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XBSTRACT 
A molecular map has been constructed for the rice genome comprised of 726 markers (mainly re- 

striction fragment length pol>morphisms; RFLPs). The mapping population was derived from a backcross 
behveen cultivated rice, Oqza sativa, and its T+ild African relative, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOryza Zongistaminata. The very high 
level of polymorphism between these species, combined k t h  the use of polymerase chain reaction- 
arylif&&cDNA libraries, contributed to mapping efficiency. A subset of the probes used in this study was 
p$dously used to construct an FELP map derised from an inter subspecific cross, providing a basis for 
comparison of the two maps and of the relati& mapping efficiencies in the two crosses. In addition to 
the previously described PstI genomic rice library, three cDNA libraries from rice (Oryza), oat (Avena) 
and barley (Hordeum) were used in this mapping project. Levels of polymorphism detected by each and 
the frequency of identifjmg heterologous sequences for use in rice mapping are discussed. Though strong 
reproductive barriers isolate O. sativa from O. Zongistami~zatn, the percentage of markers showing dis- 
torted segregation in this backcross population was not significantly different than that obsewed in an 
intraspecific F2 population preriously used for mapping. The map contains 1491 CM with an average 
interval size of 4.0 cM on the framercork map. and 2.0 ch1 overall. A total of 238 markers from the previously 
described PstI genomic rice library, 250 markers from a cDNA library of rice ( O r y u ) ,  112 cDNA markers 
from oat (Avena), and 20 cDX-4 markers from a barley (Hordeum) library, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt wo genomic clones from maize 
(Zea), 11 microsatellite markers, three telomere markers, eleven isozymes, 26 cloned genes, six RAPD, 
and 47 mutant phenotypes vere used in this mapping project. Applications of a molecular map for plant 
improvement are discussed. 

1 

ICE is one of the most important food crops in the R world. It has also become a model plant among the 
cereals for molecular genetic studies. It is a diploid uith 
n = 12 chromosomes, has the smallest genome of any 
monocot known (C = 0.45 pg) (~LXL-GAXATHLX and 
EARLE 1991), alarge germplasm collection (>120,000 ac- 
cessions worldwide), can be regenerated from pro to- 
plasts [for reviews, see LYNCH et al . (1991) and HODGES cf al. 

(1991)], and has a relatively high degree of transformation 
efficiency relative to other cereal species [for review, see 
HODGES et al. (1991) and KOTHARI et a l  (1993) I .  

Early versions of a linkage map of rice chromosomes 
were reported by YAMAGUCHI (1927) , CEIO (192ï) and 
JODON (1948). In 1963, NAGAO and T.XWHI proposed 
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the first rice map consisting of 12 linkage groups, cor- 
responding to the haploid number of chromosomes. 
Work in this area of rice genetics progressed steadily, 
with updated versions of the rice linkage map published 
by TAKAHASHI and KINOSHITA (1968, 1977) and annually 
since 1984 (KINOSHITA 1984-1994). Linkage maps were 
originally established with morphological mutants, but 
isozyme markers were subsequently located on the chro- 
mosomes [for reviews, see ENDO and MORISHI.IIA (1983), 
PM et al. (1990) and ISHIKAWA et al. (1991)l. The cyto-  

logical basis of linkage groups was first reported by IWATA 
and OMURA (1971a,b) based on a study of relationships of 
gene lociwith the points of interchange of reciprocal trans-  

locations. The development of primary trisomic stocks by 
several groups resulted in complete trisomic series for both 
indica and juponica rice (KURATA et al. 1981; KHUSH et al . 

1984; IWATA and OMURA 1984) and allowed assignment of 
the linkage groups to their respective chromosomes. The 
use of morphological mutants in genetic studies has re- 
mained limited, mainly because of their deleterious effects 
and the difficulties encountered when attempting to group 
a number of these markers in the same genotype. Isoqine 
markers offer a more versatile set of genetic markers to rice 
breeders. However, the number of detectable isozyme loci 
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is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAst i l l  limited (Second 1982; GLASZMANN 1987; PHAM et al., 

The analysis of restriction fragment length polymor- 
phism (RFLP) offers plant geneticists and breeders a 
powerful set of genetic markers which are abundant, 
codominant, nondeleterious, and reliable. RFLPs have 
been successfully used to construct genetic maps in nu- 
merous crop species [for review, see O’BRIEN (1993)’J 
and to locate genes of interest along the chromosomes 
(PATERSON et al. 1991; TANKSLEY et al. 1989). In addition, 
high density molecular linkage maps can be used to 
clone target genes (MARTIN et al. 1993). 

MCCOUCH et al. (1988) described the construction of 
the first RFLP map in rice. This map was constructed 
from an F2 population derived from a cross between va- 
rieties representin @d,two major subspecies (indica 

trisomic stocks ( J ~ U S H  et al. 1984) were used to assign 
the 12 linkage groups to their respective chromosomes. 
The long term usefulness of this segregating F2 popu- 
lation was limited because plants were not maintained 
vegetatively. In addition, the level of polymorphism in 
this intraspecific cross was limited, and in order to map 
a sufficient number of markers it was necessary to screen 
many probes with a large number of restriction enqmes. 
Even after mapping nearly 200 markers, several signifi- 
cant gaps still remained in the map which could not be 
explained by chance alone. It was not clear whether 
these gaps were due to a bias in the genomic librai7 used 
for mapping, regions in the rice genome comprised of 
multicopy sequences that could not be mapped using 
Southern analysis, or the presence of chromosome seg- 
ments that were common by descent (and thus mono- 
morphic) in the indica and japonica mapping parents 
(MCCOUCH et al. 1990; our unpublished data). None- 
theless, the map provided the basis for locating a number 
of agronomically important genes via linkage to RFLP 
markers, including both single genes and quantitative trait 
loci (QTL) linked to blast resistance (YV et al. 1991; 1 V . i ~  

et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1994), insect resistance (MCCOUCH and TA.\XSLEY 
1991; MOHAN et al. 1993), bacterial blight resistance (Mc- 
COUCH et al. 1991; RONALD et al. 1992), photoperiod sen- 
sitivity (MACKILL et al. 1993), grain aroma (AHN et al. 1992), 
wide compatibility (Lu et a¿ 1992; YWAGIHARA et aL 1994; 
2 5 ° C  et al. 1992), and the semidwarfcharacter, sd-I (CHO 
et aL 1994), among others. 

A second RFLP map of rice based on a different 
indica/japonica cross was reported by SMTO et al .  

(1991). Where the map developed in our laboratory was 
based on a PstI genomic library from the indica variety, 
IR36, the map developed by SNTo et al. (1991) was based 
on a PslI library developed from the japonica variety, 
Nipponbare. Efforts to integrate the nvo maps are un- 
derway (XIAO et al. 1992). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn additional map based on 
an indica X japonica cross is currently under develop- 
ment in Japan (NACAMURA et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU¿. 1993). 

1990). 

and japonica) of cy 4.  tivated rice, Oryra sativa L. Primary 

The objective of the mapping project reported here 
was to generate a well-saturated map of the rice genome. 
To accomplish this, we broadened the type of markers 
used in the mapping effort. In addition, we utilized an 
interspecific mapping population that embodied a high 
frequency of polymorphism. Such crosses have proven very 
useful for developing maps in other species including to- 
mato (TANKSLEY et a¿ 1992b), potato (BONIERBALE et a¿ 
1988), sorghum ( C H ” D E N  et aL 19941, and wheat (GILL 
et aL 1991). Moreover, the population we have chosen is 
readily amenable to long term vegetative propagation. 

