
Saving Energy with Architectural and Frequency
Adaptations for Multimedia Applications

Chris Hughes
w/ Jayanth Srinivasan and Sarita Adve

Department of Computer Science

University of Illinois at Urbana-Champaign

MICRO 34, December 2001

Motivation (1 of 3)

Multimedia and communication will be critical workloads
Traditionally used ASICs, DSPs
Now critical for general-purpose processors

General-purpose processors have high energy consumption

Motivation (2 of 3)

Examine soft real-time multimedia applications
Each frame must be processed within deadline

Soft real-time � can miss a few deadlines
Leftover processing time = slack

Presence of slack � can slow processor to save energy

Motivation (3 of 3)

Many proposals for adaptive hardware to save energy
Dynamic voltage and frequency scaling (DVS)
Architectural adaptation

Instruction window size, issue width, functional units, …

How to control adaptation?

Contributions

Adaptation control algorithm for multimedia [outlined in ISCA ’01]
DVS + architectural adaptation
Reduces slack to save most energy possible

Interaction between DVS and architectural adaptation
Which is better and when?
Is combining them effective?

Results

Adaptation control algorithm effective
Eliminates most slack with few missed deadlines

DVS + architectural adaptation most energy efficient
DVS gives majority of gains for our suite
But other cases possible

Best architecture depends on presence of DVS

No DVS � simple architectures

With DVS � complex architectures
Significant implications for architecture design

Outline

Adaptation Control Algorithm

Experimental Methodology

Results

Conclusions

Control Algorithm Outline [ISCA ‘01]

(1) When to adapt?
Execution time variability at frame level

� Adaptation at frame granularity

(2) What to adapt?
Must predict time, energy of next frame for all configurations
Pick lowest energy configuration that can meet deadline

Use ISCA ’01 findings for prediction
• IPC almost constant
• Little time in memory stalls
• Instruction count changes slowly

Execution Time Prediction for a Frame

IPC constant ����
Get by profiling initial frame

Memory time small ����
Profile only one frequency

IC changes smoothly ����
Can use simple predictor
One prediction for all hardware

Execution cycles = x Instruction countIPC
1

���� Frame execution time dynamically predictable
Dynamic predictor needed only for frame instruction count

Energy prediction analogous

Adaptation Control Algorithm

Profiling Phase
For each hardware, H

ImaxH = Maximum instructions H can execute in deadline
EPIH = Energy per Instruction

Adaptation Phase
Predict instruction count for next frame
Choose hardware with Imax ≥≥≥≥ prediction and least EPI

Adaptation Control Algorithm

Profiling Phase
For each hardware, H, with architecture A

ImaxH = Maximum instructions H can execute in deadline

= Deadline ×××× FrequencyH ×××× IPCA

EPIH = Energy per Instruction

Adaptation Phase
Predict instruction count for next frame
Choose hardware with Imax ≥≥≥≥ prediction and least EPI

Adaptation Control Algorithm

Profiling Phase
For each architecture, A, measure IPCA at one voltage/freq
For each hardware, H, with architecture A

ImaxH = Maximum instructions H can execute in deadline

= Deadline ×××× FrequencyH ×××× IPCA

EPIH = Energy per Instruction

Adaptation Phase
Predict instruction count for next frame
Choose hardware with Imax ≥≥≥≥ prediction and least EPI

For each hardware, H, with architecture A

EPIH =

=

EPI = Energy per Instruction

AHH

HH
IPC f Time

Power Time
××××××××

××××
CA VH

2 fH
nsInstructio #

EnergyH

A

2
HA

IPC
VP ××××

CA ∝∝∝∝ PA = power at some base voltage, frequency

EPIH ∝∝∝∝

Adaptation Control Algorithm

Profiling Phase
For each arch, A, measure IPCA and PA at one voltage/freq
For each hardware, H, with architecture A

ImaxH = Deadline ×××× FrequencyH ×××× IPCA

EPIH = Energy per Instruction ∝∝∝∝ PA VH
2/IPCA

Adaptation Phase
Predict instruction count for next frame
Choose hardware with Imax ≥≥≥≥ prediction and least EPI

Adaptation Control Algorithm

Profiling Phase
For each arch, A, measure IPCA and PA at one voltage/freq
For each hardware, H, with architecture A

ImaxH = Deadline ×××× FrequencyH ×××× IPCA

EPIH = Energy per Instruction ∝∝∝∝ PA VH
2/IPCA

Adaptation Phase
Predict instructions: Max of past 5 frames
Choose hardware with Imax ≥≥≥≥ prediction and least EPI

