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We describe a new approach to power saving and battery life extension on an untethered laptop
through wireless remote processing of power-costly tasks. We ran a series of experiments comparing
the power consumption of processes run locally with that of the same processes run remotely. We
examined the trade-off between communication power expenditures and the power cost of local
processing. This paper describes our methodology and results of our experiments. We suggest ways
to further improve this approach, and outline a software design to support remote process execution.

I. Introduction
Power management is one of the most challenging problems in
making portable computers more useful. Portable computers
have their greatest utility when they can truly be used any-
where at any time, and one of the greatest limitations to that
goal is battery power. Often AC power connections are not
available and the portable computer must run off its battery.
However, the battery life of existing and expected batteries is
not sufficient for many situations. Users must either alter their
behavior or limit their use of the portable computer to pre-
serve the battery’s charge. Any user whose portable computer
has run out of power while in the middle of a long air flight
understands the impact of insufficient batteries.

If the battery’s power capacity cannot be improved, the
other alternative is to find ways to use less power, preferably
with no impact on the user. Many researchers have looked at
this problem [3], [14], [19]. Solutions range from intelligent
management of the disk and screen [4], [7], [8], [13] to slow-
ing down the CPU clock rate [6], [23] or powering down com-
ponents of the computer not currently in use. Many of these
innovations have already found their way into commercial use,
a strong indication of the importance of the problem.

Wireless communication devices are becoming increasingly
common in portable computers, since they help solve one of
the other fundamental problems of portable computing: that
is, when wired connections are unavailable, wireless devices
can maintain network connectivity, allowing remote file ac-
cess, sending and receiving of email, and web browsing. Gen-
erally, wireless communication devices are regarded as con-
tributing to the power management problem, rather than the
solution, as they use significant power when sending and re-
ceiving. However, this paper demonstrates that wireless de-
vices can sometimes be used to save a significant amount of
battery power.

A portable computer’s battery power is drained by perform-
ing tasks for the user. Some of these, by their nature, must
be performed locally. For example, information must be dis-
played on the local screen. Other tasks, however, could be
performed anywhere, provided the results came back to the
portable computer. If the power cost of sending the task else-
where and receiving the results back is lower than the cost of
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running it locally, remote process execution could save battery
life for the portable computer.

This possibility makes little sense without wireless devices.
If the user can plug in a wired Ethernet card, he could probably
also plug in a power cord. But an untethered user can still
communicate via wireless networks. One realistic scenario is
an office in which untethered users can move around through
a ubiquitous wireless network, migrating processes to server
machines that have no power constraints.

In its simplest form, remote process execution for power
management would involve moving new tasks from the
portable computer to a server machine before the task start
running. The server would execute the task and ship the results
back to the portable computer. In the meantime, the portable
computer would continue running other tasks, going idle if
nothing else is to be done. If the user runs many tasks that
drain a lot of power, and the costs of moving the tasks to and
from a remote server are low enough, remote execution could
save a large amount of power and allow portable computers to
run untethered for much longer.

Since wireless cards themselves consume significant
amounts of power, there is no guarantee that migrating typical
realistic tasks would actually save power. This paper describes
experiments that have proved that such power savings are pos-
sible, and that the size of the savings can be very significant.
We compared the amount of power consumed by migrating
various large tasks off portable computers over a wireless de-
vice to the amount of power consumed by running the tasks
locally on the same portables. We discovered that significant
power savings are possible for certain common tasks of realis-
tic size. This paper describes our experimental methodology,
presents our results, analyzes those results, and suggests what
would be required to make remote process execution a feasible
power management tool for realistic environments.

II. Experimental Methodology
We ran an extensive series of experiments to determine if re-
mote process execution could save significant amounts of bat-
tery power. We identified a set of applications likely to profit
from remote execution and ran them in both local and remote
modes, measuring the battery power consumed in each case.
The experiments consisted of requesting a task on an unteth-
ered client machine, and either running it locally or migrating
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it to a tethered server machine. In the latter case, the server ran
the application and shipped the results back to the client when
completed.

