, we
controllability metrics to guide the search. However, this information ishecked satisfiability on a sequential circuit as a combinational problem,
lost if we allow the learned state clauses to imply. This would not be thend compared it to true sequential search.
case inmage computatiofiL4], since that corresponds to a breadth-first Therecurrence diameter][1] of a sequential circuit, is defined as
search in the state-space. the minimum path-length including cycles from the initial state to the
Therefore, we check for loops by explicitly checking a new statstate where the objective is true. The sequential search problem can
against the set of visited states. This is done by comparing the litdye modeled as combinational search on the sequential circuit unfolded
als in the new state versus the literals in the states in the cache. TRigtimes. We estimate®y, to be the maximum path length taken by
check is actually quite fast, since we hash the states based on the lit8atroRr! in true sequential mode for each objective. While this is not a
values in a hash-table. A unique key is generated for each clause antght bound, it is a good approximation.
used to compare or retrieve visited states. We also check for BooleanWe compared the results ofaBoRI versus ZHAFF. SATORI was
covers in the visited states. If a state assignment is covered by anrilin in 2 modes : (a) back-tracing on the unfolded circuit, and (b) True
legal state, then we can backtrack to the earliest time-frame where wequential search on the original circuitcZAFF, was run on the un-
detected the illegal state. folded circuit for each objective and the cumulative run-time for all ob-
We also perform static illegal state identification, where state-cubgectives was calculated. The satisfying solution was checked for having
which are reachable only from illegal states are classified as illegal, and state variable requirements for correctness. The results are shown
identification of legal state-cubes where known detection sequences @xTable 2. The ColumiRy shows the number of time-frames for the
ist. This is different from extracting a complete state-transition graptinfolding for each circuit. The run-times facHAFF on the unfolded
(STG), which can be quite expensive. circuit is shown in Column 2, and the run-times foxsT®R1 for back-
A tracing on the unfolded circuit is shown in Column 3. Column 4 shows
3.4 Termination the run-times for full sequential search.
Given a satisfying assignmeA, in a time-frame, 8TORI terminates As we can see, back-tracing has a speedup of 2x—10x compared to
with: ZcHAFF on all the circuits, while full sequential search performed from
P)) R 10x—100x better than@HAFF, and again from 3x—20x better than back-
L fg{é gba = REDUCEASSIGNMENTSA)) \ {Vi € PIs} =0, i.e., no tracing on the unfolded circuit. This clearly shows that decisions on the
jective needs to be satisfied, or ; iabl b hatenendenvariables f tisfiabl
2. SAT,faC S i.e., ais covered by a specified initial stage independentariables are better t pendentariables for satisfiable
3. UN-SAT, if search orf’ returns UN-SAT in the first time-framiee., SAT problems. It has been shown, however, that the converse is true for

- hard unsatisfiable problems [9].
the sequential space has been completely explored. :
4. ABORTED, if any of the user-defined parameters are exceeded. In the next set of experiments, we explore the performance of VSIDS

. o versus a back-tracing strategy in full sequential search.

3.5 Analysis of SATORI - Putting it all Together Back-Tracing on True Sequential Search VSIDS and back-tracing

In this section, we analyze some of the techniques described in the ppeeduce different state cubes to be justified during sequential search. We

vious section with experiments on a subset of benchmarks from the I&n experiments on the sample benchmarks, with Boolean objectives of

CAS’89 benchmarks. The experiments are run on a small set of mid-and 1 on each signal line, and ran full sequential search on the circuits.

sized circuits, to demonstrate the various aspects\vb81 . A full set We collected data on the number of state-cubes, which correspond to the
of experiments on some very hard problems are shown in Section 5. number of time-frames searched. State caching was disabled to stress

. . the two techniques in isolation.
3.5.1 Decision Strategies The data in Table 3 show the results of these experiments. Columns 2

In this section, we analyze the decision strategies usedio® and and 3 show the number of state cubes or time-frames searched for each
their impact on sequential search. strategy and Columns 4 and 5 show the respective run-times. The results

