
SATORI – A FAST SEQUENTIAL SAT ENGINE FOR CIRCUITS

M. K. Iyer G Parthasarathy K.-T. Cheng

Department of ECE, Room 4108,
University of California – Santa Barbara, , CA 93106

{madiyer,gpartha,timcheng}@ece.ucsb.edu

ABSTRACT

We describe the design and implementation of SATORI – a fast sequen-
tial justification engine based on state-of-the-art SAT and ATPG tech-
niques. We present several novel techniques that propel SATORI to a
demonstrable 10x improvement over a commercial engine. Traditional
sequential justification based on ATPG or, on a bounded model of the
sequential circuit using SAT, has diverging strengths and weaknesses. In
this paper, we contrast these techniques and describe how their strengths
are combined in SATORI. We use conflict-based learning in each time-
frame and illegal state learning across time-frames. This enables both
combinational and sequential back-jumping. We experimentally ana-
lyze the main features of SATORI by comparing SATORI’s performance
against a state-of-the-art SAT solver – ZCHAFF [13] using a bounded
model, and a commercial sequential ATPG engine performing justifica-
tion. Additional results are presented for SATORI versus the commercial
ATPG engine and VIS [16] on ISCAS ’89 and ITC’99 benchmark cir-
cuits for an application to assertion checking.

1 Introduction
Sequential SATor justificationis the problem of finding anordered se-
quenceof input assignments to a sequential circuit, such that the de-
sired objective is satisfied, or proving that no such sequence exists. This
is well known to be NP-complete, which makes exhaustive search of
the circuit state space computationally impractical for large sequential
circuits.

A well-known application of Boolean SAT isAutomatic Test Pat-
tern Generation(ATPG). ATPG is an approach that uses variants of
DPLL[8] on a structural representation of the circuit. ATPG solutions
have to satisfy the condition that a modeled fault on a line isexcitedby
setting a value on the line, andpropagated, by ensuring that the circuit
with and without the fault differ by at least one Boolean output value.
ATPG is used primarily for manufacturing-fault test-vector generation,
but has found applications in logic synthesis and bounded model check-
ing [3, 12]. The algorithms in exciting a fault correspond directly to the
sequential SAT problem, and hence can be used to augment a traditional
SAT engine.

Boolean SAT finds applications in many areas of circuit design and
verification such as Bounded Model Checking [1], Redundancy Iden-
tification, and Equivalence Checking [15]. State-of-the-art SAT algo-
rithms, as implemented in tools such as ZCHAFF [13] , have demon-
strated that very hard SAT problems can now be solved in reasonable
time. Bounded Sequential Search using SAT has been shown to be very
effective inmodel checking. However, its biggest weakness is that of
completeness in general sequential search. We demonstrate that ATPG
techniques can close the loop to create a sequential SAT solver that re-
tains the efficiency of SAT, while being complete.

The trade-offs between ATPG and SAT are summarized in Table 1
and are described below:

Circuit Information: ATPG guides the search process using struc-
tural information. ATPG typically finds solutions to satisfiable prob-
lems faster than SAT. However, SAT performs much better than ATPG
on hard SAT problems, due to conflict-based learning. SAT can do
quite well on manufacturing test-pattern generation and logic analy-
sis [15], once it has access to structural information.

Solution Size: SAT assigns more primary inputs than ATPG when
finding a satisfying pattern. This is due to its decision strategy that

assigns internal variables, that typically force binary values on state
variables. This is a problem when it is used in a true-sequential ap-
proach, where a solution for a time-frame is used to bound the search
in future time-frames.

Implication Complexity: Implementation complexity of implication
procedures in SAT is relatively lower than in ATPG. Hence, implica-
tion procedures in ATPG are typically slower than the corresponding
Boolean Constraint Propagation(BCP) in SAT.

Learning : Modern SAT algorithms have more powerful conflict-
based learning than typical ATPG algorithms, which makes SAT faster
than ATPG on hard combinational problems, especially in UN-SAT
cases [9].

SATORI ’s Focus It would be of tremendous interest to combine the
strengths of both these techniques to solve the general problem of se-
quential SAT. SATORI addresses this goal by combining key advantages
of both ATPG and SAT for efficiency and completeness. The key com-
ponents of SATORI are:

1. Efficient implications using SAT-style implications.
2. Use of the circuit structure to guide the decision strategy.
3. True sequential search on a single time-frame at a time.
4. Conflict-based sequential learning and back-jumping.
5. Efficient state caching using a SAT database.
6. Efficient sequential bounding with minimal state cubes and a unique

state-space avoiding clause scheme.

Paper Outline We describe some of the background in SAT and ATPG
relevant to SATORI in Section 2. We present the basic architecture and
algorithms used in SATORI in Section 3. We also analyze the key com-
ponents in SATORI in this Section. We describe relevant prior work
in Section 4. In Section 5, we present experimental results on the
ISCAS’89 benchmarks to demonstrate the speed and capacity perfor-
mance of SATORI as compared to a state-of-the-art commercial engine
and the model-checker, VIS, v1.4. Finally, we present our conclusions
in Section 6.

