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ABSTRACT 

This paper describes a novel test generation system, called 

Saturn, for testing digital circuits. The system differs from ex- 

isting test generation systems in that it allows a designer to 

specify the structure and behavior of a design at a collection of 

abstraction levels that mirror the design refinement process. The 

system exploits the abstract design formulations to increase the 

efficiency of test generation by ignoring irrelevant detail when- 

ever possible, These capabilities are made possible by using gen- 

eral representation and reasoning methods based on logic, which 

provide a declarative representation of a design, and permit us- 

ing a single inference procedure for reasoning both forwards and 

backwards through the design for test generation. 

I Introduction 

With the advances being made in the technology of manu- 

facturing digital devices it is now possible to build systems of 

unprecedented complexity. An integral part of manufacturing 

such systems involves testing them in order to ensure their cor- 

rect operation. The complexity of these systems has led directly 

to the complexity of generating a set of test vectors to verify the 

correct operation of the device. Traditional approaches to test- 

ing devices have either failed to distinguish between the most 

detailed device structure and its design, or have provided a lim- 

ited vocabulary for capturing higher level design descriptions. 

The inability to represent and reason with abstract design for- 

mulations will make it impractical to generate tests for complex 

devices using traditional methods, where the cost is exponential 

in the size of the design. 

It is possible to manage the complexity of generating tests for 

complex devices by capturing their description (their subparts 

and the relationships between them) at a collection of abstrac- 

tion levels. By capturing higher-level design formulations we can 

dramatically improve the efficiency and quality of solutions for 

test generation, and also reduce the sise of a design. It is pos- 

sible to capture such high level design descriptions by recording 

the evolving descriptions of a design during the refinement pro- 

cess. Though not ideal for test generation, these descriptions are 

much more efficient to reason with compared to a flat low-level 

(e.g., gate level) description of a device. 

This paper describes Saturn, a novel test generation system 

that permits a designer to specify the structure and behavior of 

a design at a collection of abstraction levels. The system ex- 

ploits abstract design formulations to increase the efficiency of 

test generation by reducing the depth and branching factor of 

nodes in the search space. This paper is outlined as follows: sec- 

tion 2 defines the test generation task, which is followed by the 

description of the Saturn test generation system. Section 4 will 

examine the important dimensions along which a design can be 

abstracted to capture its higher level formulations, and section 

5 will present some experimental results that demonstrate the 

utility of reasoning with abstract design formulations. Finally, 
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the last section will conclude with a summary and a description 

of our current research efforts. 

II Test Generation 

Test generation involves generating a collection of tests, which 

check the functionality of a device. The design of the device 

is assumed to be correct. However, the manufacturing process 

which realizes the physical device from the design specification is 

assumed to be imperfect. In this paper we are focusing on test- 

ing the functionality of a device, and are not addressing testing 

other properties, e.g., power consumption, and the steady state 

voltage and current parameters. In addition, we are only inter- 

ested in checking if a device is functioning or not, rather than 

identifying the source of any failures. 

The goal of test generation is to come up with a sequence of 

tests, such that if the device satisfies these tests it is guaranteed 

to be consistent with its design. This goal must be satisfied sub- 

ject to certain constraints (e.g., minimizing the length of the test 

vectors). In practice, it is impractical to generate the minimal 

set of test vectors to test a device, so a small set is acceptable. 

The result of the test generation process is a collection of tests, 

where each test specifies the values for some inputs and the ex- 

pected values at some outputs. 

If the possible manufacturing failures for a device zue either 

stuck-at 1 or stuck-at 0 faults at the boolean gate level, the test 

generation process must generate tests to check each possible 

fault for all the boolean gates in the device. For example, Figure 

1 shows a S-bit adder device, which is made up of 2 full-adders, 

which themselves are implemented using a collection of boolean 

gates. Testing this device includes testing the inputs and output 

of the the exclusive-or gate zorl to see if they are stuck-at 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
or stuck-at 0. A test for checking if the output is stuck-at 0 

requires controlling the inputs so that the output should be 1 if 

the device is working, and checking the actual output for these 

inputs. For example, if the inputs of the exclusive-or gate are 1 

and 0 and the output is 1, then the output cannot be stuck-at 

0. 