323

- State Cubes CPU Time (secs) As we can see, the number of time-frames explored is significantly
circuit | Struct.| VSIDS | Struct. [VSIDS [%change smaller with REDUCEASSIGNMENTS The reduction is in the order of
s298 2400 2828 0.55 0.82 +49 3x—300x, with a corresponding reduction in run-time. The maximum
s344 2117 | 57413 0.55 19.54 +3452 state-trace that some of the examples took increased by upto 5x. Itis
349 2129 | 42112 0.67 15.77 +2253 clear that minimal state cubes can bound the search space significantly,
s382 | 33331 | 209096| 20.45| 142.07 +594 and that FEDUCEASSIGNMENTSIs a useful heuristic in minimizing
s420 | 1769 | 2414| 0.37| 0.98 +164 state requirement cubes.
s510 36699 | 39465| 31.53 39.13 +24 .
s820 | 2737| 7900| 4.12| 1581| +283 3.5.3 State Caching
s832 2854 7398 | 435| 1471 +238 State caching is a useful technique for reusing the results of prior state
s953 | 35154 | 53479 | 68.29| 118.78 +73 traces. We ran some experiments on a few circuits, with state-caching
s1238 187 285 0.6 241 +301 turned on and off. The results are shown in Table 5. Columns 2 and
$1488 6452 | 19637 18.9 | 80.77 +327 3 show the number of time-frames or state cubes explored without and
51494 7946 | 20685| 28.19| 84.48 +199 with caching. Columns 4 and 5 show the corresponding run-times.

Table 3: Structural back-tracing v/s VSIDS [13]

Ckt State Cubes Mem Run-Time(secs)
clearly show that the number of state cubes in Column 3 of Table 3 that no cache[cache] (KB) || no cache[cache
had to be justified_ for the case of the SAT strategy is significantly higher. —57zgg 5307 759 7 18.4 1.69

This behavior is due to the fact that the VSIDS strategy does not as- | <1494 7566 249 7 31.7 1.64

sign values based on any controllability metrics or structural guidance | (3g5 171861 | 4601 || 293 262.47 | 193
to minimize the number of assignments. A given objective can be sat- sa44 131343 | 4987 | 230 280'24 14'5
isfied with a variety of assignments. The best assignment would be one s510 12735 248 10 17 98 > 63
that makes a small set of controlling assignments so that the state cube 526 111551 | 8327 || 458 454 35 66 68
is minimal. However, we found empirically that VSIDS makes a larger S : :

number of non-controlling assignments at the state variables. Hence, $526n | 108342 | 8208 || 456 459.85 | 69.7

even the reduced state cube from VSIDS is still large as compared to | S820 4624 95 5 10.89 | 0.33

the back-tracing method. s832 4637 101 5 11.05 0.31
A state cube that has fewer unspecified values, and thus a smaller | S993 || 116187 | 149 49 3718.3 | 17.21

set of minterms typically generates the same kind of state cubes in the Table 5: Effectiveness of State Caching

previous time-frames. Hence, the number of time-frames explored in- The primary considerations, as in any caching mechanism, is the
creases. This means that even with a heuristic to remove unnecessgfbunt of memory consumed, and effectiveness of caching. As we
assignments, the SAT strategy took longer state traces and found smadlgf see from the table, the memory for caching never exceeded 500Kb,
covers than the back-tracing strategy. This directly translates to majile reducing run-times by 8x—200x. Hence, state caching in the se-

run-time in the order of 1.5x-30x as shown in Column 6, since signifyuential search is a cheap and effective method to cut down run-time,
icantly more time-frames are explored than is necessary to find a so{yhen checking a number of objectives.

tion. Most of the objectives in the above experiments have solutions and
are found by both strategies. 4 Related Work