This brief description ignores many important issues that
might influence the outcome of the experiment. Here we de-
scribe all the conditions under which we ran the experiments.
The results of the experiments are presented in Section 3.

The experiments were conducted on Dell Latitude XP
portable computers running the Linux operating system. Dell’s
rechargeable Li-ion battery rating is 14.4V 2200mAh, 2A.
Both the client and the server were Dell Latitude XPs in this
experiment. In realistic situations the server would likely be a
more powerful machine. We chose to use the same machine
for both client and server for two reasons. First, it was con-
venient for experimental purposes, since the wireless devices
available to us did not fit into any of our other machines, and it
allowed us to avoid issues of possible incompatibility between
the client and server machines. Second, it was a conservative
choice, since in realistic circumstances the server would run
faster, thus causing the client to lose less power while waiting
for its results.

The wireless device used for the experiment was the 915
MHz AT&T Wavelan card [1]. This network adapter con-
sumes 250 mW to achieve a data rate of 2 Mb/sec at ranges
up to 800 feet. In the basic experiments, we took great care to
insure that the Wavelan cards in the client and server were the
only devices using that portion of the electromagnetic spec-
trum within range of each other. The experiments were per-
formed in a location containing no other Wavelan cards or
other wireless communications devices. For the baseline re-
sults, we needed to know whether remote execution could ever
win, even in rather favorable circumstances. We added inter-
ference to the channel in later experiments, as described in
Section 3.2.

We chose three applications for test cases. These applica-
tions were chosen because they were known to be fairly large
and time-consuming, making them good candidates for power
savings by remote execution. The three tasks were a compi-
lation of a large program, text formatting of a 200-page docu-
ment using LaTeX, and Gaussian solution of a system of linear
algebraic equations. The compilation task performed signifi-
cant CPU processing, along with a good deal of disk activity
to read the source, write and read temporary files, and write
the resulting object and executable files. The text formatting
task performed a moderate amount of CPU processing, but rel-
atively little disk activity. The Gaussian elimination problem
performed trivial amounts of file access, but made very heavy
demands on the CPU and on memory. The size of the ma-
trix varied, but was never large enough to cause significant
amounts of virtual memory activity.

In all cases we were able to vary the amount of information
that had to be sent from the client to the server machine. In
the cases of the compilation and text formatting tasks, we ar-
ranged it so that the client and server each had copies of the
source, but that the client had altered some varying fraction of
the source. Thus, to run the process at the server the client
had to move only the altered fraction of the source. The client
and server stored previously computed object files correspond-
ing to unchanged sources, so the amount of work required to
perform these tasks varied depending on the fraction of data

changed. The amount of data shipped back by the compilation
and text formatting jobs was constant, since the executable or
Postscript document was always the same size. In the case of
the Gaussian solution process, the entire source matrix had to
be moved to the server, but we varied the size of the matrix,
thus varying the amount of data shipped and the amount of
work done. A larger source matrix required shipping a larger
result vector as well.

Neither the client nor the server performed any other user-
level activity during the course of the experiment. We made
no attempt to prevent the operating system from performing
its normal housekeeping activities, but we turned off many of
the Linux daemons that would typically run periodically in the
background. The periodic intrusion of these daemons into the
experiment could cause an undesirable noisy impact on power-
cost measurements. This decision allowed us to isolate the
actual costs and benefits of executing the tasks locally and re-
motely. In normal conditions these daemons would slightly
shorten the battery’s life.

Existing power-management techniques can have a dra-
matic impact on the amount of power consumed by a portable
computer running off its battery, so we controlled these tech-
niques carefully. Our research showed that screen timeout and
disk spindown were the most important power-management
tools. We set the screen timeout and disk spindown intervals
to one minute on the client machine. We also allowed the client
to go into idle mode during remote execution. We did not per-
mit the client machine to suspend, since the server would be
unable to ship the results back to a suspended machine. Since
the server was connected to AC power, it performed no power
management. Usually, the client screen timeout would occur
during local execution, but disk spindown would not. Typi-
cally, both screen timeout and disk spindown occurred on the
client during remote execution. The client generally went into
idle mode during remote execution. These power-management
settings are similar to the ones our portable computer users
typically set for normal situations.