Phylogenetic studies of the Oryza genus, based on 
isozymes (SECOND 1985) or RFLPs (WANG et al. 1990), 
have shown that, among species with the AA genome, 
Oryza longistaminata A. Chev et  Roehr is one of the 
most distantly related to O. sativa. This perennial spe- 
cies propagates in nature by the development of vigor- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’! ous rhizomes or by outcrossing, enforced by self- 
incompatibility (NAM 1967). GHESQUIÈRE (1985) has 
described the main features of its population biology. 
O. longistaminata is isolated from the other AAgenome 
species by a strong reproductive barrier (CHU and OKA 
1970a) which can nevertheless be overcome (CHU and 
OKA 1970b; GHESQUIÈRE 1988). Certain traits of this spe? 
cies may be of interest for rice breeding, such as specific 
disease resistance genes (VALES 1985), allogamic traits 
(TAILLEBOIS and GUIMARAES 1987), and plant architec- 
ture (CAUSSE and GHESQUIERE 1991). 

The purpose of this report is to describe the construc- 
tion of an RFLP map based on an interspecific backcross 
population involving O. sativa and O. longistaminata. 
A comparison with the previous map (MCCOUCH et al. 
1988) is presented based on a common set of probes 
mapped in both studies. A total of 238 markers from the 
previously described PstI genomic rice library, 250 markers 
from a cDNA library of rice (OryLa), 112 cDNA markers 
from oat (Avena), and 20 cDNA markers from a barley 
(Hordeum) library, two genomic clones from maize (Zea), 
11 microsatellite markers (WU and TANWLEY 1993a), 3 te- 
lomere markers (Wu and T A N K S L E Y ~ ~ ~ ~ ~ ) ,  l l isozymes, 26 
cloned genes, 6 RAPD, and 47 mutant phenotypes were 
used in this mapping project. Levels of polymorphism de- 
tected by daerent types of molecular markers and the fre- 
quency of identifying heterologous sequences for use in 
rice mapping are discussed. 

4 

MTERIALS AND METHODS 

Plant material: A backcross population of 113 plants, de- 
rived from the cross O. sativa/O. longislaminata//O. sativa 
was used as the mapping population (referred to as the SL 
population). BS125 (O. saliva) was an indica land race 
collected in Guinea Bissau. UZO2 (O. ¿ongistaminala) was a 
unique plant coming from a seed originally collected from a 
wild population in Bomvana (MIEZAN and SECOND 1979). The 
F, hybrid (BS125/J4102) and the backcross seeds were ob- 
tained by controlled pollination in the ORSTOM (Institut 
Français de Recherche Scientifique pour le Développement en 
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Cooperation) Research Center in Ivory Coast, by GHFS@UIÈRE 
(1988), who kindly provided them. The 113 backcross plants 
were grown in either a growth chamber or a greenhouse fa- 
cility at Cornel1 University, maintained vegetatively, and propa- 
gated by shoot cuttings. 

Hybridization of the cDNA probes from oat and barley was 
evaluated in a preliminary screen using genomic DNA of the 
rice cultivar IR36. Seeds from this cultivar were provided by the 
International Rice Research Institute. 

The results of this studywere compared to the data obtained 
on the intraspecific zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF2 population previously used to establish 
the map (MCCOUCH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1988). This population was derived 
from a cross between an indica breeding line, IR34583-19-3-3, 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAjaponica landrace from Indonesia, Bulu Dalam (re- 
ferred to hereafter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the IB population). We have also com- 
pared the percent polymorphism detected between the par- 
ents of the SL population to that observed between the 
cultivars, Apura and IRAT177, the parents of a population of 
doubled haploid lines obtained through anther culture (here- 
after referred to as the AI population) (GUIDERDONI et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1988, 
1990), whose RFLP ~ - ~ p & ~ # l l  under construction. 

DNA extraction, S$uthern hybridization: The DNA extrac- 
tion based on the technique proposed by SHURE et al. (1983) 
has been used in combination with the procedure described 
by TAI and TANKSLEY (1990), where freshly harvested leaves 
were dried in a food dryer at 45-50", for 16-24 hr, before 
powdering in an electric coffee grinder. The urea-phenol ex- 
traction buffer was replaced by a potassium acetate buffer (de- 
rived from the procedure of DELLQORTA e¿ u¿. 1983). Using 
both techniques, yields of approximately 250-500 micrograms 
of DNA per 5-10 g of fresh tissue were obtained. 

The DNA digestion, Southern blotting and hybridization 
procedures are similar to those described in MCCOVCH et al. 
(1988). Five to seven micrograms of total DNA !vere digested 
at 37" using one of the following enzymes: EcoRI, EcoRT', DraI, 
HindIII, ScaI, XbaI, BanzHI, and BglII ( B a  and NEBiolab) in 
the buffer recommended by the manufacturer. After diges- 
tion, the DNA was fractionated on 0.9% agarose gels, and run 
in neutral electrophoresis buffer (1 hi Tris, 10 nni EDTA, 125 
mhf NaAc; pH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. 1). The fractionated DNAwas then transferred 
to nylon membrane filters, Genescreen Plus (DuPont) or Hy- 
bond N+ (Amersham Corp.), in either 0.5 hi NaOH, 1.5 hi 

NaCl or 0.4 hi NaOH buffers, following the procedure de- 
scribed by SOLTHERN (1975). Probes were random hexamer 
labeled (FEINBERG and VOGELSTEIN 1983), and hybridization was 
performed at 65", in 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX SSC buffer, overnight. The filterswere 
washed at 65", three times for 20 min each time, with successive 
stringencies of 2 XI  I X and a last wash at 0.5 X SSC (each wash 
0.1% SDS) for most probes. When mapping known genes, 
lower stringency washes (2 X,  1 X,  1 X SSC) were occasionally 
necessary for obtaining clear signal with cloned genes from 
other species, and higher stringency washes (2 X,  lX, 0.5 X,  
0.05 X SSC) were sometimes used to obtain clear bands where 
gene families or repeated sequences were involved. The filters 
were exposed with an intensifier screen at -80" for 1-5 days. 

To survey for polymorphism, clones were hybridized onto 
filters containing DNA from the recurrent indica parent, 
BS125, and the F, hybrid, digested by different restriction en- 
zymes. Initially, we included eight restriction enzymes (EcoRV, 
XbaI, HindIII, ScaI, EcoRI, DmI ,  BainHI and BgAI, those 
found most efficient by MCCOUCH et al. 1988), but due to the 
high level of polymorphism between the O. sativa and O. 
¿ongis¿aminata parents, only five (EcoRV, HindIII, ScaI, XbaI, 
and DmI) were retained, as they were sufficient to detect poly- 
morphism in most of the clones. For mapping, DNA from the 
113 backcross progeny \ vas digested, blotted, and used in South-  
em hybridization (as described above) for clones showing poly- 

morphism between the parents. After examining the molecular 
weights of the hybridizing bands in suiwy filters, nvo or inore 
clones with non-overlapping banding patterns were frequently 
hybridized together onto the same set of progeny filters, allo.wing 
independent scoring and efficient use of filters. 

Mapping of telomere sequences was done using CHEF gels 
as described in Wu and T~VKSLEY (1993b). Microsatellites were 

' mapped on 6% denaturing polyacrylamide gels as described in 
Wu and TANKSLEY (1993a). 

