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Saturation Throughput Performance Analysis of a

Medium Transparent MAC Protocol for

60 GHz Radio-Over-Fiber Networks
George Kalfas, Nikos Pleros, Kostos Tsagkaris, Luis Alonso, and Cristos Verikoukis

Abstract—We demonstrate an analytical model for calculating

the saturation throughput performance of a medium transparent

medium access control (MAC) protocol in 60 GHz radio-over-fiber

(RoF) networks. The proposed model incorporates effectively the

medium transparent MAC mechanism, assuming a finite number

of terminals and ideal channel conditions. It takes into account

contention both at the optical and wireless layer, ensuring seam-

less and dynamic capacity allocation over both transmissionmedia.

This model enables extensive saturation throughput performance

analysis for the medium transparent MAC and has been applied

to 60 GHz RoF network scenarios considering variable numbers of

available optical wavelengths, wireless nodes and serving antenna

elements and for two different data rate values, namely 155 Mbps

and 1 Gbps. Comparison between the model-based throughput re-

sults and respective simulation-based outcomes reveals that our

model is extremely accurate in predicting the system throughput.

Moreover, it confirms that the proposedmedium transparentMAC

protocol can effectively operate in high-speed 60 GHz RoF LAN

environments.

Index Terms—Medium access control (MAC) protocol, medium

transparent MAC (MT-MAC), performance analysis, radio over

fiber (RoF), 60 GHz local access network (LAN), 60 GHz wireless.

I. INTRODUCTION

R ADIO-OVER-FIBER (RoF) technologies have drawn at-

tention as a highly effective paradigm for bridging the ul-

trafast optical buses with the increasingly utilized wireless con-

nectivity systems [1]. RoF architectures present a cost effective

way for extended range passive optical-wireless networks, con-

solidating all required network intelligence in a single central
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unit, well-known as the central office (CO), and relaxing in this

way the complexity, functionality, and cost requirements at the

terminal equipment. As a result, the deployment of an array of

inexpensive remote antenna units (RAUs) can lead to vast cov-

erage wireless networks that optimally combine the mobility

and ubiquity advantages of a wireless link with the high speed

and long-distance service delivery credentials of fiber-based in-

frastructure [2].

The majority of related research has focused so far on ex-

ploiting the underlying fiber infrastructure as a passive distribu-

tion network used solely for the purpose of long-distance wire-

less service delivery. Within this frame, the research emphasis

has been on physical layer technologies and architectures for

high-capacity RoF network deployments [3]–[6], whereas only

a limited number of efforts have attempted the functional con-

vergence of the optical and wireless network parts through the

realization of dynamic capacity allocation and user mobility

concepts [7]–[10]. On the same line, only a small portion of the

research carried out so far has been dedicated to medium access

control (MAC) layer issues, the main interest being in adapting

existingMAC protocol standards, like the 802.11g, to the higher

delay metrics of long-distance RoF implementations [11]–[16].

However, this roadmap does not promote the functional inter-

facing of the currently distinct operative portfolios of the optical

and wireless parts, impeding in this way a seamless and pow-

erful optical and wireless network convergence with high-level

agility and flexibility potential.

RoF advantages become increasingly important as the un-

precedented escalation in wireless bandwidth demand drives the

need for employment of wireless frequencies capable of deliv-

ering very high data rates. A noteworthy example is the license

exempt 60 GHz band which has by now been adopted by the

industry as the prevailing candidate region for broadband wire-

less data transfer. The 60 GHz spectral band has already been

enforced in a significant number of emerging standards such as

the 802.11ad [17], the 802.15.3c [18]–[20], theWirelessHD [21]

and the WiGig [22] protocols. However, the high air propaga-

tion losses of this millimeter-wave radio band constitute a sig-

nificant constraint in terms of extended range coverage, so that

60 GHz connectivity is inevitably bound to personal area net-

working (PAN) applications. 60 GHz communication over RoF

physical layer implementations holds the credentials for over-

coming this range handicap by employing the fiber-based net-

work part for high-distance signal delivery. Moreover, 60 GHz

RoF physical layer implementations have reached due maturity

for enabling seamless and efficient distribution of multiple 60

0733-8724/$26.00 © 2011 IEEE
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GHz wireless signals over wavelength division multiplexing in-

