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Selective noise amplifiers are characterized by large linear amplification to external

perturbations in a particular frequency range despite their global linear stability. Applying

a stochastic forcing with increasing amplitude, the response undergoes a strong nonlinear

saturation when compared to the linear estimation. Building upon our previous work,

we introduce a predictive model that describes this nonlinear dynamics, and we apply

it to a canonical example of selective noise amplifiers: the backward-facing step flow.

Rewriting conveniently the stochastic forcing and response in the frequency domain, the

model consists in a mean flow equation coupled to the linear response to forcing at each

frequency. This coupling is attained by the Reynolds stress, which is constructed by the

integral in frequency of the independent responses. We generalize the model for a response

to a white noise forcing δ-correlated in space and time restricting the flow dynamics to

its most energetic patterns calculated from the optimal harmonic forcing and response of

the flow. The model estimates accurately the response saturation when compared to direct

numerical simulations, and it correctly approximates the structure of the response and

the mean flow modification. It also shows that the response undergoes a selective process

governed by the nonlinear gain, which promotes a response structure with an approximately

single frequency and wavelength in the whole domain. These results suggest that the mean

flow modification by the Reynolds stress is the key nonlinearity in the saturation process

of the response to white noise.

DOI: 10.1103/PhysRevFluids.1.083602

I. INTRODUCTION

A wide variety of open flows are characterized by their linearly stable nature while presenting

high sensitivity to background disturbances. Typically, this behavior is encountered in boundary

layers, mixing layers, jets, or separated flows even in the laminar regime at low and intermediate

(preturbulent) Reynolds numbers. Such behavior is produced by convective instabilities and

interpreted by the non-normality of the Navier-Stokes system of equations, which is able to amplify

perturbations while being advected downstream by means of nonmodal mechanisms [1,2]. These

flows are sometimes denoted as selective noise amplifiers due to their ability to amplify perturbations

in particular frequency ranges.

A substantial body of work has been devoted to the study of amplifiers. Since classical modal

analysis focuses on the eigenvalues and eigenmodes of the linear operator L describing the linearized

dynamics of the flow around a steady solution, it fails to capture transient and forced behaviors in

stable amplifier flows. Therefore, nonmodal techniques derived from classical linear algebra are

used to characterize the physical behavior and amplification potential in linearly stable flows. One of

the standard approaches to characterize the amplifier dynamics is to look at initial disturbances that

lead to the maximum growth and follow the time evolution of these perturbations, described by the

leading singular vectors of the time propagator eL t [3–5]. Studies of optimal initial perturbation have
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been carried out in parallel flows, e.g., [2,6,7], as well as in nonparallel flows, for example in spatially

developing boundary layers [8–11] or in the backward-facing step flow [12]. Another alternative

consists in finding the optimal harmonic forcing structures that at frequency ω lead to the most

energetic responses. The optimal forcing and corresponding response are described by the singular

vector of the resolvent operator R(ω) = (iω + L )−1 [2,4]. Optimal forcing/response structures

have been assessed in plane Couette [13] as well as in spatially developing open flows [8,10,11,14]

and particularly in the backward-facing step [15–19]. A slightly different approach is undertaken by

Garnaud, Lesshaftt, Schmid, and Huerre [14] where, in an attempt to describe more precisely the

actual physics involved in the strong noise amplification exhibited in turbulent jets, they apply the

optimal gain analysis on a model mean flow instead of the stable steady solution of the Navier-Stokes

equations (NSEs) as in the previously mentioned studies. In general, both time and frequency

approaches describe the most energetic instability mechanisms at play.

Realistic flows are in general subject to unpredictable noise created from different possible sources

such as residual turbulence, acoustic disturbances, geometrical defects, etc. In this context, Farrell

and Ioannou [20] have studied the response to white noise forcing in parallel flows, reformulating

the linear problem as a Lyapunov equation for the covariance matrix that describes the statistically

steady state of the response. Following this approach, they later obtained a low order approximation

of the linear dynamical system for a Couette flow forced by white noise by extracting the energy

ranked coherent structures of the stochastic response and forcing, the so-called empirical orthogonal

functions (EOFs) and stochastic optima (SOs), respectively [21]. Dergham, Sipp, and Robinet [17]

introduced a low dimensional model to describe the linear behavior of the flow around the backward-

facing step forced by white noise. The low dimensional model is constructed by the mentioned

EOFs and SOs, extracted from the most energetic harmonic forcing/response structures, relating the

stochastic structures to the harmonic optima. Additionally, the response to inlet white noise forcing

in the backward-facing step shows that the exact stochastic response from the direct numerical

simulation (DNS) is well characterized by the two-dimensional (2D) optimal perturbances [12].

More recently, Boujo and Gallaire [18] have studied the sensitivity of the stochastic response to

passive forcing devices, with control applications in mind.

These studies are limited to the linear characterization of the flow behavior, thus failing to describe

saturation processes or nonlinear interactions involved in the transition to turbulence in linearly stable

flows. In many cases, the non-normality of the NSE allows the flow to escape from linearly stable

solutions by means of large amplification of external disturbances. Several models with a coupling

between the mean flow and the linear perturbation equation have been proposed. The stochastic

structural stability theory (SSST) has been introduced by Farrell and Ioannou [22,23], consisting

in a coupled system of equations where the linear response to white noise forcing rewritten as a

Lyapunov equation [20] is coupled to the slowly varying ensemble average mean flow by means of the

Reynolds stress. This theory is able to describe sustained coherent structures that appear during the

transition to turbulence in the 3D Couette flow [23] as well as in turbulent atmospheric flows [22,24].

As an alternative, the reduced nonlinear model (RNL) approach has been proposed [25] coupling

the mean flow to a single realization of the stochastic linear response, avoiding the computation of

the Lyapunov equation [23]. Another semilinear approach was recently proposed to describe the

coherent structures appearing in the transition to turbulence for parallel shear flow [26]. Most of

these nonlinear models have been devoted to the study of coherent sustained structures in turbulent

flows, but a formalized quantitative physical description of the dynamics involved in the saturation

of strong amplifiers under stochastic excitations is still missing.

Motivated by the SSST [22,23] and the low order modeling based on harmonic optima [17],

we propose a model to describe the nonlinear dynamics of the response to white noise forcing in

a strongly amplifying flow, with the objective to capture its saturation with an increasing forcing

amplitude. The model is applied to a canonical amplifier flow, the incompressible backward-facing

step flow, which is archetypical in fundamental studies of flow separation induced by abrupt

changes of geometry. The flow is globally stable at the Reynolds numbers considered, Re = 500 and

700 [27,28]. The work presented herein is an extension to white noise forcing of the self-consistent
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FIG. 1. Sketch of the flow configuration of the backward-facing step with two recirculation bubbles at

Re = 500, one at the top and one at the bottom.

model [19] previously introduced for the nonlinear saturation of the response to harmonic forcing.