Clones: A PstI genomic library from rice (probes desig- 
nated "RG"), whose construction was previously described in 
MCCOUCH et al. (1988), served as one source of clones. Initially, 
100 of these markers were selected at regular intelvals from a 
previousversion of the map (MCCOUCH et al .  1988; FULTON and 
TANKSLEY 1990) and transferred to the SL population. An ad- 
ditional 138 probes from this genomic library were also used 
in this study. Of the previously surveyed rice genomic probes, 
30 which were previously unmapped due to monomorphism 
in the IB combination were mapped onto the SL population. 
We also mapped markers from three cDNA libraries. These 
libraries were constructed for use in this study and other 
RFLP studies involving grass species in this laboratory 

! , 4 ( 0 ' D ~ ~ ~ ~ ~ ~ ~ ~  et al. 1992; HEWN et al. 1991; ANDERSON et al. 
1992). They were derived from mRNA extracted from etio- 
lated leaf sheath from the cultivars IR36 (rice, O. sativa), 
Brooks (oat, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAvena sativa), and Willis (barley, Hordeum vul-  

gare). cDNA clones from rice are designated "RZ," from oat, 
"CDO," and from barley, "BCD." Inserts averaging more than 
1 kb were cloned into the EcoRI site of the Lambda Zap11 
vector (rice and barley cDNA) or the EcoRI-XlzoI site of the 
Uni-ZAPXR vector (oat cDNA) (Stratagene). The cDNA in- 
sertswere amplified by the polymerase chain reaction (primers 
were the oligonucleotides GTAAAACGACGGCCAGT and 
AAAAGCTATGACCATG, 31 cycles: 1 min at 92", 40 sec at 50°, 
1 min at 72"; final extension cycle for 10 min) and then pu- 
rified through G50 Sephadex spin columns. 

More than 1800 cDNA probes from these three libraries 
were screened for hybridization signal on filters containing 
lanes of EcoRIdigested total genomic DNA from five grass spe- 
cies (barley, rice, oat, wheat and sugarcane). Of those pre- 
senting a strong signal and a low copy number with rice varier), 
IR36, 382 clones were utilized in this study. 

Telomere sequences were detected by pulsed-field gel 
electrophoresis using an Arabidopsis telomere probe as de- 
scribed in MTw and TANKSLEY (1993b). Microsatellite markers 
containing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGA, GT, and AT repeat motifs were identified 
based on a search of all rice sequences in the GenBank and EA4BL 
databases or subcloned from a 15-kb genomic library from CY 

IR36 as described in Wu and T.WKSLEY (1993a). 
Clones obtained from other laboratories are listed in Table 1. 

All of these were mapped using Southem analysis, except that the 
polymorphism for the large subunit of ribosomal DNA ( ~4 %)  was 
read directly from photographs of agarose gels containi~lg BOI- 
digested genomic DNA stained in ethidium bromide. 

Nomenclature: Clones were classified as single copy if 
>go% of the signal was accounted for by only one or hvo hy- 
bridizing bands for at least one enzyme on a suivey filter. Wien 
a marker detected more than MO bands for all enzymes, a 

suffix (A, B, or X) was added to the probe number to indicate 
the specific copy that was mapped. If only one band of a mul- 
tiple copy probe was studied, an X was used as the suffix. If t wo 

loci of a multiple copy clone were mapped, the marker was 
given an A or a B suffix. There were no cases were more than 
two copies of a particular sequence were mapped. 

Map construction: Linkage analysis was performed using 
Mapmaker Version 3.0 (LUDER el  al. 1987) on a Sun I I  work- 
station, and using Map Manager (WLY 1993) on a Macintosh 
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TABLE 1 

Known genes 

Chromo- 
Gene Type Product/Phenotype some Reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A CCl 
A CC3 
AmylB 
AmylC 
AmylA 
Amy2A 
A mj3A 
Amj3B 
Amy3C 
Amy3D 
Amy3E 
Acpl 
Acp2 
Acp4 
Actin 1 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATP 
atub 

CA La 
CALb 
c1 

Adh-1 

Bph-1 O(:) 

cy1 
q c 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
d-5 
d-11 
d-2 7 
Dn-1 
ef 

fgr 

gl-1 

Hg 

ESTI-2 
EST-2 

Gtn-2 

Glh 
HbU 

la 
lax 
LEC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mal  I 
ZB8 
Pgd 1 

Ph 
PHY-.4 
Pi- 1 (I)  
P¿-2(t) 
Pi-l(t) 
PiJ(i) 
Pi-6(t) 
Pi-ï(i) 
Pi-9(i) 
Pi-1 O(!) 
Pi-1 1 
Pi-? 
Pi-(/) 
PI-3(1) 
Pox-2 
Pr 
R45s 
R 5 S  

Rc 
RCHl O 
RTSV 
s5 
S4L.T 
se-1 
SA- 1 

Pgi-2 

R/ 

RFLP 
RFLP 
RFLP 
RFLP 
RFLP 
RFLP 
RFLP 
RFLP 
RFLP 
RFLP 
RFLP 
Isoqme 
Isozyme 
Isozyme 
RFLP A 
IsoqmlF' 
RFLP 
RFLP 
Morph 
RFLP 
RFLP 
Morph 
RFLP 
RFLP 
Morph 
Morph 
Morph 
Morph 
Morph 
Isozyme 
Isozyme 
Morph 
Morph 
hlorph 
Morph 
Morph 
?vforph 
Morph 
Morph 
RFLP 
Isoqme 
RFLP 
Isoqme 
Isozyme 
Morph 
RFLP 
Morph 
Morph 
Morph 
Morph 
Morph 
hlorph 
Morph 
Morph 

hiorph 
híoiph 
hiorph 
Isozyme 
Morph 
RFLP 
RFLP 

hiorph 

Morph 
Morph 

Xlorph 
RFLP 

Morph 
RFLP 

3 1 o n , l 1  

hlVqJh 

ACC synthase 
ACC synthase 
a-Amylase 
a-AmyIase 
a-Amylase 
a-Amylase 
a-Amylase 
a-Amylase 
a-Amylase 
a-Amylase 
a-Amylase 
Acid phosphatase 
Acid phosphatase 

Alcohol dehydrogenase 
ATPase 
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Early flowering 
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Esterase 
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Continued 

Chromo- 
Gene 

Sdh-I 
Se-3 
Telsa-1 
Telsm-3 
Telsm-I 
TRYP 
IVph-I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wx  
Xa-I 
xa-2 
xu-3 
xa-4 
xa-5 
Xa-1 O 
xa-21 
2-2 

OTHERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RRH-I 8 
m o - o 2  
RRA-19 
PTA243 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
UAdC44 
BNL3.29 

Isozyme 
Morph 
RFLP 
RFLP 
RFLP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RFLP 
Morph 
RFLP 
Morph 
Morph 
Morph 
Morph 
Morph 
Morph 
Morph 

Product/Phenotype 

Shikimate dehydrogenase 
Photoperiod sensitivity 
Telomeres 
Telomeres 
Telomeres 
Trypsin-inhibitor 
Whiteback planthopper resistance 

Bacterial blight resistance 
Bacterial blight resistance 
Bacterial blight resistance 
Bacterial blight resistance 
Bacterial blight resistance 
Bacterial blight resistance 
Bacterial blight resistance 

waxy 

RFLP 
RE'LP 
RFLP Linked to Se-3 
RFLP 
RFLP From maize map 
RFLP From maize map 

"' Linked to Pi-IO (from Tongil) 
Linked to Pi-9 (from O. minuta) 

Linked to Xa-21 (from O. Iongist.) 

some 

I 2  
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9 
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7 
6 
4 
4 
I I  
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I I  
I l  
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5 
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3 

