

Delft University of Technology

SATT: Tailoring Code Metric Thresholds for Different Software Architectures

Aniche, Mauricio; Treude, Christoph; Zaidman, Andy; van Deursen, Arie; Gerosa, Marco Aurélio

DOI
10.1109/SCAM.2016.19
Publication date
2016
Document Version
Accepted author manuscript
Published in
16th International Working Conference on Source Code Analysis and Manipulation (SCAM)

Citation (APA)
Aniche, M., Treude, C., Zaidman, A., van Deursen, A., & Gerosa, M. A. (2016). SATT: Tailoring Code Metric
Thresholds for Different Software Architectures. In 16th International Working Conference on Source Code
Analysis and Manipulation (SCAM) (pp. 41-50). IEEE . https://doi.org/10.1109/SCAM.2016.19

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/SCAM.2016.19
https://doi.org/10.1109/SCAM.2016.19

Delft University of Technology
Software Engineering Research Group

Technical Report Series

SATT: Tailoring Code Metric Thresholds
for Different Software Architectures

Maurı́cio Aniche, Christoph Treude, Andy Zaidman,
Arie van Deursen, and Marco Aurélio Gerosa

Report TUD-SERG-2016-023

SERG

TUD-SERG-2016-023

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 16th IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2016).

c© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

SATT: Tailoring Code Metric Thresholds
for Different Software Architectures

Maurício Aniche1,3, Christoph Treude2, Andy Zaidman1, Arie van Deursen1, Marco Aurélio Gerosa3

{m.f.aniche,a.e.zaidman,arie.vandeursen}@tudelft.nl, christoph.treude@adelaide.edu.au, gerosa@ime.usp.br
1Delft University of Technology - The Netherlands

2University of Adelaide - Australia
3University of São Paulo - Brazil

Abstract—Code metric analysis is a well-known approach for
assessing the quality of a software system. However, current
tools and techniques do not take the system architecture (e.g.,
MVC, Android) into account. This means that all classes are
assessed similarly, regardless of their specific responsibilities. In
this paper, we propose SATT (Software Architecture Tailored
Thresholds), an approach that detects whether an architectural
role is considerably different from others in the system in terms
of code metrics, and provides a specific threshold for that role.
We evaluated our approach on 2 different architectures (MVC
and Android) in more than 400 projects. We also interviewed
6 experts in order to explain why some architectural roles are
different from others. Our results shows that SATT can overcome
issues that traditional approaches have, especially when some
architectural role presents very different metric values than
others.

I. INTRODUCTION

The usage of tools such as PMD1 and Sonar2 to spot
problematic pieces of code in software systems has become
popular among software developers [1]. Internally, these tools
decide whether a class is problematic after performing a code
metric analysis. Indeed, code metrics have been proven useful
to assess the quality of object-oriented design [2], [3], [4], [5],
as well as to code smell detection [6], [7].

These tools commonly rely on thresholds to distinguish
between “good" and “bad” classes, i.e., if a class has a metric
value higher than the threshold, the tool reports that the class
may have a problem. These thresholds are usually calculated
after extensive analysis of many software systems, similar to
benchmarking [8], [9]. Indeed, defining a good threshold is
not a straightforward task [10], [11], [12], [13], and different
approaches have been proposed [14], [9], [15], [16] over the
years.

However, the impact of the system architecture on class
level metrics is unclear. In practice, software developers rely
on well-known architectural styles and design patterns [17],
[18], [19] as common building blocks. These building blocks
are typically composed of a number of classes, each carrying
a specific architectural role. As an example, suppose a sys-
tem follows the Model-View-Controller (MVC) pattern [20]:
classes that play the CONTROLLER role are responsible for

1http://www.sonarqube.org/.
2http://pmd.github.io.

coordinating the process, while classes that play the MODEL
role represent business concepts.

Thus, as some classes have specific responsibilities, we
can raise interesting questions, such as “Do developers deal
with coupling in CONTROLLERS the same way as they do
in MODELS?” or “Do developers deal with complexity in
CONTROLLERS the same way as they do in MODELS?”. If the
answer to these questions is “no", then there might be room
for improvement, as tools and techniques commonly use the
entire distribution of the code metric values, no matter the
architectural role a class plays in the system, as if all classes
were equal to each other.

Adding context to code metrics is an emerging topic among
researchers. Zhang et al. [21] showed that metric values can
be affected by factors, such as programming language, age
and lifespan. Recently, Gil and Lalouche [22] argued that
metric values vary among projects, and “they mean nothing
when examined out of their context”. Bouwers et al. [23] also
warned the community about using a metric without a proper
interpretation, or, as they call, the “metric in a bubble” pitfall.

To that end, we propose SATT (Software Architecture Tai-
lored Thresholds). Our approach detects whether an architec-
tural role is considerably different from others in the system in
terms of code metric values, and provides a specific threshold
that should be used for that role. We evaluate our approach by
1) applying it to two different software architectures (MVC
and Android), 2) comparing the outcomes to one state-of-
art approach, and 3) seeking an explanation from industrial
experts in these architectures.

II. MOTIVATIONAL EXAMPLE

SSP, or the Student Success Plan3, is a tool that allows
students to create plans for the completion of their academic
goals. It is an open source project hosted on GitHub, with
more than 4,000 commits, 26 releases, and 18 contributors.
The application makes use of the Spring MVC framework,
which means it contains CONTROLLERS to handle the re-
quests, ENTITIES to represent the business model, SERVICES
to implement business rules, and REPOSITORIES responsible
to persist the data in a database.

3http://www.studentsuccessplan.org/.

SERG SATT: Tailoring Code Metric Thresholds for Different Software Architectures

TUD-SERG-2016-023 1

A concept that exists in SSP is “Plan”. Users create study
plans. The class PlanController is responsible for coordinating
actions such as exhibiting, creating, deleting, and printing the
study plan. It has 48 dependencies and 25 methods. However,
these methods are not complex in terms of branches (i.e.
ifs and fors), as they mostly coordinate the process between
the data from the user interface to the service layer, as
expected in a CONTROLLER class. On the other hand, the
class PlanServiceImpl is responsible for managing business
rules. It contains 29 dependencies and 16 methods in which
nested conditionals and loops are found. The PlanDAO (a Data
Access Object [24]) class, responsible for the integration with
the database, is also different. It is coupled to 20 classes, 7 of
which are simple Data Transfer Objects [24]. The number of
branch instructions is not high. The Plan entity class is also
lowly coupled; it depends on 15 classes, of which 3 belong to
the system (others are related to annotations required by the
persistence framework). It contains attributes that are mapped
to the database, and the majority of its methods are getters
and setters.