In that model, the mean flow is coupled to a linear response to harmonic forcing around the mean

flow by means of the Reynolds stress, neglecting the nonlinear interaction of the response with

itself [19]. In the present study, we reformulate the self-consistent model in the frequency domain to

account for the stochastic nonlinear response to a band-limited δ-correlated white noise. The results

aim at clarifying whether the nonlinear stochastic response can be well approximated linearly in the

frequency domain and the role of the Reynolds stress and the mean flow distortion in the saturation

mechanism, as discussed in the literature [29–33].

The paper is structured as follows: Section II introduces the flow configuration and the linear

description of the response. Section III describes the temporal stochastic forcing, introduces

the model, and provides a comparison with DNS results. The model is adapted to stochastic

spatiotemporal forcing in Sec. IV, before conclusions are drawn in Sec. V.

II. PROBLEM FORMULATION

A. Flow configuration and governing equations

We consider the response to forcing of a laminar incompressible flow around the 2D backward-

facing step. The flow configuration is depicted in Fig. 1. An inlet channel with height h and length

Li = 5h precedes a step of height h and expands into a wider channel of height H = 2h and

length Lo, hence determining an expansion ratio � = h/H = 0.5. The inlet boundary condition at

Ŵin ∈ [0; +1] is a plane Poiseuille profile uPois with a centerline (maximum) velocity U∞ plus a

general inlet forcing f . The centerline velocity U∞ defines the Reynolds number Re = U∞h/ν,

where h is the inlet height and ν is the kinematic viscosity. A Cartesian coordinate system is adopted

with x in the streamwise direction and y in the wall-normal direction, with unitary vectors ex and

ey . A no-slip boundary condition is imposed on the side walls Ŵw and an outflow condition at

the end of the domain Ŵo ∈ [−1; +1]. These boundaries are omitted for brevity in the sequel. The

nondimensional frequency is defined by the Strouhal number St = fHzh/U∞ and related to the

nondimensional angular frequency as St = ω/2π .

The flow is governed by the 2D incompressible Navier-Stokes equations (NSEs),

∇ · u = 0,

∂t u + N (u) = 0, (1)

u = uPois + f on Ŵin,

where

N (u) ≡ (u · ∇)u + ∇p − Re−1	u (2)

collects the advective, pressure gradient, and diffusive contributions. The pressure field p is such

that the velocity field is divergence-free, ∇ · u = 0, following the incompressibility condition.

The Navier-Stokes equations are solved using the finite element method with the flow fields

(ux,uy,p) spatially discretized by Taylor-Hood (P2,P2,P1) elements. The software FREEFEM++ [34]

is used to generate the domain 
 triangulation and to build all the required operators. The steady

solutions of the nonlinear systems of NSEs are computed using the Newton-Raphson method, while
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the time varying DNSs of the NSEs are integrated using a second order characteristics-Galerkin

method. Further details on the numerical approach can be found in Ref. [19].

B. Linear transfer function

The steady solution of NSEs defines the base flow UB ,

N (UB) = 0, (3)

characterized by two recirculation bubbles illustrated in Fig. 1 for the backward-facing step at the

chosen Re = 500, as studied in the literature [12,15,18,27]. For an expansion ratio � = 0.5, the flow

is globally stable at this Reynolds number, presenting mainly a 2D response to white noise [12] and

thus supporting the choice of a 2D analysis. The threshold for the 3D global instability was found

to be Recr ∼ 748 [27,28].

Assuming a small amplitude of the forcing, the exact nonlinear response can be approximated

linearly as

[∂t u
′
1B + LUB

(u′
1B)] = 0,

u′
1B = f on Ŵin, (4)

where higher order nonlinear terms are neglected, and the operator LU (u′) is the corresponding

operator for the NSE linearized around any U , i.e.,

LU (u′) ≡ (U · ∇)u′ + (u′ · ∇)U + ∇p′ − Re−1	u′. (5)

While the focus of the study is on the response to stochastic forcing, we describe first the harmonic

response to facilitate understanding and to predict in which frequency range larger amplifications

are more likely to be observed [4,5,17–19]. For a harmonic forcing f (y,t) = f 1(y)eiωt + c.c.

with a spatial distribution f 1(y) and frequency St = ω/(2π ), the corresponding linear response

u′(x,t) is also harmonic, u′(x,t) ≃ u′
1B(x,t) = u1B(x)eiωt + c.c., and it oscillates at the forcing

frequency, due to the linearity of the operator (4). The linear equation (4) can be rewritten formally

as u1B = RB(ω) f 1, where R(ω) = (iωI + LU )−1 is the resolvent operator for any steady U and

RB(ω) = (iωI + LUB
)−1 is the resolvent operator for the base flow.

A natural way of measuring the amplification of the nonlinear dynamical system is the gain,

which is defined as the ratio between the amplitude of the output response and the amplitude of the

input forcing. It is equal to the square root of the ratio of the energy of the output response to the

energy of the input forcing. For the specific linear case of harmonic forcing, it reads

GB(ω) =
‖u1B‖


‖ f 1‖Ŵin

=
‖RB(ω) f 1‖


‖ f 1‖Ŵin

, (6)

where the L2 norm ‖.‖ is determined by the Hermitian inner product (a|b) =
∫



a · b d
 for complex

fields in the domain 
, with straightforward restriction on the boundary Ŵin.

The linear gain GB(ω) around the base flow is a function of the forcing frequency ω, as illustrated

in Fig. 2(a), for the response to a forcing in the form of a Poiseuille profile f 1 = y(1 − y). The gain

GB(ω) follows a bell-shaped curve with a maximum at Stopt = ωopt/2π = 0.075. Furthermore, both

the amplitude of the response and the shape of the response depend on the forcing frequency ω,

as shown in the velocity contours presented in Fig. 2(b). The structure of the response displays an

apparent characteristic wave number that increases with the frequency, and an envelope that migrates

downstream for larger gains [16,18].

The linear response to white noise forcing would correspond to a combination of all the different

response structures multiplied by their corresponding amplitudes since a pure white noise forces all

the frequencies with the same energy.
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FIG. 2. (a) Linear gain GB (ω) around the base flow and (b) contours of the velocity in the y-direction

of the linear response for different forcing frequency St = ω/2π for a harmonic forcing of the form of a

Poiseuille profile f 1 = y(1 − y). The linear gain of the selected frequencies in (b) is marked as black circles in

the curve in (a). The maximal gain is attained at the optimal frequency St = ωopt/(2π ) = 0.075. Plots for the

backward-facing step at Re = 500.