frastructures [3]–[7]. However, the functional convergence of

the 60 GHz wireless layer with an underlying RoF platform has

not been efficiently addressed so far, lacking an effectivemecha-

nism for arbitrating the capacity and the service requests arising

by the entire number of antennae elements that are connected

to a single CO. Such a scenario would yield to medium trans-

parent traffic control and would certainly allow for the trans-

formation of multiple PANs formed around every individual 60

GHz RAU into an extended LAN, enabling full reconfigura-

bility of the bandwidth allocated at each terminal. The first and

so far solely available medium transparent MAC (MT-MAC)

protocol capable to yield successful extended LAN functional-

ities in 60 GHz broadband wireless over fiber connections has

been only recently presented [23], highlighting the advantages

of such an archetype and indicating at the same time the poten-

tial of these solutions to penetrate 60 GHz LAN evolution.

In this paper, we demonstrate for the first time to our knowl-

edge an analytical model followed by a detailed saturation

throughput performance analysis for the MT-MAC protocol

described in [23], assuming ideal channel conditions. The

introduced model relies on a 2-D Markov chain approach for

calculating the end-user transmission probabilities, taking into

account contention for both the optical and the wireless layer

resources. An analytic formula for throughput computation

is derived and the respective results for different optical re-

source availability factors and for data rates up to 1 Gbps are

found to be in close agreement with simulation-based findings,

confirming the validity of the MT-MAC model. Our analysis

reveals that the proposed MT-MAC is capable of resolving

contention within a limited time frame, concluding with the

optimized duration of consecutive data transmitting frames

for maximizing network throughput. This first successful

MT-MAC modeling approach indicates that the functional

interfacing of the optical and the wireless connection links can

yield new and efficient capacity utilization concepts in 60 GHz

RoF networks.

This paper is outlined as follows. Section II briefly reviews

the MT-MAC protocol characteristics. Section III includes the

analytical throughput analysis describing the MT-MAC math-

ematical model, while Section IV presents the obtained analyt-

ical results comparing them with respective simulation-based

outcomes. Sections V and VI discuss and conclude the paper,

respectively.

II. MT-MAC PROTOCOL

This section describes the principal characteristics of the pro-

tocol and the crucial traffic format parameters that directly af-

fect the throughput calculation. A more detailed and complete

description of the MT-MAC protocol mechanism and its foun-

dational 60 GHz RoF physical layer architecture is provided in

[23].

According to the protocol specifications, all traffic exchange

is considered to take place over both the optical and wireless

media with the fiber-based network delivering data from the

single CO to multiple RAUs, whereas the 60 GHz wireless

counterpart is responsible for the link establishment between

each RAU and its associated wireless end users. All downlink

and uplink data channels are assumed to be generated at the CO

as wavelength pairs : one wavelength carries the 60

GHz single-side band (SSB) subcarrier-modulated downlink

information, while its respective uplink wavelength is trans-

mitted as a continuous wave into the network and gets 60 GHz

SSB subcarrier-modulated with the uplink data at the RAU.

A distinct wavelength pair is specially designated

as the common control channel (CC) for all RAU elements,

comprising again a dedicated downlink control wavelength

and its uplink control analog. Optical-to-RF and RF-to-optical

conversion for downlink and uplink transmission, respectively,

is realized at the RAUs devices. Discrimination between the

data and control signals in the wireless domain is ensured by

utilizing a frequency division multiplexing scheme, with the

CC carrier frequency lying outside the bandwidth occupied by

the 60 GHz data signals.