Interestingly, these characteristics are similar in all other
classes that play CONTROLLERS, SERVICES, REPOSITORIES,
and ENTITIES in the system. For example, CONTROLLERS
are, on average, more coupled than the rest of the system.
The median of the number of dependencies in an SSP CON-
TROLLER is 17. REPOSITORIES are different; their median
number of dependencies is 7 and the third quartile is at
8. These architectural roles are also different in terms of
complexity: the third quartile of McCabe’s complexity [25] in
all ENTITIES is 17, while for REPOSITORIES the same number
is 7.

As we saw in the example, some architectural roles can
present considerably different metric values. Towards this
issue, we propose SATT.

III. BACKGROUND

In this Section, we present the code metrics and the ar-
chitectural roles in the two system architectures (MVC and
Android) that we analyze in this study.

A. Code Metrics

We rely on the Chidamber & Kemerer (CK) metrics
suite [26], as (i) it covers different aspects of object-
oriented programming, such as coupling (CBO, RFC), co-
hesion (LCOM), and complexity (WMC, NOM), (ii) it has
already proven its usefulness in earlier studies [2], [3], [27],
(iii) both studied architectures are object-oriented. The class
level metrics we used from the CK suite are the following:
• Number of Methods (NOM). Number of methods in a

class.
• Weighted Methods Per Class (WMC). Sum of McCabe’s

cyclomatic complexity [25] for each method in the class.
• Coupling Between Object Classes (CBO). The number of

classes a class depends upon. It counts classes used from
both external libraries as well as classes from the project.

• Response for a Class (RFC). It is the count of all method
invocations that happen in a class.

• Lack of Cohesion of Methods (LCOM). Number of
method pairs whose similarity in terms of used attributes is
zero minus the count of method pairs whose same similarity
is not zero.
Each metric has its own scale, varying from 0 or 1 to

infinite. The higher the metric value, the larger is the presence
of the measured effect.

B. State-of-the-Art Benchmarking Approach

In this section, we present Alves et al.’s [9] work, a state-
of-art benchmarking technique, which our approach was based
on. We chose this one as it (i) assumes the non-normality of the
metric values distribution, (ii) uses LOC as a weight function,
which emphasizes the metric variability, (iii) separates the
thresholds into different risk categories.

The authors proposed a benchmarking approach that uses
a weighted function. First, the approach extracts code metric
values from a set of different systems. This extraction can
be done at method or class level (which they generically
call entity). Then, for each entity, the approach calculates its
weight (lines of code). After ordering the entities by their
weights in ascending way, the approach selects as thresholds
the code metric values relative to the 70%, 80%, and 90%
percentiles of the accumulated weight. In other words, classes
in which metric values range in the 70%-80% percentiles have
“moderate risk”, while from 80%-90% the risk is “high”, and
“very high” between 90%-100%.

As we can see, their approach derives a unique threshold
for the code metric that is studied. As a consequence, all
classes will be assessed using this threshold. In Section IV, we
explain our approach, which can provide different thresholds
for different architectural roles.

C. System Architecture and Architectural Roles

We define “architectural role” as a particular role that
classes can play in a system architecture. When a class plays
an architectural role in the system, its task is well-defined,
and usually classes are focused only on that. As an example,
CONTROLLERS in Spring MVC applications coordinate the
flow between the user interface and the domain layer. One
can note the difference between architectural roles and design
patterns: while some design patterns can be optional in the
system, architectural roles are fundamental to that system
architecture, e.g., an MVC-based architecture requires the ex-
istence of CONTROLLERS, while a Strategy design pattern [19]
can be optionally applied in the system.

We chose the Spring MVC and Android application archi-
tectures, as both require software engineers to use classes with
specific architectural roles in their applications. We had several
reasons to select Spring MVC and Android: (i) they have well-
defined architectural roles, (ii) they are frequently used (in a
survey with more than 2,000 respondents [28], Spring MVC
was used by 40% of developers that use a web framework; in
July 2015, there were 1.6 million applications in the Google

SATT: Tailoring Code Metric Thresholds for Different Software Architectures SERG

2 TUD-SERG-2016-023

Play Store, the official Android application repository), (iii)
their domains are different (web vs. native mobile).

1) Spring MVC-based application architecture: Spring
MVC is a Java framework that supports developers in building
web applications. A Spring application must have classes
playing different architectural roles [29]:
• Controller: Control of the flow between the domain layer

and the view layer.
• Service: Offer an operation that stands alone in the model,

with no encapsulated state.
• Repository: Encapsulate persistence, retrieval, by emulating

a collection of objects.
• Entity: Represent a lightweight persistence domain object.

They may or may not contain business rules.
• Component: Represent some isolated component in the

application. Practical examples are UI formatting or data
conversion. REPOSITORIES and SERVICES are a special
kind of component.
2) Android-based application architecture: Android is a

rich application framework that allows developers to build
apps and games for mobile devices in a Java language en-
vironment. In the following, we describe 3 of the main roles
when developing applications in Android.
• Activity: Provide a screen with which users interact in order

to do something, such as dial a number, take a photo, send
an email, or view a map.

• Fragment: Represent a behavior or a portion of a user
interface in an Activity. It can be reused in many different
ACTIVITIES.

• AsyncTask: Perform background operations and publish
results to the UI thread without having to manipulate threads
and/or handlers.

IV. THE SATT APPROACH

The SATT (Software Architecture Tailored Thresholds)
approach derives a threshold for an architectural role when its
code metric values distribution is considerably different from
the distribution of other classes in the system.

According to Alves et al. [9], a benchmarking technique
should present three characteristics, which ours follow: 1) it
should be driven by the empirical data instead of experts’
opinion, 2) should be robust to the distribution of the code
metric values, and 3) should be repeated, transparent, and
straightforward.

In the following, we present our approach step-by-step.
Suppose we want to define the McCabe threshold for CON-
TROLLER classes in MVC systems. The approach can be
repeated for any other architectural role and code metric.

1) Dataset creation. We select systems that follow the
analyzed architecture, e.g., Spring MVC applications. We
perform this step only once and use the same benchmark
to calculate the thresholds for all other architectural roles.

2) Architectural roles extraction. We identify each class’
architectural role in the benchmark. In case of Spring
MVC, CONTROLLER classes are always annotated with
@Controller.

3) Metrics calculation. We calculate code metrics for all
classes in the benchmark, regardless of their architectural
role. In this example, the McCabe number of all classes.

