
Saturn: An Automatic Test Generation System

for

Digital Circuits

Narinder Singh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Department of Computer Science

Stanford University

Stanford, CA 94305

ABSTRACT

This paper describes a novel test generation system, called

Saturn, for testing digital circuits. The system differs from ex-

isting test generation systems in that it allows a designer to

specify the structure and behavior of a design at a collection of

abstraction levels that mirror the design refinement process. The

system exploits the abstract design formulations to increase the

efficiency of test generation by ignoring irrelevant detail when-

ever possible, These capabilities are made possible by using gen-

eral representation and reasoning methods based on logic, which

provide a declarative representation of a design, and permit us-

ing a single inference procedure for reasoning both forwards and

backwards through the design for test generation.

I Introduction

With the advances being made in the technology of manu-

facturing digital devices it is now possible to build systems of

unprecedented complexity. An integral part of manufacturing

such systems involves testing them in order to ensure their cor-

rect operation. The complexity of these systems has led directly

to the complexity of generating a set of test vectors to verify the

correct operation of the device. Traditional approaches to test-

ing devices have either failed to distinguish between the most

detailed device structure and its design, or have provided a lim-

ited vocabulary for capturing higher level design descriptions.

The inability to represent and reason with abstract design for-

mulations will make it impractical to generate tests for complex

devices using traditional methods, where the cost is exponential

in the size of the design.

It is possible to manage the complexity of generating tests for

complex devices by capturing their description (their subparts

and the relationships between them) at a collection of abstrac-

tion levels. By capturing higher-level design formulations we can

dramatically improve the efficiency and quality of solutions for

test generation, and also reduce the sise of a design. It is pos-

sible to capture such high level design descriptions by recording

the evolving descriptions of a design during the refinement pro-

cess. Though not ideal for test generation, these descriptions are

much more efficient to reason with compared to a flat low-level

(e.g., gate level) description of a device.

This paper describes Saturn, a novel test generation system

that permits a designer to specify the structure and behavior of

a design at a collection of abstraction levels. The system ex-

ploits abstract design formulations to increase the efficiency of

test generation by reducing the depth and branching factor of

nodes in the search space. This paper is outlined as follows: sec-

tion 2 defines the test generation task, which is followed by the

description of the Saturn test generation system. Section 4 will

examine the important dimensions along which a design can be

abstracted to capture its higher level formulations, and section

5 will present some experimental results that demonstrate the

utility of reasoning with abstract design formulations. Finally,

Schlumberger Palo Alto Research

3340 Hillview Ave.

Palo Alto, CA 94304

the last section will conclude with a summary and a description

of our current research efforts.

II Test Generation

Test generation involves generating a collection of tests, which

check the functionality of a device. The design of the device

is assumed to be correct. However, the manufacturing process

which realizes the physical device from the design specification is

assumed to be imperfect. In this paper we are focusing on test-

ing the functionality of a device, and are not addressing testing

other properties, e.g., power consumption, and the steady state

voltage and current parameters. In addition, we are only inter-

ested in checking if a device is functioning or not, rather than

identifying the source of any failures.

The goal of test generation is to come up with a sequence of

tests, such that if the device satisfies these tests it is guaranteed

to be consistent with its design. This goal must be satisfied sub-

ject to certain constraints (e.g., minimizing the length of the test

vectors). In practice, it is impractical to generate the minimal

set of test vectors to test a device, so a small set is acceptable.

The result of the test generation process is a collection of tests,

where each test specifies the values for some inputs and the ex-

pected values at some outputs.

If the possible manufacturing failures for a device zue either

stuck-at 1 or stuck-at 0 faults at the boolean gate level, the test

generation process must generate tests to check each possible

fault for all the boolean gates in the device. For example, Figure

1 shows a S-bit adder device, which is made up of 2 full-adders,

which themselves are implemented using a collection of boolean

gates. Testing this device includes testing the inputs and output

of the the exclusive-or gate zorl to see if they are stuck-at 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
or stuck-at 0. A test for checking if the output is stuck-at 0

requires controlling the inputs so that the output should be 1 if

the device is working, and checking the actual output for these

inputs. For example, if the inputs of the exclusive-or gate are 1

and 0 and the output is 1, then the output cannot be stuck-at

0.