We did not attempt to turn off the Wavelan card at any point
in the experiment. The Wavelan consumes 1.48 watts even
when it is neither sending nor receiving, so there were signif-
icant power costs to not turning the card off. However, if the
card is turned off, timeout or human intervention would be re-
quired to turn it back on when the results were to be shipped
back from the server. Doing so would have been neither real-
istic nor convenient for running the experiments.

Measurement of the power consumed by a task caused some
problems. The most accurate way to measure power consump-
tion would have been to insert appropriate electronic instru-
mentation between the battery and the computer it was driv-
ing. Practical problems with such instrumentation suggested
the use of less direct methods. The readily available metrics
for power currently in a battery are rather unreliable. The Dell
Latitudes used in these experiments use the Advanced Power
Management (APM) tools, which will report a battery’s charge
as a percentage of maximum. However, the APM measure-
ments are not very reliable. In some cases, the amount of
power reported by APM will go up over time, even though
the machine has remained untethered. In addition, the amount
of power expended to perform a particular task, as reported by
APM, varies widely.
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We considered two options for measuring the amount of
power consumed by a task. First, we could interrogate the
APM metric before the task, interrogate it again after the task
completes, and report the difference. Alternately, we could
completely charge a battery, repeatedly run the task until the
battery dies, and divide 100% battery life by the number of ex-
ecutions required to drain the battery. Our experiments showed
that the two methods produced substantially similar results,
but the use of the APM metric gave more stable variances then
the alternative method for the same number of runs. The re-
sults presented here rely on the APM metric.

Our experimental methodology was to fully charge the bat-
tery of the client portable, then repetitively perform tasks (ei-
ther locally or remotely) until no battery power remained. We
measured and recorded the power consumed for each task. Be-
cause of the noisiness of the APM metric, we performed nu-
merous runs to achieve sufficiently low variance. Since the
number of runs required caused the battery to discharge and
recharge hundreds of times, we were concerned that the bat-
tery’s power storage and consumption characteristics might
change over time. However, measurements done at the be-
ginning and the end of the experimental period showed no sta-
tistically significant difference in the battery’s capacity.

III. Experimental Results
We ran 220 experiments, consuming approximately 900 hours,
to obtain the data presented here. Typically, each point plot-
ted on the curves represents four to eight hours of experimen-
tation. All results are shown with 95% confidence intervals.
The compilations used real software packages designed in our
laboratory. The LaTeX texts were real papers and dissertations
written in our laboratory. As a result, some file sizes are not
round numbers.

A. Noiseless environment

The first part of the experiments was run in a noiseless environ-
ment. All major sources of noise (like other laptops equipped
with wireless cards) were isolated from the room where the
laptop experiments were performed. Figure 1 shows the power
consumption for local and remote execution of the compilation
process. The left bar of each pair shows the amount of power
used for local execution of the task, and the right bar for full
remote execution.1 The X axis shows the number of kilobytes
of C source code that were altered. The amount of work re-
quired to perform the compilation thus varies from point to
point. Also, the amount of data shipped over the wireless
link for remote execution varies with the amount of altered
code, since only altered modules were shipped. In the remote-
execution case, the server shipped back only stripped executa-
bles, object files were not shipped. In the local case, stripped
executables (6.9MB) were saved directly to disk. (We per-
formed the same experiment with unstripped executables. The
results were qualitatively the same, though the transmission
costs for the larger executables made the percentage improve-
ments smaller.)