Reference 

MCCOUCH (1990) 
M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~~AHESIVARAN, IRRI (personal communication) 
Wu and TAX'I;SLEY (1993b) 
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IIci. All pairs of linked markers were first identified using the 
"group" command with LOD > 4.0, and recombination frac- 
tion (O) = 0.25 on the Mapmaker program. Cosegregating 
markers (e.g., no recombination among markers within a link- 
age group) were identified by scanning two-point linkage data. 
Framework maps were constructed using only one marker 
from each set of cosegregating markers. The "orders" and the 
"compare" commands in Mapmaker, were used to identify the 
most probable marker order within a linkage group. The "ripple" 
command was used to verify the order. Markers were retained 
within the framework map only if the LOD d u e  for "ripple" was 
>2.5 and if more than 70 individuals had been scored at a locus. 
The command "uninformative loci" in the Map hhnager pro- 
gram tvas used to identify the number of scored data points at 
each locus. Following the establishment of a framework map, 
each intend was scanned for double crowvers using the 
"double crossovers" command (hlap Manager program). If any 
single-locus double-crossovers were observed, the primary data 
\vas rechecked for accuracy of scoring at the markers in question. 
Markers responsible for more than three double crossover events 
in any interval were removed from the framework map and 
placed in parentheses to the right of the interval most likely to 
contain them. Additional markers were assigned to intervals 
within the LOD 2.5 framework using the " y"  command, fol- 
lowed by the process of submitting marker orders to "com- 
pare," pulling out markers responsible for double cross-  

overs, and reconfirming the LOD > 2.5 framework map 
using the "ripple" command in Mapmaker. Map units (cM) 
were derived using the Kosambi function (KOSA~IBI 1944). 

The software program, Map Manager (MWLY 1993) was 
used to perform a chi-square test to determine if the allele 
frequency at individual loci deviated from the expected 1:1 
segregation for the BC population zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P > 0.05). 

RESULTS 

Comparison of copy number and detection efficiency 
among libraries: When the rice cDNA library was sur- 
veyed for copy number, approximately 6S% of clones 

were single copy (1-2 bands), 17% were multiple copy 
(3-9 bands), and 17% were repeated (smear) when fil- 
ters were washed at 0.5 X SSC at 65" following Southern 
hybridization (Table 2). This compared with 58% single 
copy, 20% multiple copy, and 22% repeated sequences 
obseiTed for a rice genomic library at the same .washing 
stringency (MCCOVCH et al. 1988). When the oat cDNA 
librarywas hybridized onto rice, 18% of the clones gave no 
signal, but of clones with signal, approximately 64% were 
single copy, 28% were multiple copy  cith th 3-8 bands), and 
8% were repeated (giving asmear). When the barleycDNA 
library zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$+las hybridized onto rice, 16% of clones gave no 
signal, but of clones with signal, 48% were single copy, 42% 
were multiple copy, and 10% were repeated (Table 2). 
Therefore, t he most efficient source of single copy se- 
quences for mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\vas the rice cDNA library. 

Comparison of polymorphism in intraspecific and 
interspecific crosses: Table 3 shows the percentages of 
probes detecting polymorphism in three parental com- 
binations for at least one offive restriction enzymes. The 
parents include the interspecffic combination, O. sativa 
and O. longista~ninatu [BSl25/14%02//BS125 (SL)], 
and two intra-O. sativa crosses [IR34583-19-3-3/Bulu 
Dalam (IB) and Apura/IRAT177 (AI)]. The percent 
polymorphism i s compared among parental combina- 
tions and for hvo different libraries of probes: a PslI 
genomic library from rice and a cDNA library from oat 
(Avena). Polymorphism in the interspecific parents was 
higher than for either of the intraspecific combinations 
for every restriction enzyme tested. In the interspecific 
cross, 85% of clones from the PslI genomic library 
detected Dolymorphism with at least one of the five 

' I  
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I TABm 2 

Frequency of single copy, multiple copy or repeated sequences in 

Southern hybridization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith total rice DNA 
(washing stringency = 0.5X SSC at 65”) 

i cDNA libraries derived from rice, oat, and barley based on 

Single Multiple No 

Source of copy copy Repeated signal 
cDNA clones (%) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) (%) (no.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn 

Rice (cv. IR36) 66 17 17 O 576 
Oat (cv Brooks) .64 28 S 36 200 
Barlev (cv Willis) 48 42 10 13 SO 

enzymes. In comparison, ’75% of clones from the same 
library were polymorphic in the IB combination when 
the same enzymes were evaluated, and 38% were polymor- 
phic in the AI comh$a@%. Statistics are similar with re- 
spect to the oat cDRA library, where 87.5% of clones de- 
tected polymorphism in the SL combination and 47% 
detected polymorphism in the AI combination. The IB 
combination was not tested with cDNA clones, and com- 
parisons of polymoiphism with RZ and BCD clones are not 
available because the IB and AI mapping parents were not 
surveyed with clones fi-om these libraries. 

Genomic marker analysis: To determine the useful- 
ness of a rice genomic library for mapping in other zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGra- 
mineue species, 37 clones with clear, single copy signal 
in rice were hybridized onto filters containing DNA 
from rice, wheat, barley and oat. Results from this ex- 
periment demonstrated that clear hybridization signal 
was detected for 65% of clones on wheat, 32% on barley, 
and 11% on oat. This suggests that the wheat genome 
is likely to contain a large proportion of DNA with ho- 
mology to rice genomic sequences. 

The level of polymorphism detected by a single en- 
zyme for genomic clones in the interspecific combina- 
tion in this study was in good agreementwith the genetic 
distance between these species observed in an RFLP 
study by W.wc et al. (1990). They found 54% of probes 
were polymorphic between O. longistaminata acces- 
sions and indica varieties of O. sativa, using EcoRI di- 
gests only. This compares with an average of 34% for a 
single enzyme for the IB combination and 13% for the 
AI combination. The significant differences in levels of 
polymorphism observed between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt wo intraspecific 
combinations included in this study support the concept 
that some putative indica X japonica combinations are 
genetically much more distant than others. In addition, 
this work suggests that for rice, as for other crops 
such as tomato (BERNATZKY and TANKSLEY 1986), potato 
(BONIERRALE et al. 1988) or sorghum (CHITTENDEN et al. 
1994), the choice of an interspecific cross is an efficient 
way of detecting high levels of molecular polymorphism. 

The total 
length of the map based on the interspecific (SL) popu- 
lation is 1491 cM, which corresponds to approximately 
one marker every 2.1 cM. I t  is comprised of 250 rice 

* 

Construction of the rice linkage map: 

cDNAs, 112 oat cDNAs, 20 barley cDNAs, 235 rice 
genomic clones, 2 maize genomic clones, 26 clolled 
genes, 11 isozymes, 11 microsatellite markers, 3 telo- 
meric markers, 6 FW?D and 47 morphological mutant 
loci. The morphological mutant loci, which are under- 
lined and in bold print in Figure 1, were mapped usillg 
avariety of plant material but a common set of molecular 
markers. All underlined markers in Figure 1 represellt 
loci that were mapped on other populations, and whose 
map position on the SL map has been estimated based 
on linkage to common markers. Thirty markers, whose 
location previously had been unambiguously deter- 
mined by trisomic analysis (MCCOUCH et al. 1988; Yu 
1991) were used to assign linkage groups to their re- 
spective chromosomes. The linkage analysis was per- 
formed using successive thresholds of recombination 

i,’Values of 0.20, 0.25 and 0.30, and a LOD score of 2.5. 
When the order of adjacent markers could not be es- 
tablished with a LOD higher than 2.5, only one marker 
was used in the mapping framework (Figure l), the 
other one being represented in parentheses at its most 
probable location to the right of the most closely linked 
clone on the framework. The LOD 2.5 framework of the 
map is based on 372 markers and the average intemal de- 
fined by markers on the framework map is 4.0 cM. The 
markers that are separated fi-om framework markers by a 
comma are tightly linked (less than 1 cM) to a framework 
marker. Two hundred twenty-four additional probes that 
were mapped with LOD < 2.5 onto the same population 
are represented in parentheses to the right of the franie- 
work markers. Chromosomes are comprised of 20- 96.  