Testing a device is complicated by the fact that usually a

small fraction of its ports are directly controllable or directly

observable. In order to test a subpart of a device we must set

the directly controllable inputs so that the part being tested has

the desired inputs and its output is propagated to a directly

observable port. For the previous test for zorl this involves

controlling the inputs of the adder to 1 and 0, and observing

a 1 at the output if none of the internal nodes can be directly

controlled/observed. The exact value propagated to a directly

observable output is not important as long as it depends on the

output of the part being tested.

The key problem in testing is to generate a reasonably small

set of vectors that test all possible failures of a device. The exe-

cution of a single test is relatively inexpensive, and the number

of vectors required to test a device is linear in the number of

778 / ENGINEERING

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved.

r 1’“-”
!
1

Figure 1: A design for an adder with ‘L-bit inputs.

parts (61. A naive test generation algorithm would enumerate

all input/state combinations; however, the number of test vec-

tors generated will be unacceptably large. The key problem in

reducing the number of test vectors is the cost of test genera-

tion, which is exponential in the depth of the circuit [9]. This

complexity is compounded for sequential circuits where we may

have to “ unfold” a copy of a finite state machine for each possible

state.

The full-adder example was used to illustrate the test gener-

ation task for a simple device. For large real-world devices this

task is significantly more complex. In practice, the most opti-

mistic empirical estimates show that the cost of test generation

is proportional to the cube of the circuit size [6].

III Saturn

The inputs to the Saturn test generation system are: the de-

sign description for the device, the directly controllable inputs

and outputs of the device, user specified tests for parts of the

device, and the user specifications of the abstraction levels at

which the parts of a design are to be tested. These are speci-

fied in the language Corona (201, which defines a vocabulary of

terms in a prefix form of predicate calculus. The system uses

the resolution residue planning procedure [3] implemented in the

knowledge representation system MRS [19] to automatically gen-

erate tests from the design descriptions. The system exploits the

meta-level control capabilities of MRS to increase the efficiency

of test generation by selecting the most abstract formulation for

propagating values through a design. The performance of the

system is further enhanced by checking the consistency of evolv-

ing solutions, and sharing the results for one test with others by

caching tests and solutions to subtasks for these tests.

Saturn is an algorithmic test generation system similar to the

D-algorithm [18]. Both systems achieve tests by propagating

values forwards and backwards through a design. However, the

D-algorithm can only generate tests for stuck-at faults at the

boolean gate level, which is extremely inefficient for large de-

signs. Saturn, on the other hand, can generate tests for designs

described at arbitrary abstraction levels, with user specified fault

models. Hitest [17] and SCIRTSS [8] are examples of more recent

systems that attempt to exploit higher level design formulations

for generating tests, and allow the user to specfy heuristics to

control the reasoning process. The SCIRTSS system only per-

mits specification of designs at two specific abstraction levels,

as opposed to an arbitrary collection of abstraction levels. The

Hitest system uses the PODEM (71 algorithm for achieving tests,

where the system randomly generates inputs for the design and

propagates these forwards to see if these achieve a test. Unfor-

tunately, the random generation of inputs does not work well

for testing sequential circuits which require a specific sequence

of stimuli to propagate values from their inputs to an output.

The remainder of this section will illustrate the operation of

the Saturn test generation system for the 2-bit adder device

pictured in Figure 1.

A. Describing Designs

The design specification for the adder includes the behavior

for: the adder as a whole, the full-adders, the ten boolean gates,

and the connections. The following collection of facts specify the

structure of the design by specifying the components and their

type.

Andg(al) Port(al-in1 al). - -Conn(al-out olmin2)-. .

0uW) Port ol-in1 01).

Xorg(x1) Port 1

-.Conn(ol-out a3-inl), ..

xl-in1 xl). . -Conn(xl-in1 al-inl) . a.

Full-adder(fl) Port(f-in1 fl) . . .Conn(f-in1 xl-inl) . . .

Adder(a) Port(a-in1 a) . . .Conn(a-inl-s fl-inl).. .

The facts on the first line assert that al is an and gate, al-in1

is a port of the module al, and that the port al-out is connected

to the port ol-in2. The remaining lines similarly define the type

of the other components in the design and their interconnection.

The behavior of the modules and the connections is specified

by a collection of facts in conjunctive-normal-form (CNF)l. The

lower case letters in the following behavior descriptions stand for

universally quantified variables, and the ‘W ’ character is used

to define the time at which a fact is true. For example, the fact

al-inlQ3=O asserts that the value of the port al-in1 at time 3 is

0. In this design, connections have 0 delay, and the gates have

a delay of 5 time units.