Testing a device is complicated by the fact that usually a 

small fraction of its ports are directly controllable or directly 

observable. In order to test a subpart of a device we must set 

the directly controllable inputs so that the part being tested has 

the desired inputs and its output is propagated to a directly 

observable port. For the previous test for zorl this involves 

controlling the inputs of the adder to 1 and 0, and observing 

a 1 at the output if none of the internal nodes can be directly 

controlled/observed. The exact value propagated to a directly 

observable output is not important as long as it depends on the 

output of the part being tested. 

The key problem in testing is to generate a reasonably small 

set of vectors that test all possible failures of a device. The exe- 

cution of a single test is relatively inexpensive, and the number 

of vectors required to test a device is linear in the number of 
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Figure 1: A design for an adder with ‘L-bit inputs. 

parts (61. A  naive test generation algorithm would enumerate 

all input/state combinations; however, the number of test vec- 

tors generated will be unacceptably large. The key problem in 

reducing the number of test vectors is the cost of test genera- 

tion, which is exponential in the depth of the circuit [9]. This 

complexity is compounded for sequential circuits where we may 

have to “ unfold”  a copy of a finite state machine for each possible 

state. 

The full-adder example was used to illustrate the test gener- 

ation task for a simple device. For large real-world devices this 

task is significantly more complex. In practice, the most opti- 

mistic empirical estimates show that the cost of test generation 

is proportional to the cube of the circuit size [6]. 

III Saturn 

The inputs to the Saturn test generation system are: the de- 

sign description for the device, the directly controllable inputs 

and outputs of the device, user specified tests for parts of the 

device, and the user specifications of the abstraction levels at 

which the parts of a design are to be tested. These are speci- 

fied in the language Corona (201, which defines a vocabulary of 

terms in a prefix form of predicate calculus. The system uses 

the resolution residue planning procedure [3] implemented in the 

knowledge representation system MRS [19] to automatically gen- 

erate tests from the design descriptions. The system exploits the 

meta-level control capabilities of MRS to increase the efficiency 

of test generation by selecting the most abstract formulation for 

propagating values through a design. The performance of the 

system is further enhanced by checking the consistency of evolv- 

ing solutions, and sharing the results for one test with others by 

caching tests and solutions to subtasks for these tests. 

Saturn is an algorithmic test generation system similar to the 

D-algorithm [18]. Both systems achieve tests by propagating 

values forwards and backwards through a design. However, the 

D-algorithm can only generate tests for stuck-at faults at the 

boolean gate level, which is extremely inefficient for large de- 

signs. Saturn, on the other hand, can generate tests for designs 

described at arbitrary abstraction levels, with user specified fault 

models. Hitest [17] and SCIRTSS [8] are examples of more recent 

systems that attempt to exploit higher level design formulations 

for generating tests, and allow the user to specfy heuristics to 

control the reasoning process. The SCIRTSS system only per- 

mits specification of designs at two specific abstraction levels, 

as opposed to an arbitrary collection of abstraction levels. The 

Hitest system uses the PODEM (71 algorithm for achieving tests, 

where the system randomly generates inputs for the design and 

propagates these forwards to see if these achieve a test. Unfor- 

tunately, the random generation of inputs does not work well 

for testing sequential circuits which require a specific sequence 

of stimuli to propagate values from their inputs to an output. 

The remainder of this section will illustrate the operation of 

the Saturn test generation system for the 2-bit adder device 

pictured in Figure 1. 

A. Describing Designs 

The design specification for the adder includes the behavior 

for: the adder as a whole, the full-adders, the ten boolean gates, 

and the connections. The following collection of facts specify the 

structure of the design by specifying the components and their 

type. 