markers, with an average of 50 per chromosome. 
There was a good correlation between the relative 

length of chromosomes measured at pro-metaphase by 
image analysis (FUKUI and IIJI.MA 1991) and the number 
of probes per chromosome on our map (Figure 2A, 
R2 = 0.91; P < 0.01). The relationship between relatiye 
length of pro-metaphase chromosomes and the length 
of the chromosomes in cM on the RFLP map was also 
significant (Figure 2B; R2 = 0.65; P< 0.05), though lower 
than for number of markers. This is related to the fact 
that the recombination distance between markers was 
not uniform along the chromosomes. Indeed, the av- 
erage distance between markers differed significantly 
( F  = 3.01, P < 0.001) between chromosomes. The varia- 
tion in interval size was notable both between and within 
chromosomes. The average in terval size was smallest for 
chromosomes 1, 2 and 3 (the largest and most popu- 
lated chromosomes), and was largest for chromosomes 
7, I I  and 12 ( P  < 0. 05) .  The distribution of markers 
along several of the chromosomes was markedly uneven. 
Two densely populated regions can be noticed on chro- 
mosome 3, punctuated by intervals of 21.5 and 14.0 cM. 
Several markers place to these intenals but cannot be 
mapped with precision ( i . p . ,  LOD < 2.5). This uneven 
distribution of markers suggested that the frequency of 
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TABLE 3 

Percent of genomic and cDNA clones detecting polymorphism zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin three zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcross combinations based on a survey of 200 PStI nce genomic clones 
and 166 oat (Avena) cDNA clones 

Percent probes polym Percent 
probes polymorphic 

Library Cross combination EcoRV Hind111 XbaI ScaI Dra1 2 1  restriction enzyme 

Rice genomic BS125/WLO2//BS125 52 57 57 58 46 85.0 
Rice genomic IR34583-19-3-3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX Bulu Dalam 39 31 40 30 31 75.0 
Rice genomic Apura X IRAT177 16 12 9 18 13 38.0 

87.5 
Oat cDNA Apura X IRAT177 17 25 32 25 23 47.0 

Significant differences in levels of polymorphism (P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< 0.01 based on a one-way ANOVA) were detected between parents of the SL, IB and AI 

- Oat cDNA BS125/WL.O2//BS125 65 64 49 55 

populations. Differences in levels of polymorphism between libraries were not significant. u-" signifies no data available. 

recombination may vary greatly from one region to an- 
other on the same chromosome. A similar pattern was 
observed on  chromosomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, 2 and 7 (Figure 1). 

Eleven isozyme loci have also been located d a  linkage to 
RF'LI? markers. Cut)enwlocated on the map are Mal-1, 
Acpl, AI+?, Acp-4, &ì-2, Adh-1, Pgd-1, Sdh-1, EstI-2, Est-2and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Pox-2. The molecular map developed in this laboratory has 
been oriented with respect to the classical linkage map of 
rice (KINOSHITA 1993) based on isozyme and morphologi- 
cal markers (Figure 1) and the rice RFLP map constructed 
by Smo et a l  (1991) andN.uxmm eta1 (1993) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(%%o et al. 

1992) (data not shown). It provides a stable framework for 
rapidly and efficiently locating new markers on rice chro- 
mosomes. The results of this analysis and the RFLP data set 
associated with the O. sativa X O. lolzgistaininata BC popu- 
lation are accessible in the Rice Genome Database ("Rice- 
Genes") through the National Agricultural Library in 
Washington, D.C., or through Gopher (MCCOCCH and 

Relationship between molecular and classical linkage 
map in rice: Figure 1 summarizes the current status of 
both the molecular map developed in this laboratory and 
the classical linkage map of rice (KINOSHITA 1993). Mor- 
phological mutant loci in common between the maps are 
placed to the left of the chromosomes on the classical map. 
The classical map is constructed from hundreds of dif€er- 
ent crosses, each segregating for only a few loci. Though 
the order of loci is expected to be stable, recombination 
frequency i s highly variable among crosses. For example, 
sd-l and lax on chromosome 1 are both linked to markers 
that map within 10 cM of each other on the molecular 
map, but are much firther apart on the morphological 
map. Similarly, the distances between pH, R a n d  d-11 on 
chromosome 4 of the two maps appear quite dserent. 
Thus, the genetic distances between markers represented 
on the classical map cannot be directly compared to those 
on the molecular map. In a few cases, the order of markers 
along a chromosome does not agree when the avo maps 
in Figure 1 are compared. This is the case for Pgd-1 and la 
on chromosome 11. Additional marker analysis is required 
in order to resolve these discrepancies. Two of the chro- 
mosomes have no markers in common, while seven others 

PAUL 1994). 

have between one and four markers located on both 
maps. Chromosome 6 stands out with eight markers 
in common, followed by chromosomes 11 and 4, with 
six and five markers in common, respectively. Th i s reflects 
interest in specific chromosomal regions containing genes of 

!t' interest where linkage has been established between target 
genes and molecular markers. 

Colinearity of the intra and interspecific maps: A 
sample of 100 probes, selected at regular intervals from 
an updated version of the map described in MCCOUCH 
et al. (1988), were initially mapped onto the interspe- 
cific population to compare the order of the probes in 
the t wo maps. This served to ensure that a map based on 
an interspecific cross would provide similar information 
as one based on an  intraspecific cross. With few excep- 
tions, probes were found to be located on the same chro- 
mosome and in the same order in both populations. 

Two types of modifications could be observed: small 
modifications in the placement of markers and no 
change in the chromosome assignment, or change of as- 
signed chromosome for a marker or a group of closely 
linked markers. Changes in chromosomal assignments for 
a marker or linked cluster of markers occurred in only fi~7e 
cases. In all five cases, the placement of markers to a spe- 
cific linkage group in the IB F2 population had been based 
on dosage analysis, rather than linkage analysis, using the 
trisomic stocks described by KHUSH et al (1984). 

The apparent contradictions may be explained by the 
fact that multiple copy clones, having multiple chromo- 
somal locations, were involved in several cases. These 
sequences were originally mapped in the IB population 
based on high stringency washes. When they were 
mapped in the SL population, it was not clear whether 
the same or a different allele was segregating, providing 
an explanation for new locations of some markers. Dif- 
ficulties in locating markers in distal regions of chro- 
mosomes are another source of error. Alternatively, ir- 
regularities in the trisomic stocks have been reported 
(OKA and WU 1988; CHUNG and WU 1990) and small 
structural rearrangements between related species and 
subspecies of rice (JENA et al. 1992; CH~LSDRARATNA 1964) 
may exdain other discreDancies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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The five cases of chromosomal discrepancies included zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RG365, previously placed on chromosome 8, now linked 
internally on chromosome 2; RG136, previously on chro- 
mosome 9, now linked internally on chromosome zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS; 

RG375 and RG39G, previously mapped onto chromosome 
12, but currently linked in the lower portion of chromo- 
some zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4; RG29, previously on chromosome 7, now located 
at a distance of 10 cM from one of the telomeres on chro- 
mosome S; and RG98, RG304A and RG235, three linked, 
single copy probes, previously reported to reside on chro- 
mosome 12, now placed distally on chromosome 1 I .  The 
clearest evidence obtained from this study for the occur- 
rence of a small translocation is related to the placement 
of RG190. In the SL and the IB populations, RG190 maps 
to chromosome 12 (LOD > 2.5),  supported by trisomic 
data (h4cCoucH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet a,4,>W). However, in other popula- 
tions, RG190 is repogted to be linked to RG375 and RG396 
at the bottom of chromosome 4 (M. CH~UPOUX, IRRT, Phil- 
ippines, personal communication; W. PARK and Z. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALr, 
Texas A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8c M University, Texas, personal communication; 
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS ~ O ,  NIAR, Japan, personal communication). A study 
of the e x m  chromosomes in the IR36 trisomic series by 
C H ~ C  and Wu (1990) suggested that the extra chromo- 
some in Triplo 12 contained a translocated section of chro- 
mosome 4. Further study is necessary to resolve the pos- 
sibility of structural rearrangements in these regions of 
chromosomes 4 and 12. 