Xonn(y 2) V ly@t=u v zOt=u

7al-inlOt= V al-out@t+5=0

-al-in20t=O v al-out@t+5=0

-Ial-inl@t=l V lal-in20kl V al-out@t+5=1
. . .

-ifl-inl@t=u V -7fl-in20t=v v lfl-cinQt=w V

lMajority(u v w)=x V fl-coutQt+l5=x

Majority(x y y)=y

Majority(y x y)=y

Majority(y y x)=y
. . .

-la-inlQt=u V -a-in29kv V a-out@t+30=u+v

The fact on the first line defines the zero delay behavior for

connections. It states that if y is connected to z, and if y at

time t has some value u, then z has the same value at the same

time. The next three facts define the behavior of the and gate

al. The first two state that the output is 0 if any input is 0,

and the third states that the output is 1 when both inputs are

1. The next fact defines the behavior of the carry output of the

first full-adder in terms of the majority function Majority. The

next three lines define this function, where the result is equal to

the two arguments that are identical. The fact on the last line

defines the behavior of the adder as a whole. In specifying these

behaviors, we have enumerated the input combinations (e.g., the

and gate al), made use of built in functions (e.g., +), and defined

new functions (e.g., Majority).

‘The rule A A B + C is equivalent to the clause -IA V YB V C.

APPLICATIONS / 779

B. Automated Deduction

The Saturn test generation system uses the resolution residue

planning procedure [3] for propagating values through a design.

This procedure takes a collection of facts in CNF, a set of as-

sumable facts (primitive actions that can be directly executed),

and a specification of a goal. The inference procedure returns

a set of assumable facts which together with the original de-

sign description entail the goal. An example of the basic rule of

inference for resolution is given below:

This rule states that if you know that the clauses on the top

two lines are true, then YOU can conclude that the clause on

the bottom line is also true. The resolution procedure matches

a literal in one clause against the negation of that literal in

the second clause. In this example the literal a in the first

clause is matched with its negation la in the second clause.

If such a match can be found, then we can conclude that the

clause consisting of the disjunction of the remaining literals from

the matching clauses must also be true. In this example the

remaining literals from the first clause are {p}, and those from

the second clause are {-y}. Therefore, the clause p V 7 must also

be true.

a v p

Ia v 7

Pv 7

The resolution residue planning procedure adds the negated

goal to the original design, and repeatedly applies the resolu-

tion rule of inference until a clause with all assumable literals

is derived. This procedure can be used to control and observe

values in propagating tests through a design. For the adder ex-

ample, suppose we are trying to control the output of the and

gate al to 1 at time 32. The negation of the goal, Tal-out932=1,

is resolved with the last clause of the behavior of the and gate

(defined earlier) to give al-inl@27=1 v -Ial-in2@27=1 by match-

ing the variable t to 27. In other words, in order to control the

output of the gate to 1 at time 32 both inputs must be controlled

to 1 at time 27. This inference procedure is repeated untill the

port to be controlled is one of the directly controllable inputs.

The same inference procedure can also be used to observe port

values. For example, suppose we want to observe the value 1 at

the first input of the same and gate at time 3. The negation of the

goa12, al-inlW=l, is resolved with the last clause of the behavior

of the and gate to give -al-in2@3=1 v al-outQ8=1 by binding the

variable t to 3. That is, in order to observe the value 1 at the

first input of the and gate at time 3 we must control the other

input to 1 at the same time and observe the value 1 at its output

at time 8. This inference procedure is repeated untill the port

to be observed is one of the directly observable outputs.

C. Algorithm

The system first examines the topology of the design and com-

putes the estimates of the number of inference steps required for

controlling and observing every port (separate estimates for con-

trolling/observing) based on the directly controllable inputs and

the directly observable outputs. The cost of controlling the di-

rectly controllable inputs is 1, and the the cost of controlling an

end port of a connection is one more than the cost of controlling

the starting port. The cost of controlling an output of a module

is one more than the sum of the costs of controlling all its inputs.