3.5.2 REDUCEASSIGNMENTS There exists a large body of work on techniques, which effectively
. . . . use the structure of the circuit to perform branch-and-bound search.
EEG%U% Eﬁ;nsésg ';Ahzr\rllTnSécV(\elglscahr V;ils ggsecr?tgelg éggleg:g’tg (?u% é’ \{.VﬁsHowever, they suffer from two significant drawbacks — a) They cannot
h : $SsIg " . Ss\ystematically avoid re-entering previously explored decision spaces,
is necessary since (a) the termination condition for the search is h Ad b) They are significantly siower on hard combinational problems

ing no state requirements on the state variables, and (b) we wish to fi : i ;
. : o ; ' n state-of-the-art SAT solvers implemented specifically for solving
state cubes with a maximum number of unspecified values in each time- roblem in a single time-frame. The subject of these two problems

frame, so that we can improve the search procedure. The SAT strat s been the focus of intense activity in Bequential Automatic Test

produces a maximal assignment, as compared to back-tracing. He :

we can safely conclude thateRUCEA SSIGNMENTSIS a necessity for a t‘é%rg gfc: ragﬁkn:)é/ ?:L:?eenlﬁvsvxkqﬁ%?:cﬁabr?ge:%g [12] presents

a SAT style decision strategy. However, we comparstd®| with and 9 y . T : .

without REDUCEA SSIGNMENTS when using the back-tracing decision, SAT based techniques and implication graph based techniques have

strategy to determine the effects of assignment reduction. been used to speed up the basic combinational part of the problem [4]. A
variety of techniques have been proposed for illegal state identification

and storage to prune the state space effectively. SEST [6] uses RTP

Ckt State Cubes || Max Path Len. || Run-Time(secs) combined with limited learning to speed up sequential search.

No-Red [Red [| No-Red [Red || No-Red [Red Huang[10] proposed using ATPG techniques for verification includ-
51488 5831 259 31 13 1427 | 1.69 ing combinational equivalence checking and property checking. Bop-
s1494| 8930 249 21 21 26.28 | 1.64 pannaet al.,[5] and Abraharret al.,[2] discussed the use of ATPG for
s382 50857 | 4601 750 279 27.58 | 19.3 model checking using a commercial tool. The former was a brute-force
s444 62095 | 4987 790 453 || 136.06 | 14.5 approach, while the latter's approach solely targeted checking a state
s510 65911 | 248 50 11 48.07 | 2.03 space for bound, using a commercial ATPG engine. Parthasarathy [9]
s820 4280 95 17 17 6.59 0.33 compared SAT and ATPG for assertion checking and concluded that
s832 4311 101 17 17 7.28 0.31 they have similar performance on small problem instances, while ATPG

X ; has advantages dealing with real-world circuits over SAT.
Table 4: REDUCEASSIGNMENTSand Back-Tracing McMillan [14] proposed a method for quantification of variables in

The experiments were again a set of objectives of Boolean 1 anda0CNF formula. This was targeted for image computation and is quite
on each signal in the circuit. The results are shown in Table 4. Columdgferent from REDUCEASSIGNMENTS since a) we perform DFS-like
2 and 3 show the number of state-cubes generated with and withaatarch in the sequential space and b) we perform quantification of sub-
REDUCEASSIGNMENTS Columns 4 and 5 show the maximum lengthsets of state-variables in a time-frame. The approach by Caeal,
of the state trace taken during search, and Columns 6 and 7 show ffig performs search for minimal assignments, which can be quite ex-
respective run-times. pensive, while ours is a linear-time algorithm.

