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Abstract—Hybrid testing combines fuzz testing and concolic
execution. It leverages fuzz testing to test easy-to-reach code
regions and uses concolic execution to explore code blocks
guarded by complex branch conditions. As a result, hybrid testing
is able to reach deeper into program state space than fuzz
testing or concolic execution alone. Recently, hybrid testing has
seen significant advancement. However, its code coverage-centric
design is inefficient in vulnerability detection. First, it blindly
selects seeds for concolic execution and aims to explore new code
continuously. However, as statistics show, a large portion of the
explored code is often bug-free. Therefore, giving equal attention
to every part of the code during hybrid testing is a non-optimal
strategy. It slows down the detection of real vulnerabilities by
over 43%. Second, classic hybrid testing quickly moves on after
reaching a chunk of code, rather than examining the hidden
defects inside. It may frequently miss subtle vulnerabilities
despite that it has already explored the vulnerable code paths.

We propose SAVIOR, a new hybrid testing framework pi-
oneering a bug-driven principle. Unlike the existing hybrid
testing tools, SAVIOR prioritizes the concolic execution of the
seeds that are likely to uncover more vulnerabilities. Moreover,
SAVIOR verifies all vulnerable program locations along the
executing program path. By modeling faulty situations using
SMT constraints, SAVIOR reasons the feasibility of vulnerabil-
ities and generates concrete test cases as proofs. Our evaluation
shows that the bug-driven approach outperforms mainstream
automated testing techniques, including state-of-the-art hybrid
testing systems driven by code coverage. On average, SAVIOR
detects vulnerabilities 43.4% faster than DRILLER and 44.3%
faster than QSYM, leading to the discovery of 88 and 76 more
unique bugs, respectively. According to the evaluation on 11 well
fuzzed benchmark programs, within the first 24 hours, SAVIOR
triggers 481 UBSAN violations, among which 243 are real bugs.

I. INTRODUCTION

Software inevitably contains defects [14, 64]. A large

amount of these defects are security vulnerabilities that can

be exploited for malicious purposes [54]. This type of vulner-

able code has become a fundamental threat against software

security. Contributed from both academia and industry, au-

tomated software testing techniques have gained remarkable

advances in finding software vulnerabilities. In particular,

people have widely used fuzz testing [2, 68] and concolic

execution [51, 59] to disclose a great amount of vulnerabilities

every year. Nevertheless, the inherent limitations of these two

techniques impede their further applications. On one hand,

fuzz testing quickly tests a program, but it hardly explores

code regions guarded by complex conditions. On the other

hand, concolic execution excels at solving path conditions

but it frequently directs the execution into code branches

containing a large number of execution paths (e.g., loop).

Due to these shortcomings, using fuzz testing or concolic

execution alone often ends with large amounts of untested code

after exhausting the time budget. To increase code coverage,

recent works have experimented the idea of hybrid testing,

which combines both fuzz testing and concolic execution

[47, 66, 73].

The goal of hybrid testing is to utilize fuzzing in path

exploration and leverage concolic execution to solve hard-

to-resolve conditions. A hybrid approach typically lets fuzz

testing run as much as possible. When the fuzzer barely makes

any progress, the hybrid controller switches to the concolic

executor which re-runs the generated seeds from fuzzing.

During the run, the concolic executor checks each conditional

branch to see whether its sibling branches remain untouched.

If so, the concolic executor solves the constraints of the new

branch and contributes a new seed for fuzzing. In general, this

hybrid approach guides the fuzzer to new regions for deeper

program space exploration.

As shown in recent works [66, 73], hybrid testing creates

new opportunities for higher code coverage. However, its

coverage-driven principle unfortunately results in inefficiency

when the end goal is vulnerability detection. Two key issues

cause such inefficiency. First, existing approaches value all

the seeds from fuzzing equally. However, the code regions

reachable by a number of seeds might lack vulnerabilities

and testing them is expensive (e.g., constraint solving and

extra fuzzing). Consequently, hybrid testing often exhausts the

assigned time budget way before it finds any vulnerability.

Second, hybrid testing could fail to identify a vulnerability

even if it reaches the vulnerable code via the correct path. This

is because hybrid testing primarily concentrates on covering

the encountered code blocks in the manner of random exercise.

This strategy oftentimes has low chances to satisfy the subtle

conditions to reveal a vulnerability.

In this work, we design and implement SAVIOR (ab-

breviation for Speedy-Automatic-Vulnerability-Incentivized-

ORacle), a hybrid, bug-driven testing method. To fulfill this

goal, we use two novel techniques in SAVIOR:

Bug-driven prioritization: Instead of running all seeds with-

out distinction in concolic execution, SAVIOR prioritizes

those that have higher possibilities of leading to vulnerabilities.