Similarly, the cost of observing a directly observable output is

1, and the cost of observing the starting port of a connection is

one more than the minimum of the costs of observing all the end

ports (e.g., the minimum at a fanout point). Finally, the cost of

2Goals for obseming port

is lal-in193=1.

values are negated, e.g., the goal for this example

‘80 / ENGINEERING

gies that the Saturn test generation system employs in order to

increase the efficiency of inference for test generation: consis-

tency checking, heuristics to guide search, and caching.

1. Consistency Checking

In general, there will be more than one choice at each decision

point in the search space. The goal of consistency checking is to

prune inconsistent paths in the search space as early as possible.

For example, it is impossible to control the output of the or

gate in a full-adder to 1 by controlling both its inputs to 1. In

choosing a subgoal sg; at a node in the search space, consistency

checking corresponds to seeing if it is possible to prove lsgi,

in which case this node is pruned. The utility of consistency

checking is dependent upon selecting the appropriate amount

effort in attempting to prove lsgi. The drawback of too little

effort is that inconsistencies are not caught early, and too much

effort has the potential drawback that fruitless work may be

done for consistent nodes.

The Saturn system performs consistency checking incremen-

tally by propagating the consequences of every choice through

the design. These consequences can propagate information for-

ward and backward through the design. In general, it is com-

putationaly inefficient to prove that a given choice is consistent,

since this task is non-semi-decidable. The Saturn system per-

forms limited consistency checking by only propagating the val-

ues of individual ports, and state variables. This is sufficient for

detecting contradictions for atomic clauses, but not for disjunc-

tive clauses. For example, it cannot detect that the four clauses

(aVb), (-aVd), (-aVb), and (aV-b) are mutually inconsistent.

If an alternative at a choice point is inconsistent with the cur-

rent state, it is pruned from the search space, and the system

backtracks to try an alternate path. Since inconsistencies are

not always detected immediately, chronological backtracking can

be inefficient. Saturn keeps track of the justifications for each

fact, and follows the justifications back to a choice point, and

tries another alternative at the source of the inconsistency. This

corresponds to dependency-directed backtracking [2], which dra-

matically improves the efficiency of test generation.

a. Heuristics to Guide Search

Consistency checking cannot eliminate search, since there may

be more than one consistent alternative at a choice point. The

Saturn system uses heuristics to select the most promising al-

ternative at a choice point. These heuristics are based on the

estimated deductive cost for controlling/observing a port value,

and the probability of being able to achieve this goal given the

current problem constraints.

The cost of a task is equal to the sum of the costs of

its subtasks, which can be looked up directly in the knowl-

edge base after the cost estimates have been calculated.

The probability of being able to achieve a task is equal to

l-yp+-ta (Q)-(W), where common fanouts are the

fanout points in the design that need to be controlled for the

task, Di is the size of the domain of possible values at fanout

point i, and Ni is the number of subgoals of the task that need

to control the fanout point i. As a preprocessing step the system

records the number Di with every fanout node, and also records

the fanout nodes that may need to be controlled for control-

ling/observing every internal port. We can calculate Ni for a

task by looking up the fanout nodes that need to be controlled

for its subtasks.

Let C(Ti) be the CO& of executing task Ti, let P(Ti) be the

probability of succeeding in achieving task Ti, and C(T;,Tj) be

the cost of executing task T; followed by executing task Tjm Since

the tasks are independent of each other:

C(Ti,Tj) = C(Ti) + (1 - P(Z)) X “(3;)
C(Ti,Tj) < C(Tj,Z) e z# > &

That is, the task with the largest probability of success-to-cost

ratio should be executed first.

The cost heuristics automatically select the more abstract de-

sign descriptions for propagating values since these have a lower

cost associated with them. For example, in order to control the

sum output of a full-adder it is cheaper to use the behavior of

the full-adder as a whole since this only requires controlling the

inputs of the full-adder. The cost of controlling the output of

the exclusive-or gate driving the sum output must be greater

since it includes the cost of propagating the values at the input

of the full-adder through the other gates and connections.

Generating tests for an adder with four bit inputs required

272 seconds on a Symbolics 3600 using the cost estimates to

select tasks. When the tasks were selected based on their order

of generation, the time required was more than 2 hours, a factor

of 26 slower.

3. Caching

In the Saturn test generation system, caching is used to share

the definition of how to test one component with other similar

components, and to share the solutions to subtasks for one test

with other tests.