4) Statistical measurement. We perform a statistical test to
measure the difference between the code metric values
in that architectural role (group 1) and the other classes
(group 2). As metric values distributions tend not to fol-
low a normal distribution (discussed in Section VII), we
suggest the use of non-paired Wilcoxon test and Cliff’s
Delta between the two groups. Bonferroni correction
should be applied, as the approach is performed for all
combinations of architectural roles and code metrics.

5) Analysis of the statistical tests. If the difference is
significant and the effect size ranges from medium to
large, we continue the approach. Otherwise, we stop. We
use Romano et al.’s [30] classification to describe the
effect. Supposing D as the effect size, ranging from -1 to
1, |D|<0.147 means “negligible effect", |D|<0.33 means
“small effect", |D|<0.474 means “medium effect", and
|D|>=0.474 means “large effect".

6) Weight ratio calculation. From now on, we only look to
the classes of the analyzed architectural role. Following
the original approach, we use lines of code (LOC) as
a weight of all classes. Thus, we calculate LOC for all
classes and normalize it for all classes that belong to
that architectural role in the benchmark. Normalization
ensures that the sum of all weights will be 100%. In the
example, suppose that our benchmark contains 100,000
lines of code in CONTROLLER classes, and a class A with
100 lines of code. Thus, A’s weight is 0.001.

7) Weight ratio aggregation. We order classes according to
their metric values in an ascending way. For each class,
we aggregate the weights by summing up all the weights
from classes that have smaller metric values, i.e., classes
that are above the current class.

8) Thresholds derivation. We extract the code metric value
from the class that has its weight aggregation closest to
70% (moderate), 80% (high), and 90% (very high).

V. ANALYSIS OF THE APPROACH

In order to analyze the proposed approach, we answer the
following research questions:

RQ1. What differences in metric values distributions
does SATT find for common architectural styles such
as MVC and Android? First, it is important to determine
whether differences between architectural roles in terms of
code metrics are significant, e.g., if a CONTROLLER presents
a similar metric values distribution of any other classes, then,
we would not need a specific threshold.

RQ2. Can the differences in distributions thus found
be explained from the architectural constraints imposed
on classes fullfilling dedicated architectural roles? As we
will see in RQ1, some architectural roles do differ from
others in terms of code metric values. In this RQ, we provide
explanations on why these differences happen.

SERG SATT: Tailoring Code Metric Thresholds for Different Software Architectures

TUD-SERG-2016-023 3

RQ3. What impact do these differences have on the use
of thresholds for quality assessments and smell detection?
In this RQ, we compare and explain the differences in the
outcomes of both the state-of-the-art benchmarking approach
and SATT.

To answer these questions, we conducted a case study in two
different software architectures (MVC and Android). To that
end, we collected 120 Spring MVC and 301 Android systems
in Github and performed both Alves et al.’s [9] and our
approach. We also relied on a qualitative analysis of interviews
with 6 different experts in both architectures.

A. Data Collection

To select Spring MVC and Android projects, we made use
of BOA [31], a domain-specific language and infrastructure
that eases mining software repositories and currently contains
extensive data from Github. Using its DSL, we developed a
query4 that specifies that: (i) the project should have more than
500 commits in its history, (ii) the project should contain at
least 10 classes with architectural roles. Although the constants
500 and 10 were chosen by convenience, we conjecture that
they filter out pet projects and small experiments that develop-
ers store on GitHub. We also manually inspected the sample
to make sure they are stand-alone systems. We eliminated
the ones that were part of Spring or Android itself or were
libraries.

To determine the architectural role for classes in Spring
MVC applications, we analysed their annotations. If a class
contains one of the following annotations, we consider that
class as playing that role. The name of the annotation matches
with the name of the architectural role: @CONTROLLER,
@SERVICE, @ENTITY, @REPOSITORY, and @COMPO-
NENT. Android applications make use of inheritance to de-
termine the roles. Thus, we applied the same idea. If the class
inherits from one of following classes (or its sub-classes),
we consider that class to play a specific role: ASYNCTASK,
ACTIVITY, and FRAGMENT. In both architectures, developers
are required to follow these conventions. If they do not, that
class may not work as expected in the system. Other classes
in the system were considered “unindentified”.

We obtained 120 Spring MVC projects and 301 Android
projects. Together, they have more than 127,000 classes with
14 million lines of code. In Table II, we describe the numbers
of each analysed architectural role, as well as the median of the
number of classes in each role per project. Full data and scripts
used in this study can be found in our online appendix [32].

B. RQ1. What differences in metric values distributions does
SATT find for common architectural styles such as MVC and
Android?

1) Method: We performed the SATT approach in both
Spring MVC and Android systems until step 4 (which com-
pares whether architectural roles present different metric val-
ues distributions when compared to other classes). All the

4Job IDs in BOA: 11947 and 14071.

Table II: Descriptive numbers of the sample

Total
classes

Avg classes
per proj

Total
SLOC

Median
class size

Spring MVC

Controller 3,126 20 365,274 79
Repository 1,325 14 105,842 46
Service 2,845 16 326,778 59
Entity 1,666 20 169,838 78
Component 2,167 12 158,975 43
Others 52,397 269 3,654,035 39

Android

Activity 7,455 13 1,036,645 95
AsyncTask 381 2 38.680 69
Fragment 2,004 7 307,074 108
Others 83,542 142 8,285,671 51

source code and analysis scripts that we used are open source
and available for inspection [32].

We used a significance level of 95% and applied Bonferroni
correction for each system architecture. In Spring MVC, we
performed our approach in 25 combinations (5 architectural
roles times 5 metrics). In Android, we performed it 15 times
(3 architectural roles times 5 metrics). Thus, we adjusted the
p-values to 0.002 and 0.003, respectively.

2) Findings: In step 3, our approach checks whether code
metric values distributions are different among architectural
roles. In Table I, we show both the Wilcoxon test and
Cliff’s Delta for all architectural roles and code metrics.
Stars represent the result of the statistical test, numbers are
the measured effect size, and grey cells highlight medium
and large effect sizes. We also analyzed the boxplots of
the distribution of metric values for each architectural role.
Due to space constraints, both boxplots and quantile plots of
distributions can be seen in our online appendix [32].

In Spring MVC, 24 out of the 25 comparisons were statisti-
cally different, while 8 of them had an effect size from medium
to large. Only NOM in CONTROLLERS did not present a
statistically significant difference. In Android, 13 out of 15
comparisons show statistically significant differences, 6 of
which had medium to large effect sizes. Only NOM was not
significantly different in ACTIVITY and ASYNCTASKS.

