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INTRODUCTION 

Inelastic shear strains in saturated sands occur essentially without 

interference of pore water, but inelastic volumetric strains caused by the 

rearrangement of grain configurations in the process of shear straining are 

resisted elastically by the water filling the pores. Therefore, a coupling 

between the solid skeleton of sand grains and the pore water exists, and 

a saturated sand must be treated as a two-phase medium. The linear P.lastic 

and linear viscoelastic theory of such a medium has been developed by Biot 

(1956, 1957), but an extension of this theory into the nonlinear inelastic 

range is necessary to formulate inelastic densifications. This extension 

has acquired considerable importance in recent years due to the increased 

concern with the dynamic densification and associated liquefaction of 

saturated sand deposits as a result of seismic disturbances. 

Despite the recognized need for such a two-phase medium formulation 

from a theoretical point of view, its practical usefulness requires that 

the elastic moduli be expressed in tenns of easily and directly measurable 

quantities, such as the compressibility of water C and the compressibilities 
w 

Cb and Ct of saturated sand under drained or undrained conditions. Although 

studies devoted to the determination of elastic moduli for. a two-phase 

mediwn have been reported by Biot (1957) and Ishihara (1967), appropriate 

expressions are not available. Omitting Ct and Cw' Biot (1957) expressed 

these moduli in terms of the so-called unjacketed compressibilities of the 

solid skeleton and the pore water due to a pressure applied to the pore 

water, but these parameters are not particularly useful for practical appli-

cations. In addition, certain small terms (such as porosity incrcm~nts due 

t(\ deformation) were neglected without offering justification. The dcrivn-

tion of modulus expressions in terms of Cb' C , and C has been attempted 
t w 

by Ishihara (1967), but several of his basic equations are incorrect (for 

4 



example, Equation(9)is correct only in spatial (Euler) coordinates while all 

remaining equations are written in material (Lagrangian) coordinates, in 

which case this equation should read n(de - de + de) = de , and the 
p s n 

assumption that precedes Equation (14), as well as the assumption that the 

volume change of the grains is caused only by pore water pressure, are 

unjustified). The stress-strain relations considered herein will be 

expressed in an incremental form, so that the present analysis is appli-

cable to nonlinear behavior that is typical of sands. 

ASSUMPTIONS 

Homogeneity and Isotropy 

The granular solid (sand) is assumed to be statistically homogeneous 

on a sufficiently large scale and incrementally isotropic. The assumption 

of isotropy is hardly ever true in the strict sense, even in a sand which 

is perfectly isotropic in the unstressed state, because the contact areas 

between grains depend on the stress and those contact areas which are nor-

mal to the major principal stress are larger, so that the sand must be 

stiffer in this direction. Nevertheless, the effect of the associated 

anisotropy is probably small and negligible. As a consequence of isotropy, 

the incremental stress-strain relations may be treated as separate relations 

for the deviatoric and volumetric components of the stress and strain 

tensors. 

Shear Stresses 

The shear stresses are assumed to be carried totally by the solid 

skeleton (as for dry sands) and the portion of the macroscopic shear stresses 

carried by the fluid phase is neglected (see Figure 1). Consequently, the 

incremental stress-strain relations for nonlinear inelastic deviatoric 

deformations involve only deviatoric stress and strain increments of the 

solid skeleton and not the fluid phase. 
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CTt • CT + CTF 

Figure 1. Sketch of Sand Cross section Elucidating Various 
Macroscopic Stress Component1l 

Volumetric Deformations 

The volumetric deformations of the fluid within the pores are assumed 

to be perfectly elastic and given by 

dy 
w 

-- = c dp 
w w 

(1) 

in which yw is the mass density of the pore water and pw is the fluid 

pressure, which will be taken as positive in the case of compression. Nor-

mal stresses, denoted a (with a subscript of superscript), will be positive 

for tension. 

Contact Areas 

The contact areas between the sand grains are assumed to be negligibly 

small so that the pore water and associated pressure pw completely sur­

rounds each grain. This assumption also precludes the existence of appreci-

able bond forces between the grains. As a consequence of this assumption, 

the macroscopic resultant of the intergranular contact forces, called the 

effective stress o', may be determined by considering a macroscopically 

planar, but microscopically sinuous, unit cross section which passes only 

through interparticle contacts (Section 11-11 in Figure 1). On such a 
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cross section the pore water pressure acts over the entire area and 

must be subtracted from the total macroscopic volumetric stress a to obtain 

the resultant of the intergranular forces: 

a' = cr - (-p ) 
t w 

(2) 

Compressibility of Grains 

Each individual grain is assumed to be perfectly elastic with a bulk 

compressibility C • Since each grain is loaded by pressure p over its 
s ~ 

entire boundary, th-erP. fs a uniform hydrostatic pressure pw within the 

grain, and this causes a volumetric compression C p of the grain. 
s w· 

In 

addi~ion, each grain (such as A in Figure 1) is also loaded by the inter-

granular forces which are in excess of p and characterized precisely and 
w 

solely by o'. Thus, the additional volume change is proportional to a', 

so that 

dy __ s 

ys 
C dp - C' da' 

s w s 
(3) 

in which C' is the compressibility of grains due to intergranular stress. 
s 

C' is an average statistical property of the sand, whereas C and C arc 
s s w 

properties of homogeneous substances and are not of a statistical nature. 