Based on both genetic and physical mapping, T 4 V  and 
TA~XSLEY (1993b) demonstmted that RG29was linked to a 
telomere on chromosome 8, and that RG98 was linked to 
a telomere on chromosome 11. The distance between 
RG98 and the chromosome 11 telomere was estimated to 
be 8 ch4, colresponding to a physical distance of approxi- 
mately 270 kb. This suggests an exceptionally high rate of 
recombination, such that 1 CM is equivalent to approxi- 
mately 34 kb in the distal portion of this chromosome. 
Linkage estimation is more dependable when markers are 
nested among other markers on a genetic map than when 
they are located at the ends of chromosomes. Though 
physical mapping of distal markers based on pulsed field 
gel electrophoresis (PFGE) offers convincing evidence 
that markers are actually located near telomeres, only a few 
probes to date (RG29 on chromosome 8, RG98 on chro- 
mosome 11, and r45S on chromosome 9)  have been 
mapped using this approach in rice due to the diaculty of 

- 

clearly identifj4ng segregation using PFGE techniques (WU 
and TANKSLEY 1993b). The availability of libraries ~0111- 

posed of large DNA fragments, in yeast artificial chromo- 
some (YAC), bacterial artificial chromosome (BAC), or 
cosmid vectors will facilitate the mapping of distally located 
markers and provide confirmation of marker order alid 
placement on existing genetic chromosome maps. 

Multiple copy markers: There are a total of 50 multiple 
copy markers on the existing RFLP map of rice. In most 
cases, only one copy could be mapped because segregation 
could be clearly detected for only one locus. In eight cases 
(RG14-5, RG369, CD0395, W0507,  W0534,  W01387, 
BW454 and W 0 1 2 7 )  t wo copies of a single cloned se- 
quence were mapped. In only one instance (RG369A and 
RG3GYB) did both copies of a clone map to the same chro- 
mosome (chromosome 3) .  Evaluation of the map posi- 
Gons of other duplicatecopy clones reveals no clear pat- 
'' tern ofregional duplication in the rice genome. This situation 

can ,k contrasted to that of maize, an ancient polyploid, 
where almost all chromosomal regions contain contiguous 
sequences that exist in duplicate elsewhere in the genome 
(HELENTJARIS et al. 1958; AHS and T.LYBLES 1993). 

A comparison of copy number of clones mapped in 
different rice populations revealed no markers that were 
single copy in one population and highly repeated in 
another. However, variations in the number. and loca- 
tion of members of multiple copy clone families (2-5 
copies) among rice populations makes i t  difficult to 
use them in Comparative mapping studies. This prob- 
lem is confounded if comparative mapping between 
species is attempted. The emphasis on cDNA libraries 
as a source of clones for mapping in this interspecific 
population provided an efficient way to enrich for 
single copy sequences. We currently impose stringent 
selection criteria, targeting only clean, single copy 
clones for mapping in rice, and find that these are 
useful in comparative mapping efforts across a range 
of monocot species (AHN and TASELEY 1993; AHN et al .  

1994; Vim DEYNZE et al. 1994). 
Framework mapping kit: X kit of 96 single copy mark- 

ers providing good coverage of the rice genome has 
been assembled for ready distribution to researchers in- 
terested in locating genes of agronomic importance in 
rice. Thirty-five of the clones in this kit are from the rice 
genomic library, 47 are cDNA clones from rice, and 14 

FIG~~RE 1.-Rice linkage maps: on right is the molecular map based on the interspecific backcross population (O. sutiva/O. 
Zongislatninata//O. sativa); on left is the classical map based on morphological mutants and isoz)me markers (reproduced with 
permission from KINOSHITA 1993). The chromosome numbering, indicated at the top of chromosomes, follows the nomenclature 
established by the Rice Genetics Cooperative Committee in IRRI, May 1990 (JSHUSH 1990). Between square brackets is presented 
the nomenclature used in htccouc~ et  al. (1988), following KHUSH et al. (1984). Probe designation to the right of the chromosomes: 
cDNA markers are designated as RZ (from rice), CDO (from oat), BCD (from barley), rice genomic markers are designated as 
RG, maize genomic markers are UMC and BNL, microsatellite markers are RM or RN (WU and TAYULEY 1993a). Probes hybridizing 
with two or more major bands are indicated with an X if only one locus has been mapped; with A and B if two loci were mapped. 
Known genes are listed in Table 1. The probes located by trisomic studies are indicated with a star (*). Map distanccs arc presented 
in centimorgans (KOSAMUI function) to the left of the chromosomes. Markers located to intenals wilh a LOD scorc < 2.5 are 
represented in parentheses in the appropriate intend. Stippled regions along the chromosomes represent regions containing 
markers with skewed allele frequencies ( P  < 0.05). 
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are cDNA clones from oat. These and other markers 
have been distributed to over one hundred researchers 
worldwide and provide the basis for many gene tagging 
and QTL studies in rice. For studies involving closely 
related germplasm, where the general level of polymor- 
phism detectable with RFLP markers may be quite low, 
it is helpful to avail of multiple markers in agiven region. 
Alternatively, microsatellite markers are proving espe- 
cially useful in these cases because of their high level of 
allelic diversity (Wu and T A N ~ L E Y  1993a). The wide- 

spread use of a common set of publicly available clones 
has provided a basis for comparison and integration of 
results in rice genome research and comparative m a p  
ping efforts in many parts of the world. 

Comparison of recombination distances: The recom- 
bination fi-actions between identical pairs of linked mark- 
ers in the IB population studied by MCCOUCH et al. (1988) 
and in the SL population studied here were compared to 
determine whether levels of recombination observed in 
the intra and interspecific mapping populations were simi- 
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lar. Based on two-point analysis, 50 intexvals located 
throughout the genome were compared in the t wo p o p -  
lations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn overall reduction of approximately 25% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.Was 

obsenred in the interspecific population. Dif€erent selec- 
tion pressures may act in favor of or against recombi- 
nation in specific regions. The general reduction of ge- 

netic distances between markers observed in this study is 
in agreement with observations of other interspecific 
crosses (PATERSON et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa! 1988;  BONIERRALE e¿ a! 1988). In in- 
terspecific crosses, the homology between DNA strands is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAre- 
duced, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis is generally related to a reduction in the fi-e- 
quency of chiasmata (GRANT 1958; BORTS and HABER 1987). 
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Occasionally, extreme differences in recombination &e- 
quencywere detected when t he SL and the IB maps were 
compared using two-point analysis between pairs of mark- 
ers. At one end of the spectrum, three pairs of markers 
(RG458-RG147on chromosome I; RG224-RG1 OOon c h r e  
mosome 3 RG125-RG386 on chromosome 9) showing 
linkage in the IB map appeared completely linked in the 
SL population. These discrepancies may be the result zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 
differential rates of recombination, or they may be due to 
small translocations or inversions dong the chromosomes 

of O. sativa and O. longistaminatu. The observed lack of 
recombination may cover long distances on the physical 
map, as these pairs were separated by as much as 12 cM in 
the IB map. 