Choosing Correct Hardware

Choose hardware with Imax ≥≥≥≥ prediction and least EPI

In profile phase
Build EPI-Imax table - order hardware in increasing EPI

In adaptation phase
Choose first entry in table with Imax ≥≥≥≥ predicted instructions

Hardware
(increasing EPI)

Imax

Adaptation Control Algorithm

Profiling Phase
For each arch, A, measure IPCA and PA at one voltage/freq
For each hardware, H, with architecture A

ImaxH = Deadline ×××× FrequencyH ×××× IPCA

EPIH = Energy per Instruction ∝∝∝∝ PA VH
2/IPCA

Order hardware by increasing EPI in EPI-Imax table

Adaptation Phase
Predict instruction count: Max of past 5 frames
Choose hardware with Imax ≥≥≥≥ prediction and least EPI

= First hardware in EPI-Imax table with Imax ≥≥≥≥ prediction

Modifications for Continuous DVS

At least one system with continuous DVS
� EPI-Imax table too big

Modified version of algorithm for continuous DVS systems
See paper

Outline

Adaptation Control Algorithm

Experimental Methodology

Results

Conclusions

Workload

Speech codecs
GSMenc, GSMdec
G728enc, G728dec

Video codecs
H263enc, H263dec
MPGenc, MPGdec

Audio (Music) codecs
MP3dec

Base Architecture Studied

1GHz out-of-order processor
8-issue, 128 entry instruction window
64KB L1 data (2 cycles)
1MB L2 data (20 cycles)
102 cycles main memory

Aggressive clock gating

Experimental Methodology (1 of 2)

Two sets of deadlines
Maximum and tighter

RSIM + Wattch for time and energy simulations

Experimental Methodology (2 of 2)

Processors evaluated
NoAdapt, Arch, CDVS, DDVS, CDVS+Arch, DDVS+Arch

Architectural adaptations
Issue width and instruction window size, functional units

DVS adaptations: Frequency from 100 MHz to 1GHz
Continuous (CDVS) or discrete (DDVS) with 100 MHz steps

5.6W1.45.25x IW, .5x FU

7.3W1.86.5x IW, .5x FU

9.1W2.17.5x IW

12.3W2.64Base

Mean PowerMean IPCArchitecture

Outline

Adaptation Control Algorithm

Experimental Methodology

Results

Conclusions

How Good is the Algorithm?

Missed deadlines
For all deadlines and processors, very few deadlines missed

Average across all apps = 2.2%
Maximum for a single app = 4.3%

Slack removed
Slack = Idle time between end of processing until deadline
Most slack removed
Remaining slack mostly from system limitations

Energy Savings

DVS very effective - average savings 68% to 78%

26
23 21 22

32

23

59

23 24

0

10

20

30

40

50

60

70

GSMe GSMd G728e G728d H263e H263d MPGe MPGd MP3

%
 N

oA
da

pt
 E

ne
rg

y
C

on
su

m
ed

CDVS

Energy Savings

DVS very effective - average savings 68% to 78%

Architectural adaptation effective, but much less than DVS

26 23 21 22
32

23

59

23 24

86 86

70 72 71
80

73
82 79

0
10
20
30
40
50
60
70
80
90

100

GSMe GSMd G728e G728d H263e H263d MPGe MPGd MP3

%
 N

oA
da

pt
 E

ne
rg

y
C

on
su

m
ed

CDVS Arch

Energy Savings

DVS very effective - average savings 68% to 78%

Architectural adaptation effective, but much less than DVS

DVS + Arch best
Average 5%-17%, max 30%
Overall, DVS gives majority of gains for our suite

26 23 21 22
32

23

59

23 24

86 86

70 72 71
80

73
82 79

26 23
16 17

32
23

59

23 24

0
10
20
30
40
50
60
70
80
90

100

GSMe GSMd G728e G728d H263e H263d MPGe MPGd MP3

%
 N

oA
da

pt
 E

ne
rg

y
C

on
su

m
ed

CDVS Arch CDVS+Arch

0%
20%
40%
60%
80%

100%

%
 F

ra
m

es
 C

on
fig

 U
se

d
.25x IW, .5x FU .5x IW, .5x FU .5x IW Base

Architectural Configurations Exercised

Most energy efficient architecture depends on presence of DVS
Without DVS, simple configurations (low IPC) chosen
With DVS, more aggressive configurations (high IPC) chosen

GSM G728 H263 MPG MP3 GSM G728 H263 MPG MP3

Arch CDVS + Arch

High IPC allows running at low frequency

Significant implications for architecture design

When Is Architectural Adaptation Beneficial?