Andg(al) Port(al-in1 al). - -Conn(al-out olmin2)-. . 

0uW) Port ol-in1 01). 

Xorg(x1) Port 1 

-.Conn(ol-out a3-inl), .. 

xl-in1 xl). . -Conn(xl-in1 al-inl) . a. 

Full-adder(fl) Port(f-in1 fl) . . .Conn(f-in1 xl-inl) . . . 

Adder(a) Port(a-in1 a) . . .Conn(a-inl-s fl-inl).. . 

The facts on the first line assert that al is an and gate, al-in1 

is a port of the module al, and that the port al-out is connected 

to the port ol-in2. The remaining lines similarly define the type 

of the other components in the design and their interconnection. 

The behavior of the modules and the connections is specified 

by a collection of facts in conjunctive-normal-form (CNF)l. The 

lower case letters in the following behavior descriptions stand for 

universally quantified variables, and the ‘W ’ character is used 

to define the time at which a fact is true. For example, the fact 

al-inlQ3=O asserts that the value of the port al-in1 at time 3 is 

0. In this design, connections have 0 delay, and the gates have 

a delay of 5 time units. 

Xonn(y 2) V ly@t=u v zOt=u 

7al-inlOt= V al-out@t+5=0 

-al-in20t=O v al-out@t+5=0 

-Ial-inl@t=l V lal-in20kl V al-out@t+5=1 
. . . 

-ifl-inl@t=u V -7fl-in20t=v v lfl-cinQt=w V 

lMajority(u v w)=x V fl-coutQt+l5=x 

Majority(x y y)=y 

Majority(y x y)=y 

Majority(y y x)=y 
. . . 

-la-inlQt=u V -a-in29kv V a-out@t+30=u+v 

The fact on the first line defines the zero delay behavior for 

connections. It states that if y is connected to z, and if y at 

time t has some value u, then z has the same value at the same 

time. The next three facts define the behavior of the and gate 

al. The first two state that the output is 0 if any input is 0, 

and the third states that the output is 1 when both inputs are 

1. The next fact defines the behavior of the carry output of the 

first full-adder in terms of the majority function Majority. The 

next three lines define this function, where the result is equal to 

the two arguments that are identical. The fact on the last line 

defines the behavior of the adder as a whole. In specifying these 

behaviors, we have enumerated the input combinations (e.g., the 

and gate al), made use of built in functions (e.g., +), and defined 

new functions (e.g., Majority). 

‘The rule A A B + C is equivalent to the clause -IA V YB V C. 
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B. Automated Deduction 

The Saturn test generation system uses the resolution residue 

planning procedure [3] for propagating values through a design. 

This procedure takes a collection of facts in CNF, a set of as- 

sumable facts (primitive actions that can be directly executed), 

and a specification of a goal. The inference procedure returns 

a set of assumable facts which together with the original de- 

sign description entail the goal. An example of the basic rule of 

inference for resolution is given below: 

This rule states that if you know that the clauses on the top 

two lines are true, then YOU can conclude that the clause on 

the bottom line is also true. The resolution procedure matches 

a literal in one clause against the negation of that literal in 

the second clause. In this example the literal a in the first 

clause is matched with its negation la in the second clause. 

If such a match can be found, then we can conclude that the 

clause consisting of the disjunction of the remaining literals from 

the matching clauses must also be true. In this example the 

remaining literals from the first clause are {p}, and those from 

the second clause are {-y}. Therefore, the clause p V 7 must also 

be true. 

a v p 

Ia v 7 

Pv 7 

The resolution residue planning procedure adds the negated 

goal to the original design, and repeatedly applies the resolu- 

tion rule of inference until a clause with all assumable literals 

is derived. This procedure can be used to control and observe 

values in propagating tests through a design. For the adder ex- 

ample, suppose we are trying to control the output of the and 

gate al to 1 at time 32. The negation of the goal, Tal-out932=1, 

is resolved with the last clause of the behavior of the and gate 

(defined earlier) to give al-inl@27=1 v -Ial-in2@27=1 by match- 

ing the variable t to 27. In other words, in order to control the 

output of the gate to 1 at time 32 both inputs must be controlled 

to 1 at time 27. This inference procedure is repeated untill the 

port to be controlled is one of the directly controllable inputs. 