The overall media capacity is directly negotiated between the

wireless nodes and the CO without any decisive intervention of

the RAUs. This turns the network into a totally transparent en-

tity for the end users who are fully unaware of any infrastruc-

tural details, gaining in this way the impression of an uninter-

rupted horizontal link that leads directly to the CO. The latter

performs as the central hub and enables the establishment of an

extended reach LAN network between all end users served by

it, even when they are located at different RAU cells and no

line-of-sight conditions apply between them. The resource allo-

cation process is divided into two parallel contention periods:

the first contention period is carried out in the optical domain

and decides on the per RAU optical capacity allocation, whereas

the second contention period is responsible for the distribution

of the wireless bandwidth between nodes located in the same

RAU.

During the first contention period, the CO emits a short op-

tical beacon pulse in the CC that is in turn broadcasted into

the air through every RAU. When in-range nodes containing

pending uplink data detect the pulse, they respond immediately

by emitting a short pulse of the same duration in order to notify

of their existence. These pulses are received by the respective

RAU and modulate its allocated time slots in the uplink wave-

length channel, which subsequently propagates toward the CO.

This procedure is illustrated for an example of four different

RAUs served by the CO in Fig. 1, revealing also the need for

having clearly time-discriminated RAU response pulses in order

to avoid overlapping between their replies. This can be easily

achieved even with pulse durations higher than 10 ns, taking

into account the differential fiber delays between the RAUs that

are usually located at different distances from the CO.

The synchronized reception of the CC response pulses in-

forms the CO about the RAUs containing capacity requesting

nodes. Following the reception of the uplink wavelength, the

CO assigns a data transmission wavelength pair to each RAU,

ergo ending the first contention period. In high load conditions,

where the number of RAUs containing active nodes exceeds the

number of available data wavelength pairs, the CO assigns the

wavelengths in a round-robin fashion distributing the available

bandwidth amongst all RAUs in a fair, starvation free manner.

The second contention period takes place entirely in the wire-

less 60 GHz channel, where traffic exchange is logically divided
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Fig. 1. Traffic requests collection procedure during the first contention period
in the case of active nodes located within RAUs 1, 2, and 4.

into superframes (SFs). An SF contains frames with each one

being either a resource requesting frame (RRF) or a data frame

(DF), as shown in Fig. 2. Both types of frames are of equal size

in the air and are broadcasted in non-interchangeable, contin-

uous sets, with the set of RRFs always preceding the group of

DFs. Each RRF aims at the identification of the active nodes

residing within the RAU cell so as to increase bandwidth uti-

lization by allowing only active nodes’ participation in the sub-

sequent DFs. After a number of RRF frames, once the con-

tending end users have been identified and, therefore, resolved,

DFs are sequentially transmitted carrying out the actual data ex-

change on the basis of a polling-based scheme. RRFs’ structure

is further divided into a fixed number of slots, with each slot

comprising POLL, ID, and ACK packets, whereas DFs contain

DATA packets instead of ID packets. The number of slots

remains immutable and is predefined by the CO based on the

projected mean number of active nodes per RAU for the final

purpose of minimizing, to the extent possible, the number of

RRFs utilized in the second contention period. At the begin-

ning of each RRF, all the active nodes choose an integer value

in the interval , where follows a uniform distribution

and corresponds to the number of POLL packets that have to be

received by the terminal before responding with an ID packet.

During an RRF slot, the CO transmits a general POLL packet

with no receiving node specified in its body. Upon correct ID

packet reception, the CO responds with an ACK packet, noti-

fying the corresponding node that it has been correctly iden-

tified. This node will not participate in a subsequent RRF (if

any) within the current SF. Should, however, two nodes choose

the same value, they will transmit an ID packet during the

same slot. The collision will render both ID packets unreadable

and the CO will not respond with an ACK, forcing the nodes

to participate in the next RRF after choosing a new value.

The CO continues transmitting RRFs until zero collisions occur

and, therefore, all nodes are successfully identified, ending in

this way the second contention period. Having full knowledge

of the nodes that are active within a RAU, the CO initiates the

DATA_TX period where the main exchange of data occurs in

the form of a series of DFs transmissions until the end of the

SF is reached. In parallel to the data exchange, the CO period-

ically reruns the first contention period process in the CC so as

to update the list of RAUs requesting traffic. If no known ac-

tive nodes exist within a newly wavelength allocated RAU, the

second contention period process is repeated.