Specifically, before the testing, SAVIOR analyzes the source

code and statically labels the potentially vulnerable locations

in the target program. Here SAVIOR follows existing meth-

ods [21, 35] to conservatively label all suspicious locations.

Moreover, SAVIOR computes the set of basic blocks reach-

able from each branch. During dynamic testing, SAVIOR
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1 int parse_pcap(){
2 int link_type;
3 /*read link-layer type from input*/
4 read(input_fd, &link_type, sizeof(int));
5 /*select a handler based on link_type*/
6 if(link_type == LINKTYPE1){

7 pcap_handler1();

8 return 0;
9 }

10 if(link_type == LINKTYPE2){

11 pcap_handler2();

12 return 0;
13 }
14 ...
15 return -1;
16 }
17 int pcap_handler1(){
18 int packet_type;
19 read(input_fd, &packet_type, sizeof(int));
20 if(packet_type == PACKET1){

21 packet_handler1();

22 return 0;
23 }
24 ...
25 return -1;
26 }

(a) A simplified version of the packet-parsing code in
tcpdump-4.9.2, in which pcap_handler2 con-
tains vulnerabilities.

4. read( input_fd,

&link_type… )

6. if( link_type … )

7. pcap_handler1()

19. read( input_fd,

&packet_type…)

20. if(packet_type...)

25. return -1

15. return -1

22. packet_handler1()

(b) The path followed by a seed that
matches LINKTYPE1 but mismatches
PACKET1.

4. read(input_fd,

&link_type…)

6. if(link_type ==

LINKTYPE1)

10. if(link_type ==

LINKTYPE2)

15. return -1 11. pcap_handler2()

(c) The path followed by a seed
that matches neither LINKTYPE1 nor
LINKTYPE2.

Fig. 1: A demonstrative example of hybrid testing. Figure 1a presents the code under test. Figure 1b and 1c are the paths

followed by two seeds from the fuzzer. Their execution follows the red line and visits the grey boxes. Note that the white

boxes connected by dotted lines are non-covered code.

prioritizes the concolic execution seeds that can visit more

important branches (i.e., branches whose reachable code has

more vulnerability labels). Intuitively, those branches may

guard higher volumes of vulnerabilities and hence, prioritizing

them could expedite the discovery of new vulnerabilities. As

we will show in Section V, this prioritization enables SAVIOR

to outperform DRILLER [66] and QSYM [73] with a 43.4%

and 44.3% increase in bug discovering rate, respectively.

Bug-guided verification: Aside from accelerating vulnerabil-

ity detection, SAVIOR also verifies the labeled vulnerabilities

along the program path traversed by the concolic executor.

Specifically, SAVIOR synthesizes the faulty constraint of

triggering each vulnerability on the execution path. If such

constraint under the current path condition is satisfiable,

SAVIOR solves the constraint to construct a test input as

the proof. Otherwise, SAVIOR proves that the vulnerability

is infeasible on this path, regardless of the input. This SMT-

solving based strategy, as demonstrated in Section V, enables

DRILLER, QSYM, and SAVIOR to disclose not only all the

listed bugs but also an additional group of bugs in LAVA-

M [36]. Besides, it facilitates the three hybrid tools to find at

least 22.2%, 25%, 4.5% more UBSan violations.

This work is not the first one that applies hybrid testing to

vulnerability detection. However, to the best of our knowledge,

SAVIOR is the first work that explores bug-driven hybrid

testing. On one hand, SAVIOR concentrates on software code

that contains more potential vulnerabilities. This design not

only brings faster coverage of vulnerabilities but also decreases

the testing cost of the code that is less likely vulnerable. On

the other hand, SAVIOR validates the vulnerabilities by the

objective proofs of existence. In contrast, traditional hybrid

testing methods can easily miss subtle cases. Moreover, the

two proposed techniques are not limited to SAVIOR itself

since they are general enough for other systematic software

analysis methods. We will discuss the details in Section III.

In summary, we make the following contributions.

• We design SAVIOR, a bug-driven hybrid testing tech-

nique. It substantially enhances hybrid testing with bug-

driven prioritization and bug-guided verification.

• We build SAVIOR and show that our implementation

can scale to a diverse set of real-world software.

• We demonstrate the effectiveness of SAVIOR by a

comprehensive evaluation. In total, SAVIOR discov-

ers 481 unique security violations in 11 well-studied

benchmarks. On average, SAVIOR detects vulnerabilities

43.4% faster than DRILLER and 44.3% faster than

QSYM, leading to the discovery of 88 and 76 more

security violations in 24 hours.

The rest of this paper is organized as follows. Section II

states the background of hybrid testing and motivates our

research. Section III and Section IV present the design and

implementation of SAVIOR in detail. Section V evaluates

the core techniques of SAVIOR. Section VI summarizes the

related work. Finally, we conclude this work in Section VII.