In previous studies, C' has not been taken into account; there is no 
s 

a priori reason for neglecting C', but. it will be seen subsequently in 
s 

Table 1 that the effect of C' is small compared to C , even when C' do' is 
s s s 

larger than C dp • 
s w 

Conservation of Mass 

BASIC RELATIONS 

The kinematic variables needed to describe the behavior of a two-phase 

medium are most conveniently chosen as the macroscopic (statistical avcrnge) 

displacements of the solid uk and fluid Uk' where sub:;cript k (k = 1,2,3) 
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refers to cartesian axes The volumetric deformations are then charac-

terized by the volumetric strain of the solid skeleton e = dUk/o~ = div uk 

and the volumetric (macroscopic) strain of the pore fluid E:y = auk/o~ = 

div Uk, where the subscript F refers to the macroscopic fluid phase. The 

strains may be expressed with the help of the (macroscopic) bulk mass 

densities of the solid phase p 

y and y by 
s w 

and 

and fluid phase 

p = (1-n)y 
s 

which are related to 

(4a) 

(4b), 

The condition of conservation of mass yields the mass continuity relations 

p • -p div uk and Pp = -pF div Uk, in which the dots represent material 

(rather than spatial) time derivatives. From these equations it follows that 

dp • -p de (Sa) 

and 

(Sb) 

Note that the formulation developed herein, including that of the fluid 

phase, is expressed in terms of material (Lagrangian) coordinates. 

Stress Resultants 

The force variables that are associated with e and eF by means of a 

work expression are not a', at, or pw' but the macroscopic volumetric 

stresses in the solid phase a and the fluid phase aF defined such that 

a6c + aF6eF is the correct work expression. The work done by, the fluid· 

flow per unit material element at 6e = 0 equals -pw6VF' where 6VF = n6ey is 

the volume of water that flows out of the unit element. Thus, aFoeF = 

-pw(n6eF)' which yields 

(6) 

s· 



as the only possible defini~ion of crf. Equation (6) represents the resultant 

of the pore water pressure pw over a unit cross section of porosity n; this 

cross section is perfectly planar (not microscopically sinuous) and passes 

through the grains (Section I-I in Figure 1). The stress in the solid 

phase d. must then represent the resultant of the stresses acting over 

the remaining area, 1-n, of the unit cross section (this is equivalent to 

the resultant of the microscopic stresses in the solids on this cross-

section). However,-it makes- no sense to write for a an expression analogous 

to Equation (6), because, unlike p , the microscopic stresses in the solids 
w 

are not uniformly distributed within the grains (unless a' = O). In terms 

of the stress and strain tensors for the solid phase, o and 

1 
e may be written as o = 3·crkk and By equilibrium of the macro-

scopic cross :;ection, the total volumetric stress is at = a + oF, which 

allows o' to be written as 

1-n 
a' • a+ Op + pw = a+ (1-n)pw • a - ~ oF 

Elastic Strains 

(7) 

Due to the nonlinearity of sand, the stress-strain relations will be 

expressed in an incremental form. The elastic strain increments of the 

two-phase medium de = deeJ, and deF = de eJ, 
F 

are defined as the strain 

increments that are perfectly reversible upon removal_ of the stress incre-

ment. This implies the existence of an incremental strain energy density, 

eJ, e/, 2 2 
W, as a function of de and d~ , and since tp = oW/oe = (o-W/ae )Ae + 

2 " 2 2 
(o W/oeo~) AeF and t:cF = oW/oeF • (o""W/o~oe)Ae + (o W/oeF)A~, the volu-

metric stress-strain relation must have the form (Ishihara, 1967) 

(8) 
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in whil·h P, Q, and Hare tangt•nl (i.ncn•mt•nli11) volumPLrfr 1•lnstk mmlull of 

2 2 2 2 2 
the two-phase medium (P = o W/oe ; Q = o W/ oeo e1,.; H = a W/o e1,J. Till' 

symmetry of this matrix is a consequence of the existence of an incremental 

potential. 