The same inference procedure can also be used to observe port 

values. For example, suppose we want to observe the value 1 at 

the first input of the same and gate at time 3. The negation of the 

goa12, al-inlW=l, is resolved with the last clause of the behavior 

of the and gate to give -al-in2@3=1 v al-outQ8=1 by binding the 

variable t to 3. That is, in order to observe the value 1 at the 

first input of the and gate at time 3 we must control the other 

input to 1 at the same time and observe the value 1 at its output 

at time 8. This inference procedure is repeated untill the port 

to be observed is one of the directly observable outputs. 

C. Algorithm 

The system first examines the topology of the design and com- 

putes the estimates of the number of inference steps required for 

controlling and observing every port (separate estimates for con- 

trolling/observing) based on the directly controllable inputs and 

the directly observable outputs. The cost of controlling the di- 

rectly controllable inputs is 1, and the the cost of controlling an 

end port of a connection is one more than the cost of controlling 

the starting port. The cost of controlling an output of a module 

is one more than the sum of the costs of controlling all its inputs. 

Similarly, the cost of observing a directly observable output is 

1, and the cost of observing the starting port of a connection is 

one more than the minimum of the costs of observing all the end 

ports (e.g., the minimum at a fanout point). Finally, the cost of 

2Goals for obseming port 

is lal-in193=1. 

values are negated, e.g., the goal for this example 
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gies that the Saturn test generation system employs in order to 

increase the efficiency of inference for test generation: consis- 

tency checking, heuristics to guide search, and caching. 

1. Consistency Checking 

In general, there will be more than one choice at each decision 

point in the search space. The goal of consistency checking is to 

prune inconsistent paths in the search space as early as possible. 

For example, it is impossible to control the output of the or 

gate in a full-adder to 1 by controlling both its inputs to 1. In 

choosing a subgoal sg; at a node in the search space, consistency 

checking corresponds to seeing if it is possible to prove lsgi, 

in which case this node is pruned. The utility of consistency 

checking is dependent upon selecting the appropriate amount 

effort in attempting to prove lsgi. The drawback of too little 

effort is that inconsistencies are not caught early, and too much 

effort has the potential drawback that fruitless work may be 

done for consistent nodes. 

The Saturn system performs consistency checking incremen- 

tally by propagating the consequences of every choice through 

the design. These consequences can propagate information for- 

ward and backward through the design. In general, it is com- 

putationaly inefficient to prove that a given choice is consistent, 

since this task is non-semi-decidable. The Saturn system per- 

forms limited consistency checking by only propagating the val- 

ues of individual ports, and state variables. This is sufficient for 

detecting contradictions for atomic clauses, but not for disjunc- 

tive clauses. For example, it cannot detect that the four clauses 

(aVb), (-aVd), (-aVb), and (aV-b) are mutually inconsistent. 

If an alternative at a choice point is inconsistent with the cur- 

rent state, it is pruned from the search space, and the system 

backtracks to try an alternate path. Since inconsistencies are 

not always detected immediately, chronological backtracking can 

be inefficient. Saturn keeps track of the justifications for each 

fact, and follows the justifications back to a choice point, and 

tries another alternative at the source of the inconsistency. This 

corresponds to dependency-directed backtracking [2], which dra- 

matically improves the efficiency of test generation. 

a. Heuristics to Guide Search 

Consistency checking cannot eliminate search, since there may 

be more than one consistent alternative at a choice point. The 

Saturn system uses heuristics to select the most promising al- 

ternative at a choice point. These heuristics are based on the 

estimated deductive cost for controlling/observing a port value, 

and the probability of being able to achieve this goal given the 

current problem constraints. 