We now discuss the results for each metric in detail:
CBO. This coupling metric presents medium and large ef-

fect sizes in almost all architectural roles, with the exception of
REPOSITORIES and ASYNCTASKS, which present small effect
size. We highlight CONTROLLERS, which have a large effect
size, and in the boxplot, we can see that their median is higher
than that of other classes. The same happens in Android,
as FRAGMENTS and ACTIVITIES have higher medians than
others. This indicates that classes fulfilling architecural roles
tend to be more coupled than other classes.

LCOM. In Spring MVC, we see that effect size for lack of
cohesion in ENTITIES is large. When we observe the boxplot,
we notice that their median is higher than other classes. Thus,
ENTITIES are less cohesive than regular classes, which makes
sense especially as they usually contain a larger number of

SATT: Tailoring Code Metric Thresholds for Different Software Architectures SERG

4 TUD-SERG-2016-023

Table I: Cliff’s Delta effect size of the comparison between architectural roles and population in Spring MVC and Android.
∗ significant difference according to Wilcoxon test, highlighted cells = medium or large effect size.

CBO LCOM NOM RFC WMC

Spring MVC
Controller 0.6591 * -0.1279 * - 0.3540 * 0.0925 *
Repository 0.2862 * -0.1279 * -0.0864 * 0.0823 * -0.0791 *
Service 0.4538 * -0.1059 * 0.0351 ** 0.3047 * 0.0972 *
Entity 0.4945 * 0.5769 * 0.5600 * -0.3969 * 0.3088 *
Component 0.3738 * -0.1946 * -0.2157 * 0.205 * -0.1078 *

Android
Activity 0.4983 * 0.1246 * - 0.3769 * 0.0900 *
AsyncTask 0.3181 * -0.1658 * - 0.1782 * 0.1504 *
Fragment 0.6136 * 0.2598 * 0.1709 * 0.3942 * 0.1933 *

fields. In Android, although FRAGMENTS have larger effect
size in LCOM than others, we can see in the boxplot that
they are similar. As the effect sizes are negligible to small, we
can state that Android’s architectural roles are not different in
terms of cohesion from other classes.

NOM. In Spring MVC, ENTITIES present a large effect size
when compared to other classes. In the boxplot, we notice
that their median, as well as their first and third quartiles, are
higher than those of other classes. This can be explained by the
fact that ENTITIES commonly not only contain methods with
business logic, but also getters and setters for most of their
fields, and therefore have a larger total number of methods. In
Android, only FRAGMENTS present a significant difference,
but the effect size is small. As we can see in the boxplots,
although the median is similar in all Android architectural
roles, FRAGMENTS have a higher third quartile than other
roles.

RFC. In terms of number of method calls, we see that
CONTROLLERS present a medium positive effect size, while
ENTITIES present a medium negative effect size. In the box-
plot, we see that CONTROLLERS and SERVICES have medians
above the others, while ENTITIES have a median close to zero.
This indicates that CONTROLLERS and SERVICES perform
more method invocations than others. Their responsibilities in
the system serve as argument to justify these numbers. As part
of their role in the system, CONTROLLERS need to deal with
different classes from the Model and the View layers, while
SERVICES can interact with many different business objects
in order to provide the logic for an entire business process. In
Android, ACTIVITIES and FRAGMENTS have medium effect
size when compared to others. From the boxplot, we see
their median is higher than others. As part of their role, they
commonly have to interact and configure a reasonable number
of different UI objects, which can explain their higher values.

WMC. In terms of complexity, all the effect sizes are neg-
ligible or small with statistical significance. When analyzing
the boxplot, we observe that medians are similar among all
roles. It indicates that classes with specific architectural roles
are similar in complexity to other classes in the system.

RQ1: The approach indeed finds architectural roles that
present significantly higher (or lower) values for certain
metrics when compared to other classes.

C. RQ2: Why are architectural roles different from each other
in terms of code metric values distribution?

In RQ1, we saw that differences in code metric values
distribution among architectural roles can be large. In this RQ,
we provide insights on why these differences happen.

1) Method: We conducted semi-structured interviews with
3 Spring MVC (S1-S3) and 3 Android experts (A1-A3). The
goal was to help us interpret, refute, or corroborate the results
from RQ1. We decided to make use of experts, as (i) they can
perceive the structure of a problem or situation better than
novices [33], (ii) we conjectured they are experienced and
mature enough to disagree with the data and explain their
reasons, reducing possible response bias. Besides many years
of experience in software development (which ranges from 6
to 21 years), they give consultancy and training about the topic
to different companies (S1, S2, S3, A1, A2, A3), write books
(S1, A1), send patches (A2), and even participate in the core
team of the framework (S3). We conjecture these skills are
good indicators to classify them as experts.

As a main artefact for the interview, we created a visual
chart of the effect sizes in Table I. We navigated through
each data point with the experts, and asked them to reason
about why that specific architectural role would present that
difference in terms of that code metric. Before discussing the
metric values with the Android and Spring MVC experts, we
explained the details of the CK metrics used to them. To reduce
response bias, we made sure to not mention any personal
opinion when experts asked about it during the interviews. We
also told them that not finding an explanation or to disagree
with the data would not be a problem.

The full protocol is available in the online appendix [32]. In
the following, we show the main part of the interview, which
we repeated for each code metric:

1) We: Read aloud the effect size of each architectural role
for metric X.

2) Q: Were you expecting this difference among architec-
tural roles?

SERG SATT: Tailoring Code Metric Thresholds for Different Software Architectures

TUD-SERG-2016-023 5

Table III: Summary of the experts’ opinions.
(3) experts endorsed the results in RQ1, (number) experts
diverged.

CBO LCOM NOM RFC WMC

Spring MVC

Controller 3 3
Repository
Service 3
Entity (1) 3 3 3
Component (2)

Android

Activity 3 3
AsyncTask
Fragment (3) 3

3) Q: Can you explain why this happens for each architec-
tural role?

All the interviews but one were conducted via Skype.
Interviews lasted for at least 40 minutes each in Spring MVC
and 30 minutes in Android, and were fully recorded. After
each code metric, the first author wrote a summary of the
expert’s opinion, and reviewed with him/her before going to
the next metric. To analyze the qualitative data, we used both
the written summary and the recorded audio.

2) Findings: Experts endorsed and explained 9 out of
the 12 differences in which the effect size was medium or
large in RQ1. For the other three, CBO metric in ENTITIES,
COMPONENTS and FRAGMENTS, developers were expecting
these roles to have smaller differences when compared to
other classes. In Table III, we present their opinions. In the
following paragraphs, we present their main thoughts that
endorsed the medium and large effect sizes in RQ1 as well as
their divergences with the results.