2 Preliminaries
In this section, we describe some of the background on the basic SAT
algorithm and on gate-level justification. The basic SAT algorithm de-
termines the satisfiability of a given problem inConjunctive Normal
Form (CNF). Here, we briefly describe the key components of generic
SAT algorithms using conflict-based learning to allow understanding of
the algorithms that follow. Interested readers may refer toe.g. [11, 13]
for a more detailed description.

Notation Given a finite set of variables,V , over the set of Boolean
valuesB ∈ {0,1}, aliteral, l/l is a variable,v/¬v∈V . A clause ci , is a
disjunction of literals (l1∨ l2 . . . ,∨ln). A formula f , is a conjunction of
clausesc1∧c2 . . . ,∧cn. A clause is considered as asetof literals and a
formula, as asetof clauses. An assignmentA for a formula f , is satisfy-
ing when the value off givenA is 1. An assignment is calledmaximal
when its domain isV . Following the convention in [13], we equate an
assignmentA with a disjunction of literalsvi ,∀v ∈ domain(A), where
A(vi) = 0, and¬vi ,∀v ∈ domain(A), whereA(vi) = 1. For example,
the assignment{v1(0),v2(1)} ≡ (v1∨ v2). A state clauseis a clause
consisting only of state variables.

Boolean Constraint Propagation (BCP) The generic SAT algorithm
decides on a sequence of variable assignments calleddecisions, which

320

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD’03, November 11-13, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-762-1/03/0011 ...$5.00.

Feature SAT ATPG Advantage
1 Conflict-Based learning Yes Minimal SAT
2 Efficient Implications Yes No SAT
3 Structural information Some Yes ATPG
4 Decision Ordering Appearance in clauses Probabilistic ATPG/SAT for sat./unsat. cases
5 Algorithm Complexity Low High SAT
6 Size of SAT assignments High Low ATPG

Table 1: SAT and ATPG feature comparison

generate additional variable assignments orimplications. These impli-
cations are found byBoolean Constraint Propagation(BCP). BCP is a
simple process for clauses since the only rule to be satisfied is that, given
an assignmentA, and a clauseci in the formula, a variablev j takes an
implied value of 1iff , all but one of the literals in theci are false.

Conflicts and Analysis A conflict is the simultaneous implication of
opposite Boolean values on a variable. Given a conflict at a variablevi ,
a conflicting assignment is a subseta⊆ A of an assignmentA, such that
evaluatingf |a is sufficient to cause the same conflict atvi . A conflict
clauseis the clause corresponding toa. Given a CNF formulaf and a
conflict clauseκ, then the new formulaf ′ ≡ f ∧κ, is satisfiableiff , f is
satisfiable [11].

SAT Algorithm Termination Most SAT engines determine that a
SAT instance is solved when the assignmentA, is maximal and impli-
cation of these values can find no conflict [13]. Hence, by definition, a
traditional SAT engine finds maximal assignments at state variables.

2.1 Structural Decision Strategies

ATPG engines differ in algorithms and data-structures, but they all share
one common feature – they all explicitly use the structure of the circuit
to guide the search process. The fault excitation part of an ATPG al-
gorithm can be contrasted directly with general SAT solvers though it
requires a 3-valued logic system{0,1,X}. Henceforth, we use the terms
– sequential justification and sequential SAT interchangeably.

Back-Tracing Back-tracing is a structural circuit traversal method
that selects a gate from a restricted subset of gates called thejustifica-
tion frontier or J-frontier. The signals in the justification frontier satisfy
the property that the original justification objective is satisfiediff every
signal in the justification frontier is satisfied.Back-tracingselects one
of the gates in theJ-frontier and recursively selects an unassigned input
of the gate, using a 3-valued algebra∈ {0,1,X}, in a depth-first manner
until a valid decision point is reached [12]. Several heuristics exist in
the literature [12] that can bias the assignment strategy toward thepri-
mary inputs(PIs), or toward state variables (also calledpseudo-primary
inputs(PPIs)), that can be more easily justified in time.

Circuit-level Implications BCP, or more commonlyimplication, for
a Boolean gate is more complex than for a CNF formula. Acontrolling
valuecg is an input value that uniquely determines the output value of
a gate. For example, anOR gate has a controlling value of 1. The non-
controlling value iscg. A gatesinversion parity, ig = 1, if the output of
the gate is a negated primitive Boolean function. For example,NAND,
NOR has an inversion parity of 1. Theoutput non-controllingvalue,no

g,
of a gate iscg⊗ ig. Similarly, theoutput controllingvalue,co

g, of a gate
is cg⊗ ig.

The implication rules for a gateg are as follows:

1. An output is implied to a controlling/non-controlling value, if any
of the inputs are at acontrolling valueor if all of the inputs are at
non-controlling values.

2. All inputs are implied tonon-controllingvalues if the output is at an
output non-controllingvalue.

3. If the the output is at anoutput controllingvalue and all but one of
the inputs are at non-controlling values, then the remaining input is
implied to acontrollingvalue.

As we can see, any gate-level implication routine would have to be sub-
stantially more complex than BCP on a CNF formula in order to support
these rules over multiple primitive Boolean gates.