1The regression equation is ������� �	��
��� � for local execution and ���� � ��������� � for remote execution The ��� values are 0.99 and 0.97, respectively.
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Figure 1: Power savings for remote execution of a compilation

For small amounts of changed code, which corresponds to
small amounts of work to be done by the compilation, mov-
ing the task to the remote server consumed more power than
local execution. The power cost of receiving the executables
from the remote machine, combined with power wasted by the
portable while waiting for the result, dominated any benefits.
However, as the amount of work increased, the value of mov-
ing the work off the portable computer became clear. For 500
kilobytes of altered source, shipping the task to the remote
server consumed less than half the battery power needed to
compile locally.

Some of the power cost of remote execution is due to using
the Wavelan card to move the data to the server and the results
back to the portable computer, while other components of the
cost reflect power wasted by the portable computer while wait-
ing for the results to come back. If one assumed that the server
had significantly more compute power than the portable com-
puter, the waiting period would have been much shorter, since
the more powerful server would have completed the compi-
lation faster. To isolate this effect, we measured the costs of
pure transmission of the required data and results. We pre-
compiled the source code for each case and stored the results
on the server. When the client portable requested remote exe-
cution of the task, instead of compiling we shipped the saved
results back immediately. This experiment shows the effect of
an extremely powerful server and gives some insight into the
amount of power the portable computer uses for data transport
versus the amount of power spent waiting idly for the server to
complete the task.

Figure 2 shows the difference between the power consumed
by local execution, by remote execution, and by simply ship-
ping data and results back and forth, using the compilation ap-
plication shown in Figure 1. The left bar of each group shows
the amount of power used for local execution of the task, the
middle bar for full remote execution, and the right bar for sim-
ply shipping the data and results over the wireless network.2

For zero bytes changed, the cost of remote execution is sta-
tistically indistinguishable from the cost of transmitting the
data and the results. Since the server stores the results of the
compilation with no changes made, this case is identical to
the pure transmission case, though minor amounts of work are

2The regression equation is ������� �	������� � for local execution, ���� � ��������� � for remote execution, and ������� ����
���� � for transportation cost.
The ��� values are 0.99, 0.97 and 0.88, respectively.
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Figure 2: Total power cost of local and remote execution com-
pared to transmission costs

done on the server to verify through a make utility that no re-
compilation is required. In the other cases, however, note that
the transmission costs are half or less of the costs of the re-
mote execution. The remainder of the costs occurs because
of various inefficiencies in how the portable computer behaves
while waiting for the compilation to complete. For example,
its Wavelan card enters idle mode for this time, but the idle
mode still consumes about 1.48 watts of power. The disk con-
tinues to spin for at least one minute after it was last accessed,
the screen displays an image for at least one more minute af-
ter the last key was pressed, and some other devices must be
considered in that total as well. Thus, if the computer had
a more efficient power-saving mode, remote execution would
have saved significantly more power, bounded by the transmis-
sion costs shown in this figure.

Figure 3 shows the power saved by remote execution for
the Gaussian solution of the system of algebraic equations.3

In this case, the size of the task is controlled by the number
of rows in the matrix. The entire matrix had to be shipped
and solution vector returned, in the case of remote execution.
For relatively small matrices, less than 500x500, the costs of
moving the computation were greater than the benefits, or the
results were statistically indistinguishable. But for larger ma-
trices, the savings were as great as 45%.

Unlike compilation, the Gaussian application performed
very little disk I/O. The savings shown on a large Gaussian
solution thus demonstrate that performing tasks remotely can
offer benefits even if the task is largely compute-bound. Trans-
portation expenses for the shipment of the data grow slower
than the workload, because they are quadratic with respect to
the size of problem, while the workload grows at a rate of
O(N3), where N is the number of simultaneous equations.

Figure 4 shows the results of migrating a text formatting
application. This application used LaTeX to format 30- to
200-page documents containing multiple figures, references,
and equations, making it a moderately large text formatting
process.4 Remote execution did not improve the power con-

3The regression equation is � � ��� ��� � ��� �
for local execution and

� � � � � �	� � ��� � for remote execution. The � � values are 0.99 and 0.99,
respectively.