Endorsements. For Spring MVC, experts explained that (i)
CONTROLLERS and SERVICES are usually more coupled than
other classes. S1 and S3 expected CONTROLLERS to be
highly coupled to the framework itself and to third party
libraries, while SERVICES are expected to be coupled to many
classes from the system, (ii) ENTITIES typically contain many
attributes representing a business concept, which implies the
existence of many getters and setters, which makes LCOM
increase, (iii) CONTROLLERS make several invocations to
all their dependencies, both from the system, such as to
ENTITIES, REPOSITORIES or SERVICES, as well as to the
framework API, to deal with the view layer, or perform
validation, which increases RFC, (iv) ENTITIES usually en-
capsulate attributes and their related behaviors, and as a
consequence, there are not many method invocations to other
class dependencies, which decreases their RFC values.

Regarding Android, experts (i) all expected ACTIVITIES
and FRAGMENTS to be more coupled than other classes.
According to them, both roles are responsible for dealing
with all graphical user interface (GUI) components and for
controlling the flow between the GUI and the logic, which
makes their code highly coupled, (ii) were also expecting both

to have a high RFC. According to them, both roles need to
deal with a large number of GUI components, which requires
many invocations to these dependencies,

Diverging opinions. In all occurences in which experts di-
verged about some of the results in RQ1, their reasoning was
related to a possible lack of adherence of that architectural
role to a good practice. In the following, we present experts’
thoughts on the divergences.

In Spring MVC, (1) experts were surprised that ENTITIES
have high coupling. S1 and S2 said that they should be only
coupled to other ENTITIES, (2) experts were all surprised by
how high CBO was for COMPONENTS. According to them,
a COMPONENT should only do a single task and, because of
that, be less coupled. S1 said COMPONENTS can be used for
external API integration, which would increase coupling, but
they indeed are simple in most cases.

In Android, (3) A3 was not expecting FRAGMENTS to
have larger CBO when compared to ACTIVITIES. All of
them emphasized that ACTIVITIES and FRAGMENTS have
their similarities in practice, as both manage interface com-
ponents and their relationships. However, as an ACTIVITY
can be comprised by many FRAGMENTS, all experts expected
FRAGMENTS to be smaller in terms of all code metrics when
compared to ACTIVITIES.

Other concerns. In Spring MVC, S1 and S2 mentioned
two different approches developers usually take: having rich
models [34], which means the business rules are in ENTITIES,
leaving SERVICES to encapsulate rules that do not belong to a
single ENTITY, or having ENTITIES only as data holders and
persistence, while storing all business logic in SERVICES. S3
(member of the Spring development team) explained that the
framework lets developers decide the approach they want to
take. By looking at the data, all experts agreed that the second
approach seems to be the most popular one, as SERVICES tend
to be the most complex and coupled role in these projects. If
the first approach is taken, they suggest developers to keep
ENTITIES easy to maintain; if the second one is taken, they
suggest the same for SERVICES.

In Android, A3 was concerned about the how large the
difference between ACTIVITIES and FRAGMENTS are when
compared to other classes. According to him, that may be
explained by the lack of good practices. A1 and A2 also
had similar thoughts. According to A1 and A3, it is easy to
write a single complex ACTIVITY; however, developers should
break it into many small ACTIVITIES or FRAGMENTS. A2
said that, although the Android architecture itself enforces high
coupling, developers should better separate responsibilities in
their classes. Similar to Spring experts, A1 also suggested
the use of rich models for mobile applications, and to avoid
business rules in ACTIVITIES.

RQ2: Experts considered most of the differences in met-
ric values for architectural roles to be coherent. Their
key explanation is that architectural roles have specific

SATT: Tailoring Code Metric Thresholds for Different Software Architectures SERG

6 TUD-SERG-2016-023

responsibilities. When experts did not endorse the metric
values, their explanation was related to a possible lack
of adherence to a good practice.

D. RQ3. What impact do these differences have on the use of
thresholds for quality assessments and smell detection?

1) Method: After analysing the results of the statisti-
cal tests in step 4, the SATT approach continues for the
pairs Controller/CBO, Service/CBO, Entity/CBO, Compo-
nent/CBO, Entity/LCOM, Entity/NOM, Controller/RFC, Enti-
ty/RFC in Spring MVC, and Activity/CBO, Fragment/CBO,
Activity/RFC, Fragment/RFC in Android.

We also performed the state-of-the-art approach for both
architectural systems. This approach does not take architec-
tural roles into consideration and, thus, it produces a single
threshold value for each code metric.

With both thresholds in hand, we compared the state-of-the-
art threshold in cases in which the difference was significant
in RQ1.

2) Findings: In Table IV, we present “moderate risk”
thresholds calculated by both the state-of-the-art (Alves et
al.’s) and our approach. Due to space restrictions, we provide
high and very high thresholds in our appendix [32]. Also, for
each pair of architectural role and code metric, we present the
percentile in which the state-of-the-art threshold relies in that
architectural role’s metric values distribution.

We provide a few insights from these results:
1) The state-of-the-art CBO threshold is 16. However, as we

saw, CONTROLLERS present higher CBO values when
compared to other classes. As expected, we see that the
state-of-the-art threshold lies in the 0.35 percentile of the
CONTROLLERs’ distribution. It means that 65% of all
CONTROLLERS in our benchmark would be classified as
“moderate risk”. Similar effect happens with SERVICES,
ACTIVITIES, and FRAGMENTS.

2) ENTITIES’ threshold for LCOM is much higher than the
state-of-the-art one (147 vs 440). As a consequence, it
would consider more than half of ENTITIES as having
moderated risk.

3) ENTITIES’ threshold for CBO is similar to the state-of-
the-art one. However, this role is different from the others
in the “right side of the tail”. While the state-of-art very
high threshold for CBO is 32, for ENTITIES it is 25 (data
in the appendix [32]). Thus, although the state-of-the-art
moderate threshold would assess classes in a similar way
than our threshold, the very high threshold lies in the
96% percentile of the distribution, which is higher than
expected.

4) State-of-the-art RFC threshold is much higher than EN-
TITIES’ specific threshold. As we can see, the number
48 lies in the 96% percentile of the role’s specific
distribution. Thus, an ENTITY only appears in the RFC
assessment if it compares to the 4% worst classes of the
benchmark.

Table IV: Results of the SATT approach in Spring MVC and
Android systems compared to Alves et al.’s approach. We

present moderate thresholds. High and very high results can
be found in our online appendix.