III. TEMPORAL STOCHASTIC FORCING

A. Forcing definition and white noise response

In more realistic cases, the external disturbances are more likely characterized by a broadband

frequency rather than being harmonic. Thereby, to model these physical perturbations, we excite the

flow by a random noise, characterized by its statistical properties. Nonetheless, there are advantages

in addressing the study of the response to stochastic forcing in the frequency domain [4,17]. The

power spectral density function (PSD) characterizes the energy distribution of the input signal in

the frequency domain. With the aid of a truncated Fourier transform for a time signal x(t) of length

[0,T ],

x̂T (ω) =
1

√
T

∫ T

0

x(t)e−iωtdt, (7)

the PSD is defined as

Sxx(ω) = |x̂T (ω)|, (8)

which, in the limit T → ∞, converges to the expected value of x̂(ω), limT →∞ Sxx(ω) = E [|x̂(ω)|2].

In general, a white noise signal ξ (t) is δ-correlated, 〈ξ (t)ξ †(s)〉 = δ(t − s), and defined by a constant

PSD Sξξ (ω) = |ξ̂ |2 = S with infinite power P . Indeed, the power is defined as

P = lim
T →∞

1

T

∫ T

0

|ξT (t)|2dt =
1

π

∫ ∞

0

|ξ̂ |2dω = σ 2 (9)

thanks to Parseval’s theorem and to the definition of the variance σ . Because S > 0, a pure white

noise has infinite power and is not physically realizable being an idealization of physical noises.

Physical systems usually are band-limited and are affected by the noise within this band.

A digital random signal ξd (t) has a natural band-limiting frequency given by its sampling time

step, ωd/(2π ) = 1/2δt . To obtain time step independent results, the signal is filtered to a band-

limiting frequency ωb yielding a power and variance Pb = σ 2
b = |ξ̂b|2ωb/π . Figure 3(a) compares a

realization of the unfiltered sampling-limited white noise signal with unit variance and power and

the filtered noise with a band-limiting frequency ωb/2π = 1. Figure 3(b) compares the PSD for the

actual signals and their theoretical values. The PSD is estimated using a Welch method in MATLAB.

The inlet forcing used in the study is defined as f = A f 1(y)ξb(t), stochastic in time by the

function ξb(t), a band-limited white noise, δ-correlated with zero mean, and unit power and variance

σ = 1, with constant PSD 2|ξ̂b|2 = 2π/ωb that depends only on the band-limiting frequency. For
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FIG. 3. (a) Realization of a white noise signal with unit power P = 1, comparing a signal without filtering

ωb/2π = 1/(2δt) = 25 and a filtered one with a band-limiting frequency ωb/2π = 1. (b) Comparison of the

power spectral density for these two signals.

the sake of simplicity, we start with a fixed spatial distribution in the form of a Poiseuille profile

f 1(y) =
√

30y(1 − y), such that
∫

Ŵin
f 1(y)2dŴin = 1 and A is the amplitude of the forcing. The

choice of the forcing structure is based on simplicity since the methodology presented in the paper

is general and independent of the forcing shape, affecting only the value of the gain and minimally

the response structure. Defining 〈·〉 = 1
T

∫ T

0
dt as the time average over a time span T long enough

to achieve T independent results, the power of the forcing relates to its amplitude as

〈∫

Ŵin

f 2dŴin

〉

=
1

π

∫ ωb

0

‖ f 1‖2
Ŵin

|ξ̂b|2A2dω = A2. (10)

The amplitude of the response or variance is defined in general through

R2 =
〈∫




u′2d


〉

=
1

π

∫ ωb

0

G2(ω)‖ f̂ ‖2
Ŵin

dω =
A2

ωb

∫ ωb

0

G2(ω)dω, (11)

where u′ = u − 〈u〉 is the pure fluctuating velocity with zero mean 〈u′〉 = 0, G(ω) is the gain at

each frequency, and R is the amplitude of the response.

For the sake of clarity, we describe a complementary point of view, which consists in fixing

the PSD of the white noise forcing 2|ξ̂b|2 = S = cst, and thus allowing the power P (ωb) to vary

with the band-limiting frequency ωb. In this setting, the amplitude of the linear response R tends

asymptotically to a constant value for the infinite limit of the band frequency ωb → ∞ and thus

requires infinite power P → ∞ of the forcing, as shown in Fig. 4(a). This asymptotic behavior to

a constant limit follows from the gain curve G(ω), which tends to zero, limω→∞ G(ω) = 0 [4], as

illustrated in Fig. 2, where large amplifications are only concentrated at low frequencies ω. It should

be highlighted that this behavior persists also in nonlinear systems, which can be described by a

nonlinear gain, since in general, physical systems damp high frequencies. As classically used in the

literature [4,17,20,23], the asymptotic response to pure white noise forcing ωb → ∞ can therefore

be accurately approximated by means of a more physical forcing with a band-limited white noise,

provided that the band-limiting frequency ωb is far enough from the low frequency amplification

region (Fig. 2). This holds true for ωb/(2π ) = 1, which is used in all of the sequel.

The total nonlinear gain for the stochastically forced system reads as the ratio between the

amplitude of the response and the amplitude of the forcing. It is related to the ratio of the power of

the fluctuating response u′ to the power of the forcing f , as defined in Eqs. (11) and (10)

G2
tot =

〈
∫



u′2d
〉

〈 ∫

Ŵin
f 2dŴin

〉 =
1

ωb

∫ ωb

0

G2(ω)dω. (12)
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FIG. 4. (a) Amplitude of the linear response R and (b) total linear gain Gtot as a function of the band-limiting

frequency ωb for a band-limited white noise with constant PSD 2|ξ̂b(ω)|2 = 1 and varying power P (ωb) (9),

where the spatial distribution is in the form of a Poiseuille profile f 1 =
√

30y(1 − y). The response amplitude

and total gain are computed from the integration of the linear gain GB (ω) around the base flow for the

backward-facing step at Re = 500.

The total gain tends to zero, limωb→∞ Gtot = 0, for the limiting case of white noise as illustrated

in Fig. 4(b), since an increase of the band-limiting frequency ωb entails an increase in the power

spent at higher frequencies, which have such a small amplification G(ω) (see Fig. 2) that they do

not contribute to the power of the response R2, while spending power in the forcing A2. Actually,

G(ω) should decrease faster than ω−1/2 in the large ω limit for the integral (12) to converge.