II. BACKGROUND AND MOTIVATION

This work is motivated by the limitations of hybrid testing

in vulnerability detection. In this section, we first introduce

the background of hybrid testing and then demonstrate the

limitations by two examples.

A. Hybrid Testing

Hybrid testing combines fuzz testing and concolic execution

to achieve high code coverage. For the ease of understanding,

we use the example in Figure 1 to explain how it works. The

explanation is based on Driller [66] since it has been the de

facto implementation of hybrid testing.

The example in Figure 1 is taken from tcpdump-4.9.2.

Figure 1a shows the code — it first uses the link-layer

type from input to select a pcap handler and then uses the

handler to dissect packets. Our objective is to test the entry

function parse_pcap and reach the vulnerable function

pcap_handler2.
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In the test, we assume hybrid testing starts with a seed that

executes the path shown in Figure 1b. After that, the fuzzer

mutates the seed to run a second path shown in Figure 1c. It

then, however, fails to synthesize inputs that match the packet

type at line 20 and the link-layer type at line 10, due to the

huge mutation space (232 possibilities). This situation prevents

the fuzzer from testing the remaining code and makes hybrid

testing switch to concolic execution.

After executing the seed that covers the path in Figure 1b,

the concolic executor backtracks to the branch statement at

line 20. Solving the input packet_type to PACKET1 by

a SMT solver, the executor generates a new seed to cover

that branch. Then, the hybrid controller suspends the concolic

execution and resumes the fuzzer. Guided by the new seed,

the fuzzer tests packet_handler1 and switches back to

concolic execution after that. This time, the concolic executor

runs the seed, following the path in Figure 1c. After solving

the branch condition at line 10, it generates a seed for the

flow from line 10 to line 11. Further fuzz testing can finally

reach the vulnerable code in pcap_handler2.

Note that the testing processes by different hybrid tools may

vary from the above description. For instance, QSYM [73]

keeps running concolic execution instead of invoking it in an

interleaved manner. Despite those implementation differences,

existing tools share a similar philosophy on scheduling the

seeds to concolic execution. That is, they treat the seeds

indiscriminately [66, 73], presumably assuming that these

seeds have equal potentials in contributing to new coverage.

B. Motivation

Inefficiency in Covering Vulnerable Code: Although hybrid

testing specializes in coverage-driven testing, it still needs

substantial time to saturate hard-to-reach code compartments,

which often overspends the time budget. To discover more

vulnerabilities in a limited time frame, an intuitive way is to

prioritize the testing of vulnerable code. However, the current

hybrid testing method introduced in Section II-A does not meet

this requirement.

Consider the example in Figure 1, where concolic execution

chronologically runs the seeds to explore the paths shown

in Figure 1b and Figure 1c. This sequence indeed postpones

the testing of the vulnerable function pcap_handler2. The

delay can be significant, because concolic execution runs

slowly and the fuzz testing on packet_handler1 may last

a long time. In our experiments1, DRILLER spends minutes on

reaching pcap_handler2 with the aforementioned sched-

ule. However, if it performs concolic execution first on the

path in Figure 1c, the time can reduce to seconds.

Not surprisingly, the delayed situations frequently happen in

practice. As we will show in Section V, on average this defers

DRILLER and QSYM to cover vulnerabilities by 43.4% and

44.3%, leading to reduced efficiency in vulnerability finding.

1SAVIOR is customized to do this test since DRILLER cannot run on
tcpdump. More details can be found in Section V

1 static bfd_boolean load_specific_debug_section(enum
dwarf_section_display_enum debug, asection

*sec, void *file){
,→

,→

2

3 dwarf_section *section =
&debug_displays[debug].section;,→

4

5 if (section->start != NULL){
6 if (streq (...)
7 return TRUE;
8 free (section->start);
9 }

10 ...
11 /*section->size is copied from input */
12 section->size = bfd_get_section_size (sec);
13

14 /*setting section->size as 0xffffffffffffffff
on 64-bit systems or 0xffffffff on 32-bit
systems, malloc will return a zero-byte
buffer, leading to out of bound access */

,→

,→

,→

15 section->start = malloc(section->size + 1);

16 ...
17 }

Fig. 2: A demonstrative example of limitation in finding

defects by existing hybrid testing. This defect comes from

objdump-2.29 [15].

Deficiency in Vulnerability Detection: Hybrid testing often

fails to identify a vulnerability even if it approaches the vulner-

able location along the right path. Figure 2 demonstrates an

integer overflow in objdump-2.29. At line 12, the program

copies a value from sec to section→size. Next, this

value is used as the size of a memory allocation request at

line 15. By carefully handcrafting the input, an adversary can

make section→size be the value 232-1 on 32-bit systems

or 264-1 on 64-bit systems. This wraps section→size+1

around to 0 and makes malloc return a zero-byte buffer.