Fig. 2. SF, RF, and DF structure. Nonshaded RRFs are optional.

The CO performs all packet synchronization and scheduling

tasks, which are mainly influenced by two architectural char-

acteristics: the optical propagation delay induced by

fiber’s length and the wireless transmission delay which

is inversely proportional to system’s bit rate. In cases where

and are of the same magnitude order, be it due to

great distance between the CO and the RAU modules or due

to very high wireless bit rates, packets in the air get sent a lot

faster than they travel through the fiber, resulting to idle time

periods in the wireless domain. To nullify the latter phenom-

enon, the CO performs some minor changes regarding the pro-

tocol’s operation to the extent required by the corresponding

ratio. Specifically, to avoid unnecessary delays in

the second contention period, the CO may choose to transmit

all POLL packets sequentially and acknowledge the incoming

IDs with an aggregated ACK at the end of the RRF. POLL

packets in this case are appropriately separated so as not to col-

lide in the air with incoming ID packets, but simultaneously

transmitted over the fiber so as to avoid all the intermediate

optical round-trip delays, taking advantage of the different up-

link and downlink wavelengths. The same principle also applies

in the DATA_TX period where the CO may choose to transmit

POLL packets sequentially and, following a timely deferred cor-

rect DATA reception, piggyback the corresponding ACK to a

subsequent POLL packet. This approach, enabled by the cen-

tralized nature of the protocol, effectively nullifies all the in-

termediate fiber round-trip delays among continuous DFs or

among the RRF’s slots, taking greater advantage of medium’s

duality and resulting in higher throughput values.

III. THROUGHPUT ANALYSIS

We declare S to be the normalized system throughput, i.e.,

the ratio depicting the amount of time that the system transmits

payload bits to the total amount of communication time. Consid-

ering the protocol rules, the aforementioned translates directly

to the time portion that the system exhibits engaged SF activity,

and more specifically to the time portion that the system is lo-

cated in the DATA_TX period of the latter.

Therefore, can be defined as

, where is the steady-state probability (SSP)

of the system being in the DATA_TX mode, is

the SSP of the system being in the second contention

period, and are the durations of the DF and
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Fig. 3. Markov model from the perspective of a single remote access unit.

the RRF, respectively, and is the payload information

percentage contained in a DF. The latter is typically defined

as where

, and are the size in bytes of the DATA,

POLL, and ACK packets, respectively.

To calculate and , we have deployed a 2-D

Markov chain model, depicted in Fig. 3, which demonstrates

scheme’s operation from the scope of a single RAU. The

aforementioned model operates under the assumption of ideal

channel conditions. In addition, we consider that each RAU

contains a constant and finite number of stations in its radius.

Traffic generation follows the saturation model, meaning that

each of the terminals always possesses a packet ready for

transmission immediately after transmitting the previous one.

Finally, no hidden or exposed terminals phenomena are taken

into account, since they are negated by our protocol’s central-

ized topology.

In the following analysis, we consider a fixed number of

RAUs , with each RAU servicing an identical and constant

number of wireless nodes. Moreover, we define the total

number of available downlink and uplink data wavelength

pairs as . Model’s nomenclature follows the symbolism,

where stands for the th frame of the current SF and is the

number of nodes that are yet to be resolved through means

described in the second contention period. It should be noted

here that the first state of the Markov chain model, referred

as WAIT, represents the optical waiting period, i.e., the state

where the RAU does not have an assigned pair of wavelengths

yet and is waiting for optical capacity assignment. Each SF

contains a number of frames between , the values

of which are immutable and known to the network. These

bounds denote the minimum and maximum time duration of

the non-interrupted wavelength assignment to every RAU,

respectively. More specifically, the and values

reflect the logical restriction that each consecutive wavelength

assignment period must be long enough to allow for adequate

data transmission without exceeding, however, a certain upper

limit, so as to prevent unaffordable delays and inequalities

amongst the RAUs.