At the other end of the spectrum, intervals in which 
the recombination in the SL population was greater 
than that observed in the IB population were observed 
on 6 of the 12 chromosomes. These intervals were not 
consistently located in any particular region of a chro- 
mosome. In two cases, t hey were associated with regions 

. 
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containing markers that could not be mapped with a 
LOD > 2.5 (markers in parenthesis on the map), in- 
cluding an interval on chromosome 4 (RG375-RG396), 
and one on chromosome 12 (RG958-RG323). In an- 
other instance, a higher rate of recombination was ob- 
served along a segment of chromosome 6 extending from 
the waxy locus to RG4-56. This region has been re- 
ported to have a particularly variable level of recom- 
bination. Several xt-orkers (YANAGIHIRI et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1992; OKA 
1988) have demonstrated drastic differences in esti- 

in this region when crosses between different pairs of 
O. satiua parents are used. Our obsenations suggest 
that recombination in the interspecific SL population 
may exceed that of intraspecific Combinations in cer- 
tain regions. 

A consequence of reduced recombination is greater 
assurance of linkage between markers and ease in rec- 
ognizing linkage groups in a sparsely populated map. 
On the other hand, chis reduction in map distances lim- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o mations of genetic distance between specific markers 

its the ability to precisely order an array of tightly clus- 
tered markers when establishing a high density map. For 
that reason, it is necessary to estimate the precise order 
of closely linked markers using larger populations and 
crosses demonstrating a higher rate of recombination in 
specific regions of interest. Recombinant inbred popu- 
lations developed via single seed descent offer an alter- 
native way of increasing recombination frequency and 
simultaneously provide excellent material for mapping 
quantitative traits of interest (BURR et al. 1988; WANG 
et al. 1994). A practical consequence of recombination 
shrinkage in interspecific crosses is the difficulty in 
breaking linkage when favorable traits are linked to un- 
desirable ones. However, information about specific re- 
gions which are highly recombinagenic in specific cross 
combinations provides information that can be favor- 
ably exploited in a breeding program. Reduction of re- 
combination fractions in interspecific crosses have gen- 
erally been studied using few morphological markers 
(RICK 1969; OKA 1988). The use of molecular maps and 
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markers allows us to compare recombination fractions 
throughout the rice genome for the first time. Fine map- 
ping based on RFLPs or other molecular markers may 
be helpful in clarifjGng whether the obsemed variation 
is under genetic control and whether it could be ex- 
ploited to the benefit of plant improvement. 

Genome coverage provided by the interspecific map: 
Despite the continuous addition of new markers to an 
existing map, once a dependable framework has been 
established for a population, the addition of new mark- 
ers is not expected to add substantially to the overall 
length of the map. Indeed, most markers fall within re- 
gions already mapped and tend to map very near or  on 
top of markers already on the framework. This would 
suggest that a map containing 300 markers for a genome 
the size of rice would provide fairly complete genome 
coverage. Based on an exchange of 70 markers, a com- 
parison of the maps prepared by SAITO et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa¿. (1991) and 
that reported by T.WI(SLEY et al. (1992a) suggested that 
these two independently constructed rice maps prol 
vided very similar genome coverage and that the order 
of markers along the chromosomes was in good agree- 
ment (XIAO et a¿. 1992). However, both maps contained 

several persistent, sparsely populated regions, appearing 
as large intervals. In some cases, these large intervals fell 
in comparable regions of the Chromosomes, such as the 
region on chromosome 3 defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARG96, RGl79  and 
CD0337, or that on chromosome 11 defined by 
RGlO94 and RGl I8 .  

Our  decision to use an interspecific cross provided 
us with an opportunity to test the hypothesis that re- 
gions of chromosomes might be monomorphic in a 
cross between two cultivated rice species but polymor- 
phic in a cross between a cultivar and a wild species. 
The efficiency of this approach was demonstrated, as map 
ping in the interspecific cross allowed us to readily 
assemble 12 linkage groups without the unlinked seg- 
ments that remained in our intraspecific map with the 
same number of markers. It also allowed us to define 
a region of approximately 80 cM on chromsome 3 
which was mapped for the first time using the SL 
population. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. 

Skewing in the interspecific backcross: Sixteen per- 
cent of the markers mapped in the interspecific back- 
cross population exhibited skewed segregation ratios. 
Deviations from the expected 1:l allele frequency were 
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encountered for markers mapping to nine of the chro- 
mosomes (Figure 1). Almost half (46/94) of the skewed 
markers mapped to chromosome 3. Al1 of the skewed 
loci on chromosomes 4 and 5, and one marker each on 
chromosomes 2 and 11 (RZ742C and RG98), deviated 
in favor of the O. Zongistaminata allele (28/94), while 
markers on all the other chromosomes deviated in favor 
of the O. sativa allele (6G/94). The mean frequency of 
the O. longistaminata alleles in the backcross popula- 
tion, over all the marker loci, was 49%. This statistic was 
in accordance with obsemations of allele frequencies at 
isozyme loci in similar backcross populations (CAUSSE 
and GHESQUIÈRE 1991,1992). Distortions are common 
in interspecific and intersubspecific populations and 
their origin has been discussed by several authors (IWATA 
et d. 1964; TAN~LEY 1983; ~ I I R  and T.mSfOR 1986; SATO 
et al., 1990; LIN et al. 1992; LIN and IKEWHI 1993). Because 
the ability to measure recombination is limited to al- 
leles coming from only one parent in a backcross 
population, these populations are less sensitive to 
skewing than are F, populations. The frequency of 
markers detecting skewed segregation was similar in 
both the interspecific population and the previously 
mapped indica zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX japonica population (MCCOVCH et al. 
1988). 

It is interesting to note that markers in the same re- 
gion of chromosome 3 were reported as skewed by 

.I 

- 

1). The segregation distortion in the population studied 
here can be used to identify the map position of the 
genetic factor(s) responsible for this phenomenon 
(Figure 3). NAKAGAHRA (1972) has shown that this region 
of the genome is involved in the sterility mechanisms 
which isolate the indica and japonica subspecies of 
O. sativa. The sterility is due to gametophytic selection, 
systematically favoring indica alleles. Whether an iden- 
tical mechanism is involved in regulating fertility in this 
interspecific cross is not clear at this time. The mecha- 
nism may be similar, though O. Zongistaminata alleles 
tended to be favored over indica alleles in the popula- 
tion studied here. On  the other hand, the sterility may 
be due to a different mechanism which is controlled by 
one or several genes residing in the same chromosomal 
region. The O. Zongistaminata X O. sativa FI hybrid 
showed very low male fertility; less than 20% of the pol- 
len grains were stainable by ALEXANDER (1969) solution 
(GHESQUIÈRE 1988). Though backcross seeds could be 
obtained, the success rate of the back crosses was in- 
complete, and specific selection could have taken place 
at t his step. In addition, during germination or later 
development, some plants were weak or developed 
poorly and were discarded from the mapping popula- 
tion. The reproductive barrier which isolates O. longis- 
taminata from the other Oqiza species represents a pos-  
sible cause of deviation in the allele frequencies. It 
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rility mechanism (outcrossing barrier) is operating in 
indica X japonica and in interspecific crosses. PATERSON 
et al. (1990) proposed an approach based on substitu- 
tion mapping to localize small chromosomal fragments 
involved in segregation distortions. Studies with subse- 
quent backcross generations from this interspecific 
cross could be performed to fine map the region asso- 
ciated with the deviations observed here. 