The cost of a task is equal to the sum of the costs of 

its subtasks, which can be looked up directly in the knowl- 

edge base after the cost estimates have been calculated. 

The probability of being able to achieve a task is equal to 

l-yp+-ta (Q)-(W), where common fanouts are the 

fanout points in the design that need to be controlled for the 

task, Di is the size of the domain of possible values at fanout 

point i, and Ni is the number of subgoals of the task that need 

to control the fanout point i. As a preprocessing step the system 

records the number Di with every fanout node, and also records 

the fanout nodes that may need to be controlled for control- 

ling/observing every internal port. We can calculate Ni for a 

task by looking up the fanout nodes that need to be controlled 

for its subtasks. 

Let C(Ti) be the CO& of executing task Ti, let P(Ti) be the 

probability of succeeding in achieving task Ti, and C(T;,Tj) be 

the cost of executing task T; followed by executing task Tjm Since 

the tasks are independent of each other: 

C(Ti,Tj) = C(Ti) + (1 - P(Z)) X “(3; ) 
C(Ti,Tj) < C(Tj,Z) e z# > & 

That is, the task with the largest probability of success-to-cost 

ratio should be executed first. 

The cost heuristics automatically select the more abstract de- 

sign descriptions for propagating values since these have a lower 

cost associated with them. For example, in order to control the 

sum output of a full-adder it is cheaper to use the behavior of 

the full-adder as a whole since this only requires controlling the 

inputs of the full-adder. The cost of controlling the output of 

the exclusive-or gate driving the sum output must be greater 

since it includes the cost of propagating the values at the input 

of the full-adder through the other gates and connections. 

Generating tests for an adder with four bit inputs required 

272 seconds on a Symbolics 3600 using the cost estimates to 

select tasks. When the tasks were selected based on their order 

of generation, the time required was more than 2 hours, a factor 

of 26 slower. 

3. Caching 

In the Saturn test generation system, caching is used to share 

the definition of how to test one component with other similar 

components, and to share the solutions to subtasks for one test 

with other tests. 

Without test caching, the number of tests to generate is pro- 

portional to the number of modules in the design, as opposed to 

the number of different module types. For a hierarchically for- 

mulated design with I levels and approximately n modules per 

level (five for the full-adder), the number of modules to generate 

tests for is approximately n ‘. If the average number of different 

types of submodules of a module is m (three for the full-adder), 

the number of modules to generate tests for is m’. Since n > m, 

these savings can be quite substantial. 

Generating tests for an adder with four bit inputs (with sub- 

parts that are four full-adders) required 272 seconds with test 

caching, and 1230 seconds without it. This represents a factor 

of 4.5 improvement. 

Test generation involves testing all the possible faults for a 

device. These tasks share many subtasks in common. For ex- 

ample, it is possible to control the output of an and gate to 0 

by controlling its first input to 0. This backward propagation 

is followed to the boundary of the enclosing hierarchy to find 

a solution. This same solution (the values of the inputs at the 

enclosing hierarchy boundary) can be cached with the other sub- 

goals back to the hierarchy boundary (e.g., the first input of the 

and gate can be controlled to 0 with these inputs). 

For the 4-bit adder, the cost of test generation is reduced from 

591 seconds to 272 seconds by caching solutions to subgoals. 

This represents a factor of 2.2 improvement. These examples 

have illustrated the savings for designs with one level of hier- 

archy. These savings are multiplied for complex designs with 

additional levels of hierarchy. 