Structural Algorithm Termination An ATPG algorithm typically
finds less than maximal assignments since it uses a 3-valued logic and
path-based justification based on the concept of aJ-frontier. However,
there is no guarantee that these assignments will beminimal. Chenget al.,
[7] describes a procedure for finding minimal assignments in ATPG
search. The algorithm requires search during the decision procedure
and can be expensive, but is complete.

A minimalassignment is of great importance to a sequential SAT pro-
cedure, since every additional assignment on a state variable reduces the
search space covered by the state vector by a factor of 2. Hence,mini-
malstate variable requirements can help terminate a search quicker. We
shall explore these concepts in greater detail with experimental analysis
in Section 3.3.

In the following section, we describe how SATORI combines key con-
cepts from ATPG and SAT to perform efficient sequential search.

3 SATORI

The key bottlenecks in a sequential SAT engine are: (a) Theimplica-
tion engine, (b) Thedecision strategy, and (c) Thestate space pruning
strategy. We shall describe each of these components in SATORI and
experimentally evaluate the efficiency of engineering the solver in this
manner.

3.1 The Implication Engine

The implication engine in SATORI operates on a SAT-style data-base of
clauses for speed. Consider a gate-level circuitC≡ {S,G,L}, whereS,
is a set of state elements,G is a set of primitive Boolean gates,{AND,
OR, NOT, NOR, NAND}, andL, is the set of signal lines interconnect-
ing g,g∈ {S∪G}. GivenC, we can convert it into a CNF formulafC,
whose variables correspond to each gate outputg ∈ G∪S and whose
clauses preserve the functionality of the gate. There is a one-to-one
mapping from a value assignment and its implications,Ag, Ig in the cir-
cuit C, and the correspondingAv, Iv in the formulafC.

The efficiency of implications is significantly higher in a CNF for-
mulation than in a gate-level circuit though the number of clauses is
greater than the number of lines in the circuit. The main cost of the
implication engine comes from evaluating when a gate is ready for im-
plication. A SAT engine usingwatched-literals [13] can do this very
efficiently. However, a gate-level implementation of watched-literals is
not as efficient since the update of the watched-literals is complicated
by the multiple implication rules for a gate level circuit.

3.2 The Decision Engine

The decision engine makes decisions on primary inputs and state vari-
ables for a user-defined number of decisions using back-tracing. The
choice of decision variable is guided by sequential controllability mea-
sures [12]. If a satisfying assignment cannot be found by the cut-off
number of decisions, the decision strategy changes to a VSIDS [13]-
style approach, which weights the decision variables based on the num-
ber of clauses in which a literal appears, on an exponentially decay-
ing scale over time. At this stage, all gates are considered as potential
decision points. SATORI incorporates conflict-based learning [13] and
back-jumping for efficiency in both the combinational and sequential
search space. The interested reader is referred to [11] for more details
of conflict-based learning and back-jumping.

Once a satisfying assignment for an objective in a time-frame is found,
the assignments at the independent variablesi.e.,PIs and PPIs are used
to form a conflict clause, which represents the state that is required to
satisfy the objective in the given time-frame. Thisstate clauseis used to
prune the sequential search space as described in the following section.

321

3.3 State Space Pruning
In this section, we describe the algorithms in SATORI that allow us to
perform sequential SAT efficiently. We describe a novel algorithm to
solve the problem of minimizing the set of assignments made to state
variables in a time-frame so that we can find a minimal state-clause for
justification. We also describe how we use a clause-based mechanism
for storing visited states and for pruning the sequential search space.

3.3.1 Assignment Reduction Algorithm
We now describe REDUCEASSIGNMENTS, which is a heuristic based
on list propagation from the set of assignments on state variables that
satisfies the given state objective for a time-frame. The algorithm takes
as inputs a topologically sorted circuitCkt, an assignment vectorA, and
a set of objectivesob j; and produces a new assignmenta, given by:

a⊆ A s.t. fc(a)∧ob j = 1, iff fc(A)∧ob j = 1 (1)

REDUCEASSIGNMENTS is conceptually equivalent to existentially
quantifying out the state variables in the formulafc∧ob j, one by one,
in a given time-frame. In practice, the algorithm parallelizes this by
propagating sets ofnecessaryassignments. If there is no initial state
specified, all the state variables in an assignmentA can be quantified out
only if a does not have any necessary state-variable assignments. Given
a satisfying assignmentA, there can exist several subsetsa1, . . . ,an ∈ A,
with different sets of state variables quantified out, and each of which
satisfy the objective in the given time-frame.

State Variable

G6

G5

G7 G7

G0 G0 G0

G3

G0
G7

G0
G7

G0
G7

G0
G7

G16

G2

G5

G3

G1
G7

G6

G7’

G6’

G14

G5’

G14

G13

G17

0

G12

G8
G15

G9

G0

0

1

1

0

0
0

1 1

01

1

0

0

G10

G11

Figure 1: Example of REDUCEASSIGNMENTS.
If the value on the gate is a controlling value, then the PI/PPI that

uniquely sets the gate value is chosen irrespective of whether it is a
PI or a PPI. On the other hand, if there exists a choice between two
controlling input variables, then we pick the first assigned PI with a
controlling value in the lists that has been propagated to the inputs of
the gate. If the gate is at a non-controlling value, then the lists at the
inputs of the gate are merged at the output of the gate. Gates that are
an unknown or X value are ignored. The final list at the justification
objective gives the desiredminimal assignment set.