The backward-facing step presents a strong linear amplification of the forcing due to the non-

normality of the linear operator LUB
[15,18,19], as can be seen in Fig. 2. This strong amplification

limits the validity of the linear response to very small amplitude of the forcing. Therefore, one

expects saturation to occur, which restrains the amplitude of the response for an increase of the

forcing amplitude. This nonlinear saturation of the flow under stochastic forcing calculated by DNS

can be appreciated in Fig. 5, where the total nonlinear gain Gtot strongly reduces as the amplitude

of the forcing A increases. Along with the amplitude saturation, the response exhibits a change in

structure with a migration upstream related to an increase in the forcing amplitude. This migration

is connected to a shortening of the mean recirculation bubble, which is reminiscent the mean flow

correction in the cylinder flow caused by the limit-cycle amplitude saturation [32,33,35].

FIG. 5. Nonlinear total gain from DNS Gtot and linear total gain GBtot as a function of the amplitude of the

forcing A. The figure shows the saturation of the gain and the variation of the response structure. The insets

show the perturbation velocity in the y-direction and the perturbation energy. Re = 500.
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B. Self-consistent model for a temporal stochastic forcing

Saturation problems of a similar nature to that illustrated in Fig. 5 have been modeled by means

of a coupled system of mean flow and linear fluctuation equations for the case of the response to

harmonic forcing [19], and for the flow past a cylinder above linear instability onset [32,33]. Another

related approach is undertaken in the SSST [23] where a time-varying ensemble averaged mean flow,

rather than a time average mean flow, is coupled to a linear response to white noise. Following these

studies, we introduce the Reynolds decomposition

u(x,t) = u′(x,t) + U(x) = u′(x,t) + UB(x) + 	U(x). (13)

The instantaneous flow is expressed as a mean flow U = 〈u〉 plus a pure fluctuation u′ with zero

mean 〈u′〉 = 0. The mean-flow correction is denoted by 	U . Inserting the Reynolds decomposition

in the full NSE, we obtain a set of two coupled equations,

N (U) = −〈(u′ · ∇)u′〉,
U = uPois on Ŵin, (14a)

∂t u
′ + LU (u′) = −(u′ · ∇)u′ + 〈(u′ · ∇)u′〉,

u′ = f on Ŵin, (14b)

where the mean flow U arises as a result of the Reynolds stress forcing in the steady mean flow

equation (14a), while the forced response equation (14b) governs the time-dependent fluctuating

field u′. Note that no simplification has been carried out so far.

In semilinear models like SSST [23], RNL [25], and others [26], the fluctuation equation is

approximated linearly, thus eliminating the right-hand side of (14b) while keeping the Reynolds

stress nonlinearity [right-hand side of (14a)]. In the same spirit, our recent studies [19,32,33]

seem to indicate that the nonlinear interaction of the fluctuation with itself gathered in the term

−(u′ · ∇)u′ + 〈(u′ · ∇)u′〉 has a negligible influence in the saturation process for certain flows.

Therefore, this nonlinear interaction is also neglected in the present model while keeping the

nonlinearity gathered in the Reynolds stress. This is the main hypothesis inherent to the model

assuming that restricting the nonlinear dynamics to the Reynolds stress is sufficient to capture the

flow behavior.

The time varying fluctuation u′ of the coupled system (14) is rewritten in the frequency domain

using (7) and (9) for a band-limiting frequency ωb. Thereby, the total Reynolds stress forcing

[right-hand side of (14a)] is rewritten as the frequency integral of the independent Reynolds stress

forcings 2 Re[( ¯̂u · ∇)û] constructed by the response at each frequency ω. The cross terms between

different frequencies disappear in the Reynolds stress forcing thanks to the orthogonality of the

frequency basis. The self-consistent system is obtained by neglecting the nonlinear interaction of

the fluctuation with itself [i.e., the right-hand side in Eq. (14b)],

N (U) = −
1

π

∫ ωb

0

2 Re[( ¯̂u · ∇)û]dω,

U = uPois on Ŵin, (15a)

iωû + LU (û) = 0,

û = f̂ on Ŵin. (15b)

The model is composed of a set of independent linear equations (15b) that describe the response

to noise at all frequencies ω ∈ [0; ωb] coupled to the mean flow equation (15a) by means of the

Reynolds stress forcing.
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The integral of the Reynolds stress forcing in the frequency domain is then approximated by a

discrete integral in a given set of discrete frequencies ωi as

1

π

∫ ωb

0

2 Re[( ¯̂u · ∇)û]dω ≃ 2

nf
∑

i=1

αi2 Re[( ¯̂ui · ∇)ûi], (16)

where αi denote appropriate quadrature coefficients and nf represents the number of discrete

frequencies. Correspondingly, the amplitude of the response is written as

R2 =
〈∫

Ŵin

u′2dŴin

〉

≃ 2

nf
∑

i=1

αi‖ûi‖2

 =

2π

ωb

nf
∑

i=1

αiG
2(ωi) A2, (17)

where A is the forcing amplitude previously defined in Eq. (10). The total nonlinear response is then

approximated as

u′ ≃
nf
∑

i=1

√
αi(ûie

i(ωi t+φi ) + c.c.), (18)

where φi are unknown phases that remain random. It should be noted that the results of the model (15)

are independent of the random phases φi since the Reynolds stress (16) is constructed by the product

of the response and its complex conjugate, thus canceling the φi and ωi contribution.

To minimize the number nf of discrete frequencies and to approximate the response (17) well

enough, we have to select appropriately the discrete frequencies ωi and weights αi , since the gain

G(ωi) varies strongly with the frequency (Fig. 2). Therefore, we rewrite the nonlinear gain as

G2
tot =

∫ ωb

0

G2
B(ω)

(

G2(ω)

G2
B(ω)

)

dω ≃
2π

ωb

nf
∑

i=1

γi

G2(ωi)

G2
B(ωi)

, (19)

and we use a weighted Gaussian quadrature rule for ( G2(ω)

G2
B (ω)

) with weight function G2
B(ω) [36]. For

a given frequency integration interval, this yields optimal quadrature coefficients γi and abscissas

ωi , from which the αi in Eqs. (16) and (17) are easily deduced, αi = γi/G2
B(ωi). This formulation

provides a fast convergence rate when [G2(ω)/G2
B(ω)] is close to a constant, in other words when

the saturated gain around the mean flow G(ω) has a similar shape to the linear gain around the base

flow GB(ω).

The Reynolds stress forcing is built by the response structures ûi multiplied by their corresponding

gains G(ωi). This approximation strongly depends on the selected discrete frequencies ωi , since in

addition to the strong variation of the gain G(ωi), the response structure ûi significantly depends on

the frequency, as illustrated clearly in Fig. 2 for the linear case. The frequencies should therefore be

selected clustered around the optimal gain ωopt/2π = 0.075 while spread enough to ensure a rich

family of response structures ûi from which the Reynolds stress forcing is calculated. A suitable

distribution is achieved by selecting the optimal frequency as the end point for a Gauss-Radau

quadrature rule, which is applied to the two intervals that appear at the right and left side of the

optimal frequency. Referring in anticipation to Fig. 7 and looking at the evolution of the overall gain

Gtot with nf (squares), we see that this scheme converges very quickly, achieving convergence for

a very small number of discrete frequencies nf ≃ 10.