Without test caching, the number of tests to generate is pro-

portional to the number of modules in the design, as opposed to

the number of different module types. For a hierarchically for-

mulated design with I levels and approximately n modules per

level (five for the full-adder), the number of modules to generate

tests for is approximately n ‘. If the average number of different

types of submodules of a module is m (three for the full-adder),

the number of modules to generate tests for is m’. Since n > m,

these savings can be quite substantial.

Generating tests for an adder with four bit inputs (with sub-

parts that are four full-adders) required 272 seconds with test

caching, and 1230 seconds without it. This represents a factor

of 4.5 improvement.

Test generation involves testing all the possible faults for a

device. These tasks share many subtasks in common. For ex-

ample, it is possible to control the output of an and gate to 0

by controlling its first input to 0. This backward propagation

is followed to the boundary of the enclosing hierarchy to find

a solution. This same solution (the values of the inputs at the

enclosing hierarchy boundary) can be cached with the other sub-

goals back to the hierarchy boundary (e.g., the first input of the

and gate can be controlled to 0 with these inputs).

For the 4-bit adder, the cost of test generation is reduced from

591 seconds to 272 seconds by caching solutions to subgoals.

This represents a factor of 2.2 improvement. These examples

have illustrated the savings for designs with one level of hier-

archy. These savings are multiplied for complex designs with

additional levels of hierarchy.

IV Exploiting Abstract Descriptions

One of the key features of the Saturn test generation system is

that it permits the user to extend the vocabulary for describing

designs. This allows a designer to specify a design in terms of the

objects, functions and relations that he thinks of. We can exploit

the higher level formulations of a design for test generation by

capturing them in the design refinement process. By capturing

design descriptions in predicate calculus it is possible to use the

same descriptions to reason forwards and backwards through a

design, as is needed for an automatic test generation system.

APPLICATIONS / 781

Reasoning with higher level design formulations increases the

efficiency of test generation by reducing the complexity of the

descriptions. In this section we will examine following dimen-

sions along which a design can be abstracted to capture these

formulations: structural abstraction, functional abstraction, and

value abstraction. By abstracting a design we are augmenting

the original description with additional facts. We do not discard

the lower level descriptions.

A. Structural Abstraction

Structural abstractions corresponds to the case where a design

is augmented by a new module whose subparts are a collection of

existing modules. For example, creating a new full-adder module

whose subparts are the appropriate interconnection of the five

boolean gates. We must define the sum and carry outputs of

the full-adder as a function of its three inputs. The behavior

of the newly created module must be related to its subparts by

defining the relations between the values at its ports and the

values at the ports of its subparts (e.g., via connections).

By allowing the user to define structural abstractions we can

replace a subtree in the search space with a single node and

its children. For example, we can define the input/output rela-

tions for the full-adder as a whole as a table (e.g., the Majority

function), and directly look up the solutions for controlling an

output. Using the lower-level design formulation we must rea-

son backwards through the gates of the full-adder. The search

space at the lower level includes: paths with no solutions, differ-

ent paths with identical solutions, and solutions with redundant

conjuncts [22]. R easoning with structurally abstracted design

formulations for test generation provides a savings which is ex-

ponential in the difference between the depth of the original

and reformulated description. In addition, by sharing the de-

scriptions of identical components using prototypes the size of

a structurally abstracted design can be made proportional to

the number of distinct module types, as opposed to the total

number of modules.

B. Functional Abstraction

Functional abstraction corresponds to the case where the be-

havior of an existing module is specified in terms of a newly de-

fined function. For example, we can define the behavior of the 2

bit adder by writing clauses that enumerate all the input/output

combinations (16 clauses in all). Alternatively, we can define the

addition function + (including its properties, e.g., commutativ-

ity, associativity), and define the behavior of the adder in terms

of this function, as is done in the following CNF clause: +nl=x

v An2=y V out=x+y.

Functionally abstracting designs permits achieving tests using

constraint propagation. For example, if a subgoal of a test re-

quires controlling the output of an adder to 4122, we can achieve

this goal by propagating symbolic constraints through the de-

sign. That is, the goal out=4122 is replaced by the new subgoals

inl=x A in2=y A x+y=4122. The original design formulation forces

the inference mechanism to employ search to solve this problem.