4The regression equation is y=0.24x-0 for local execution and y=0.2x-0.1
for remote execution. The ��� values are 0.97 and 0.84, respectively.
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Figure 3: Power savings for remote execution of Gaussian so-
lution of a system of linear algebraic equations
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Figure 4: Power savings for remote execution of text format-
ting

sumed by this application. In most cases, there was no sta-
tistically significant difference between local and remote exe-
cution. Only for the case of 439 kilobytes of altered text was
the difference significant at the 95% level, and in this case re-
mote execution performed worse than local execution. There
are several possible explanations for the text formatting appli-
cation’s failure to benefit from remote execution. The most
obvious and most likely is that the application consumed less
than 1% of the total battery power, even at its heaviest work-
load. With such minor power consumption, adding anything
that itself consumes significant power (such as moving the re-
sult files back to the portable computer over the wireless link)
is likely to have a major impact on the total power consump-
tion. Note that the compilation and Gaussian elimination ap-
plications tended to consume 2% or more of the total battery
power, leaving more room for paying an up-front penalty to
reduce the overall costs.

The results presented so far were performed on an otherwise
unused medium. The only traffic in the Wavelan frequencies
in the testing area was generated by the migration of tasks and
results. In a realistic environment, the Wavelan frequencies
would be used for other tasks, including other machines also
trying to execute processes remotely. We performed further
experiments to determine the power- saving characteristics of
large applications in the presence of noise on the wireless net-
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Figure 5: Power savings for remote execution of a compilation
with noise in background

work. However, since text formatting did not show improve-
ments in the noiseless case, we did not perform experiments
for that application in the noisy environment.

B. Experimental data in noisy environment

Network noise has many different characteristics. Assuming
multiple senders and receivers, and multiple patterns of traffic
presented to the network, a vast number of different exper-
iments are possible. Our goal was to examine a reasonable
case, not to exhaustively examine the entire realm of possi-
bilities. However, we did want a challenging case, not a triv-
ial one, since the noise-free experiments had already given us
best-case results. We chose to introduce two new machines in
the environment. One of these machines opened a socket to
the other new machine and sent data down that socket as fast
as it could. We refer to this as saturated-socket noise. Since
the Wavelan cards use an Ethernet-style protocol where colli-
sions cause backoff and retransmission, we expected that the
interfering with communications would significantly impede
attempts to move data and results, but that it would not en-
tirely block those activities.

Of course, it would be possible to introduce multiple pairs
of communicating machines, or to direct some of the traffic
to either the portable computer being tested or its server. Ei-
ther of these options would be expected to cause even more
problems, and either is a defensible ”realistic” situation, so in
the future we may expand our experiments to include them.
Other variations in the noise experiments are also possible, in-
cluding more realistic forms of communication between the
noise-making machines, such as file transfer or attempts by
these machines to perform their own remote executions.

Figure 5 presents the effects of saturated-socket noise on
the compilation task.5 With this background noise, only the
largest compilation saved a statistically significant amount of
power by using remote execution, and its savings were only
around 20%, as opposed to a 51% improvement without noise.
Clearly a large amount of noise in the environment has a major
effect on the power savings achievable by remote execution.

5The regression equation is ������� �	� � ��� � for local execution and ���� � �	� 
���� � for remote execution in noisy environment. The � � values are
0.99 and 0.99, respectively.
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Figure 6: Power cost of transmission with and without noise
for compilation

Again, the power consumed in this experiment is partly due
to transmission costs and partly due to the power expended
by the portable while waiting for its results. Given that the
portable and the server now have to contend for the Wavelan
radio spectrum with a very heavy consumer, more collisions
and retransmissions occur while transmitting the remote exe-
cution data and results over the network, thus increasing the
amount of power consumed. The remainder of power con-
sumed is spent by the portable while waiting for the server
to complete its task. This distinction is relevant because dif-
ferent techniques would be required to reduce the costs of
each component. Reducing the power costs of transmitting
in a noisy environment would involve changing the wireless
protocol to cause fewer collisions, or to make collisions less
costly. Reducing the power costs of waiting would involve ei-
ther improvements in the portable’s power management soft-
ware, improvements in the wireless communications device’s
use of power, or reducing waiting times by using faster servers.
We believe that there might be also other ways to improve the
power cost characteristics of the remote processing.