CBO LCOM NOM RFC WMC

Spring MVC
Alves et al.’s threshold 16 147 23 48 65

Controller
Percentile 0.35 - - 0.60 -
SATT threshold 26 - - 62 -

Service
Percentile 0.43 - - - -
SATT threshold 27 - - - -

Entity
Percentile 0.67 0.48 0.52 0.96 -
SATT threshold 16 440 33 8 -

Component
Percentile 0.60 - - - -
SATT threshold 20 - - - -

CBO LCOM NOM RFC WMC

Android
Alves et al.’s threshold 23 414 36 75 141

Activity
Percentile 0.41 - - 0.56 -
SATT threshold 40 - - 107 -

Fragment
Percentile 0.32 - - 0.58 -
SATT threshold 41 - - 98 -

RQ3: The state-of-the-art approach tends to return doubt-
ful results for architectural roles that have metric values
distribution significantly different from other classes. Our
approach improves it by using the architectural role’s
metric values distribution to define thresholds.

VI. DISCUSSION

The key findings of our study are: 1) some architectural
roles present significantly different values for certain metrics
when compared to other classes, 2) these differences in code
metrics can be explained by each architectural role’s specific
responsibilities, 3) the state-of-the-art approach tends to return
doubtful results for architectural roles that have metric values
distributions significantly different from other classes; instead,
our approach improves it by using the architectural role’s
metric values distribution to define thresholds.

These findings have important implications for both research
and practice, which we discuss in the following sections.

A. Using metrics in practice

Code assessment tools use a single threshold for a code
metric, regardless of the architectural role of the class in the
system. However, as we saw, some architectural roles present
metric values distributions that are different from others. Thus,
these tools may perform doubtful assessments. PMD, as an
example, relies on the CBO metric to point developers to

SERG SATT: Tailoring Code Metric Thresholds for Different Software Architectures

TUD-SERG-2016-023 7

highly coupled classes. In its documentation [35], we see
that the threshold used by the tool to assess the coupling of
any class in the system is 20. However, CONTROLLERS are
usually more coupled than other classes. It means that some
of them will be blamed by the tool when, in fact, they are
not problematic if compared to their peers. The number of
false positives is indeed a common problem in these kind of
tools [36].

Benchmarking techniques currently focus on (i) better iden-
tifying thresholds that would point to classes that are outliers
within the benchmark, and (ii) producing different benchmarks
for different application domains. Our SATT approach tries to
prevent that from happening by providing a different threshold
when an architectural role presents a code metric values
distribution considerably different from other classes. Thus,
our approach provides a more fair comparison, as classes are
compared only to their peers.

One may argue that our approach may lead to an increase
in the number of false negatives, i.e., some CONTROLLER has
coupling issues, but this is not detected by our approach as
the specific CBO threshold for CONTROLLERS is too high. We
claim this may not be the case, mostly because of the nature of
a benchmarking technique. Suppose that we performed a tradi-
tional benchmark in a large number of systems, and derived the
thresholds. When assessing a CONTROLLER class using this
threshold, we are basically “comparing the Controller class
with all other classes in the benchmark”. If a class has a
metric value larger than the moderate threshold, it means that
this class belongs to the 30% worst classes when compared
to the benchmark. Instead, our SATT approach, improves this
by “comparing the Controller class with the other Controller
classes in the benchmark”. Thus, if a CONTROLLER has a
metric value larger than the moderate threshold, it means that
this CONTROLLER belongs to the 30% worst CONTROLLER
classes when compared to the benchmark.

Interestingly, Fontana et al. [37] proposed a different way
of reducing the number of false positives in code smells
detection strategies [38], [6]. In their work, the authors propose
a catalogue of common false positives for different code
smells, e.g. a class that builds GUIs (graphical user interfaces)
is a common false positive in God Class detection. Aniche
et al. [39] also proposed code smells that are specific to a
certain architectural role. These smells were a consequence
of the architectural role’s specific responsibilities. Thus, our
findings reinforce the importance of analyzing the class’
responsibilities when assessing its quality. Indeed, taking the
architectural role of a class into consideration can be a step
towards reducing false positives.

Both of the architectures we studied in this paper happen
to have easily detectable architectural roles (annotations or
inheritance). We strongly encourage users of SATT to identify
a way to automatically detect the role of classes in their
systems. Other strategies might be the use of package names,
directories. Detection strategies are out of the scope of this
research.

B. Research implications

Researchers have shown that metric value distributions are
sensitive to context information, such as the project, the
application domain, and age [21], [22]. As an additional result
of our study, we now know that metric value distributions
are influenced by the system architecture, and there are clear
reasons for these differences. In other words, this means that
some classes are usually more coupled or complex than others
(e.g., CONTROLLERS and SERVICES), or have more methods
(e.g., ENTITIES), and that happens not just as a result of a bad
practice — it is just the natural consequence of their specific
responsibilities.

Identifying the most important architectural roles in other
system architectures is another topic that deserves attention.
Desktop applications and plugin development are two exam-
ples of other common system architectures in the market. In
addition, the same system architecture can be implemented
in different ways by different technologies. In this study, we
made use of Spring MVC, which is a particular implemen-
tation of the MVC architecture. Other popular frameworks
in industry, such as Asp.Net MVC and Ruby on Rails, also
implement it. However, each implementation has its own
particularities. Understanding the extent of these differences
and how our findings can be generalized also deserves future
studies.

In this work, we relied on Alves et al.’s approach [9]. Other
authors also attempted to improve the choice of the thresholds.
Fontana et al. [40] worked on an algorithm to automatically
identify these 3 thresholds. The approach analyses each metric
distribution, and use the table of frequencies of each value to
determine the percentile in which the rest of the data will be
“discarded". Then, the authors use the 25th, 50th, and 75th
percentiles to define moderate, high, and very high risk. In
Oliveira et al.’s work [41], instead of using the threshold as
a hard filter, they proposed a minimal percentage of classes
that should be above this limit. They derived and calibrated
the thresholds so that they were not based on lenient upper
limits.

Still, none of these approaches derive specific thresholds
according to the architectural roles of the software architecture.
Research needs to be conducted in order to understand whether
they can be adapted and how their results would compare to
SATT.

C. Threats to Validity

Construct Validity. To compare the differences among
different architectural roles, we relied on code metrics. To
that end, we selected the CK suite. Although there might
be different metrics, we believe CK was a good choice as
it covers many aspects of object-oriented programming. Also,
as most tools rely on compiled code, we developed our own
tool that uses static analysis. Because of that, metrics may
present small variations when compared to other tools. It also
happens with other tools [9], and we do not think the small
variation that might happen in each metric/tool would affect
the results because: (1) the difference is probably small, as

SATT: Tailoring Code Metric Thresholds for Different Software Architectures SERG

8 TUD-SERG-2016-023

the original algorithm of the metric is well-defined, (2) both
statistical tests used (Wilcoxon and Cliff’s Delta) are strong
against small variations.