This is illustrated in the Figure 1. The justification objective isG14=
1. Assume that the decision procedure sets the values of{G0, G1, G2,
G3, G5, G6, G7} = {1011001}, which satisfies the objective. The gates
in the input cone ofG14 are marked in bold. The traversal starts at the
PIs and PPIs with unit lists, which are propagated forward. When the
traversal reachesG8, the algorithm choosesG0, since it is a PI overG6,
which is a PPI, though both are at the same value. When the traversal
reachesG15, the input lists are merged sinceG15 is at a non-controlling
value of 0. There are no more merges till we reach the objective site and
the final set consists ofG0,G7. The time complexity of the algorithm is
O(VE), whereV is the number of gates andE is the number of signal
lines in the input cone of the justification objective. The space complex-
ity is O(VEk), wherek is the sum of the PIs and state variables in the
input cone, since we might in the worst case, have to propagate lists of
all the PIs and state variables.

3.3.2 State Clause learning
SATORI uses conflict clauses to record the state requirements for a given
time-frame. Given an assignmentAi that satisfies the objectives for
time-frameti , the recorded clause is

ci ≡ REDUCEASSIGNMENTS(Ai)\{vi ∈ PIs} (2)

This corresponds to a set of states, in the state space due to X-values in
a≡ REDUCEASSIGNMENTS(Ai), which cover several states at once.

4

5 6

3

9

8

7

I

x Illegal "I"

y Legal "L"

z Trace Illegal "T" v1

v3v2

v4

v0

v5

v9

v6

v10

v7

v8Initial State

Illegal

Input Assignments

Trace−Illegal

Figure 2: Different Types of State Clauses

The state clauses is stored in a state cache. The state cache can be
conceptualized as a graph representing the state sets visited so far as
shown as shown in the Figure 2. They can be classified as follows:

1. Legalstates are states,l i ∈ L, which can be reached from the speci-
fied initial state or from all states, if no initial state is specified (e.g.
9 in Figure 2).

2. Illegal states are states,i i ∈ I , that are proved combinationally unsat-
isfiable in a time-framei. This implies that they cannot be reached
from any other legal state (e.g. 5,6), or if they can be reached only
from states which are truly combinationally unsatisfiable (e.g.4).

3. Trace-illegalstates are states,ti ∈ T, that are reachable only from
states already visited and illegal states,i.e., it is in a strongly con-
nected component (SCC) and the trace has explored the SCC, with-
out finding a solution.(e.g.8).

4. Possibly legalstates are states,xi ∈ X, that are visited in time-frame
i, but not classified as illegal or trace-illegal. (e.g.3).

If the problem is satisfiable in a given time-frame, SATORI reduces un-
necessary assignments on the state variables using REDUCEASSIGN-
MENTS and does a fast lookup to check if the state requirement covers a
previously visited state. The results of the lookup are used to determine
if:

• the decision procedure should terminate, or
• backtrack to an earlier time-frame, or
• backtrack in the current time-frame and continue the search.

We keep only one copy of the circuit in memory at a time. If we
continue search in time, the formulafi+1 for the next time-frame is
generated from the currentfi , and the learned state clauses{T, I} as
follows:

fi+1 ≡ fi ∧{ti ∈ T}∧{i i ∈ I} (3)

In practice, this amounts to adding a few clauses to the current net-list.
IdentifiedIllegal states, which cannot be justified further back in time,
are avoided implicitly from the formulationfi+1.

Backtrack Clauses If we backtrack to an earlier time-frame, we cre-
ate aback-trackclausebi corresponding to the literals in the last state
clause learned in that time-frame and the value assignments on the PIs.
Hence f ′i ≡ fi ∧ bi . f ′i creates the constraint that the last satisfying
assignment cannot be repeated. Conflict analysis produces a conflict-
avoiding clause which is used to maintain the decision tree in the time-
frame i and continue search for the next satisfying assignment. Any

322

newly found illegal state clauses are added tof ′i to further prune the
search space.

A back-track clause corresponds to acut in the circuit with value
assignments that guarantee that all decisions that imply or decide those
value assignments will lead to a solution that has already been found.
This approach differs from prior art in two key points:

• Earlier approaches [6] relied on using an expensive, lookup-table
based scheme to avoid revisiting decision spaces. SATORI’s clause-
based scheme saves the cost of lookup and is correspondingly more
efficient.

• [6] used the state of thesearch-frontieras a key for the lookup.
SATORI’s clause-based mechanism predicates search-bounding only
on a combination ofvalue assignments, which have been made be-
fore.

A typical DPLL back-tracking procedure will backtrack to the last
decision made in the decision tree in a given time-frame and continue
search. However, with the addition of back-tracking clauses,all de-
cisions that lead to the same state-cube that are already explored in
the same time-frame are avoided or detected before a new state-cube
is found, with a minimum of conflicts in the decision procedure.

3.3.3 Loop Detection
SATORI performs DFS-search in the sequential state space. Hence, it
is necessary to check for revisited states in order to avoid getting stuck
in sequential loops. It would be correct to add the learned state clauses
that are not classified as illegal in order to avoid loops.