IV Exploiting Abstract Descriptions 

One of the key features of the Saturn test generation system is 

that it permits the user to extend the vocabulary for describing 

designs. This allows a designer to specify a design in terms of the 

objects, functions and relations that he thinks of. We can exploit 

the higher level formulations of a design for test generation by 

capturing them in the design refinement process. By capturing 

design descriptions in predicate calculus it is possible to use the 

same descriptions to reason forwards and backwards through a 

design, as is needed for an automatic test generation system. 
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Reasoning with higher level design formulations increases the 

efficiency of test generation by reducing the complexity of the 

descriptions. In this section we will examine following dimen- 

sions along which a design can be abstracted to capture these 

formulations: structural abstraction, functional abstraction, and 

value abstraction. By abstracting a design we are augmenting 

the original description with additional facts. We do not discard 

the lower level descriptions. 

A. Structural Abstraction 

Structural abstractions corresponds to the case where a design 

is augmented by a new module whose subparts are a collection of 

existing modules. For example, creating a new full-adder module 

whose subparts are the appropriate interconnection of the five 

boolean gates. We must define the sum and carry outputs of 

the full-adder as a function of its three inputs. The behavior 

of the newly created module must be related to its subparts by 

defining the relations between the values at its ports and the 

values at the ports of its subparts (e.g., via connections). 

By allowing the user to define structural abstractions we can 

replace a subtree in the search space with a single node and 

its children. For example, we can define the input/output rela- 

tions for the full-adder as a whole as a table (e.g., the Majority 

function), and directly look up the solutions for controlling an 

output. Using the lower-level design formulation we must rea- 

son backwards through the gates of the full-adder. The search 

space at the lower level includes: paths with no solutions, differ- 

ent paths with identical solutions, and solutions with redundant 

conjuncts [22]. R easoning with structurally abstracted design 

formulations for test generation provides a savings which is ex- 

ponential in the difference between the depth of the original 

and reformulated description. In addition, by sharing the de- 

scriptions of identical components using prototypes the size of 

a structurally abstracted design can be made proportional to 

the number of distinct module types, as opposed to the total 

number of modules. 

B. Functional Abstraction 

Functional abstraction corresponds to the case where the be- 

havior of an existing module is specified in terms of a newly de- 

fined function. For example, we can define the behavior of the 2 

bit adder by writing clauses that enumerate all the input/output 

combinations (16 clauses in all). Alternatively, we can define the 

addition function + (including its properties, e.g., commutativ- 

ity, associativity), and define the behavior of the adder in terms 

of this function, as is done in the following CNF clause: +nl=x 

v An2=y V out=x+y. 

Functionally abstracting designs permits achieving tests using 

constraint propagation. For example, if a subgoal of a test re- 

quires controlling the output of an adder to 4122, we can achieve 

this goal by propagating symbolic constraints through the de- 

sign. That is, the goal out=4122 is replaced by the new subgoals 

inl=x A in2=y A x+y=4122. The original design formulation forces 

the inference mechanism to employ search to solve this problem. 

That is, the system must prematurely select input combinations 

that add up to 4122, e.g., 0 and 4122, 1 and 4121, etc. The 

size of the search space using this strategy is exponential in the 

depth of the circuit. For a system of linear constraints, func- 

tional abstraction reduces the cost to a polynomial function of 

the number of constraints. However, if the constraints are non- 

linear it may be advantageous to use search if there are good 

heuristics to guide the inference mechanism to paths likely to 

have solutions. 

C. Value Abstraction 

Value abstraction corresponds to the case where the behavior 

of an existing module is defined in terms of more abstract values. 

# Tests 

Flat 

# Tests 

Refined 

Flat 

Time 

Refined 

Time 

Table 1: Utility of refining designs. 

The original values are partitioned into equivalence classes such 

that all values in the same equivalence class map to a unique 

value at the abstract level. For example, at the lower-level we 

can model the behavior of a multiplier in terms of integer values 

at its inputs and outputs. At a more abstract level we can define 

the behavior of the multiplier in terms of the objects positive and 

negative, i.e., --iinl=positive v An2=negative v out=negative, etc.. 