It should be highlighted that the coupled system has to be solved iteratively, in order to obtain the

correct mean flow U and responses ui for a given forcing f that couples the system. The details on the

procedure undertaken to solve the self-consistent system (15) are described in Ref. [19] for a system

with harmonic forcing. The unique difference with the present case is that the linear responses at

each frequency have to be computed together to obtain the total Reynolds stress forcing in Eq. (15a).

Nevertheless, note that the process is parallelizable since all the linear equations are decoupled and

are computed independently, in contrast to what happens in a full DNS where all frequencies are
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FIG. 6. (a) Gain and (b) response as a function of the forcing amplitude A of the band limited white noise

for the DNS (circles), SC model with nf = 21 (triangles), SC model with nf = 1 at ωopt (squares), and the

linear estimation (dash dotted line). Re = 500.

coupled due to the term on the right-hand side of (14b). This implies that the computational time for

the present model is mainly independent of nf provided there is a correct parallelization.

The introduced approximation scheme (19) can be pushed to the limit nf = 1 by approximating

the nonlinear gain G(ω) just with a single abscissa point at ωopt. In this case, the nonlinear gain G(ω)

at the rest of the frequencies is obtained from the weighting function GB(ω) (see Fig. 2) scaled with

the saturated gain around the mean flow G(ωopt) at the optimal frequency ωopt: G2(ω) ∼ κG2
B(ω)

with κ = G2(ωopt)/G2
B(ωopt).

The system (15) models the nonlinear behavior of the flow as a response to stochastic forcing. It

is an extension of the SC model recently introduced for harmonic forcing [19], and it appears as the

forced counterpart of the self-consistent model introduced first for unstable flows [32,33] where the

linear equation corresponds to an eigenvalue problem and the amplitude is dictated by the marginal

stability criterion.

C. Results: Dynamics of the flow subject to temporal stochastic forcing

Applying the SC model to the backward-facing step with increasing forcing amplitude A, the

model is seen to capture accurately the saturation behavior with a remarkably accurate prediction

of the gain and response amplitude as illustrated in Fig. 6, where the DNS results are compared

to the SC model. The SC model exhibits a slightly better prediction for nf = 21 than for a unique

frequency ωopt approximation of the Reynolds stress nf = 1, where the construction of the Reynolds

stress is far more restrictive, since it is built solely on the information pertaining to the response field

at the optimal frequency.

These results suggest that the findings obtained for harmonic forcing [19] extrapolate to white

noise forcing. Therefore, Fig. 6 confirms a picture where the mean flow modification due to the

nonlinear forcing of the Reynolds stress is crucial to capture the energy saturation for the flow under

white noise forcing. Additionally, the nonlinear interaction of the response fluctuation with itself

gathered in the term −(u′ · ∇)u′ + 〈(u′ · ∇)u′〉 does not seem to play a relevant role in the saturation

and can be neglected as assumed in the SC model. In other words, a larger forcing entails a larger

response, which in turn generates stronger Reynolds stresses that force and modify the mean flow

enforcing a saturation, which reduces the response in comparison to its linear prediction.

Restricting our attention to a saturated case for a forcing amplitude A = 0.1, Fig. 7 presents

the variation of the total gain of the self-consistent model with a different number nf of discrete

frequencies ωi showing a clear increase in accuracy with an increase in the number of points nf . It

shows that nf as small as 10 is enough to obtain an accurate estimation of the total gain. Note that the

difference between the DNS gain and the SC gain does not tend to zero as nf increases, probably due
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FIG. 7. Total gain of the exact DNS (solid line) and SC model as a function of the number of discrete

frequencies ωi given by nf for the saturated mean flow with a forcing amplitude A = 0.1 and Re = 500.

to the inherent assumptions of the model, which by construction is neglecting the coupling between

the different frequencies represented on the right-hand side of (14b). Nonetheless, the SC model

presents an estimation of the exact DNS gain in the same order of magnitude, around Gtot = 12 with

a relative difference of less than 10%, which is much smaller than the base flow linear prediction of

Gtot = 220 with a relative difference of more than 1500%.

Figure 8(a) depicts the gain as a function of frequency for the DNS and SC model. The linear

response computed around the DNS mean flow (thin solid line) predicts an amplitude and gain

Gtot = 9.7 close to the exact DNS Gtot = 12, when compared to the linear gain around the base flow

Gtot = 220. It therefore qualitatively, if not fully quantitatively, captures the nonlinear saturation.

This result is in line with the linear response to harmonic forcing around the mean flow presented

in Ref. [19] and with the linear stability analysis around the mean flow for the cylinder case, which

provides an accurate estimation of the frequency and structure of the nonlinear fluctuations [29].

FIG. 8. (a) Gain distribution function of the frequency and total gain values for the DNS and SC model

saturated with a forcing amplitude A = 0.1. The exact DNS total gain is Gtot = 12 (thick solid line) and

Gtot = 9.7 for the linear prediction around the DNS mean flow (thin solid line). The SC model integrated in

frequency has a total gain Gtot = 12.7 (squares) for nf = 21, Gtot = 12.5 for nf = 9 (circles), and Gtot = 10.3

for nf = 1 (thick dashed line). (b) PSD as a function of the frequency for different positions x at the centerline,

(y = 0), for the DNS fluctuating velocity field for A = 0.1 and Re = 500.
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The SC model with nf = 21 and 9 marked with squares and circles shows an acceptable prediction

of the exact DNS gain distribution marked as a continuous thick line, presenting a peaked maximum

very close to the DNS most amplified frequency but slightly smaller and differing only at very

low frequencies. The exact DNS gain distribution is computed from a PSD of the time varying

simulation at different points and then integrated over the whole domain 
 at each frequency ω.

The gain distribution of the base flow scaled by the gain at the optimal frequency of the SC model

at G(ωopt) (thick dashed line) does not approximate well the exact DNS distribution, although it is

used to weight the response and the Reynolds stress for nf = 1 in Eq. (19) and estimates correctly

the saturation (Fig. 7) with an integral in frequency Gtot = 10.3 rather close to the exact DNS one.