The problem with this formulation is that these state clauses may im-
ply values on state variables. Experiments showed that this typically
takes the search on long state paths and significantly degraded perfor-
mance. back-tracing typically finds much smaller paths, since we have
controllability metrics to guide the search. However, this information is
lost if we allow the learned state clauses to imply. This would not be the
case inimage computation[14], since that corresponds to a breadth-first
search in the state-space.

Therefore, we check for loops by explicitly checking a new state
against the set of visited states. This is done by comparing the liter-
als in the new state versus the literals in the states in the cache. This
check is actually quite fast, since we hash the states based on the literal
values in a hash-table. A unique key is generated for each clause and is
used to compare or retrieve visited states. We also check for Boolean
covers in the visited states. If a state assignment is covered by an il-
legal state, then we can backtrack to the earliest time-frame where we
detected the illegal state.

We also perform static illegal state identification, where state-cubes
which are reachable only from illegal states are classified as illegal, and
identification of legal state-cubes where known detection sequences ex-
ist. This is different from extracting a complete state-transition graph
(STG), which can be quite expensive.

3.4 Termination
Given a satisfying assignmentAi , in a time-frame, SATORI terminates
with:

1. SAT, if a ≡ REDUCEASSIGNMENTS(Ai) \ {vi ∈ PIs} = /0, i.e., no
state objective needs to be satisfied, or

2. SAT, if a⊆ S, i.e., ais covered by a specified initial stateS,
3. UN-SAT, if search onf ′ returns UN-SAT in the first time-framei.e.,

the sequential space has been completely explored.
4. ABORTED, if any of the user-defined parameters are exceeded.

3.5 Analysis of SATORI – Putting it all Together
In this section, we analyze some of the techniques described in the pre-
vious section with experiments on a subset of benchmarks from the IS-
CAS’89 benchmarks. The experiments are run on a small set of mid-
sized circuits, to demonstrate the various aspects of SATORI . A full set
of experiments on some very hard problems are shown in Section 5.

3.5.1 Decision Strategies
In this section, we analyze the decision strategies used in SATORI and
their impact on sequential search.

Experiments were conducted on the sample benchmarks in order to
illustrate the distinction between back-tracing (described earlier in Sec-
tion 2.1) and a good SAT style decision strategy, VSIDS [13] (described
in Section 3.2). Objectives of a Boolean 0 and 1 were set on each signal-
line in each benchmark circuit, and checked one-by-one using the 2
competing strategies. Almost all the objectives are satisfiable, though
with extensive search. The main points analyzed are:

1. How does back-tracing compare with VSIDS on time-frame expanded
sequential circuits? How does true sequential search compare with
search on time-frame expanded circuits?

2. How does back-tracing compare with VSIDS when used in true se-
quential search?

Ckts Rd ZCHAFF SATORI
TF+Back-trace True Seq

s1238 4 5.79 1.29 0.49
s1488 13 75.37 28.7 1.69
s1494 21 245.02 28.99 1.64
s344 10 1.94 0.59 0.15
s349 10 2.6 0.59 0.13
s386 9 3.37 2.22 0.13
s420 19 36.39 4.93 0.21
s510 11 18.32 11.91 2.03
s820 17 38.63 6.14 0.33
s838 19 221.98 19.67 0.83
s953 21 116.52 43.37 17.21

Table 2: Sequential Search v/s Bounded SAT
Back-Tracing on Unfolded Circuits In this set of experiments, we
checked satisfiability on a sequential circuit as a combinational problem,
and compared it to true sequential search.

The recurrence diameter Rd [1] of a sequential circuit, is defined as
the minimum path-length including cycles from the initial state to the
state where the objective is true. The sequential search problem can
be modeled as combinational search on the sequential circuit unfolded
Rd times. We estimatedRd, to be the maximum path length taken by
SATORI in true sequential mode for each objective. While this is not a
tight bound, it is a good approximation.

We compared the results of SATORI versus ZCHAFF. SATORI was
run in 2 modes : (a) back-tracing on the unfolded circuit, and (b) True
sequential search on the original circuit. ZCHAFF, was run on the un-
folded circuit for each objective and the cumulative run-time for all ob-
jectives was calculated. The satisfying solution was checked for having
no state variable requirements for correctness. The results are shown
in Table 2. The ColumnRd shows the number of time-frames for the
unfolding for each circuit. The run-times forZCHAFF on the unfolded
circuit is shown in Column 2, and the run-times for SATORI for back-
tracing on the unfolded circuit is shown in Column 3. Column 4 shows
the run-times for full sequential search.

As we can see, back-tracing has a speedup of 2x–10x compared to
ZCHAFF on all the circuits, while full sequential search performed from
10x–100x better than ZCHAFF, and again from 3x–20x better than back-
tracing on the unfolded circuit. This clearly shows that decisions on the
independentvariables are better thandependentvariables for satisfiable
SAT problems. It has been shown, however, that the converse is true for
hard unsatisfiable problems [9].

In the next set of experiments, we explore the performance of VSIDS
versus a back-tracing strategy in full sequential search.