When the buffer is further used, a segfault or a memory leak

would occur.

In this example, hybrid testing can quickly generate a seed

to hit line 15. However, it could barely trigger the integer

overflow. As the program enforces no constraints on the input

bytes that propagate to section→size, hybrid testing can

only do random mutation to synthesize the extreme value(s).

Taking into account the tremendous possibility space (232 or

264), the mutation is unlikely to succeed.

III. DESIGN

A. Core Techniques

The design of SAVIOR is bug-driven, aiming to find bugs

faster and more thoroughly. We propose two techniques to

achieve the goal: bug-driven prioritization and bug-guided

verification. Below we present an overview of our techniques.

Bug-driven prioritization: Recall that classic hybrid testing

blindly schedules the seeds for concolic execution, without

weighing their bug-detecting potentials. This can greatly defer

the discovery of vulnerabilities. To remedy this limitation,

SAVIOR collects information from the target source code

to prioritize seeds which have higher potentials to trigger

vulnerabilities. This approach, however, needs to predict the

amount of vulnerabilities that running concolic execution on a

seed could expose. The prediction essentially depends on two

prerequisites: R1 – A method to assess the reachable code

regions after the concolic execution on a seed and R2 – A
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b1

b2

b3

b4

b5

b6

b8b7

reachable labels: L2
solve attempts: S2

reachable labels: L1

solve attempts: S1

Fig. 3: An example showing how to estimate the bug-detecting

potential of a seed. In this example, the seed follows the path

b1->b2->b3->b4. Basic block b5 and b7 are unexplored

and they can reach L1 and L2 UBSan labels, respectively. They

have been attempted by constraint solving for S1 and S2 times.

The final score for this seed is e−0.05S1×L1+e−0.05S2×L2

2 .

metric to quantify the amount of vulnerabilities in a chunk of

code. SAVIOR fulfills them as follows.

To meet R1, SAVIOR approximates the newly explorable

code regions based on a combination of static and dynamic

analysis. During compilation, SAVIOR statically computes

the set of reachable basic blocks from each branch. At run-

time, SAVIOR identifies the unexplored branches on the

execution path of a seed and calculates the basic blocks that

are reachable from those branches. We deem that these blocks

become explorable code regions once the concolic executor

runs that seed.

To meet R2, SAVIOR utilizes UBSan [21] to annotate three

types of potential bugs (as shown in Table I) in the program

under testing. It then calculates the UBSan labels in each

code region as the quantitative metric for R2. As UBSan’s

conservative instrumentation may generate dummy labels,

SAVIOR incorporates a static filter to safely remove useless

labels. We discuss the details of this method in Section III-B1.

The above two solutions together ensure a sound analysis

for identifying potential bugs. First, our static reachability

analysis, as described in Section III-B1, is built upon a

sound algorithm. It over-approximates all the code regions that

may be reached from a branch. Moreover, UBSan adopts a

conservative design, which counts all the operations that may

lead to the undefined behavior issues listed in Table I [21, 35].

Facilitated by the two aspects of soundness, we can avoid

mistakenly underrating the bug-detecting potential of a seed.

Following the two solutions, SAVIOR computes the impor-

tance score for each seed as follows. Given a seed with n unex-

plored branches {e1, e2, . . . , en}, SAVIOR calculates the UB-

San labels in the code that are reachable from these branches,

respectively denoted as {L1, L2, . . . , Ln}. Also note that, in

the course of testing, SAVIOR has made {S1, S2, . . . , Sn}
attempts to solve those branches. With these pieces of infor-

mation, SAVIOR evaluates the importance score of this seed

with a weighted average 1
n×

∑n
i=1 e

−0.05Si×Li. Li represents

the potential of the ith unexplored branch. We penalize Li with

e−0.05Si to monotonically decrease its weight as the attempts

to solve this branch grow. The rationale is that more failed

\xfb\xfb\xf4\xf1 \xxx\xxx\xxx\xxx \xfb\xf4\xf1\xf1

section->size

Overflow Condition:

section->size + 1 < section->size

\xfb\xfb\xf4\xf1 \xff \xff \xff \xff \xfb\xf4\xf1\xf1

section->size

s
o
lv
esection->size+1 > 0xffffffff 

Fig. 4: Solving the integer overflow in Figure 2. This shows

the case in a 32-bit system, but it applies to 64-bit as well.

attempts (usually from multiple paths) indicate a low success

possibility on resolving the branch. Hence, we decrease its

potential so that SAVIOR can gradually de-prioritize hard-

to-solve branches. Lastly, SAVIOR takes the average score

of each candidate branches in order to maximize the bug

detection gain per unit of time. To better understand this

scoring method, we show an example and explain the score

calculation in Figure 3.