Definition of Inelastic Strains 

In general, the strain increments are composed of reversible and 

irreversible components, the latter of which are called inelastic strain 

increments de" and de" and defined as the strains that occur without any 
F 

change in stress (i.e. at do = dcr-F = Q). Accnrdin.g -to this tlcfinition, 

deet = de - de" and de~.t = deF - de{;, so that Equation (8) hccomes 

do = P(de - de") + Q(de - de") F F 

and 

(9a) 

doF = Q(de - de") + R(deF - de};) (9b) 

The inelastic strain or densification strain of the solid phase de" 

represents the inelastic densification that results from the slip of grains 

over each other and the consequent rearrangement of particles into denser 

configurations (at do"' O). The strain increment de" is a functional of 

the deviatoric strains and stresses in the solid skeleton itself. One of 

the advantages of postulating a two-phase medium is that de" may be con-

sidered to depend on the shear strains in the same manner as for unsaturated 

sands. Actually, of course, the same densification can not occur in a 

saturated sand, but the difference from de", representing the elastic 

resistance of the pore fluid against densification, is handled by Equations 

(1), (3), and (5). 

Although the introduction of an inelastic strain in the fluid phase 

might seem illogical, the fluid phase should not be confused with the fluid 

(water) itself. In general,. the fluid phase displacements Uk may result 
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from both the volume compre~sion of the fluid (which bi perfectly c lastic 

by virtue of Equation (1)) and the change in pore space (which may be 

inelastic) due to the slip of grains over each other and the consequent 

rearrangement of particles into denser configurations. At this point the 

possibility that de" = 0 is not excluded, but it will be shown later that 
F 

this is impossible, because the inelastic densification of the solid phase 

(de at do= 0) is'accompanied by a contraction of the pore space, and this 

can not occur at dCTP- = 0- {or dl'w ~ 0) unless water is expelled from the 

pore space. To expel water, a divergent Clux is ~l·1wrat1•d (i •••• 1liv llk 0) 

whi'ch means that def 1 0 at doF ='do = O. The notion of nn i nl• laslic..: 

strain in the fluid phase and the necessity of its dependence on de" were 

originally suggested by z.-J. Bazant (1967) without establishing the proper 

relationship for def/de", as given subsequently in Equation (43). 

The change of state of saturated sand is fully specified by de, deF' 

and deF. Thus, since Equations (1), (3), (4), (5), (6), (7), and (9) 

represent a system of 10 equations, it should be possible to determine the 

10 unknowns (do, dcrF, dep, da', dpw' dn, dyw, dys, dp, and dpF) when de, 

deF, and de" are given. If def were omitted, tlwn~ would be only 9 

unknowns versus 10 equations to be satisfied, and the problem would then 

be unsolvable. Hence, it is seen that d€f must be included in Equation (9), 

and the solution of the 10 equations will relate deF to de". The establish­

ment of this relationship will be one objective of the subsequent analysis. 

Another objective will be the determination of P, Q, and R in terms of 

readily measurable or known quantities, such as C , C , and n. 
w 8 
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INCREMENTAL ELASTIC MODULI 

Auxiliary Relations 

To develop relationships for the incn•niental moduli, it is expedit•nt 

to first eliminate some of the variables. ·Differentiation of Equations (li) 

gives dp = (1-n)dy - y dn and dpF = n dy + y dn, which, upon substitution 
s s w w 

for dp and dpF from Equations (5) and for p and pF from Equations (4), 

allows p and p to be eliminated, this yielding 
s 

de dn 
= 1-n 

dy 
s --

dn 
de • 

F - -n 

The further use of Equations (1) and (3) to eliminate y and y gives 
s w 

and 

dn 
d " - - C dp + C' dcr' .... - 1-n - s w 

de • 
F 

dn 
- - - c dp 

n w w 

(lOa) 

(lOb) 

(lla) 

(llb) 

Differentiation of Equation (6) and substitution for dp from Equation (1) 
w . 

yields daF = -p dn - n dy /y C , which, upon replacement of dy from 
w w w w w 

Equation (lOb), can be written as dn = (C doF - ndeF)/(1-C p ). Inserting 
w w w 

this expression for dn into Equation (lla), together with dpw = oFdn/n2-dcrF/n 

2 
and dcr' = da - (1-n)daF/n + crF dn/n from Equations (7) and (6), gives 

in which 

1 + l-n (C -C') . 
n s s Pw 
1 - c p 

w w 

12 

C' 
s 

(12) 

(13a) 

(13b) 



c • ~c + l-n c 
o w n s 

(13c) 

2 
In most cases of practical interest, p s 0.5N/mm , which corresponds to a 

w . 

depth of less than 50 m below the surface. The use of this value for pw' 

together wi~h typical values for C and C 
w s 

(C = 0.49 mm2/kN; C = 0.028 mm2 /kN) 
w s 

gives C p s 3 x 10-4 and C p (1-n)/n ~ 3 x 
w w s w 

10-S, which i.ndicates thal n 11 

terms with p are negligible and ~ ~ 1. 
w 

Substituting for dtr from Equation (9) and considering the special case 

of elastic deformations (de" = def = 0) leads to 

1 f 
da = - -< (1-n) (1-C'P)de + ~n - (1-n)C'Q] deF 

F Cl 1.. s s 
(14) 

which holds for any values of de and deF; Since the coefficients of de and 

deF must be the same as those in Equations (9), Q and R may be written as 

and 

Q = l-n (l-C'P) 
c1 s 

R 

~n - (1-n)C'Q 
s 

(15a) 