Back-Tracing on True Sequential Search VSIDS and back-tracing
produce different state cubes to be justified during sequential search. We
ran experiments on the sample benchmarks, with Boolean objectives of
0 and 1 on each signal line, and ran full sequential search on the circuits.
We collected data on the number of state-cubes, which correspond to the
number of time-frames searched. State caching was disabled to stress
the two techniques in isolation.

The data in Table 3 show the results of these experiments. Columns 2
and 3 show the number of state cubes or time-frames searched for each
strategy and Columns 4 and 5 show the respective run-times. The results

323

State Cubes CPU Time (secs)
circuit Struct. VSIDS Struct. VSIDS %change
s298 2400 2828 0.55 0.82 +49
s344 2117 57413 0.55 19.54 +3452
s349 2129 42112 0.67 15.77 +2253
s382 33331 209096 20.45 142.07 +594
s420 1769 2414 0.37 0.98 + 164
s510 36699 39465 31.53 39.13 +24
s820 2737 7900 4.12 15.81 +283
s832 2854 7398 4.35 14.71 +238
s953 35154 53479 68.29 118.78 +73
s1238 187 285 0.6 2.41 +301
s1488 6452 19637 18.9 80.77 +327
s1494 7946 20685 28.19 84.48 +199

Table 3: Structural back-tracing v/s VSIDS [13]

clearly show that the number of state cubes in Column 3 of Table 3 that
had to be justified for the case of the SAT strategy is significantly higher.

This behavior is due to the fact that the VSIDS strategy does not as-
sign values based on any controllability metrics or structural guidance
to minimize the number of assignments. A given objective can be sat-
isfied with a variety of assignments. The best assignment would be one
that makes a small set of controlling assignments so that the state cube
is minimal. However, we found empirically that VSIDS makes a larger
number of non-controlling assignments at the state variables. Hence,
even the reduced state cube from VSIDS is still large as compared to
the back-tracing method.

A state cube that has fewer unspecified values, and thus a smaller
set of minterms typically generates the same kind of state cubes in the
previous time-frames. Hence, the number of time-frames explored in-
creases. This means that even with a heuristic to remove unnecessary
assignments, the SAT strategy took longer state traces and found smaller
covers than the back-tracing strategy. This directly translates to more
run-time in the order of 1.5x–30x as shown in Column 6, since signif-
icantly more time-frames are explored than is necessary to find a solu-
tion. Most of the objectives in the above experiments have solutions and
are found by both strategies.

3.5.2 REDUCEASSIGNMENTS

REDUCEASSIGNMENTS, which was described in Section 3.3.1, was
used to remove theunnecessaryassignments in each state cube. This
is necessary since (a) the termination condition for the search is hav-
ing no state requirements on the state variables, and (b) we wish to find
state cubes with a maximum number of unspecified values in each time-
frame, so that we can improve the search procedure. The SAT strategy
produces a maximal assignment, as compared to back-tracing. Hence,
we can safely conclude that REDUCEASSIGNMENTSis a necessity for
a SAT style decision strategy. However, we compared SATORI with and
without REDUCEASSIGNMENTS, when using the back-tracing decision
strategy to determine the effects of assignment reduction.

Ckt State Cubes Max Path Len. Run-Time(secs)
No-Red Red No-Red Red No-Red Red

s1488 5831 259 31 13 14.27 1.69
s1494 8930 249 21 21 26.28 1.64
s382 50857 4601 750 279 27.58 19.3
s444 62095 4987 790 453 136.06 14.5
s510 65911 248 50 11 48.07 2.03
s820 4280 95 17 17 6.59 0.33
s832 4311 101 17 17 7.28 0.31

Table 4: REDUCEASSIGNMENTSand Back-Tracing
The experiments were again a set of objectives of Boolean 1 and 0

on each signal in the circuit. The results are shown in Table 4. Columns
2 and 3 show the number of state-cubes generated with and without
REDUCEASSIGNMENTS, Columns 4 and 5 show the maximum length
of the state trace taken during search, and Columns 6 and 7 show the
respective run-times.

As we can see, the number of time-frames explored is significantly
smaller with REDUCEASSIGNMENTS. The reduction is in the order of
3x–300x, with a corresponding reduction in run-time. The maximum
state-trace that some of the examples took increased by upto 5x. It is
clear that minimal state cubes can bound the search space significantly,
and that REDUCEASSIGNMENTS is a useful heuristic in minimizing
state requirement cubes.

3.5.3 State Caching

State caching is a useful technique for reusing the results of prior state
traces. We ran some experiments on a few circuits, with state-caching
turned on and off. The results are shown in Table 5. Columns 2 and
3 show the number of time-frames or state cubes explored without and
with caching. Columns 4 and 5 show the corresponding run-times.

Ckt State Cubes Mem Run-Time(secs)
no cache cache (KB) no cache cache

s1488 5397 259 7 18.4 1.69
s1494 7566 249 7 31.7 1.64
s382 171861 4601 293 262.47 19.3
s444 131343 4987 230 280.24 14.5
s510 12735 248 10 17.98 2.03
s526 111551 8327 458 454.35 66.68
s526n 108342 8208 456 459.85 69.7
s820 4624 95 5 10.89 0.33
s832 4637 101 5 11.05 0.31
s953 116187 149 49 3718.3 17.21

Table 5: Effectiveness of State Caching
The primary considerations, as in any caching mechanism, is the

amount of memory consumed, and effectiveness of caching. As we
can see from the table, the memory for caching never exceeded 500Kb,
while reducing run-times by 8x–200x. Hence, state caching in the se-
quential search is a cheap and effective method to cut down run-time,
when checking a number of objectives.