This scoring method is to ensure that SAVIOR always

prioritizes seeds leading to more unverified bugs, while in

the long run it would not trap into those with hard-to-solve

branch conditions. First, it conservatively assesses a given

seed by the results of sound reachability and bug labeling

analysis. A seed which leads to more unexplored branches

where more unverified bugs can be reached from will earn a

higher score. Second, it takes into account runtime information

to continuously improve the precision of the assessment. This

online refinement is important because statically SAVIOR

may hardly know whether a branch condition is satisfiable

or not. Utilizing the history of constraint solving attempts,

SAVIOR can decide whether a seemingly high-score branch

is worth more resources in the future. As shown by our evalua-

tion in Section V, this scoring scheme significantly accelerates

the detection of UBSan violations, which empirically supports

the effectiveness of our design.

Referring to our motivating example in Figure 1, the

function packet_handler1 has few UBSan labels while

pcap_handler2 contains hundreds of labels. Hence, the

seed following Figure 1b has a lower score compared to the

other seed which runs the path in Figure 1c. This guides

SAVIOR to prioritize the latter seed, which can significantly

expedite the exploration of vulnerable code.

Bug-guided verification: This technique also ensures a sound

vulnerability detection on the explored paths that reach the

vulnerable sites. Given a seed from fuzz testing, SAVIOR

executes it and extracts the label of each vulnerability along

the execution path. After that, SAVIOR verifies the predicates

implanted in each label by checking the satisfiability under the

current path condition — if the predicate is satisfiable then its

corresponding vulnerability is valid. This enables SAVIOR

to generate a proof of either vulnerability or non-existence

along a specific program path. Note that in concolic execution,

many new states with new branch constraints will be created.
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q Analysis

q Instrument (AFL)

q Fuzzing

q Coverage Test

q Bug-driven

Prioritization

(KLEE)

q Constraint Solving

q Bug-guided

Verification
Target

Program

AFL binary SAVIOR binary

Label info
KLEE bc

seeds ktests

testcasesnew seeds

Clang + LLVM Fuzzer Coordinator Concolic Executor

Fig. 5: System architecture of SAVIOR.

SAVIOR will prioritize the constraint solving for states who

require bug-guided verification.

Going back to the example in Figure 2, classic hybrid

testing misses the integer overflow at line 15. In contrast,

SAVIOR is able to identify it with bug-guided verification.

Aided by the Clang sanitizer [21], SAVIOR instruments

the potential overflows in a solver-friendly way (i. e., the

predicate of triggering this overflow is section->size +

1 > 0xffffffff). Due to the limited space, we present

the instrumented IR code in Figure 10 at Appendix A. As

demonstrated in Figure 4, following a seed to reach the

integer overflow location, SAVIOR tracks that the value of

section->size relies on a four-byte field in the input.

By solving the vulnerability predicate, SAVIOR generates a

witness value 0xffffffff and triggers the vulnerability.

B. System Design

Figure 5 depicts the overall architecture of SAVIOR. It

consists of a compiling tool-chain built upon Clang and

LLVM, a fuzzer derived from AFL, a concolic executor

ported from KLEE, and a hybrid coordinator responsible for

the orchestration. We explain these components in details in

the following sections.

1) The Compilation Tool-chain: SAVIOR’s compilation

tool-chain has multiple purposes including vulnerability label-

ing, control flow reachability analysis, and the targets building

of different components.

Sound Vulnerability Labeling: In our design, we use Clang’s

Undefined Behavior Sanitizer (UBSan) [21] to label different

families of potential bugs2. Table I summarizes those families

used in SAVIOR and the operations pertaining to them.

We ignore other bug types listed in UBSan (e.g., misaligned

reference) since they are less likely to cause security issues.

For each inserted label, we patch the Clang front-end to attach

a !saviorBugNum metadata, aiding the reachability analysis

that we will shortly discuss.

As explained in Section III-A, UBSan over-approximates

the potential vulnerabilities. This approximation ensures

soundness since it never misses true bugs. UBSan also models

the conditional triggers of the labeled bugs as shown in Table I.

E.g., out-of-bound (OOB) array access happens when the

index x is not between zero and array size minus 1. At the time

of bug-guided verification, SAVIOR solves each triggering

condition to produce a witness of the bug or, prove that the

bug never happens on current path in terms of the unsatisfiable

2Clang supports enabling checks on each individual bug family.