(15b) 

The basic equations will now be expressed in terms of directly measurable 

quantities, such as pw or a' instead of cr and aF. Equations (7) and (6) 

yield do = p dn - (1-n)dp + da' and da = - n dp - p dn, respectively, 
w w F w w 

and the substitution for dn and deF from Equations (11) and the use of 

Equations (9) with de" and deF = 0 gives 

and 

Upon elimination of deF, it follows for elastic deformations that 

13 
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(R + np )da' + (nQ - (1-n)R - [c (Q + R) - l] np } dp w . w w w 

2 
a (PR - Q - (P + Q)np ] de 

w 

The mass of water which is expelled from a unit volume of sand is 

(17) 

dm = Pp div(dUk - duk) = Pp(dep - de), where Pp is the bulk mass density 

of the fluid phase. Expressing dep from Equation (9) for the elastic case 

gives dep = (dap - Qdc)/R, and replacement of daF yields dep = -(pw dn + 

n dp + Qdc)/R. Then, substituting dn = -n(dep + C dp ) from Equation 
w w w 

(llb), provides 

n(dcp - de) = 

Bulk Compressibility 

n(Q - R + npw)de - (1 - Cwpw)n2dpw 

R - npw 
(18) 

Consider a drained compression test in which a saturated soil sample 

is encased within an impermeable, but flexible, membrane, and the pore 

water pressure pw is maintained constant (i.e. dpw = 0). In most tests of 

this type p = 0, and all subsequent relations simplify. The load is applied 
w 

on the external surface of the membrane as a fluid pressure which 

exceeds the constant pore water pressure p by a value denoted as p' and 
w 

balances the total stress in the specimen (i.e. at= -pe = -p' - pw). 

Consequently, the external excess fluid pressure p' represents the nega-

tive intergranular or effective stress -a', not the stress in the solid 

phase -a, as assumed in Equation (5) by Biot (1957). 

According to Equation (17) for dp = O, the bulk compressibility of the 
w 

solid skeleton in the presence of fluid in the pores is 

c = r.Qe J _ roe ] . = __ 
2
_R_+_n_pw __ _ 

b Laa' pw - Loot Pw PR-Q _ (P + Q)np 
w 

2 
For typical values of n and for p ~ 0.5 N/mm , np ~ 0.0003R and 

w w 

(19) 

(P + Q)np ~ 0.002 (PR - Q2); hence, the terms containing p can be neglected, 
w w 
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and Equation (19) reduces to 

(20) 

Although it is quite reasonable to neglect the indicated terms in problems 

involving relatively shallow depths (less than 50 m) of natural sand, these 

terms may be important in situations involving very large• depths or highly 

compressible granular materials which are much different from natural sands. 

Another expres-s-ton tor Cb can be obtained as follows. Expressing 

dn = -ndeF from Equatiorl (lOb) and substituting into Equation (9a) for 

de".= deJ; = 0 gives da =Pde - Qdn/n. Insertion of da = do' + p dn, which 
w 

follows from Equation (7) for dp = 0, yields da' = Pde - (Q/n + p )dn, and 
w w 

further substitution of dn = (1-n)(de - C' do') from Equation (lla) leads to 
s 

do'= Pde - (Q/n + p )(1-n)(de - C' da'). This may be rewritten as 
w s 

de= Cb da', in which 

Cb= nP - (1-n)(Q + npw) 

n - (1-n)(Q + np )C' 
w s 

(21) 

Since np ~ 0.0003 Q for typical values of n and for p ~ 0.5 N/mm2, Equa-
w w 

tion (21) reduces to 

n - (1-n)QC' 
c = s 

b nP - (1-n)Q 
(22) 

According to Equation (18) the mass of water expelled from the pores of a 

unit volume of sand is characterized by the coefficient 

(23) 

which, for small values of pw' simplifies to 

(24) 
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Undrained Bulk Compressibility 

To determine the undrained bulk compressibility,a saturated sand 

specimen is enclosed within an impermeable, but flexible, membrane and 

loaded externally with no drainage allowed. The displacement of the solid 

and the water are assumed equal at the specimen-membrane interface, and, 

because of the assumed homogeneity of the specimen, they are equal everywhere 

(i.e. uk = Uk in this type of test). Thus, div uk :.: div Uk and de = deF, 

and from Equation (1) for the elastic component of stress it follows thnt 

dat = dcr + dof = (P + 2Q + R)dn. -Hence, the bulk of totol compressibility 

of the undrained material can be expressed as 

Since the pore water pressure P can be measured in an undrained test, 
w 

Equation (16b) 

for de - deF = O. 

Q + R - np 
w 

n(l-C p } 
WW 

For small values of p , F.quation (26) simplifies to 
w 

Q =~ 
P n 

(25) 

(26) 

(27) 

Note that the strain in the solid due to a change in the pore water pressure 

oe/opw at a condition of no flow (e • eF) equals l/~. 