Contention in the optical domain is resolved by means of a

simple round-robin algorithm using a step of one RAU at the

end of each time quantum, i.e., each RAU holds the same wave-

length pair for the amount of time equal to the percentage

of the total time. In real non-saturated mode of operation, a

phase shift in wavelength re-assignment is not performed unless

there are outstanding claims for allocating optical capacity to

other non-serviced RAUs [23]. However, in network saturation

conditions, as considered in our analysis, the CO acquires a con-

stant demand for optical capacity from all RAUs, implying the

exercise of the round-robin algorithm in a strictly time-sharing

fashion.

The Markov chain model diagram can be logically divided

into two areas. The first area is comprised of the state WAIT,

whereas the second area is comprised of all the rest states. State

WAIT, being representative of the waiting period caused by the

assignment/deassignment of the optical wavelength, effectively

controls the length of time that the current RAU lies in idle state.

This signifies that its respective SSP is

(1)

and by considering the normalizing condition , the

sum of the rest SSPs is

(2)

where is the SSP of the state and accordingly

represents the SSP of the state. Once being in the WAIT

state, the only possible actions are: to remain stationary with

probability while awaiting for wavelength assignment, or to

enter the state with probability once a wavelength has

been assigned. Following this, the wireless nodes served by this

RAU enter the second contention period according to the rules

described in Section II. All the wireless activity is depicted in

the second logical area of the Markov model, which can be fur-

ther divided into distinct rows and columns: each individual row

corresponds to a single frame in the SF, while each column rep-

resents the number of nodes that are yet to be resolved in the

second contention period. As such, the far-left column signifies

the maximum number of unresolved nodes and the far-right

column represents the situation where all nodes have been re-

solved, i.e., the number of unresolved nodes has reached zero.

It should be noted that type of states are not present in the

Markov state diagram, given that node collision can only occur

when at least two nodes are available for picking the same slot

number in the random selection process.

Every state in this second logical area of the Markov model is

accessible from all the states of its preceding frame (or previous

row) that lie exactly above or on its left. This carries the physical

meaning that the number of unresolved nodes can either remain

the same or decrease when moving to the next frame. The tran-

sition probability from state to state equals to

the probability of having out of a current total of unresolved



KALFAS et al.: SATURATION THROUGHPUT PERFORMANCE ANALYSIS 3781

nodes making a unique number choice and, consequently, get-

ting resolved. This probability is provided by the relation [24]

(3)

where is the number of slots the nodes are choosing from,

i.e., the slots contained in a single RRF, and

.

A complete summary of all the non-null one-step transition

probabilities is provided as follows:

(4)

for .

The “0, n” notation in the first part of (4) represents theWAIT

state. The third part of (4) denotes that, once reaching a state

where all nodes have been resolved, the second contention pe-

riod is over and the CO initiates the transmission of sequential

DFs until the end of the SF. To this end, the states of the form

correspond to effective packet transmission, so that the ag-

gregate probability of the system residing in DATA_TX is

(5)

Accordingly, all the rest states of the form for

correspond to the second contention period and therefore

(6)

All probabilities including can be calculated by

exploiting the single-step transitions from all possible states in

the preceding row. Every SSP is derived by the sum of

all the states that reside in the previous frame and on the left,

multiplied by the corresponding transition probabilities. To this

end, the SSPs for all states can be expressed as

(7)

for .

For , the respective expression describing the transition

from the WAIT state to the is given by

(8)

By utilizing the fact that each of the frames, independently

of its type, is of equal duration we derive that

(9)

Using (1), (7), and (8), is found to be

(10)

By utilizing (2)–(4), (8), and (10), (7) can be recursively

solved yielding all required values, which can be then

used in (5) to enable the calculation of . Finally, in order to

calculate , we also need to specify the and values.

According to the protocol rules, is defined as

(11)

where is the propagation delay in the wireless medium

and , and are the transmission delays

of the POLL, ID, and ACK packets, respectively. Correspond-

ingly, is defined as

(12)

where is the transmission delay of the DATA packet.

Equations (11) and (12) correspond to the time duration of the

RRF and DF frames, respectively, in the general scenario where

no packet rescheduling is taking place. In the latter case though,

(11) and (12) become (13) and (14), respectively, where

corresponds to the number of DFs in the SF. Notably, if

the appropriate values are chosen so that , then

.