The power-management tools available to us did not give
any indication of which effect causes the use of power, just
the amount of power used. Thus, we could not directly mea-
sure the fraction of power used for retransmissions versus the
fraction wasted waiting for results. Instead, we indirectly mea-
sured the contributions of these effects.

The cost of retransmissions was approximated by measur-
ing the power consumption of simple transmission. Figure 6
shows these costs. As in Figure 2, we measured the costs of
transmitting the data, fetching the results off the server with-
out recompiling, and transmitting the results back. Figure 6
shows the power consumed by this process without noise com-
pared to the power consumed with noise.6 These results are a
reasonable approximation for determining the power cost of
collisions and retransmissions due to noise. The figure shows
that the increased cost of transmissions in the noisy medium
consumed an additional 1.5% to 2.5% of the battery. We con-
jecture that the power consumed by increased transmissions is
similar in the normal remote execution case.

These costs are significant, and they almost fully explain

6The regression equation is y=3.8x+2.0 for the execution in a noisy envi-
ronment and y=1.6x-0.48 for the execution in a noiseless environment. The
��� values are 0.90 and 0.88, respectively.
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the increased costs for remote execution in the face of noise as
shown in Figure 5. The remaining component of cost is extra
battery power consumed in the noisy case while waiting for
the server to complete. This extra cost appeared to be almost
negligible, so the portable’s cost of waiting for a unit of time
is approximately the same in the noisy and noiseless cases.

Due to space limitations, we do not show the results from
the Gaussian elimination experiments with noise. They are
similar to the results from the compilation experiments.

IV. Discussion and Future Work
Our results show that remote execution of large tasks can re-
duce their power consumption by up to 50%. Better power-
management features added to portable computers in the fu-
ture, and wireless communications devices that consume less
power, will make the improvement even greater. The power
expended by the portable computer while waiting for results
to come back could be minimized by having idle modes that
are entered either on command or very aggressively, and that
consume very small amounts of power. The fact that there is a
significant difference in the client portable computer’s power
consumption for actual remote execution versus pure transmis-
sion of data and results (Figure 2) shows that the amount of
power expended purely on waiting is quite significant. Other
experiments done earlier in our work suggested that if the user
manually turns the portable completely off and turns it back on
again when the computation is complete, the amount of power
consumed by the portable is much, much lower. Of course,
this is not a practical way to operate in the real world, but
if the power-saving mode can come closer to expending zero
power, remote execution will show more benefits.

A. Improving Power Management

The high cost of pure data transmission shown in Figures 1 and
6 and the cost of listening to the channel suggest that certain
improvements in wireless communications devices could also
improve the performance of remote execution. Wavelan wire-
less cards, and wireless communications cards in general, are
fairly new phenomena that are not yet ubiquitous. As a result,
they have not been heavily optimized. The Wavelan card, for
example, operates in three modes: transmitting, receiving, and
sleeping. These modes take approximately 3 watts, 1.48 watts,
and .18 watts, respectively [1]. The transmission and receiving
modes consume as much power as a typical disk drive, which
is known to be one of the most power-consumtive devices in
a typical portable computer. Other devices, such as the Metri-
com communications card, have reduced these figures by a sig-
nificant amount. The Metricom card expends approximately 1
watt, .4 watts, and .1 watt for the same modes as the Wave-
lan card [22], but unfortunately at the cost of a much lower
data rate than the WaveLAN. Proxim RDA radios spend 0.375
watts in transmitting and receiving modes and 0.001 watt in
standby mode, with a data rate of 0.242 Mb/sec [16]. Future
improvements can be expected.