Compressibility Due to Pore Fluid Pressure 

To determine the compressibility due to pore fluid pressur~ a saturated 

sand specimen is enclosed within an impermeable, but flexible, membrane, 

and loaded with an external cell pressure pe and an internal back pressure 

such that p • p • -a' = constant; although it is possible to conduct e w 

such a test, the resulting deformations would probably be~ too small to 

measure accurately. Nevertheless, since da' • 0 for such a test, Equation 

(17) yields 
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nQ - (l-n)R - [(Q + R)C - l]np 
C • _ [dt] = ------------------,,--.,.------------w~·-------w-

p <)Pw a' PR - Q2 - (P + Q)np 

~1ich for small values of p r~duc~M Lu 
w 

C = ng - (1-n)R 

p PR - Q2 

w 

(28) 

(29) 

An alternative expression may be obtained by differentiating Equations (4a) 

and (4b), substituting for dp and dpF from Equation- {Sa;- and (Sb) and for dyw 

and dy from Equations (1) and (3), and eliminating dn from the resulting 
s 

two equations; this provides 

(1-n)de + ndeF + [nc + (1-n)C ]dp + (1-n)C'do' =. 0 
w s w s 

(30) 

which, upon setting do' ::: 0 and substituting for de~. from Equation ( Lhh), 

gives 

2 
n - R[nc + (1-n)C ] + n C p 

w s s w 
(1-n)R - nQ - n(l-n)p 

w 

For small values of pw' Equation (31) simplifies to 

n2 - R[nC + (1-n)C ] 
C • ___________ w"-------------s-

p (1-n)R - nQ 

, (31) 

(32) 

Similarly, the alternative use of Equation (16a) instead of Equation (16b) gives 

n(l-n) - Q[nc + (1-n)C J C • _____________ w __________ s..._ 

p (1-n)Q - nP 
(33) 

for small values of Pw• The mass of water that is forced into a unit volume 

of sand at do' "' 0 is a quantity that can be measured and is characterized, 

·according to Equation (18), by the coefficient 

2 
n (1-C p ) 

C' - - L [.2!!!...] - w w 
pw ~w opw a' R - np~ 

which for small values of p becomes 
w 
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2 
n 

c~w = R 

In a different type of test a sand specimen can be placed in a perfectly 

(35) 

rigid container {de = O) and the mass of water m that is forc<..•d into tlw 

container under pressure p can be measured. In this case we obtain tlm 
w 

coefficient C" =-(om/op ) /y , which can be easily determined from Equa-
pw w E: w 

tion (18). 

Compression of _Dr_y Sand 

In the case of dry sand Q = R = 0 and 

P = 3K = 3/C (Jo) 

where K is the bulk modulus of the solid skeleton and C is its bulk com-

pressibility, which, in general, may be different from Cb. This value may 

be applied to the two-phase medium, provided the absence of water from grain 

contacts does not change appreciably the material properties. 

CALCULATION OF ELASTIC MODULI FROM TEST RESULTS 

By means of Equations (15), (20), (22), (24), (25), (27), (29), (32), 

(33), and (35), coefficients P, Q, R, C , C , and C' are related to various 
w s s 

measurable test parameters. Most convenient for measuren~nt are probably 

Cb and Ct, and advantage can be taken of the fact that Cw is quite accurately 

known without testing (0.49 mm2/kN at 25°C) and that C is approximately 
s 

known when the mineralogical composition of grains is identified (typically, 

2 
C = 0.028 mm /kN for quartz). Furthermore, it is not necessary to know 

s 

C too accurately, because its value has only a minor effect on the calculated 
s 

values of P, Q, and R. 

A method for calculating P, Q, and R from Cb' Ct' Cw' C8 , and n will now 

be given. Solving Equation (22) for P and substituting the result into 

Equation (15a) gives a linear algebraic equation for Q, which, when combined 

with Equation (15b) (~ = 1) and Equation (22), yields 
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(37a) 

(1-n)C'Q R • ________________ s_ 

cl 

n -
(37b) 

C - C' 
P. L + 1-n b s Q 

Cb n Cb· 
(37c) 

in which c1 C + C (l-n)-/-rr - C'(l-n) 2 /n, accordfog to ~qs. (Db) and (13c). These 
w s s 

expressions may be evaluated if a value of C' is assumed. The resulting 
s 

values·must satisfy Equation (25), and so 

F(C') = 0 = p + 2Q + R - L (38) 
s ct 

in which Ct is an experimentally determined value. Although Equation (38} 

will, in· general, not be satisfied for an arbitrary value of C', it may be 
s 

regarded as a function F(C') 
s 

of the chosen C' value and the iterative 
s 

regula falsi method may be used to find the C' value which gives F(C') = O. 
s s 

The required calculations may be shortened by deducing a suitable 

initial estimate of C'. Because of equilibrium in the unit cross section 
s 

of sand, the statistical average a of the volumetric component of the 

microscopic stresses produced within the grains by the intergranular stress 

C7' equals cr'/(1-n). The corresponding relative change in the volume of the 

grains is Ca or C a'/(l•n), and this must equal C'cr', as indicated by 
s s s 

Equation (3); hence, C' may be estimated by 
s 

c 
C' ~-S­

S l•n 
(39) 

which further implies that c1 R::1 Cw. Equation (39) also allows the approxi­

mate evaluation of P, Q, and R from ftquations (37) wh.en only Cb (and not Ct) 

has been measured. 