Note that the nonlinear interactions in the saturation process entail not only a reduction in the

total gain but also a slight shift in the optimal frequency as illustrated in Fig. 8(a) when comparing

the base flow gain scaled with the DNS results. Nevertheless, this shift is small enough for the single

frequency approximation nf = 1 to capture the nonlinear saturation in terms of its energy despite

being fixed at the base flow optimal frequency ωopt.

Figure 8(b) presents the PSD of the DNS response to forcing with amplitude A = 0.1 at different

positions x along the centerline of the domain (y = 0) where the response is strong. An interesting

feature is that the dominant frequency is constant at all positions, showing that there is not any zone

with a strong competition between oscillating responses at different frequencies and hence the whole

response oscillates mainly as a unique coherent structure.

The nonlinear total gain is reminiscent of the idea of a nonlinear transfer function, with a gain at

each frequency G(ω) that depends on the amplitude of the forcing and the frequency. The concepts

of a nonlinear transfer function and nonlinear gain are well described by Noiray [37] dealing with

the study of nonlinear stability of flames in burners.

The local kinetic energy and the velocity in the x-direction of the response fluctuation are

compared in Fig. 9 for the linear approximation around the base flow, the DNS, and the SC model.

The energy distribution of the SC model with nf = 21 [Fig. 9(c)] approximates the exact DNS

[Fig. 9(b)] capturing most of the upstream migration when compared to the response structure of

the linear estimation around the base flow [Fig. 9(a)]. Nonetheless, the SC model exhibits a more

elongated structure compared to the compact DNS energy distribution located between the two

recirculation bubbles. The inability of the model to predict the exact response structure is probably

caused by the neglected frequency coupling in the model [right-hand side of (14b)], which is present

in the full DNS, and the discrete number of harmonics. As one might expect, the SC model with a

single frequency approximation of the response (nf = 1), depicted in Fig. 9(d), presents a poorer

approximation than its frequency integrated counterpart [Fig. 9(c)].

The DNS snapshot of the fluctuating velocity u′
x shows in Fig. 9(f) a very clear streamwise

wavelength. This means that despite the response being composed of a mix of streamwise

wavelengths excited at all frequencies inside the band ωb (Fig. 2), there is a clear selective process

governed by the gain curve of [Fig. 8(b)], which promotes the same optimal frequency and response

structure with a constant wavelength in the whole domain. This selective process is well captured by

the SC model results, especially by the multifrequency approximation [Fig. 9(g)] that approximates

well the streamwise wavelength when compared to the DNS snapshot [Fig. 9(f)].

A more quantitative comparison of the migration upstream of the response with an increase of the

amplitude of the forcing illustrated in Fig. 5 is described by the position of the maximum xEmax of the

fluctuation energy and plotted in Fig. 10. Although the SC model estimates very closely the trend of

the DNS response migration, there is a constant difference of δxEmax ∼ 3h, which is slightly larger

for the single frequency approximation (triangles) and is in line with the results shown in Fig. 9.

It should be noted that the SC model is able to describe more accurately the response saturation in

terms of amplitude, Fig. 6, than of structure and position, possibility because the response amplitude

is an integral quantity and because of the missing cross-coupling between frequencies in the SC

model.

Focusing on the mean flow modification, Fig. 11 compares the DNS mean flow U for a forcing

amplitude A = 0.1 and the base flow UB , thus highlighting the shortening of the bottom recirculation
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FIG. 9. Energy distribution of the response fluctuation for (a) linear around base flow, (b) DNS, (c) SC with

nf = 21, and (d) SC with single frequency approximation ωopt. Fluctuation velocity in the x-direction, u′
x for

(e) linear around base flow, (f) DNS snapshot, (g) SC with nf = 21 constructed with arbitrary φi in Eq. (18),

and (h) SC with nf = 1, single frequency approximation at ωopt. Forcing amplitude A = 0.1 and Re = 500.

bubble and the upstream migration of the top recirculation bubble. In addition, Figs. 11(c) and 11(d)

illustrate the difference between the mean flow and base flow defined as the mean flow correction in

Eq. (13) and showing that the SC model estimates well the DNS mean flow.

A quantitative analysis of the mean-field modification is presented in Fig. 12 where the mean flow

recirculation bubble lengths are compared for the DNS and SC model as a function of the forcing

amplitude. The SC model with nf = 21 (circles) predicts accurately the bubble positions, for the

top as much as for the bottom, even capturing very closely the nonmonotonous trend of the bubble

at the bottom. This is of great relevance because it implies that the SC model is able to characterize

properly the flow where linear estimations around the base flow would fail. The SC model with

nf = 1 (triangles) also follows the migration of the bubbles of the DNS solution (squares), although

not as closely as the integrated form mainly describing the nonmonotonous behavior. This difference

appears probably due to the restricted construction of the Reynolds stress forcing by the only optimal

response structure.

IV. SPATIOTEMPORAL STOCHASTIC FORCING

A. Formulation

Since realistic external disturbances entering in real flows do not generally present a coherent

spatial distribution, the study is now generalized by imposing a white noise forcing uncorrelated in
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FIG. 10. Position in the x coordinate of the maximum of the energy of the perturbation xmax for SC and

DNS as a function of the forcing amplitude A for Re = 500.

space and time, f (y,t) = Aξ (y,t) at the inlet [17,23]. The stochastic vector ξ (y,t) is a Gaussian

random process that represents the band-limited white noise, which is δ-correlated in space and time,

has zero mean, and has unit variance. Discretizing the section Ŵin in nk degrees of freedom, ξ (y,t)

becomes a column vector of nk random variables, and ξ (y,t) is normalized in such a way that the

power of f is A2.

Instead of using the finite element basis to represent the spatial noise distribution, it is convenient

to use the orthogonal basis resulting from the SVD analysis of the resolvent operator R. Introducing

the adjoint of the resolvent operator R†, the linear gain can indeed be rewritten as a Rayleigh quotient

of the resolvent operator and the forcing,

G2
1(ω) = max

f̃

(R f̃ |R f̃ )

( f̃ | f̃ )
= max

f̃

(R†R f̃ | f̃ )

( f̃ | f̃ )
. (20)

Subsequently, the optimal gain and forcing on the base flow UB correspond to the leading eigenvalue

λ1 = G2
1 and eigenvector f̃ 1 of the symmetrical eigenvalue problem R†R f̃ k = λk f̃ k computed at

FIG. 11. Comparison of the mean flow and base flow for the velocity in the x-direction: (a) base flow UB

and (b) DNS mean flow U . Difference between the mean flow and the base flow 	U defined as mean flow

correction in Eq. (13), (c) 	U for the DNS mean flow, and (d) 	U for the SC mean flow for nf = 21. Forcing

amplitude A = 0.1 and Re = 500.
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FIG. 12. Position of the mean flow recirculation bubbles (a) bottom and (b) top for the DNS (squares), SC

integrated in frequency (circles), and SC with optimal frequency approximation (triangles) as a function of the

forcing amplitude A. Re = 500.