UB Families
UBSan Labeling Details

Operation Condition

Out-of-bound array access array[x] x < 0 ∨ x ≥ size(array)
Oversized shift x ≪ y, x ≫ y y < 0 ∨ y ≥ n
Signed integer overflow x ops y x ops y /∈ [−2n−1, 2n−1 − 1]
Unsigned integer overflow x opu y x opu y > 2n − 1

TABLE I: Families of potential bugs that SAVIOR enables

UBSan to label. Here, x, y are n-bit integers; array is an

array, the size of which is specified as size(array); ops and

opu refers to binary operators +,−,×,÷,% over signed and

unsigned integers, respectively.

condition. In Figure 10 at Appendix A, we present the IR with

instrumented UBSan checks for the defect shown in Figure 2.

SAVIOR uses UBSan by default, while other labeling

methods may also apply if they meet the following two prop-

erties. First, they can comprehensively annotate the potential

vulnerabilities. Second, they can synthesize the triggering con-

dition of each labeled vulnerability. Note that such condition

must have data dependency on the program input. Otherwise,

our concolic execution cannot correlate the input with the

vulnerable conditions and hence, has no guidance for bug-

guided verification. For instance, the AddressSanitizer [62]

builds checks upon the status of its own red-zone, which is

not applicable to SAVIOR at the moment.

UBSan’s conservative approximation inevitably introduces

false positives and might mislead SAVIOR’s prioritization.

In practice, we incorporate a static counter-measure to reduce

fake labels. Specifically, we trim a label when all the following

requirements hold: 1) The label’s parent (basic block) is its

immediate dominator [65]; 2) The IR variables involved in the

vulnerability conditions are not re-defined between the label

and its parent; 3) The parent basic block has constraints that

conflict with the vulnerability conditions, and these constraints

are enforced by constant values. The first two points ensure

that the constraints added by the parent will persist upon

reaching the label, and the third point indicates that the conflict

always arises, regardless of the input and the execution path.

Therefore, we can safely remove this label.

1 char array[MAX]; // 0 < MAX < INT_MAX

2 for(int i = 0; i < MAX;){

3 array[i] = getchar();//LABEL: OOB access

4 i++;//LABEL: integer-overflow

5 }

For instance, the code above has two labels that meet the three

requirements. In this example, the variable i ranges from 0

to MAX, meaning that neither the array access at line 3 can

be out-of-bound nor the self increment at line 4 can cause an

integer overflow. SAVIOR hence removes the two labels. In

Table IX at Appendix A, we summarize the number of labels

that are removed from each of our benchmark programs. On

average, we can conservatively reduce 5.36% of the labels.

Reachability Analysis: This analysis counts the number of

vulnerability labels that can be forwardly reached by each

basic block in the program control flow graph (CFG). It

proceeds with two phases. The first step constructs an inter-
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procedure CFG. The construction algorithm is close to the

method implemented in SVF [67]. It individually builds intra-

procedure CFGs for each function and then bridges function-

level CFGs by the caller-callee relation. To resolve indirect

calls, our algorithm iteratively performs Andersen’s point-to

analysis and expands the targets of the calls. This prevents

SAVIOR from discarding aliasing information of indirect

calls and therefore, our prioritization would not miscount the

number of vulnerability labels. By examining the CFGs, we

also extract the edge relations between a basic block and its

children for further use in the hybrid coordinator.

BB

Bug#: 3

UBSan…

…UBSan …

UBSan… …

Reachable
code

Fig. 6: A demonstrative ex-

ample of reachability analysis.

The target BB can “reach” 3

UBSan labels.

The second step is to

calculate the UBSan la-

bels that are reachable from

each basic block in the

constructed inter-procedure

CFG. Specifically, we iden-

tify the regions of code that

a basic block can reach and

count the number of UB-

San labels in those regions.

In SAVIOR, we deem this

number as the importance

metric of that basic block

and use it for bug-driven prioritization. For example, in

Figure 6 the basic block BB can reach 8 other basic blocks

while 3 of them have UBSan labels. Thereby we output 3 as

the number of reachable UBSan labels for BB. Note that each

basic block at most has one label after Clang’s compilation.

Target Building: After the labeling and the reachability

analysis, SAVIOR’s compiling tool-chain begins its building

process. It compiles three binaries from the source code

— a fuzzing-binary for the fuzzer, a SAVIOR-binary for

the coordinator, and a LLVM bitcode file for the concolic

executor. In particular, the SAVIOR-binary is instrumented

to print the unique IDs of the executed basic blocks. With

this design, SAVIOR completely decouples the fuzzer, the

concolic executor and the coordinator, thus it supports quick

replacement of any components.

2) The Coordinator: The coordinator bridges the fuzzer

and the concolic executor. It keeps polling seeds from the

fuzzer’s queue and prioritizes those with higher importance

for concolic execution. We explain the details as follows.