Controlling the output of the multiplier to a negative number 

using the original design formulation requires prematurely se- 

lecting specific integers at the inputs with opposite sign. Using 

the value abstracted design description we find the two solu- 

tions: inI=positive A in2=negative, and inl=negativer\ in2zpositive. 

This delays the actual selection of specific values at the inputs, 

some of which may be inconsistent with the current state. 

Value abstraction reduces the branching factor of the nodes 

in the search space by reducing the number of alternatives that 

achieve a goal. A  linear reduction in the branching factor re- 

duces the size of the search space by a factor that is exponential 

in the depth of the circuit. 

V Experimental Results 

In this section we will present examples that illustrate the 

utility of abstracting and refining designs, and describe the com- 

plexity of devices for which Saturn has been used. In these ex- 

amples it is assumed that the possible failures are stuck-at faults 

for the boolean gates. 

Table 1 shows the utility of refining designs for a collection 

of devices of increasing complexity. For example, adderi stands 

for an adder with i bit inputs. The columns for the flat de- 

sign formulation correspond to a black box description of the 

device at a high level, which must be tested by testing all input 

combinations. The columns for the refined design formulations 

correspond to descriptions that have been refined to the gate 

level’. The number of tests and time grows exponentially using 

the high-level formulation alone, whereas the number of tests 

remain roughly constant using the refined descriptions and the 

time grows quadratically. For small devices the cost of test gen- 

eration is cheaper using only the high level descriptions. How- 

ever, for large devices both the time and quality of solutions 

(smaller number of tests) improves using the refined descrip- 

tions. 

An example illustrating the utility of abstracting designs is 

given in Table 2 for an adder with 4 bit inputs. The flat gate 

level formulation corresponds to a description of the adder in 

terms of boolean gates alone, while the hierarchical description 

defines the adder in terms of 4 full-adders, which are them- 

selves defined in terms of boolean gates. In addition to reducing 

the time required to generate tests by a factor of 3.5, the ab- 

stracted description provided better tests (a smaller set). This 

is due to the imperfections of the test minimization algorithm. 

The repeated application of the minimization algorithm at the 

3Each adder has been refined into a collection of full-adders, which them- 

selves are reE.ned into a collection of boolean gates. 
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Formulation Time # Tests Cost Fat tor 

Table 2: Advantage of abstracting a design description. 

boundaries of the full-adders with a smaller set of tests provides 

better solutions compared to a single application with a large 

set of test vectors. 

The largest design for which we have generated tests consists 

of 3 multipliers and 2 adders (with 4 bit inputs). This design has 

approximately 650 objects, seven levels of hierarchy and values 

ranging from bits to integers, The Printer Adapter card of the 

IBM PC is the most realistic example for which we have gen- 

erated tests. The interesting aspects of this board are that it 

has feedback paths, bi-directional signals, and tri-state busses. 

The system generated 40 tests using a high level formulation 

of the board in approximately 30 minutes4. Currently we are 

in the process of generating tests for the motherboard of the 

IBM PC-AT. This device is significantly more complex since it 

includes complicated microprocessors (Intel 80286,87), and pe- 

ripheral chips. 

VI Conclusion 

In order to generate tests efficiently for complex devices we 

must reason with higher level design formulations. Existing test 

generation systems have restricted the vocabulary for describing 

designs, thus preventing a designer from specifying the higher 

level design formulations that are created in the design refine- 

ment process. 

By capturing higher level formulations of a device we can re- 

duce the size of the search space exponentially by reducing its 

depth and branching factor. We have empirically validated this 

by demonstrating that both the time and the quality of solutions 

can be improved by reasoning with higher level design formula- 

tions. Thus, by capturing a design formulation at a collection of 

abstraction levels we can increase the complexity of the devices 

that we can generate tests for. 

We believe that this approach is suitable for large real-world 

designs. At present we have demonstrated this for the printer 

adapter card of the IBM PC, and we are in the process of model- 

ing and generating tests for the motherboard of the IBM PC-AT. 
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