One particular area for improvement is minimizing the
amount of power spent by the local card in the power-costly
receiving mode. The use of a broadcast medium, and the re-
quirement that the portable computer receive messages that it
might not be expecting (which is very useful for any number

of purposes), mean that some power must be expended exam-
ining all incoming packets to see whether they are destined for
the local node. Designs that are able to synchronize communi-
cation and allow the local card to spend some time in sleep
mode without the loss of messages have promise for mini-
mizing these power costs. Such designs will not only benefit
power consumption for remote execution, but will generally
allow portable computers with wireless cards to remain truly
idle at minimal power cost in a shared wireless network envi-
ronment. Communication cards that are able to remain alert
even when the portable itself is in suspend mode, waking only
when its own message arrives, would also be helpful.

B. A Power-Conserving Infrastructure

Although power savings are possible through remote exe-
cution, considerable work remains before these savings be-
come available to average users. Our experiments used spe-
cial scripts that performed each migration and sent the results
back. Other scripts ensured that the server stored the appro-
priate data and that only the required data was sent from the
client portable to the server. However, ordinary users cannot
be expected to be able to create such tricky scripts themselves.
Simply using normal remote execution has disadvantages as
well. If the data files are stored on the portable, it will spend
power moving them to the remote machine. If not, the portable
cannot operate disconnected. Generally, a transparent facility
would be preferable. Common use of remote execution for
power management will require a user-friendly infrastructure.

This infrastructure will require several important compo-
nents. First, it will require the ability to remotely execute a
task and deliver the results back in an efficient way. Prelimi-
nary tests have shown that the mechanism used to transport the
data from client to server and back can have a dramatic impact
on the power expended.

Second, the infrastructure will require simple replication
mechanisms that allow the client and server to synchronize
replicas of the required data. Such replication mechanisms
will allow users to ignore the difficult issues of exactly which
pieces of data need to be sent to the server. Moreover, by
running part of the replication algorithms when the portable
computer is tethered (at least to power, perhaps to a wired
network), the infrastructure can minimize the amount of data
that would have to be sent to perform the task remotely. Intu-
itively, if an earlier replication operation had already moved all
the data associated with one of the compilations in Figure 1,
for example, the transportation costs shown in Figure 2 would
have been lowered.

Third, proper remote execution of a job requires ensuring
that all conditions at the server machine are the same as at
the client. For example, if the server has an older version of
a library than the client does, the resulting program will be-
have differently if compiled remotely than if compiled locally.
Many other issues related both to the user’s personal environ-
ment and preferences, and to the general system environment
on the two machines, can make providing a consistent execu-
tion environment challenging. We hope to obtain insight on
this problem from projects that execute processes remotely for
different purposes [12], [17], [18]. These and similar projects
have dealt successfully with these challenges.
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Fourth, the infrastructure will need to assist the user in deter-
mining when to execute a task remotely. As the results in Sec-
tion 3 show, only jobs above a certain size benefit from remote
execution, and small jobs can actually waste power by execut-
ing them remotely. Therefore, the system must not execute all
jobs remotely, and not even all jobs of particular types. The
infrastructure can supply varying levels of support for remote
execution. A very simple form of support would be to provide
users with a command to execute a job remotely. While sim-
ple, this puts a heavy burden on the user to decide whether a
particular job is suitable for remote execution. A more com-
plicated alternative would be for the user to provide the sys-
tem with hints about when a job is and is not likely to profit
from remote execution. For example, makefiles could be aug-
mented with hints about whether or not particular targets are
likely to profit. In its most complex form, the infrastructure
could attempt to deduce automatically whether particular jobs
were likely candidates for remote execution.

A major component of this last problem is identifying ex-
actly which characteristics of a task are likely to cause it to
consume major amounts of battery power. Clearly, disk ac-
cesses are important, but it is less clear how many disk ac-
cesses are required for a job to be a good candidate. Very
large processes that will require substantial amounts of vir-
tual memory activity may perform few file system accesses,
but may actually exercise the disk heavily. The results we
obtained for Gaussian elimination clearly show that a suffi-
ciently large CPU load alone may be enough to make a task
power-expensive. A better understanding of which activities
in which quantities consume a great deal of power must guide
any approach to choosing jobs suitable for remote execution.
Design of a suitable infrastructure for remote execution is the
next phase of our research.