The compressibility of the solid material 
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Cb. For this reason, it may be assumed for a crude approximation that 

C ~ 0 and C' Rl O. Substituting these values into Equations (15) and (20) 
s s 

yields 

p.L+i 
Cb R 

(40a) 

1-n 
(40b) Q~- c 

w 

R ~n.._ 
c 

(40c) 
J,/ 

/\n alternative method of c:1lc11lati.on may he ha:-wd 011 1·:q11:1l ioni; (:! l) :tml 

(25). Eliminating P from these two relations gives a quadratic equation for 

Q, and the only positive solution of this equation is 

(41) 

Furthermore, eliminating C~ from Equations (15a) and (15b) (in which c1 also 

contains C') and substituting for P from Equation (25) leads to 
s 

2 
0 - F(R) • (l-n) R - 2Q + (Q + 2R)QC + (n-RC >(c1 - R) (42) 

n o o t 

in which C • C + C (1-n)/n and f3 ·= 1. Obviously, if Equation (41) were 
0 w s 

substituted here, a fourth degree algebraic equation for F would result and 

it would be necessary to solve for R numerically. After insertion of Equa-

tion (41), Equation (42) represents a function, F(R),which must be made 

equal to zero, and the solution for R may be found by the regula falsi method. 

For the initial estimate of R, Equation (40c) may be used. This 

method of solution does not involve C', which may be subsequently found, 
s 

e.g., from Equation (22). 

Equations (24), (27), (29), (33), and (35) represent redundant relations, 

which can be used when wb' Q , C , and C' have been measured. They can be 
P P pw 

employed as a check, and statistical averaging may be per.formed to reduce 
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the experimental error. Equations (32) or (33) may be used to calcula'te a 

value for LnC + (1-n)C J, which allows a check on the assumed values of 
w s 

C and C • 
2 

Note that Equation (20) assures that PR - Q > 0 because R > 0 
w s 

and Ci, > O. Hence, the matrix of elastic constants in Equation (8) is 

positive definite, which guarantees local stability of the material. 

c:: 
Cll 

> 
or! 
t!> 

~ 
Cll 
.u 
~ 
Cl. 

~ 
u 

Table l. Material Parameters of Typical Snnds 

Dense Sand Loose Sand 

Exact Approximate Exact Approximate 
(1) (2) (3) (4) (5) (6) 

n o.3 0.3 0.3 0.5 0.5 0.5 

Cb (mm /kN) 18.0 18.0 18.0 90.0 90.0 90.0 

C (mm /kN) 0.490 0.490 0.490 0.490 0.490 0.490 
w 

C (mm /kN) 0.028 0.028 
s 0 0.028 0.028 0 

C' (mm /kN) c I (1-n) 0 0 C /(1-n) 0 0 
s s s 

P(kN/mm ) 2.9844 2.9967 3.3889 o. 9752 0.9764 1.0315 

Q(kN/mm ) 1.2580 1.2605 1.4286 0.9653 0.9653 1.0204 

R(kN/mm ) 0.5404 0.5402 0.6122 0.9647 0.9653 l.0204 

ct (mm /kN) 0.1655 0.1651 0.1458 0.2584 0.2583 0.3267 

c1 (mm /kN) 0.4900 0.5553 0.4900 0.4900 0.5180 o.4900 

Cd(mm /kN) 18.011 17.653 18.145 90.210 90.285 90.328 

Note: Columns (1), (2), (4), and (5) are calculated from Equations 
(37), (25), and (50), and columns (3) and (6) from Equations 
(40), (25), and (51). 

The same typical properties of natural sands as those considered by 

Ishihara (1967) have been used to calculate elastic moduli by both exact and 

approximate formulas, and the results are given in Table 1. It is seen that, 

although the value of C' has a negligible effect and may be set equal to either 
s 

zero or the value given by Eq. (39), C has a more profound effect. Four 
' s 

decimal places are given in Table 1 only to indicate the order of magnitude 

of the differences between various methods of calculation. From a practical 

point of view, of course, an error of less than 17. is meaningless because 
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of the uncertainty involved in determining values for the measured proper-

ties (e.g., ct»· 

INELASTIC STRAINS IN SOI.ID AND l•'Lllll> PllASES 

The inc lastic strains un.l dt•fl1wd a:: Lho:w slr:Jins whkh 1Jl'l:ttr Ill 

do = dcrF = O. Then, Equations (9a) and (%) yield dt:: = de" and di::F = dE:i,!, 

which, when substituted into Equation (12), giv~ 

1-n 
d~ = - -- de" 