That is, the system must prematurely select input combinations

that add up to 4122, e.g., 0 and 4122, 1 and 4121, etc. The

size of the search space using this strategy is exponential in the

depth of the circuit. For a system of linear constraints, func-

tional abstraction reduces the cost to a polynomial function of

the number of constraints. However, if the constraints are non-

linear it may be advantageous to use search if there are good

heuristics to guide the inference mechanism to paths likely to

have solutions.

C. Value Abstraction

Value abstraction corresponds to the case where the behavior

of an existing module is defined in terms of more abstract values.

Tests

Flat

Tests

Refined

Flat

Time

Refined

Time

Table 1: Utility of refining designs.

The original values are partitioned into equivalence classes such

that all values in the same equivalence class map to a unique

value at the abstract level. For example, at the lower-level we

can model the behavior of a multiplier in terms of integer values

at its inputs and outputs. At a more abstract level we can define

the behavior of the multiplier in terms of the objects positive and

negative, i.e., --iinl=positive v An2=negative v out=negative, etc..

Controlling the output of the multiplier to a negative number

using the original design formulation requires prematurely se-

lecting specific integers at the inputs with opposite sign. Using

the value abstracted design description we find the two solu-

tions: inI=positive A in2=negative, and inl=negativer\ in2zpositive.

This delays the actual selection of specific values at the inputs,

some of which may be inconsistent with the current state.

Value abstraction reduces the branching factor of the nodes

in the search space by reducing the number of alternatives that

achieve a goal. A linear reduction in the branching factor re-

duces the size of the search space by a factor that is exponential

in the depth of the circuit.

V Experimental Results

In this section we will present examples that illustrate the

utility of abstracting and refining designs, and describe the com-

plexity of devices for which Saturn has been used. In these ex-

amples it is assumed that the possible failures are stuck-at faults

for the boolean gates.

Table 1 shows the utility of refining designs for a collection

of devices of increasing complexity. For example, adderi stands

for an adder with i bit inputs. The columns for the flat de-

sign formulation correspond to a black box description of the

device at a high level, which must be tested by testing all input

combinations. The columns for the refined design formulations

correspond to descriptions that have been refined to the gate

level’. The number of tests and time grows exponentially using

the high-level formulation alone, whereas the number of tests

remain roughly constant using the refined descriptions and the

time grows quadratically. For small devices the cost of test gen-

eration is cheaper using only the high level descriptions. How-

ever, for large devices both the time and quality of solutions

(smaller number of tests) improves using the refined descrip-

tions.

An example illustrating the utility of abstracting designs is

given in Table 2 for an adder with 4 bit inputs. The flat gate

level formulation corresponds to a description of the adder in

terms of boolean gates alone, while the hierarchical description

defines the adder in terms of 4 full-adders, which are them-

selves defined in terms of boolean gates. In addition to reducing

the time required to generate tests by a factor of 3.5, the ab-

stracted description provided better tests (a smaller set). This

is due to the imperfections of the test minimization algorithm.

The repeated application of the minimization algorithm at the

3Each adder has been refined into a collection of full-adders, which them-

selves are reE.ned into a collection of boolean gates.

782 / ENGINEERING

Formulation Time # Tests Cost Fat tor

Table 2: Advantage of abstracting a design description.

boundaries of the full-adders with a smaller set of tests provides

better solutions compared to a single application with a large

set of test vectors.

The largest design for which we have generated tests consists

of 3 multipliers and 2 adders (with 4 bit inputs). This design has

approximately 650 objects, seven levels of hierarchy and values

ranging from bits to integers, The Printer Adapter card of the

IBM PC is the most realistic example for which we have gen-

erated tests. The interesting aspects of this board are that it

has feedback paths, bi-directional signals, and tri-state busses.

The system generated 40 tests using a high level formulation

of the board in approximately 30 minutes4. Currently we are

in the process of generating tests for the motherboard of the

IBM PC-AT. This device is significantly more complex since it

includes complicated microprocessors (Intel 80286,87), and pe-

ripheral chips.

VI Conclusion

In order to generate tests efficiently for complex devices we

must reason with higher level design formulations. Existing test

generation systems have restricted the vocabulary for describing

designs, thus preventing a designer from specifying the higher

level design formulations that are created in the design refine-

ment process.

By capturing higher level formulations of a device we can re-

duce the size of the search space exponentially by reducing its

depth and branching factor. We have empirically validated this

by demonstrating that both the time and the quality of solutions

can be improved by reasoning with higher level design formula-

tions. Thus, by capturing a design formulation at a collection of

abstraction levels we can increase the complexity of the devices

that we can generate tests for.