IV. PERFORMANCE RESULTS

To evaluate the validity of our proposed model, we have

produced and compared both analytical and simulation results

using our custom made event-driven simulation tool written in

Java. The employed network configuration comprises 10 RAUs

in a bus topology, with each RAU servicing five end users

under saturation load conditions, as it is schematically depicted

in Fig. 4. Table I summarizes the full specification parameters

of the simulation run and of the respective analytical model

where applicable.

(13)

(14)
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Fig. 4. Performance evaluation configuration.

TABLE I
SIMULATION PARAMETERSWITH SATURATION TRAFFIC MODEL

Fig. 5 depicts the saturation throughput results obtained by

both the analytical model and the respective simulation tool,

for different optical capacity availability factors denoted by the

ratio and ranging from 10% to 90%. Throughput is dis-

played both in its normalized form as well as in bits per second,

taking into account that themaximum possible throughput value

corresponds to the case where all employed RAUs can simulta-

neously transmit data packets at line rate.

Fig. 5(a) displays throughput for 155 Mbps bit rate that has

been already shown experimentally to allow for successful mul-

tiuser connectivity in 60 GHz RoF networks [25]. As can be

noted, throughput increases almost linearly and in total accor-

dance with the ratio growth. In addition, the theoretically

obtained results practically coincide with the simulation-based

outcomes experiencing only negligible differences up to a max-

imum of 1%. The good agreement between theory and simula-

tion confirms the validity of our model, revealing also the al-

most linear dependence between throughput and , which

indicates the nearly optimum capacity exploitation offered by

the proposed MT-MAC in this dual medium platform. Fig. 5(b)

displays the corresponding results for the same configuration

but at 1 Gbps wireless data rate. As can be noted, the transi-

tion to a higher bit rate yields a slightly deteriorated throughput

performance of up to 2% when all other network and traffic pa-

rameters remain unchanged. This owes mainly to the combined

effect of the reduced packet durations obtained as the bit rate in-

creases and of the fiber propagation delay that remains constant.

The RRF duration, as defined in (13), becomes almost indepen-

dent of the bit rate since the transmission delays of the relatively

small-size POLL, ID, and ACK packets are negligible with re-

spect to the fiber propagation delay . This means that the

total time required for transmitting all RRFs and completing the

second contention period will be almost constant and bit-rate

independent, primarily determined by since cor-

responds only to small cell radii. However, this will not be the

case for the DFs that have a greater size than the RRFs so that

their duration will still depend upon the bit rate, as can be seen in

(14). Having the RRF duration constant and downlimited by the

Fig. 5. (a) Throughput versus ratio performance results for wireless bit
rate of 155 Mbps. (b) Throughput versus ratio performance results for
wireless bit rate of 1 Gbps with standard and extended SF size.

quantity and the DF duration decreasing as the bit rate

increases to 1 Gbps, the ratio of DFs duration within a certain SF

will decrease leading to slightly lower throughput values. This

can be, however, compensated by increasing the number of DFs

incorporated in an SF and this case is also depicted in Fig. 5(b).

The parallel extension of the SF to a size analogous to the bit rate

increase (i.e., from 500 to 3200 for the 155Mbps to 1 Gbps tran-

sition) renders the RRF-induced delays again negligible, owing

to the enhanced number of DFs being transmitted without re-

running the second contention period. In this way, throughput

performance recovers to its original metrics.