4 Related Work

There exists a large body of work on techniques, which effectively
use the structure of the circuit to perform branch-and-bound search.
However, they suffer from two significant drawbacks – a) They cannot
systematically avoid re-entering previously explored decision spaces,
and b) They are significantly slower on hard combinational problems
than state-of-the-art SAT solvers implemented specifically for solving
a problem in a single time-frame. The subject of these two problems
has been the focus of intense activity in theSequential Automatic Test
Pattern Generationover the last 4 decades. Chenget al., [12] presents
a good survey of the current work in traditional ATPG.

SAT based techniques and implication graph based techniques have
been used to speed up the basic combinational part of the problem [4]. A
variety of techniques have been proposed for illegal state identification
and storage to prune the state space effectively. SEST [6] uses RTP
combined with limited learning to speed up sequential search.

Huang[10] proposed using ATPG techniques for verification includ-
ing combinational equivalence checking and property checking. Bop-
pannaet al., [5] and Abrahamet al., [2] discussed the use of ATPG for
model checking using a commercial tool. The former was a brute-force
approach, while the latter’s approach solely targeted checking a state
space for boundk, using a commercial ATPG engine. Parthasarathy [9]
compared SAT and ATPG for assertion checking and concluded that
they have similar performance on small problem instances, while ATPG
has advantages dealing with real-world circuits over SAT.

McMillan [14] proposed a method for quantification of variables in
a CNF formula. This was targeted for image computation and is quite
different from REDUCEASSIGNMENTS, since a) we perform DFS-like
search in the sequential space and b) we perform quantification of sub-
sets of state-variables in a time-frame. The approach by Chenget al.,
[7], performs search for minimal assignments, which can be quite ex-
pensive, while ours is a linear-time algorithm.

324

5 Experiments
So far, we have shown results on small to mid-sized circuits. How-
ever, we now show experiments designed to a) demonstrate the capacity
performance of SATORI as compared to a state-of-the-art commercial
solver, b) demonstrate the speed of SATORI on a set of justification ob-
jectives on hard examples with large state spaces, and c) demonstrate the
power of sequential search when compared to a state-of-the-art BDD-
based model checker – namely VIS, version 1.4 [16]

One interesting application of SATORI is in assertion checking on se-
quential circuits. Typically, we have a trade-off between BDD-based
approaches and search-based approaches likeBounded Model Check-
ing. Since SATORI is a complete search engine, we contrast it with VIS,
on assertion checking on some large examples in the ITC’99 and IS-
CAS’89 benchmark suites. We ran 2 assertions on each example, which
were:

1. AG(p1), where p1 = ((s1 = 0) ∨ (s2 = 0), . . . ,∨(sn = 0)),si ∈ S,
whereS, is the set of state variables in the circuit.

2. AG(p2), wherep2 = ((s1 = 1)∧ (s2 = 1), . . . ,∧(sn = 1)),si ∈ S.

SATORI was also compared to a commercial ATPG engine running in
pure justification mode, which does not assume a complex fault model
in these experiments, so that we have a fair comparison. The limits on
SATORI and the commercial ATPG engine were a million back-tracks,
300 cycles and 3600 secs per property. VIS was given a time-out limit of
3600 secs, but no limits on memory. We used the standard VIS scripts,
to perform the assertion checking. The experiments were run on an Intel
Pentium-4 machine with 1 GB of RD-RAM running Linux and a Sun
UltraSparc-3d machine running Solaris 8.0. The results were scaled
using an independent set of experiments so that the run-times can be
directly compared.

Ckt SATORI Rslt2 Comm. Rslt VIS Rslt
ATPG

b04 349.38 T/T >1hr T/A >1hr A/A
b11 1.12 T/T 0.7 T/T 3.1 T/T
b14 0.07 T/T 3.3 T/T >1hr A/A
b17 3.5 T/T 9.8 T/T >1hr A/A
b20 0.15 T/T 3.1 T/T >1hr A/A
b21 0.16 T/T 3.2 T/T >1hr A/A
b22 0.23 T/T 4.9 T/T >1hr A/A
s13207 1.2 T/F 2.8 T/F >1hr A/A
s15850 0.15 T/F 2.6 T/F >1hr A/A
s35932 119.5 T/T >1hr A/A – –
s38417 0.77 T/F 8.6 T/F >1hr A/A
s38584 0.41 T/F 7.0 T/F >1hr A/A
s5378 0.02 T/F 1.1 T/F >1hr A/A
s820 0.09 F/F 5.7 F/F 0.1 F/F
s832 0.09 F/F 5.6 F/F 0.1 F/F
s838 0 F/T 0.5 F/T 0.2 F/T
s9234 0.04 T/F 1.4 T/F >1hr A/A
1 Run-Time in CPU seconds unless noted otherwise
2Status ofp1/p2 ∈ {T=proved true, F=proved false, A=abort}

Table 6: Assertion Checking Experiments
Column 2 and 3 show the results for SATORI , 4 and 5 for the com-

mercial ATPG tool, and 6 and 7 for VIS. Most of these assertions re-
quired significant search in the sequential space. We show results only
on the largest of the ITC’99 and ISCAS’89 benchmarks. All the engines
finished quickly in under 0.5 seconds on all the smaller benchmarks.
VIS aborted on most of the big benchmarks after about 3600 secs. The
peak memory usage on these cases was close to 800 Mb. The mem-
ory consumed by SATORI did not exceed 150MB and the commercial
engine did not exceed 300MB.