We believe that this approach is suitable for large real-world

designs. At present we have demonstrated this for the printer

adapter card of the IBM PC, and we are in the process of model-

ing and generating tests for the motherboard of the IBM PC-AT.

Acknowledgments

This paper has benefited from comments and suggestions

by Mike Genesereth, Glenn Kramer, Mark Shirley, and Vineet

Singh. This research was funded in part by Schlumberger Palo

Alto Research.

REFERENCES

[l] Comerford, R. and Lyman, J. “ Self-Testing Special Re-

port,” Electronics, March 10, 1983, pp 109-124.

[2] Doyle, 3. “ Truth M aintenance Systems for Problem Solv-

ing,” AI-TR 419, M assachusetts Institute of Technology,

January, 1978.

[3] Finger, J. and Genesereth, M. “ Residue: A Deductive Ap-

proach to Design Synthesis,” HPP-85-1, Stanford Univer-

sity Heuristic Programming Project, January, 1985.

[4] Garey, M. and Johnson, D. Computers and Intractability:

A Guide to the Theory ojNP-Completeness, W.H. Freeman

and Company, 1979, pp 161-164.

PI

PI

PI

PI

PI

WI

Pll

PI

(131

D41

PI

PI

WI

PI

PI

WI

[=I

WI

Genesereth, M. et. al. “ The MRS Dictionary,” HPP-80-24,

Stanford University Heuristic programming Project, Jan-

uary, 1984.

Goel, P. “ Test Generation Cost Analysis and Projections,”

Proceedings of the 17th Design Automation Conference,

June, 1980.

Goel, P. “ An Implicit Enumeration Algorithm to Generate

Tests for Combinational Logic Circuits,” IEEE nansac-

tions on Computers, vol. c-30, no. 3, 1981, pp 215-222.

Hill, F. and Huey, B. “ SCIRTSS: A Search System for Se-

quential Circuit Test Sequences,” IEEE fiansactions on

Computers, May 1977, pp 490-502.

Ibarra, H. and Sahni, S. ‘Polynomially Complete Fault De-

tection Problems,” IEEE Transaction on Computers, vol.

C-24, no. 3, March 1976, pp 242-250.

Kramer, G. “ Employing Massive Parallelism in Digital

ATPG Algorithms,” Proceedings of the 1989 IEEE Inter-

national Test Conference, IEEE Press, pp 108-114.

Lai, K. “ Functional Testing of Digital Systems,” CMU-CS-

81-148, Carnegie-Mellon University, December, 1981.

Mark, G. “ Parallel Testing of Non-volatile Memories,” Pro-

ceedings of the 1989 IEEE International Test Conference,

IEEE Press, pp 738-743.

McCluskey, E. “ A Survey of Design for Testability Scan

Techniques,” VLSI D esign, December, 1984, pp 38-61.

McCluskey, E. “ Minimization of Boolean Functions,” Bell

System Technical Journal, 35, no. 6, November, 1956, pp

1417-1444.

Moszkowski, B. “ Reasoning about Digital Circuits,” STAN-

CS-83-970, Stanford University, June, 1983.

Nilsson, N. Principles of Artificial Intelligence, Tioga Pub-

lishing Company, Palo Alto, 1980.

Robinson, G. “ Hitest- Intelligent Test Generation,” Pto-

ceedings of the 1989 IEEE International Test Conference,

IEEE Press, pp 311-323.

Roth, J. “ Diagnosis of Automata Failures: A Calculus and

a Method,” IBM Journal of Research and Development,

vol. 10, pp 278-291, 1966.

Russell, S. “ The Complete Guide to MRS,” KSL-85-12,

Stanford Knowledge Systems Laboratory, June, 1985.

Singh, N. “ Corona: A Language for Describing Designs,”

HPP-84-37, Stanford University Heuristic Programming

Project, September, 1984.

Singh, N. “ MARS: A Multiple Abstraction Rule-Based

Simulator,” HPP-83-43, Stanford University Heuristic Pro-

gramming Project, December, 1983.

Singh, N. Ezploiting Design Morphology to Manage Com-

plezity. PhD thesis, Stanford University, August 1985.

‘Additional information for these examples can be found in 1221.

APPLICATIONS I 783