Internal Validity. The studied architectural roles are easy to
detect (as they were based on annotations or inheritance). The
chance of wrongly annotating a class is low, as the architecture
enforces these rules, and a single wrongly annotated class
could make the software sometimes not even to execute.
However, a developer can make use of different implemen-
tation strategies within the same architectural role, i.e., a
REPOSITORY can be implemented using a object-relational
mapping framework, such as Hibernate, or using JDBC, the
Java Database Connectivity API. Indeed, we did not isolate
the class’ implementation decisions confound factor. How-
ever, we conjecture that the main findings would still apply,
and the possible REPOSITORY-HIBERNATE or REPOSITORY-
JDBC roles would also present their own specific metric value
distributions.

External Validity. (1) The number of participants in our
qualitative studies is small (6 experts). Still, we made sure
all of them were very experienced in software architecture.
Also, experts’ opinions matched on most of the questions.
Hence, we do not believe a different set of participants would
have completely different opinions; (2) The number of selected
projects for the quantitative analysis was high (more than
100 in Spring, and more than 300 in Android). Still, we
do not claim the findings to be generalizable to industrial
software [42]. Still, we performed a small evaluation in a
single software from our industry partner (with more than 1
million lines of code), and differences were significant within
their project. Future work is to evaluate these differences
in other industrial software; (3) We presented data for two
different concrete architectural styles: Spring MVC (web)
and Android (mobile). Indeed, there are many other popular
architectures in which these ideas would potentially apply, but
this should be subject of further study. Still, our approach is
generalizable enough for that to happen.

VII. RELATED WORK

Different authors have studied the distribution of code met-
ric values. Concas et al. [43] measured 10 different properties
related to classes, methods, and the relationships between them
in a Smalltalk system, and they found that distributions are
usually Pareto or log-normal distributions. Because of that, the
standard evaluation based on means and standard deviations
is misleading. According to the authors, these distributions
have a fat tail, which means the existence of classes with
extreme values. Many other authors corroborate and show
that the distribution of code metrics is rarely normal [44],
[45], [10], [11], [46], [12]. Regarding CK metrics, Herraiz et
al. [13] found that WMC, CBO, and RFC are double Pareto
distributions, while NOC and LOC follow power law. DIT
was the only one which could not be described by either log-
normal or power law.

The context also has been an important discussion in the
field. Gil and Lalouche [22], by means of visual inspection,

showed that metric values are sensitive to the context, and
because of it, the measurements in one project are not good
predictors for other projects. According to them, one way to
neutralize the problem is by using log normal standardization.
Zhang et al. [21] showed that metric values can be affected
by factors, such as programming language, age and lifespan.

We find our work similar to the ones above in the sense
that we are also evaluating the effects of context on software
metrics. To the best of our knowledge, this is the first study
that evaluates the influence of the system architecture on code
metric values distributions.

As we said before, the understanding of code metric values
distributions is fundamental. Thus, research has already been
devoted to finding the best threshold for a code metric. In
his work, McCabe [25] not only defined the Cyclomatic
Complexity metric (used in this paper as the WMC metric),
but also defined a threshold, namely 10. However, this number
was derived from experience, and not from empirical studies.

Although some authors mention that using experience is
a valid approach [6], and others actually did it [47], [48],
researchers also studied the distribution of these code metrics
over time in order to find a threshold that would indicate a
symptom of bad code. Erni et al. [14], for example, propose
mean and standard deviation as a way to find thresholds.
However, as we said in Sections III-B and VI-B, we made
use of benchmarking techniques are they are currently more
robust than the past ones.

VIII. CONCLUSIONS

Software developers have been relying on code metrics to
assess the quality of their software systems. However, to the
best of our knowledge, assessment techniques have not taken
the architectural role of a class as an important concern when
performing their analyses up to now.

In this paper, we propose SATT (Software Architecture
Tailored Thresholds), a technique that detects whether an
architectural role is considerably different from others in the
system, and provides a specific threshold for that role. To
evaluate whether our approach can be applied in real settings,
we analyzed it on 2 different architectures (MVC and Android)
in more than 400 projects; in addition, we interviewed 6
experts in order to understand why some architectural roles
are different from others.

The main contributions of this paper are:
1) The so-called SATT approach which provides specific

thresholds for architectural roles that are considerably
different from others.

2) Application of SATT to MVC and Android architectural
styles, demonstrating that our approach can overcome
issues that currently exist in traditional approaches, espe-
cially when some architectural role presents very different
metric values than others.

Our results call for architecture-specific treatment of class
level metrics in tools used for code quality assessments, such
as SonarQube and PMD.

SERG SATT: Tailoring Code Metric Thresholds for Different Software Architectures

TUD-SERG-2016-023 9

REFERENCES

[1] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering. IEEE, 2016, pp. xxx–xxx.

[2] W. Li and S. Henry, “Object-oriented metrics that predict maintainabil-
ity,” Journal of systems and software, vol. 23, no. 2, 1993.

[3] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” Software Engineering,
IEEE Transactions on, vol. 22, no. 10, 1996.

[4] M. O. Elish and D. Rine, “Investigation of metrics for object-oriented
design logical stability,” in Software Maintenance and Reengineering.
Proceedings. Seventh European Conf. on. IEEE, 2003.

[5] H. Sahraoui, R. Godin, T. Miceli et al., “Can metrics help to bridge the
gap between the improvement of oo design quality and its automation?”
in Software Maintenance, Intl. Conf. on. IEEE, 2000.

[6] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[7] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
Software Engineering, IEEE Transactions on, vol. 36, no. 1, 2010.

[8] D. Athanasiou, A. Nugroho, J. Visser, and A. Zaidman, “Test code
quality and its relation to issue handling performance,” Software En-
gineering, IEEE Transactions on, vol. 40, no. 11, pp. 1100–1125, 2014.

[9] T. L. Alves, C. Ypma, and J. Visser, “Deriving metric thresholds from
benchmark data,” in Software Maintenance (ICSM), IEEE Intl. Conf. on.
IEEE, 2010.

[10] Y. Yi, H. Song, R. Zheng-ping, and L. Xiao-ming, “Scale-free property
in large scale object-oriented software and its significance on software
engineering,” in Information and Computing Science, Second Intl. Conf.
on, vol. 3. IEEE, 2009.

[11] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions
in empirical data,” SIAM review, vol. 51, no. 4, 2009.

[12] I. Herraiz, D. M. German, and A. E. Hassan, “On the distribution of
source code file sizes,” 2011.