Substantial questions also exist in the realms of failure de-
tection and recovery, security, and server design for remote
execution support.

V. Related Work
Much research has been performed on power management, in-
cluding measurement techniques, approaches, methods, tech-
nical tools, etc. Power measurement techniques for laptop
devices and applications and benchmark strategies were dis-
cussed in [3], [14], and [22]. Many techniques to save laptop
power are based on switching off or slowing down the most
power-costly devices, such as the hard drive, CPU, and wire-
less network devices when they are not being used. [24], [19],
[13], [4], [7], and [8] discuss different strategies to reduce hard
drive power cost. Measurement results show significant power
savings where real hard drive access patterns were success-
fully predicted. The prediction of the moment when a hard
drive will be in use again is essential for all techniques based
on this idea, and it is relevant to all other devices having inertia
(floppy, CD, etc.). [23] suggests that power also can be saved
through slowing down clock speed, with limited negative im-
pact on performance. The authors of [2] use predictive caching
to reduce contention on the narrow-bandwidth wireless chan-
nel, consuming less power and allowing a mobile laptop to
keep working in circumstances of long and frequent discon-
nections. [6] proposes using idle periods to achieve a fairer

distribution of the workloads of busy periods. This paper also
includes a taxonomy of idle-detection algorithms and idleness
predictors. The idle periods can be used to run some tasks
whose results are needed in future, as well as for the discon-
nection of unused power-costly devices.

Wireless communication devices appear to be highly power-
consumptive. [20] discusses a technique of transmission sus-
pension at the moment when interference in the channel is de-
tected. It is presumed that interference is stationary and er-
godic. During the interference, the communication device can
be suspended, and power consumption by this device reduced.
[9] considered wireless data broadcasting as a way of dissem-
inating information to a massive number of clients equipped
with battery powered laptops. The user must periodically lis-
ten to the channel to obtain a consistent schedule of the data
that will be transmitted in the near future. At other times,
the user can disconnect his communication devices and save
power.

Laptop and battery manufacturers have provided another ef-
fort towards reducing power consumption. Several specifi-
cations [10], [5], [11] address issues of power consumption.
They are focused mainly on two points: providing system
functions allowing connection/disconnection of any particu-
lar device from the power source, and getting statistics about
current status of power consumption in the system, including
remaining battery capacity. These functions serve as a hard-
ware/software basis for multiple packages, such as Wildboar
[21], which supplies a user with power management utilities
that can be used in his scripts and applications.

[15] discussed a system designed around the InfoPad
portable terminal, a network I/O device with no computation
power, relying on network servers to run major processes. Lo-
cal computing is not possible here, even when it is less power-
costly.

For many years, process migration and delegation have been
discussed in the computer community for various purposes:
dynamic load balancing, improved reliability, reduced network
traffic. [18], [17], and [12] discuss these issues. However,
power consumption has not previously been identified as a
benefit of process migration.

VI. Conclusions
The experimental results presented in this paper demonstrate
that portable computers that execute their large tasks remotely
can save significant amounts of battery power. Savings of up to
51% were observed. While the tasks in our experiments were
large, they were not unrealistic. They represent tasks that are
typically performed by ordinary users every day. Thus, assum-
ing a suitable environment, remote execution has promise for
providing better battery life for future users. This technique
is largely orthogonal to other power-saving techniques, adding
to any benefits they provide.

The savings shown in this study are not by any means the
maximum savings possible. Larger tasks are likely to benefit
even more. More efficient ways of moving the data may also
provide greater savings. Improvements in wireless devices and
power management will provide further benefits. Preliminary
experiments under more optimistic conditions have shown up
to a five-fold increase in battery life.
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