When is it effective to have architectural adaptation with DVS?
Energy efficiency for given computation ∝

� Lower
e.g., simpler arch useful if app has little parallelism

Application has slack at lowest frequency
� Simpler arch can exploit this slack

Optimal frequency not supported by D-DVS

May have other opportunities with intra-frame adaptation

3
A

A
IPC

P 3
A

A
IPC

P

Conclusions

Adaptation control algorithm at frame granularity for DVS+Arch
Effectively reduces slack with few missed deadlines

DVS + architectural adaptation most energy efficient
DVS gives majority of gains for our suite
But other cases possible

Best architecture depends on presence of DVS

No DVS � simple architectures

With DVS � complex architectures
Significant implications for architecture design

Frame Sizes

26.1ms (1151 samples@44.1KHz)MP3dec

Audio (Music) Codecs

176x144, 33.3ms (30fps)MPGenc, MPGdec

176x144, 40ms (25fps)H263enc, H263dec

Video Codecs

625µs (5 samples@8KHz)G728enc, G728dec

20ms (160 samples@8KHz)GSMenc, GSMdec

Speech Codecs

Frame SizeApplication

Modifications for Continuous DVS

At least one processor has continuous DVS

���� table too long

A

2
HA

H IPC
VPEPI ××××∝∝∝∝

3
A

A2
IPC

PImax ∝∝∝∝

���� At each Imax, same architecture has least EPI

For VH » Vthreshold, VH ∝ fH
A

H

IPC Deadline
Imax

×
=

Continuous DVS

Curves connect same architecture at different frequencies

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0 250000 500000 750000
Imax

N
or

m
al

iz
ed

EP

I

Arch 1
Arch 2
Arch 3
Arch 4

3
A

A2
H IPC

PImax EPI ∝∝∝∝

Algorithm with Continuous DVS

Profiling Phase
For each arch A, measure IPCA and PA at one voltage/freq
Choose architecture with smallest PA / IPCA

3

This has smallest EPI for most values of Imax

Adaptation Phase
Predict instruction count for next frame
Use chosen architecture with frequency = Predicted instructions

Deadline x IPCA

Some modifications at minimum and maximum frequency

Instruction Count Predictor

Many predictors for execution time/processor utilization for DVS
Based on various averages of various past frames

Metrics
Prediction accuracy (most previous work)
Minimize missed deadlines - under-predictions

Best compromise (< 5% under-predictions)
MAXPAST(5) – Maximum of last 5 frames

Add leeway, hysteresis

Adaptation Overheads

Frame granularity implies
Adaptation overheads negligible for most cases

Can modify algorithm to include overheads
But not done in this study

Energy Savings

31 30
25 25

36
27

56

26 3026 23 21 22
32

23

59

23 24

86 86

70 72 71
80

73
82 79

0
10
20
30
40
50
60
70
80
90

100

GSMe GSMd G728e G728d H263e H263d MPGe MPGd MP3

%
 N

oA
da

pt
 E

ne
rg

y
C

on
su

m
ed

DDVS CDVS Arch

DVS + Architectural Adaptation vs. DVS Alone

DVS + Arch most energy efficient
But DVS gives majority of gains for our suite

Savings from DVS + Arch vs. DVS alone
Average 5% to 17% (depend on deadline, C vs. D-DVS)
Max savings for a single app – 30%

100 100

70 72

97 95 95 96

80

100 100

74 76

100 99 100 100 100

0

20
40

60

80
100

GSMe GSMd G728e G728d H263e H263d MPGe MPGd MP3

%
DV

S
En

er
gy

DDVS+Arch CDVS+Arch

Arch vs. CDVS

EP
I

Imax

CDVS configs (Base arch)
Arch configs

Arch better than CDVS for
these instruction counts

BC

When can Arch be better than CDVS?

EPI of Arch adaptation <<<< Base at all candidate frequencies

A

Arch vs. CDVS

EP
I

Imax

CDVS configs (Base arch)
Arch configs

Arch better than CDVS for
these instruction counts

BC

A

For G728, EPI of adapted architecture < Base for base frequency

But instruction count low ���� CDVS better

Even tighter deadlines could make Arch better

Arch + DDVS vs. DDVS
EP

I

Imax

C
B

Base
Less aggressive
Frequency
steps

Arch and Arch+DDVS
better than DDVS

Arch+DDVS better than DDVS

X1

Y X2

When is it effective to add Arch to DDVS?

Mean IPCs

2.38H263enc

2.70MPGenc

2.69H263dec

3.48MPGdec

1.63MP3dec

1.32G728dec

1.27G728enc

3.41GSMdec

4.09GSMenc

Mean IPCApplication