In the cases where VIS managed to finish building the BDD-based
images, it outperformed the commercial engine by 2x to 50x. How-
ever, SATORI finished all the test-cases including cases where both the
commercial engine and VIS failed in reasonable time. The commercial
ATPG engine also finished in all but 2 cases, with very reasonable times.
This clearly demonstrates the power of sequential search for assertion

checking. SATORI outperformed commercial ATPG by 20x to 50x and
finished on 2 cases where ATPG aborted after 3600 secs, except inb11.

6 Conclusion
We have described SATORI – a general sequential justification engine
that is at least an order of magnitude faster than a state-of-the-art com-
mercial tool. SATORI addresses limitations of traditional SAT solvers
and structural sequential ATPG-based satisfiability. We have described
how we have integrated path-based justification with conflict based learn-
ing and SAT techniques in SATORI for efficient sequential search. Our
analysis shows that achieving minimal state requirements in each time-
frame using back-tracing and heuristic assignment reduction improves
efficiency significantly. We have also presented sample results that
demonstrate how the strengths of each technique can be effectively in-
tegrated into an efficient solver. We have presented results on SATORI
versus VIS, which show that SATORI can be more efficient than BDD-
based image computation when exploring huge state spaces. We have
also shown that it is often better to use a complete sequential search
engine than on a naive bounded model.

Future improvements includes strengthening the sequential learning
and structural search, and definition and implementation of the full se-
mantics of a temporal logic in SATORI for symbolic model checking.

7 References
[1] A. Biere, A. Cimatti, E.M. Clarke, M. Fujita, and Y.Zhu. Symbolic

Model Checking using SAT Procedures instead of BDDs. InProc.
of the 36th ACM/IEEE DAC, pages 317–320, June 1999.

[2] J. Abraham and V. Vedula. Verifying Properties Using Sequential
ATPG. InProc. of ITC, pages 315–319, Oct. 2002.

[3] M. Abramovici, M. A. Breuer, and A. D. Friedman.Digital Sys-
tems Testing and Testable Design. CS Press, 1st ed., 1990.

[4] A. Biere and W. Kunz. SAT and ATPG: Boolean Engines for For-
mal Hardware Verification. InProc. of the IEEE/ACM ICCAD,
November 2002.

[5] V. Boppana, S. Rajan, K. Takayama, and M. Fujita. Model Check-
ing Based on Sequential ATPG. InProc. of Int. CAV’99, LNCS,
pages 418–430. Springer, July 1999.

[6] X. Chen and M. Bushnell. Sequential Circuit Test Generation Us-
ing Dynamic Justification Equivalence.JETTA, 8(1):9–34, Feb.
1996.

[7] K. Cheng and H. Ma. On the Over-Specification Problem in Se-
quential ATPG Algorithms. InProc. of the29th DAC, pages 16–
21, June 1992.

[8] M. Davis, G. Logemann, and D.Loveland. A Machine Program
for Theorem Proving.Journal of the ACM, 5(7):201–215, 1962.

[9] G. Parthasarathy, C.-Y. Huang, and K.-T. Cheng. An Analysis
of ATPG and SAT Algorithms for Formal Verification. InInt.
Workshop on HLDVT, pages 177–182, November 2001.

[10] C.-Y. Huang, B. Yang, H.-C. Tsai, and K.-T. Cheng. Static Prop-
erty Checking Using ATPG v.s. BDD Techniques. InProc. of ITC,
Aug. 2000.

[11] J.P Marques-Silva and K.A. Sakallah. GRASP - A Search Algo-
rithm for Propositional Satisfiability.IEEE Trans. on Computers,
48(5):506–521, May 1999.

[12] K.-T. Cheng and A. Krstic. Current Directions in Automatic Test-
Pattern Generation.IEEE Computer, 32(11):58–64, 1999.

[13] M. Moskiewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. En-
gineering an Efficient SAT Solver. InProc. of the 38th ACM/IEEE
DAC, 2001.

[14] K. McMillan. Applying SAT Methods in Unbounded Symbolic
Model Checking. InProc. of the 14th CAV, volume 2402 ofLNCS,
pages 250–264. Springer-Verlag, 2002.

[15] P. Tafertshofer, A. Ganz, and K. Antreich. IGRAINE – An
Implication-Graph based Engine for Fast Implication, Justifica-
tion and Propagation.IEEE Trans. on Computer-Aided Design,
19(8):907–927, August 2000.

[16] R. K. Brayton, G. D. Hachtel,et al., VIS: A System for Verifica-
tion and Synthesis. InProc. of the 8th CAV, volume 1102 ofLNCS,
pages 428–432, July/August 1996. Springer Verlag.

325