Fig. 6(a) and (b) illustrates protocol’s scalability performance

for a growing number of nodes per RAU and a rising number

of participating RAUs in the network, respectively. Each curve

represents one of three distinct ratio configurations that

were investigated, namely 30%, 50%, and 80%. Fig. 6(a) elab-

orates that throughput values remain practically immutable as

the number of nodes grows from 2 to 20, displaying only a

slight performance degradation of less than 1%, mainly due to

the enhanced wireless arbitration processes. The same applies to

Fig. 6(b) that depicts the throughput performance as the number

of RAUs employed in the network increases from 10 up to 128,

thus illustrating protocol’s behavior as the optical round-trip

delay multiplies, affecting in principle the RAUs located the far-

thest from the CO. The RAU modules are considered equally

spaced with 50 m inter-RAU fiber intervals, producing a total

fiber length between 0.5 and 6.4 km depending on the number

of RAUs involved. As can be noted, only a small performance

degradation of up to 0.5% appears in the simulation-based curve

for a number of RAUs equal to 128, while the respective curve

originating from the mathematical analysis remains constant ir-

respective of the antennae elements incorporated. This small

difference between analysis and simulation owes mainly to the

additional fiber propagation delay emerging due to the consider-

ably longer bus lengths as the number of RAUs increases, which

is not taken into account in our mathematical model. It is im-

portant to note that throughput deliverance remains essentially

unscathed even when the number of RAUs escalates by a factor

of 1000%, confirming the increased scalability characteristics
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Fig. 6. (a)Throughput versus number of users per RAU for 30%, 50%, and
80% ratio, respectively. (b) Throughput versus number of RAUs in the
network for 30%, 50%, and 80% ratio, respectively.

of the protocol and the optimum exploitation of the underlying

infrastructure properties.

The validity of our model allows for its use toward acquiring

a more detailed insight into the role of specific MT-MAC pro-

tocol parameters and their performance impact. Fig. 7(a) il-

lustrates the effectiveness of the random slot number choice

scheme employed in the second contention period; the proba-

bility of achieving “resolve” for ranging RRF sequence lengths

is computed, assuming ten slots per RRF and different amount

of competing nodes scaling from 3 to 15 (i.e., from 30% up

to 150% node/slot ratios). As can be noted, “resolve” proba-

bility tends to be 1 at an early stage, essentially meaning that

all wireless nodes are effectively resolved within only a handful

of RRFs. The same is true even in the case where the number

of nodes greatly exceeds the number of available slots, thus

profitably restricting the second contention period’s duration in

the scope of single-digit amount of RRFs, for the benefit of

throughput-producing data exchange. Based on the aforemen-

tioned, we have established the 50% users/slots ratio as a close

to optimal choice for conducting the performance evaluation.

Fig. 7(b) presents both simulation and analytical throughput

results for three different ratios, namely 30%, 50%, and

80%, when a plethora of SF durations ranging from 10 to 1000

are employed and a static number of 5 wireless nodes served

by each RAU at 155 Mbps bit rate is considered. As expected,

throughput performance increases with , since the fraction of

the second contention period duration becomes relatively in-

significant as rises, so that a greater part of the SF is devoted

to the DATA_TX mode and as such to actual data transmission.

This can be easily explained by taking into account the fact that

the quantity of RRFs required for resolving all wireless nodes is

in fact independent of and as proved earlier remains minimal.

Moreover, throughput tends to reach a saturation point after a

certain number of frames, rendering a negligible gain in per-

formance for greater SF sizes. This can be verified by its mere

increment of only 0.3% for a frame number enhancement from

500 to 1000, allowing us to establish the number of

frames as a close to optimal SF size with respect to highest

throughput performance. Fig. 7(c) illustrates the same evalua-

tion for 1 Gbps wireless bit rate. As can be observed, throughput

follows the same behavioral pattern, with the only difference

Fig. 7. (a) Analytical probability results of resolve versus number of RRFs for
different users/slots ratios. (b) Throughput versus number of frames in an SF,
for different ratios at 155 Mbps wireless bit rate. (c) Throughput versus
number of frames in an SF, for different ratios at 1 Gbps wireless bit rate.

being that performance gains saturate at a slightly lower rate,

which allows for further throughput yields as increases. The

latter confirms the extended SF metrics presented in Fig. 5(b)

where the enhanced DF number compensates throughput losses

stemming from the manifold bit rate increase as has been ana-

lyzed earlier in this section. Finally, it can be noted that the an-

alytical results are once again in excellent agreement with the

respective simulation-based findings.