any frequency ωi ,

G2
1(ωi) =

(R†R f̂ i,1| f̂ i,1)

( f̂ i,1| f̂ i,1)
. (21)

The family of eigenmodes and eigenvalues constitutes a spatial orthogonal basis for the forcing

f̃ k = f̂ i,k and corresponding response ûi,k for each frequency ωi sorted by their associated gain

Gk(ωi) as G1(ωi) > G2(ωi) > G3(ωi) . . . . Since the different structures of optimal and suboptimal

forcing are equally energetic, they can be normalized such that ‖ f̂ i,k‖Ŵin
= π/nkωb. Hence, the

amplitude of the forcing comes as

〈∫

Ŵin

f 2dŴin

〉

=
nf
∑

i=1

αi

nk
∑

k=1

2A2‖ f̂ i,k‖2
Ŵin

= A2. (22)

The total gain corresponds to an integral in the frequency domain and accounts at each frequency

for the different possible response structures with their corresponding gains, all of them forced with

equally energetic forcing. In analogy to (19), the total gain is written as

G2
tot ≃

2π

ωb

nf
∑

i=1

αi

1

nk

nk
∑

k=1

Gk(ωi)
2, (23)

where αi are quadrature coefficients previously introduced, accounting for the discrete frequency

distribution.

Truncating the flow dynamics to its most energetic patterns is common in turbulence studies [38].

Thereby, we reduce the complexity of modeling a whole spatiotemporal stochastic forcing by

extracting the most amplified structures of the response ûi,1 with their corresponding forcing f̂ i,1 at

each frequency in a set of selected frequencies ωi . Note that at each frequency ωi , the optimal gain

G1(ωi) retrieves the most amplified structures. Hence, knowing that the suboptimal gains are orders

of magnitude lower [17,18], we approximate the full response by the most amplified one. The total

gain is approximated as

G2
tot ≃

2π

ωb

nf
∑

i=1

αi

1

nk

(

nk
∑

k=1

G2
B,k(ωi)

G2
B,1(ωi)

)

G2
1(ωi) =

2π

ωb

nf
∑

i=1

αi

βi

nk

G2
1(ωi), (24)
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where energy weights βi =
∑nk

k=1

G2
B,k(ωi )

G2
B,1(ωi )

are calculated at the base flow, where they are known

in order to obtain the relation of gains and assuming a constant ratio of the suboptima along the

saturation. The coefficients βi account for the spatial distribution at each frequency ωi . This procedure

recalls the work by Dergham et al. [17], where a low rank approximation of the covariance matrix is

built by the most energetic responses integrated discretely in the frequency domain. The amplitude

of the response is then approximated as

R2 ≃
nf
∑

i=1

αiβi2‖ûi,1‖2

, (25)

and the coupled system of equations of the self-consistent model is rewritten as

N (U) = −
nf
∑

i=1

αiβi2 Re[( ¯̂ui,1 · ∇)ûi,1],

U = uPois on Ŵin, (26a)

iωi ûi,1 + LU (ûi,1) = 0,

ûi,1 = f̂ i,1 on Ŵin, f̂ i,1 from (21). (26b)

In general, nk depends on the spatial number of the degrees of freedom (NDOF) of the white

noise, for our simulations nk = 80 coinciding with the NDOF of the mesh at the inlet Ŵin. Changing

the underlying mesh while maintaining the nk number yields the same total gain Gtot, thus showing

that nk is equivalent to the frequency band limit but in space. It represents the band limit of the

spatial distribution of the noise, limiting it to a restricted base of nk degrees of freedom. Similarly

to what happens in the frequency domain in Eq. (12), increasing the number nk decreases the total

gain because energy is spent in finer spatial structures with higher wave number that do not provide

large responses.

B. Results: Dynamics of the flow subject to spatiotemporal stochastic forcing

The self-consistent model is applied to the backward-facing step problem forced at the inlet Ŵin

with white noise δ-correlated in space and time, with an increasing amplitude A at Re = 700. At

Re = 500 the amplification is very small given a fine enough spatial resolution at the inlet Ŵin,
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FIG. 13. (a) Gain and (b) response as functions of the forcing amplitude A of the band-limited white noise

for the DNS (circles), SC model integral in frequency with nf = 21 (triangles), SC model with nf = 1 at ωopt

(squares), and the linear estimation (dash-dotted line). Re = 700.
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FIG. 14. Position of the recirculation bubbles (a) bottom and (b) top for the DNS (squares), SC model

integrated in frequency (circles), and SC model with optimal frequency approximation (triangles) as a function

of the forcing amplitude A. (c) Position maximum of the energy of the perturbation xEmax for the SC model and

DNS as a function of the forcing amplitude A. Re = 700.

therefore, to obtain a larger amplification, we increased the Reynolds number to Re = 700 since the

gain increases rapidly with the Reynolds number [18]. The SC model estimates distinctively well the

saturation of the gain and response as illustrated in Fig. 13. The SC with nf = 1 presents a slightly

lower response when compared to DNS, but a minimal difference when compared to the linear

prediction, which is incorrect in orders of magnitude for a strong saturation. It should be highlighted

that the Reynolds stress coupling in the self-consistent model allows us to capture the nonlinear

response to white noise approximating the whole stochastic response that varies in space and time

with the structure of the response solely at the optimal frequency.

A more quantitative comparison of the flow features between the SC model and the exact DNS

reveals that the SC model captures the main trends in the variation of the flow configuration as

presented in Fig. 14, however not as accurately as the estimation of the global energy of the response.

Focusing on the recirculation bubbles of the mean flow, Figs. 14(a) and 14(b), the SC model with

nf = 21 follows approximately the DNS capturing the nonmonotonous behavior. Nevertheless, the

SC model with a single frequency approximation nf = 1 provides only a very coarse estimation

of the recirculation bubble migration and fails to capture the nonmonotonous trend. In terms of

the position of the maximum of the fluctuating energy, the SC model captures well the migration

upstream but maintains a mismatch for large saturations as depicted in Fig. 14(c). As one could

expect, this mismatch is stronger for the SC model for nf = 1 than for nf = 21. It should be

noted that the self-consistent model is able to well approximate the flow behavior given the strong

assumptions involved, consolidating the Reynolds stress as the key nonlinear term implicated in the

saturation process.