324

5 Experiments checking. 3ToORI outperformed commercial ATPG by 20x to 50x and
So far, we have shown results on small to mid-sized circuits. Hov&'—n'Shed on 2 cases where ATPG aborted after 3600 secs, exdeltLin
ever, we now show experiments designed to a) demonstrate the capagity Conclusion

performance of 8TORI as compared to a state-of-the-art commerci
solver, b) demonstrate the speed eff8RI on a set of justification ob-
jectives on hard examples with large state spaces, and ¢) demonstrat

8\|/Ve have described/ASoRI — a general sequential justification engine
ett&% is at least an order of magnitude faster than a state-of-the-art com-
; ercial tool. TORI addresses limitations of traditional SAT solvers
power of sequential search when compared to a state-of-the-art BD?nd structural sequential ATPG-based satisfiability. We have described

based model checker — namely VIS, version 1.4 [16] - A ; h
One interesting application ofASOR! is in assertion checking on se- how we have integrated path-based justification with conflict based learn-

quential circuits. Typically, we have a trade-off between BDD-basetfd and SAT techniques inAori for efficient sequential search. Our

approaches and search-based approache8tkeded Model Check- analysis shows that achieving minimal state requirements in each time-
ing. Since STORI is a complete search engine, we contrast it with VIS/Tame using back-tracing and heuristic assignment reduction improves
i fficiency significantly. We have also presented sample results that

on assertion checking on some large examples in the ITC'99 and | ff - X S
CAS'89 benchmark suites. We ran 2 assertions on each example, whiinonstrate how the strengths of each technique can be effectively in-
' 7 1égrated into an efficient solver. We have presented resultsaoor8

were: versus VIS, which show thatA&3oR1 can be more efficient than BDD-

1. AG(p1), wherepy = ((s1 =0) V(2 =0),...,V(sh =0)),8 €S based image computation when exploring huge state spaces. We have
wheres, is the set of state variables in the circuit. also shown that it is often better to use a complete sequential search

2. AG(p2), wherepz = ((st=1)A(2=1),...,A(h=1)),S €S engine than on a naive bounded model.

SATORI was also compared to a commercial ATPG engine running in Future improvements includes strengthening the sequential learning
pure justification mode, which does not assume a complex fault modnd structural search, and definition and implementation of the full se-
in these experiments, so that we have a fair comparison. The limits 8#antics of a temporal logic in&ori for symbolic model checking.
SATORI and the commercial ATPG engine were a million back-tracks; References
300 cycles and 3600 secs per property. VIS was given a time-out limit of)]] i)

3600 secs, but no limits on memory. We used the standard VIS script§l] A.Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y.Zhu. Symbolic

to perform the assertion checking. The experiments were run on an Intel
Pentium-4 machine with 1 GB of RD-RAM running Linux and a Sun

UltraSparc-3d machine running Solaris 8.0. The results were scalel?]
using an independent set of experiments so that the run-times can be
directly compared. 3

Table 6: Assertion Checking Experiments

Column 2 and 3 show the results fon®R1 , 4 and 5 for the com-
mercial ATPG tool, and 6 and 7 for VIS. Most of these assertions rg13]
quired significant search in the sequential space. We show results only
on the largest of the ITC'99 and ISCAS’89 benchmarks. All the engines
finished quickly in under 0.5 seconds on all the smaller benchmarkd:4
VIS aborted on most of the big benchmarks after about 3600 secs. The
peak memory usage on these cases was close to 800 Mb. The mem-
ory consumed by Srori did not exceed 150MB and the commercial[15]
engine did not exceed 300MB.

In the cases where VIS managed to finish building the BDD-based
images, it outperformed the commercial engine by 2x to 50x. How-
ever, XTORI finished all the test-cases including cases where both ttj&6]
commercial engine and VIS failed in reasonable time. The commercial
ATPG engine also finished in all but 2 cases, with very reasonable times.
This clearly demonstrates the power of sequential search for assertion

(12]

325

Model Checking using SAT Procedures instead of BDDs21uc.
of the 36th ACM/IEEE DA(pages 317-320, June 1999.
J. Abraham and V. Vedula. Verifying Properties Using Sequential

ATPG. InProc. of ITG pages 315-319, Oct. 2002.

] M. Abramovici, M. A. Breuer, and A. D. FriedmarDigital Sys-

tems Testing and Testable Desi@@t Press,% ed., 1990.