V. DISCUSSION

The successful MT-MAC protocol modeling provides a

number of significant advantages toward turning MT-MAC

schemes into reliable and viable approaches for high-band-

width 60 GHz wireless over fiber network applications. It

confirms protocol’s capability of almost optimally handling

capacity offered by the two different media, extracting at the

same time the optimal network and traffic parameterization

conditions. Even more important, it draws the roadmap for

effectively merging optical and wireless capacity arbitration

algorithms within a single mathematical framework, offering

the possibility to alter the complete protocol performance by

modifying only the optical or only the wireless arbitration

process. By combining this with the centralized topology of the

proposed 60 GHz RoF network that consolidates the complete

knowledge of all network and end-user parameters into the

CO, one can reach highly agile network configurations without

requiring any intervention to the hardware infrastructure.

The enhanced agility unleashed by our analytic MT-MAC

model can be highlighted in a simple example of different
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bandwidth sharing strategies. The scheme demonstrated so far

relies on the round-robin allocation algorithm in the optical

domain, issuing a fairness policy that works on a per RAU

basis so that each RAU element enjoys the same amount of

throughput. However, this can produce important variations on

the per node throughput values in case the distribution of wire-

less nodes among the RAUs experiences severe inequalities.

Our analytical model can easily reveal how the fairness policy

could be shifted with minor modifications to a user-centric

mode of operation, where not every RAU but every single user

within the entire network should perceive the same level of

bandwidth. This kind of policy would demand the transition

to an optical arbitration algorithm that allocates wavelengths

for time windows directly proportional to the number of active

nodes currently residing in each RAU. Our model shows that

this can be simply realized by merely changing the optical

waiting state from a “wavelength to RAU” to a “nodes to total

number of nodes” ratio, without requiring any change in the

wireless arbitration algorithm. This approach takes certainly

advantage of the knowledge about the nodes-per-RAU distri-

bution that can be indeed available at the CO, since the CO

collects all traffic requests within the RRF frames of the second

contention period.

Within the same frame, the same principle could be applied

solely in the wireless portion of the network as well as toward

supporting a more guaranteed service in modern high-band-

width applications with stringent delay requirements, like high-

definition video streaming. In that case, the time bandwidth al-

location in the wireless arbitration process would not be dis-

tributed in equal time portions amongst active nodes, but could

be in principle reserved according to specific prioritization cri-

teria depending on the type of traffic requested. As such, re-

quests for real time data would be ranked as higher priority

traffic in the polling sequence so as to allocate continuous frac-

tions of bandwidth. This indicates that the MT-MAC protocol

can incorporate a plethora of quality of service schemes fol-

lowing established techniques used in a variety of wireless pro-

tocols, with the most predominant being the IEEE 802.11e stan-

dard [26].

Finally, the centralized knowledge of the entire network con-

figuration can spur new energy reduction concepts for given 60

GHz network performance metrics. As the number of end users

and traffic requests changes, the CO can update its parameter

database and determine the minimum number of wavelengths

required for sustaining the same level of performance. To this

end, it can decide to switch off certain transceiver elements at

the CO, enabling constant and high-quality performance while

preserving always the minimum possible power consumption

levels.

VI. CONCLUSION

We have demonstrated an analytical model for the MT-MAC

protocol that has been recently introduced in [23] and provides

dynamic allocation for both the optical as well as the wireless

resources in 60 GHz RoF networks. The analytical MT-MAC

model is accompanied by a detailed saturation throughput

performance analysis, assuming ideal channel conditions. Our

model relies on a 2-D Markov chain approach for calculating

the end-user transmission probabilities, taking into account

contention for both the optical and the wireless layer resources.

An analytic formula for throughput computation is derived and

the respective results for different optical resource availability

factors are found to be in close agreement with simulation-based

outcomes, confirming the validity of the MT-MAC model. This

first successful MT-MAC modeling approach indicates that the

functional convergence of the optical and the wireless connec-

tion links can yield new and efficient capacity and resource

utilization concepts in 60 GHz RoF networks, equipping 60

GHz high-speed applications with high-level agile operational

frameworks.
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