DISCUSSION 

The use of cDNA libraries to efficiently construct mo- 
lecular maps provides a basis for comparative mapping 
in distantly related species, such as rice, oat, barley, 

wheat, maize, and sugarcane. Maps based on common 
sets of probes constitute a basis for the comparison of 
genome organization and evolutionary change, as was 
first demonstrated with Solanaceae species (BONIEREÍALE 
et al. 1988; TANKSLEY et al. 1992b), and later in sorghum 
and maize (HULBERT et  al. 1990; WHITKUS et al. 1992) 
and wheat, barley, and rye (DEVOS et al. 1992, 1993). 
While genomic clones work well when the species being 
compared are very closely related, as with tomato and 
potato or sorghum and maize, genomic sequences are 
often not well enough conserved to allow comparative 
mapping across more distantly related genomes. This 
was demonstrated in the case of rice genomic PslI 

Y 



1270 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAl .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACausse et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 

12 L- 61 
(RG176X) Acv-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - 

ACV-2 - - RGIW 

6.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA---j RG958 

(RG463, RG323) 

RG901X 
RGI90* 

CD0344 
5.9 

(RG457, RZ261) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB17h-lao 
RG634B 

11% 

RG869 
(RG34IX) 
RG397 

5.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
18.1 (RZ257) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Hbv 
FIGURE 1.-Continued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ACP-1 
ACP-2 

Pox-2 
d - 3  

d-33 

rl-3 

spl-I 

Sdh-I 

probes, which frequently gave poor signal on oat and 
barley. On  the other hand, cDNA sequences are 
sufficiently conserved to cross hybridize with a wide 
range of species and allowed comparative maps to be 
developed behveen rice, wheat, maize and other cereals 
(AHN and TAWSLEY 1993; AHN et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1994; KURATA et  al. 

1994; V.Lv DEYNZE et al. 1994). In some instances, cDNAs 
have been demonstrated to hybridize clearly across 
much greater evolutionary distance, as is the case with 
ATPase which was cloned out of tobacco (N. CHUA, 
Rockefeller University, personal communication), or 
the Pto gene which was cloned out of tomato, and gives 
a clear hybridization signal on a wide range of plants, 
including rice (MUTIN et  al. 1993). 

The interspecific population has been found to be 
much more efficient than most intraspecific crosses; on 
average, one restriction enzyme detected 54% polymor- 
phism, while a single enzyme detected only 34% and 
14% in the nuo intra species crosses examined in this 

study. The mapping population can be easily multiplied 
through shoot cuttings, maintained over years, and can 
be distributed to researchers who would like to map 
cloned genes. The resolution of our map is limited by 
the size of the population, but higher resolution mapping 
in specific regions of interest can be readily accomplished 
by selecting clones which map to the target region and 
analyzing them on larger populations, or by pooling in- 
dividuals for targeted addition of markers (GIOVANNO~L! 
et al. 1991; MICHELMORE et al. 1991). 

One of the main uses of the RFLP map of rice is to 
locate markers linked to genes of interest, both single 
gene and quantitatively inherited characters. Over 80 
genes of agronomic importance have been located on 
the map (Table 1) and are identified in bold in Figure 1. 
The SL population has also been used to locate genes re- 
lated to specific trait.~ of O. longistamimta, such as growth 
habit (T. FULTON, unpublished data) and bacterial blight 
resistance. This species (though a different accession) was 
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the source of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXu-21 gene for broad spectrum resistance 
to bacterial leaf blight (IKEDA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1990; KHUSH et al. 1991). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
VALES (1985) showed that this species also has genes con- 
femng specific resistance to blast. O. longistamimta has also 
interested rice breeders for its allogamy traits: it has the 
longest anthers and stigmas among the Orym species, and 
these traits have been found to be correlated with the out- 
crossing behavior of plants (CAUSSE and GHESQUIÈRE 1991). 
Production of varieties with long, well exerted stigmas 

would be valuable in the production of hybrid seeds at a 
lower cost ( V I R ~ N  et al. 1982). 

It is generally argued that reduced recombination and 
skewed segregation impose limits to the ability to i m o -  
gress traits from wild species into cultivated forms of 

rice. We have shown that in spite of an overall reduction 
of recombination, the actual frequency of recombina- 
tion in this interspecific cross remained high. Though a 
strong reproductive barrier isolates the wild species 
from the cultivars, segregation deviation did not con- 
stitute a more important problem than within intersub- 
specific O. sativa crosses. Unfavorable genes are nu- 
merous in wild species and molecular marker-assisted 
studies of the inheritance of these traits may help to 
get rid of such deleterious effects. In addition to O, 
longistaminata, species which are closer to O. sativa, 
such as O. rufpogon, represent sources of interesting 
genes for rice improvement. RFLP maps constitute a 
powerful tool for following introgressions (YOUNG et al. 
1988) and separating desirable from unfavorable traits 
(DE VICENIE and TANKSLEY 1993; PATERSON et al. 1990). 
PANAUD (1992) and P. REIMERS and R. NELSON (IRRI, per- 
sonal communication) demonstrated the use of RFLP 
markers to identify which chromosome had been inher- 
itedfi-om awild species in alien addition lines derived fi-om 
remote crosses. 

Finally, our results offer a foundation for the use of 
rice as a genetic model among grass species. Recent es- 
timations based on flow cytometiy suggest that the 
amount of DNA in a haploid nucleus (Gvalue) is about 
0.45 pg (ARUMUG.LVATHXW and 1991). In addition, 
it has a large proportion of single copy DNA (approxi- 
mately 85% at  high stringency) (MCCOUCH et al .  1988). 
With a map of 1491 cM, 1 ch4 corresponds to an average 
of approximately 300 kb. Physical mapping experiments 
have demonstrated that this estimate is reasonably ac- 
curate (ROSALD et al. 1992) and that in telonieric re- 
gions, the recombination frequency may be as high as 1 
cRk30-50 kb (Wu and TAVKSLEY 199313). The relation- 
ship between physical and genetic distance estimated 
from the interspecific map represents a consen7ative es- 
timate, as the total number of cM in the rice genome is 
greater when mapping is done on an intraspecific cross, 
making the estimated kb:cm ratio nearer 1 cM:250 kb. 
In either case, the ratio of genetic to physical distance 
in rice is the smallest for any monocot known, and is 011Iy 

slightly higher than that for Arabidopsis (150-200 kb 
per cM). This estimate can be compared to tomato, 
which has an average distance of 700 kb per cM, or to 
other monocots such as maize, with an average of 2000 
kb per cM. The first successful map-based cloning 
gene experiment in any crop plant was recently re- 
ported for the Plogene in tomato (MARTIN et al .  1993), 
providing evidence that saturated molecular maps can 
be productively employed in the isolation of genes 
whose protein product is unknown. Because of its 
small genome, high proportion of single copy DNA, 
high recombination frequency, densely populated ge- 
netic map, and relative ease of transformation, rice 
represents an  ideal candidate as the basis for com- 
parative mapping studies among monocot species, for 
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FIGURE 3.-Scatter plot of al- 
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map-based gene isolation, and for transformation in 
crop improvement. 
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