•4 -n 
(43) 

since a = 1 for small values of Pw• Perhaps surprisingly, however, the 

inelastic strain in the fluid phase can not be taken as zero. Equation (43) 

can also be derived in a more direct, though less rigorous, way by realizing 

that the changes in unit weights y and y must be second-order small quan-
w s 

tities when do = daF = o. Since mass densities do not change appreciably, 

the strain increment de = de" causes the pore volume of the material to 

expand by dn = de = de". On the other hand, because the density of the 

pore fluid does not change appreciably, the volume of the pore water which 

is imbibed into the material is n(de - d ~) or n(de" - de);>. This must 

equal dn, and so dn • n(de" - deF) • de", which yields Equation (43). With 

the use of Equation (43), Equations (9a) and (9b) reduce to the form 

· ( 1-n ) da • P de + Q deF - P - --;- Q de" (44a) 

and 

daF • Q de + R deF - ( Q - l~n R) de" (44b) 

For the typical values of P.and Q listed in Table 1, the quantities 

(P - l~n Q) and (Q - l~n R) equal 49.0 N/mm2 and 2.8 N/mn2 for n = 0.3, and 

10.5 N/mm.2 and 0.6 N/mm2 for n • 0.5, respectively. Hence, as a rough 

approximation, (Q - l~n R) ~ O, (i.e. the inelastic strain in Equation (44b) 

for the fluid phase is negligible) and Equations (44) may be written as 
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l 
da ~ P de + Q deF - c de" 

b 

(45a) 

and 

(45b) 

PORE PRESSURE DUE TO DENSIFICATION IN UNDRAINED SAND 

Consider now the sand to be in an undrained condition (de = deF) and 

let the total stress be constant (dot-= 0), as, for example, when the over­

burden of a given sand element is constant. Sunnning Equations (9a) and {9b) 

and noting that P + 2Q + R = l/Ct (Equation (25)) and Q + R ~ l/Cw (Equations 

(40b) and (40c)), we get 

1 
da = da + da = - de+ 

F f. C 
t 

(46) 

According to Equations (9b) and (43), the stress produced in the fluid phase 

by densification is 

do = Q(de-de") + R(de -de") = .! [R-C (Q + R) 2] de" 
F F F n t 

The change in the pore water pressure is dpw = -d(aF/n) "' - da1'./n -

- daF/n - p (deF + C dp ). Since C p < 0.0001 for p ~ 0.5 N/mm2 
W W W WW W 

(47) 

p dn/n = 
w 

and since 

pwde is a second-order small quantity, one has dpw ~ - dcrF/n, and so 

dp • -de"/C 
w d 

(48) 

in which Cd' termed the densification compliance, is given by 

R·Ct{Q + R) 2 

2 
(49) 

n 

Since the total stress <Tt 

remains constant, the build-up of pore water pressure due to inelastic dens!• 

fication produces, according to Equation (2), a drop in the effective :;tress. 

da' • ·dpw = de"/Cd' which leads to a reduction and ultimately the complete 

loss of the friction forces between grains. This is the underlying cause 
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behind the dynamic liquefaction of sand subjected to cyclic shear. A rough 

estimate of the magnitude of Cd may be obtained by putting l/Ct :::= l/Cb + l/nCw' 

R = n/C , and Q + R ~ l/C , which follows from Equations (40) for C ~ C' ~ O; 
w w s s 

Equation (49) then gives 

(50) 

because normally Cw << Cb. From the typical values of Cd indicate<l in 

Table 1 it is seen that this estimate is quite good; l/Cd is orders of mag­

nitude less than l/C • 
w 

It is instructive to note that a much smaller coefficient op /oe" 
w 

would be obtained, if, instead of dat • O, the condition were imposed that 

no elastic strain of the solid accompanies the densification (i.e. de = de"). 

In this hypothetical case Equation (47) yields doF = R(d1~"-deF) ..:;i (R/n)de", 

and substituting for R from Equation (40), daL. ::::= de" /C or dp = -CJ de", 
0 ~ w w 

where CJ = - L~:~J el = 1/ (n Cw) >> l/Cb i=:i Cd. However, to enforce the 

e , e-eF 

condition that de = de", an enormous change in the total stress ot which 

can be evaluated from Equation (46),would be necessary. 

REMARK ON PRACTICAL APPLICATION 

The ultimate goal of this work is primarily the development of a pro-

cedure for predicting the liquefaction of undrained saturated sands subjected 

to dynamic excitations, such as earthquakes or blasts. However, before this 

objective can be achieved, the law ~elating the inelastic densification, de", 

to the history of deviatoric strains must be established. 

CONCLUSIONS 

Within the context of this study the following conclusions can be advancl~d: 

1. The inelastic densification of the solid skeleton de" is accompanied 

by an inelastic strain in the fluid phase deF which is related to 
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de" (Equation (43)). The fluid itself is perfectly elastic, and eJ? 
represents the flow of water that is necessary to allow densificat1on 
without change in stress. 