[13] I. Herraiz, D. Rodriguez, and R. Harrison, “On the statistical distribution
of object-oriented system properties,” in Emerging Trends in Software
Metrics (WETSoM), 3rd Intl. Workshop on. IEEE, 2012.

[14] K. Erni and C. Lewerentz, “Applying design-metrics to object-oriented
frameworks,” in Software Metrics Symposium, Proceedings of the 3rd
Intl. IEEE, 1996.

[15] R. Shatnawi, “A quantitative investigation of the acceptable risk levels of
object-oriented metrics in open-source systems,” Software Engineering,
IEEE Transactions on, vol. 36, no. 2, 2010.

[16] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C.
Almeida, “Identifying thresholds for object-oriented software metrics,”
Journal of Systems and Software, vol. 85, no. 2, 2012.

[17] N. Rozanski and E. Woods, Software systems architecture: working with
stakeholders using viewpoints and perspectives. Addison-Wesley, 2012.

[18] D. Alur, D. Malks, J. Crupi, G. Booch, and M. Fowler, Core J2EE
Patterns (Core Design Series): Best Practices and Design Strategies.
Sun Microsystems, Inc., 2003.

[19] J. Vlissides, R. Helm, R. Johnson, and E. Gamma, “Design patterns: El-
ements of reusable object-oriented software,” Reading: Addison-Wesley,
vol. 49, no. 120, p. 11, 1995.

[20] G. E. Krasner, S. T. Pope et al., “A description of the model-view-
controller user interface paradigm in the smalltalk-80 system,” Journal
of object oriented programming, vol. 1, no. 3, 1988.

[21] F. Zhang, A. Mockus, Y. Zou, F. Khomh, and A. E. Hassan, “How does
context affect the distribution of software maintainability metrics?” in
IEEE International Conference on Software Maintenance. IEEE, 2013,
pp. 350–359.

[22] J. Y. Gil and G. Lalouche, “When do software complexity metrics mean
nothing?–when examined out of context,” Journal of Object Technology,
vol. 15, no. 1, 2016.

[23] E. Bouwers, J. Visser, and A. Van Deursen, “Getting what you measure,”
Communications of the ACM, vol. 55, no. 7, pp. 54–59, 2012.

[24] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[25] T. J. McCabe, “A complexity measure,” Software Engineering, IEEE
Transactions on, no. 4, 1976.

[26] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” Software Engineering, IEEE Transactions on, vol. 20, no. 6,
1994.

[27] T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” Software
Engineering, IEEE Transactions on, vol. 31, no. 10, 2005.

[28] Z. Turnaround, “Top 4 java web frameworks revealed: Real life usage
data of spring mvc, vaadin, gwt and jsf,” http://bit.ly/1smVDf9.

[29] Pivotal, “Spring documentation,” http://spring.io/docs.
[30] J. Romano, J. D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate

statistics for ordinal level data: Should we really be using t-test and
cohen’sd for evaluating group differences on the nsse and other surveys,”
in annual meeting of the Florida Association of Institutional Research,
2006.

[31] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: A language
and infrastructure for analyzing ultra-large-scale software repositories,”
in Proceedings of the Intl. Conf. on Software Engineering. IEEE Press,
2013.

[32] M. Aniche, C. Treude, A. Zaidman, A. van Deursen, and M. A. Gerosa,
“Appendix: On the distribution of code metrics and system architecture.”
[Online]. Available: http://mauricioaniche.github.io/scam2016.

[33] M. T. Chi, P. J. Feltovich, and R. Glaser, “Categorization and represen-
tation of physics problems by experts and novices,” Cognitive science,
vol. 5, no. 2, pp. 121–152, 1981.

[34] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[35] “Pmd cbo documentation.” [Online]. Available:
https://pmd.github.io/pmd-5.4.1/pmd-java/rules/java/coupling.html#
CouplingBetweenObjects.

[36] S. Panichella, V. Arnaoudova, M. Di Penta, and G. Antoniol, “Would
static analysis tools help developers with code reviews?” in Software
Analysis, Evolution and Reengineering (SANER), 2015 IEEE 22nd
International Conference on. IEEE, 2015, pp. 161–170.

[37] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita, and M. Zanoni,
“Preliminary catalogue of anti-pattern and code smell false positives,”
Poznan University of Technology, Tech. Rep. RA-5/15, 2015.

[38] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in Software Maintenance, 20th IEEE Intl. Conf. on. IEEE,
2004.

[39] M. Aniche, G. Bavota, C. Treude, A. van Deursen, and M. A. Gerosa,
“A validated set of smells in model-view-controller architecture,” in
Software Maintenance and Evolution (ICSME), 2016 IEEE 31th Inter-
national Conference on. IEEE, 2016.

[40] F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita, “Automatic
metric thresholds derivation for code smell detection,” in Proceedings
of the Sixth Intl. Workshop on Emerging Trends in Software Metrics.
IEEE Press, 2015.

[41] P. Oliveira, M. T. Valente, and F. Paim Lima, “Extracting relative thresh-
olds for source code metrics,” in Software Maintenance, Reengineering
and Reverse Engineering (CSMR-WCRE), Software Evolution Week-
IEEE Conf. on. IEEE, 2014.

[42] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian, “The promises and perils of mining github,” in Proceedings
of the 11th working conference on mining software repositories. ACM,
2014, pp. 92–101.

[43] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws in a
large object-oriented software system,” Software Engineering, IEEE
Transactions on, vol. 33, no. 10, 2007.

[44] R. Wheeldon and S. Counsell, “Power law distributions in class relation-
ships,” in Source Code Analysis and Manipulation, Proceedings. Third
IEEE Intl. Workshop on. IEEE, 2003.

[45] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-free geometry in
oo programs,” Communications of the ACM, vol. 48, no. 5, 2005.

[46] G. Baxter, M. Frean, J. Noble, M. Rickerby, H. Smith, M. Visser,
H. Melton, and E. Tempero, “Understanding the shape of java software,”
in ACM Sigplan Notices, vol. 41, no. 10. ACM, 2006.

[47] D. Coleman, B. Lowther, and P. Oman, “The application of software
maintainability models in industrial software systems,” Journal of Sys-
tems and Software, vol. 29, no. 1, 1995.

[48] B. A. Nejmeh, “Npath: a measure of execution path complexity and its
applications,” Communications of the ACM, vol. 31, no. 2, 1988.

SATT: Tailoring Code Metric Thresholds for Different Software Architectures SERG

10 TUD-SERG-2016-023

TUD-SERG-2016-023
ISSN 1872-5392 SERG