Bug-driven Prioritization: In a polling round, the coordi-

nator operates the new seeds in the fuzzer’s queue after

last round. Each seed is fed to the SAVIOR-binary and

the coordinator updates two pieces of information based

on the execution result. First, it updates the global cov-

erage information. The coverage computation here follows

AFL’s original approach. That is, we take the hit counts

of an edge in the following ranges as different cover-

age: [1], [2], [3], [4, 7], [8, 15], [16, 31], [32, 127], [128,∞). Sec-

ond, the coordinator records the sequence of basic blocks

…

LoadAndLink()

Initialization()

TakeSeed()

ConcolicExe()

OutputAndClean()

…

S0S1S2S3…

seed queue

KLEE

Fig. 7: Fork server mode in KLEE. In this mode, KLEE only

performs initialization once and reuses the same executor for

all the received seeds.

visited by each seed. Using the updated coverage information,

the coordinator assigns a score to each seed following the

scheme presented in Section III-A. Here, we re-score all the

seeds except those already tested by our concolic executor,

since the coverage information is dynamically adjusted.

Finally, the coordinator selected the top-ranked seeds and

feed them into the input queue of the concolic executor. If

two seeds have the same score, the coordinator prefers the

seed with the +cov property. +cov indicates that the seed

brings new code coverage.

Post-processing of Concolic Execution: Going beyond seed

scheduling for concolic execution, the coordinator also need

to triage the new seeds generated by the concolic executor for

the fuzzer. First, it re-runs the new seeds and retains those

who provide new coverage or can reach uncovered bug labels.

As a result, SAVIOR transfers the valuable test cases from

the concolic executor to the fuzzer.

Second, the coordinator updates the number of solving

attempts upon uncovered branches. If a branch remains

uncovered, its solving attempts would be increased by 1. As

such, a branch having a much higher solving attempt value

will be de-prioritized.

3) The Concolic Executor: The concolic executor replays

the seeds scheduled by the coordinator and chooses to solve

branch conditions based on coverage information. In addition,

it also performs bug-guided verification.

Independent Coverage Scheme: When encountering a branch

instruction the concolic executor needs to decide whether to

solve this branch’s condition. An intuitive design is to reuse

the coverage information from the coordinator. However, since

our coverage scheme is ID based, yet as KLEE invokes a

group of transformations on the target bitcode, this leads to

numerous mismatches between the edge IDs in the SAVIOR-

binary and the KLEE bitcode. To tackle this problem, we opt to

use KLEE’s internal coverage information to better decouple

the concolic executor and other components.

Fork Server Mode: Before running a seed, KLEE needs to

perform a group of initialization, including bitcode loading,

library bitcode linking, and global data preparation to place

the program under testing into the virtual machine. This
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initialization process, however, typically takes a long time

on large bitcode files. For instance, the initialization time

for tcpdump is usually several times longer than the actual

concolic execution time. To address this issue, we introduce

an optimization named fork server mode for the KLEE con-

colic executor (as shown in Figure 7). Technical details are

explained in Section IV.

Bug-guided Verification: Our concolic executor also performs

bug-guided verification. Once an non-covered vulnerability

label is reached, we endeavor to solve the triggering constraint

following the current path. If the solving succeeds, KLEE

generates a seed as the proof of the vulnerability.

In certain cases, the path constraints may conflict with

the vulnerability triggering conditions, while that vulnerability

can indeed happen following the same path (with fewer

constraints). QSYM [73] summarizes this issue as the over-

constraint problem. We adopt QSYM’s optimistic solving

strategy only on solving the vulnerability conditions. However,

the relaxed-constraint may also produce a false positive, and

we do not count a vulnerable label as being covered through

relaxed-constraint solving.

Timeout on Concolic Execution: To prevent the concolic

execution from hanging on localized code regions (e.g., , deep

loops and blocking IO), the concolic executor usually needs

a time threshold while running a seed. QSYM adjusts this

timing budget by watching AFL’s status. If the number of

hanging seeds increases, QSYM increases the timeout (up to

10 minutes). We set the timeout to be proportional to the

number of uncovered branches that a seed can reach. The

rationale is that those seeds need more time for constraint

solving and such setting benefits higher bug coverage.

IV. IMPLEMENTATION

We have implemented SAVIOR, which can be applied

to software as sophisticated as Baidu’s Apollo Autonomous

Driving System [5, 37]. SAVIOR consists of four major

components: a compiling tool-chain built on top of Clang and

LLVM-4.0, a fuzzing component based on AFL-2.5b [2], a

concolic executor built atop KLEE [27] (with LLVM-3.6), and

a python middle-ware which coordinates the fuzzing compo-

nent and the concolic executor. In total, our implementation

has about 3.3K lines of python code and 4K lines of C/C++

code. SAVIOR can run on both 32-bit and 64-bit systems, and

it can support both 32-bit and 64-bit targets. In the following,

we discuss the important implementation details.