2. The pore water pressure that is produced in an undrained element of 
saturated sand by a unit densification at constant total stress is 
characterized by the densification compliance Cd, the value of which 
is approximately equal to the drained compressibility of the solid 
skeleton Cb and is orders of magnitude higher than the compressibility 
of water Cw• 

3. The tangent (incremental) elastic moduli of a two-phase granular material 
can be expressed fn terms or the drained compressibility Cb and the 
undrained compressibility Ct of the medium and known values for the 
comprcssibilitics of water and the solid mattl!r forming tlw grains 
(Equations (37) and (38)). 

4. The volume change of the grains due to intergranular stresses (charac­
terized by C~) has a negligible effect on the properties of a sand, 
even though'1t may be of the sarne order of magnitude as the volume change 
of the grains due to pore water pressure (characterized by Cs), which 
has an appreciable effect on the elastic moduli of the two-phase medium. 
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APPENDIX A 

PORE WATER COMPRESSIBILITY WITH DILATION 

OF SKELETON AT CONSTANT OVERBURDEN 

As is well known, the relation between the diffusivity and permeability 

of a porous med!um involves the compressibility of the pore fluid, which is 

water in this case. In ~ertai:n practical situatfons (e.g. wlien the overburden 

of a given sand element remains constant) changes in pore water pressure occur 

at approximately a constant value of total stress ot. Thus, it is of interest 

to determine the ratio of a change in water content to a change in pore water 

pressure at dcrt = O. Adding Equations (9) for de" = deF = O, one gets 

dot= 0 = (P + Q)de + (Q + R)deF or de.= -deF(Q + R)/(P + Q), the latter of 

which may be substituted into Equation (9b), together with dcrF· = -ndp -p dn 
w w 

and dn = -n(deF + C dp) resulting from Equation (llb), to yield 
w w 

deF = n(l-C p )dp /[Q(Q + R)/(P + Q) - R + np ] at dat = o. Equation (18) 
WW W W 

gives dm/yw = n{deF-de) = n(l - (Q + R)/(P + Q)JdeF' which, upon substitution 

for deF' allows Cpw to be written as 

C = - .!.... ~m J = _n_2<_P_-_R_>_<_1_-_P_wc_w"-)- - n2(P - R) 

pw Yw PW a PR - Q2 - np (P + Q) PR - Q2 
t w 

(A-1) 

Furthermore, using the approximations from Equation {40), one gets 

C FO (1 - .2n)Cb + nC FO (1 - 2n)Cb pw w 

The compressibility given by Equation (A-2) for constant total stress can he 

orders of magnitude different from that given by Equation (35) for constant 

effective stress. For sufficiently large porosities (n > 0.5), C becomes 
pw 

negative; this means that the application of pressure on the pore water does 

not cause flow into the pore space, but rather out of it, because the solid 
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skeleton is dilated by p • Although the physical implications of this phe-. w 

nomenon require further investigation, it can be intuitively understood by 

noting that C is a sum of 3 terms: (a) nC , which represents the com-
pw w 

pression of the pore water alone, (b) Cb' which represents the increase in 

pore water content due to dilation of the solid skeleton, and (c) -2nCb' a 

negative term which represents the deformation of the solid skeleton 

necessary to produce a stress in the solid phase that offsets the decrease 

in at due to dpw (i.e. the stress required to maintain al at its original 

value). The compressibility C can be measured by enclosing a specimen 
pw 

in a flexible, impermeable membrane and varying the internal back-pressure 

p while maintaining the external cell pressure constant. By a similar 
w 

procedure it can be shown that the strain in the solid due to a change in 

the pore water pressure at constant overburden is given by 

~ n(Q + R)(l - p C ) 
C [oe J w w • 

bp = 0Pw a = PR - Q2 - np (P + Q) = 
. t w 

n(g + R) 

PR - Q2 

which, upon using the approximations of Equation (40), n·duces tt' 
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APPENDIX B: NOTATION 

C ,c ,C' = compressibilitics of water and solid grains due to pore pressure w s s 

and intergranular stress (Equations (1) and (3)); 

~ compressibility of sand in drained or undrained conditions 

(Equations (20)-(22) and (25)); 

= compressibility in Equation (13); 

• densification compliance (Equations (49) and (50)); 

n = porosity; 

P,Q,R • volumetric tangent (incremental) elastic moduli of two-phase 

medium (Equation (8)); 

• pore water pressure; 

= parameter in Equation (13); 

• weight densities of solid and water phases; 

• mass densities of solid and water phases (Equation (4)); 

• volumetric strains of solid and fluid phases; 

a inelastic strains in solid and fluid phases (Equation (9)); 

• volumetric stresses in solid and fluid phases; 

a' • effective (intergranular) volumetric stress (Equation (2), 

Figure 1): 

- total stress (a + CT) 

Bl 