[4] A.Biere and W. Kunz. SAT and ATPG: Boolean Engines for For-

Ckt SATORI [Rslf CA‘%“F]Q Rsit | VIS Rsit mal Hardware Verification. IfProc. of the IEEE/ACM ICCAD
November 2002.
b04 349.38 | T/T | >1hr | T/A | >1hr | A/A [5] V.Boppana, S. Rajan, K. Takayama, and M. Fuijita. Model Check-
b1l 112 TIT 0.7 T | 31 | TT ing Based on Sequential ATPG. Rroc. of Int. CAV'99 LNCS,
b14 0.07 | TIT 33 | T/T | >1hr | A/A pages 418-430. Springer, July 1999.
b17 3.5 TIT 9.8 T/T | >1hr | A/A [6] X.Chen and M. Bushnell. Sequential Circuit Test Generation Us-
b20 0.15 TIT 3.1 T/T | >1hr | A/A ing Dynamic Justification EquivalencelETTA 8(1):9-34, Feb.
b21 0.16 TIT 3.2 TIT | >1hr | AJA 1996.
b22 0.23 TIT 4.9 TIT | >1hr | AJA [7] K. Cheng and H. Ma. On the Over-Specification Problem in Se-
s13207| 1.2 TIF 2.8 T/IF | >1hr | AJA quential ATPG Algorithms. IrProc. of the2d" DAC, pages 16—
s15850| 0.15 T/F 2.6 T/F | >1hr | A/A 21, June 1992.
s35932| 1195 | T/T >1hr | AJA - - [8] M. Davis, G. Logemann, and D.Loveland. A Machine Program
s38417| 0.77 TIF 8.6 T/IF | >1hr | A/A for Theorem ProvingJournal of the ACM5(7):201-215, 1962.
s38584| 0.41 TIF 7.0 T/IF | >1hr | A/A [9] G. Parthasarathy, C.-Y. Huang, and K.-T. Cheng. An Analysis
s5378 0.02 TIF 1.1 T/IF | >1hr | A/A of ATPG and SAT Algorithms for Formal Verification. Imt.
s820 0.09 FIF 5.7 FIF 0.1 FIF Workshop on HLDVTpages 177-182, November 2001.
5832 0.09 E/E 56 F/E 0.1 F/E [10] C.-Y. Huang, B. Yang, H.-C. Tsai, and K.-T. Cheng. Static Prop-
5838 0 EIT 05 ET | 02 EIT erty Checking Using ATPG v.s. BDD Techniques Hroc. of ITG
$9234 | 0.04 | TIF 1.4 | TIF | >1hr | AIA Aug.2000.
TRun-Time in CPU seconds unless noted otherwise [11] J.P Marques-Silva and K.A. Sakallah. GRASP - A Search Algo-
2Status ofpy/ s € {T=proved true, F=proved false, A=abpr rithm .for Propositional SatisfiabilitylEEE Trans. on Computers
! ' 48(5):506-521, May 1999.

K.-T. Cheng and A. Krstic. Current Directions in Automatic Test-
Pattern GenerationEEE Computer32(11):58-64, 1999.

M. Moskiewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. En-
gineering an Efficient SAT Solver. IAroc. of the 38th ACM/IEEE
DAC, 2001.

] K. McMillan. Applying SAT Methods in Unbounded Symbolic

Model Checking. IrProc. of the 14" CAV, volume 2402 o£NCS
pages 250-264. Springer-Verlag, 2002.

P. Tafertshofer, A. Ganz, and K. Antreich. IGRAINE — An
Implication-Graph based Engine for Fast Implication, Justifica-
tion and PropagationlEEE Trans. on Computer-Aided Desjgn
19(8):907-927, August 2000.

R. K. Brayton, G. D. Hachtekt al., VIS: A System for Verifica-
tion and Synthesis. IRroc. of the 8" CAV, volume 1102 of NCS
pages 428-432, July/August 1996. Springer Verlag.