V. DISCUSSION AND CONCLUSIONS

The backward-facing step is a well known example of an amplifier in which small perturbations

to the steady base state undergo large amplifications due to the non-normality of the linearized

equations. These amplifications depend strongly on the frequency of the perturbations [15,18]

showing a low frequency band pass filtering with an optimal frequency. In the present work, the

backward-facing step is forced at the inlet with a band-limited white noise to model disturbances

that appear naturally in flows. We apply a self-consistent model to describe the nonlinear dynamics

of the filtering and the saturation of the response with an increasing amplitude of the stochastic

forcing.

The study of the stochastic forcing and response is addressed rewriting the self-consistent model

in the frequency domain. It consists in a coupled system of the mean flow equation and the linear

response equation around the aforementioned mean flow at a finite number of discrete frequencies

(typically in the order of 10). The coupling is attained by the Reynolds stress that forces the mean

flow and is constructed from the integration of the different responses in the frequency domain
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using a proper energy weight. The model is applied to the nonlinear saturation problem, starting

with a forcing with a given spatial structure but stochastic in time, obtaining a remarkably accurate

prediction of the global saturation of the response when compared to the DNS results. The approach

captures the small shift in the dominant frequency of the nonlinear response with respect to the linear

response. An interesting feature of the response is that it presents the same dominant frequency at

different streamwise stations and is thus governed mainly by a single coherent structure oscillating

at the preferred frequency. This allows us to push the model to a single frequency approximation

of the stochastic response. A more quantitative comparison describes an acceptable estimation of

the shortening of the mean recirculation bubble capturing the nonmonotonic trend. In addition, the

comparison of the fluctuating response shows that the model predicts well the upstream migration of

the response, while providing an estimation of the streamwise wavelength despite the stochasticity

of the response.

The response to a more realistic disturbance, described by a stochastic forcing δ-correlated in

space and time, is modeled by extracting the most energetic structures [17] as commonly used in

turbulence studies [38]. Based on these optimal structures, the SC model is rewritten using the

optimal forcing and corresponding response at each frequency with their proper energetic weights.

The reformulated model is able to estimate accurately the saturation of the response as well as the

decrease of the mean recirculation bubble and the upstream migration of the response, despite the

stochasticity of the forcing.

The results obtained suggest that the nonlinear dynamics of the saturation process in the backward-

facing step is mainly governed by the nonlinear Reynolds stress forcing even for a stochastically

forced flow, and that the nonlinear interaction of the fluctuation with itself has a secondary effect.

Besides, it should be noted that the full response to stochastic noise is well approximated by the

most energetic structure at the optimal frequency. The presented model follows as an extension to

stochastic flows of the self-consistent model proposed for harmonic fluctuations. It was applied to

an amplifier to calculate the saturation of the response to harmonic forcing on the backward-facing

step [19], and to an oscillator, the unstable cylinder wake [32,33], where the instability is dominated

by the most unstable eigenmode, and its saturation is dictated by the unstable eigenmode marginality

criterion [29,39,40]. Therefore, a common physical picture is revealed: as the fluctuations grow due

to an increasing response to forcing or an instability mechanism, respectively, it creates a Reynolds

stress forcing that modifies the mean flow reducing its amplification and thus saturating the flow

response.

One of the fundamental aspects behind the self-consistent model is that the full nonlinear response

to stochastic forcing is approximated by a linear response at different forcing frequencies. Still, the

model is able to estimate the nonlinear transfer function of the system, and to approximate the

nonlinear filtering from the input flat white noise forcing into a band pass frequency response. It

should be highlighted that the solutions of the self-consistent model are obtained a priori without

using any DNS or experimental data. Similar models where the mean flow is coupled to the

linear perturbation equations through the Reynolds stress forcing can be found in the study of

turbulent flows, as, for example, computing coherent structures that appear during the transition in a

parallel shear flow [26] or by restricted nonlinear dynamics (RNL) of DNS with a linear fluctuation

equation [25]. Another example is the stochastic structural stability theory (SSST) [22,23] where the

ensemble average mean flow equation is coupled to the linear response formulated in terms of the

covariance matrix and governed by the Lyapunov equation. The SSST has been applied to parallel

turbulent flows describing well the nonlinear behavior that produces sustained coherent structures.

Nonetheless, the requirement of solving a Lyapunov equation limits the domain size and geometry

due to the computational cost. In this sense, a low order approximation to the covariance matrix has

been proposed to approximate the linear response [17,21] with respect to which our present model

is a limiting case with strong assumptions but is still able to capture the main nonlinear behavior of

the system.

Furthermore, the SSST and RNL are restricted to parallel flows to obtain the ensemble average

from the x-direction average, while our model does not present any geometry constriction. However,
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these models are able to capture the transition dynamics while the SC model as presented is restricted

to the saturated state. In addition, the RNL model is time integrated, thus it accounts for all the

harmonics until the cutoff (time step dependent), while the present SC model shows the frequency

selective nature of the response allowing to capture the major part of the saturation process with

only a few harmonics.

The present SC model, as well as SSST [22,23], RNL [25], and the model in Ref. [26], all rely

on the common assumption of eliminating the nonlinearity arising from the cross-coupling between

the different frequencies [right-hand side of (14b)] while maintaining solely the nonlinearity of the

Reynolds stress retroaction onto the mean flow. This assumption implies that the proposed models

are meant for linearly stable flows where self-sustained instabilities are naturally damped. While

we cannot exclude noise-induced subcritical transitions even in nominally linearly stable flows, we

have not observed such a nonlinear subcritical transition scenario. The presently described mean

flows were checked to remain linearly stable. Additionally, for the decoupling of the harmonic

components to be a reasonable assumption, there should be limited harmonic generation and

subharmonic excitation. In the present flow, this can be interpreted to result from the spatial

decorrelation between the response to a considered frequency and the optimal forcings at its harmonic

and subharmonic frequencies. However, it should be highlighted that the harmonic interaction is

Reynolds and confinement dependent and that increasing the amplitude of the forcing brings the

response closer to the inlet, thus approaching it from the more receptive region, suggesting that at

very high forcing amplitudes or higher Reynolds number the harmonic interactions may start to

become important. Further studies are required to assess the limits and capabilities of the model for

flows with higher harmonic generation and subharmonic instability.

These restrictions apply to the SC model on the backward-facing step flow at the studied Reynolds

numbers since the flow presents mainly 2D dynamics [12] and it is stable up to Recr ∼ 748 [27,28],

where a steady 3D instability appears. Although the model can be extrapolated to 3D flows, one

would have to cope with the natural growth and saturation of the static 3D instability mode and

thereby generalize the proposed model.

As a final note, the present model is not conceived as a substitute for the Navier-Stokes equations.

On the contrary, its significance lies in the integration of only the essential ingredients required

to provide a fairly accurate description of the physics. It remains to be seen whether the present

self-consistent model works in other globally stable laminar flows excited by stochastic forcing.
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