Concolic Executor: We develop our concolic executor based

on KLEE-3.6. The original KLEE aims at full symbolic

execution, and it does not support concolic execution. We

port a concolic executor from KLEE’s symbolic executor.

Specifically, the concolic executor attaches the concrete input

as the assignment property in the initial state. It then sym-

bolically interprets each instruction as KLEE originally does.

On reaching a conditional statement, it always follows the

branch that matches the concrete input. For the other branch,

if not covered, the concolic executor solves the conditions and

generate a corresponding testcase. The state following that

branch is then immediately terminated. When generating the

seed, our concolic executor copies the un-constrained bytes

from the input, instead of padding with random values.

Another limitation of KLEE is that the initialization phase is

notoriously time-consuming. To overcome this, we introduce a

fork server mode. In a run, KLEE first sets up the environments

with bitcode loading, library linking, and preparing for globals

and constants. These are then followed by the initialization

of an Executor. By default, the Executor executes one

seed and then destructs itself. In our implementation, after

the execution of one seed, we clean up any stateful changes

introduced in last execution (including destructing the memory

manager, clearing the global data objects, and erasing all the

remaining states). Then we reuse the Executor to run a new

seed from the input queue. In this mode, we avoid repeating

the lengthy environments setup.

Recall that we invoke UBSan to label potentially vulnerable

operations. At the IR level, UBSan replaces those operations

with LLVM intrinsic functions, which are incomprehensible

by KLEE. We replace those intrinsic functions with general

LLVM IR so that KLEE can execute without exceptions. The

replacements follow those that KLEE already enforced [10].

By default, KLEE redirects un-modeled external functions

(e.g., system calls) to the native code. This causes two issues.

First, KLEE is unaware of their effects on the symbolic address

space, which can interrupt memory operations. For instance,

the function strdup allocates a new buffer and copies data

from the source to this buffer. However, KLEE cannot capture

this allocation due to the lack of modeling. On future accesses

to this buffer, KLEE will throw an out-of-bound access error.

There are many similar cases, such as getenv. We extend

KLEE’s environment model to include the symbolic versions

of those functions. Second, KLEE concretizes the data passed

to the external functions and adds constant constraints on such

data for future execution. However, this may over-constraint

the concretized variables. For instance, KLEE concretizes the

data written to standard output or files. This leads to over-

constraints – When the concretized data is later used in

constraint solving, KLEE will not be able to find a satisfying

solution. To address this issue, we prevent KLEE from adding

constraints on concretization. This scheme, following the

design of S2E [31] and QSYM [73], ensures that we never

miss solutions for non-covered branches.

Last but not least, stock KLEE provides limited support

for software written in C++. Since a lot of the C++ programs

rely on the standard C++ library (e.g., libstdc++ on Linux) but

KLEE neither models this library nor supports the semantics

of calls to this library. Therefore, KLEE frequently aborts the

execution in the early stage of running a C++ program. We

customize the GNU libstdc++ library to make it compilable

and linkable to KLEE. Considering that many libstdc++ func-

tions also access in-existent devices (e.g., Random), we also

build models of those devices.
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Fuzzers
Setup

Source Instances Note

AFL [2] 1 AFL master; 2 AFL slaves N/A
AFLGO [1] 1 AFLGo master; 2 AFLGo slaves Use in-lined lava_get as target locations of guided fuzzing
TFUZZ [19] 3 AFL jobs (adjust default argument to Fuzzer) Use the docker environment prepared at [19] for evaluation
ANGORA [3] 3 Angora threads (with option "-j 3") Patch Lava to support Angora, as suggested by the developers [18]
DRILLER Self-developed 1 concolic executor; 1 AFL master; 1 AFL slave Follow the original Driller in scheduling concolic execution [7]
QSYM [17] 1 concolic executor; 1 AFL master; 1 AFL slave N/A
SAVIOR Self-developed 1 concolic executor; 1 AFL master; 1 AFL slave Use in-lined lava_get as labels of vulnerabilities

TABLE II: Fuzzer specific settings in evaluation with Lava-M.

V. EVALUATION

SAVIOR approaches bug-driven hybrid testing with the

key techniques of bug-driven prioritization and bug-guided

verification. In this section, we evaluate these techniques and

our evaluation centers around two questions:

• With bug-driven prioritization, can hybrid testing find

vulnerabilities quicker?

• With bug-guided verification, can hybrid testing find

vulnerabilities more thoroughly?

To support our evaluation goals, we prepare two groups

of widely-used benchmarks. The first group is the LAVA-M

data-set [36]. This data-set comes with artificial vulnerabilities,

and the ground truth is provided. The second group includes

a set of 8 real-world programs. Details about these programs

are summarized in Table V. All these programs have been

extensively tested in both industry [16] and academia [57, 66,

73]. In addition, they represent a higher level of diversity in

functionality and complexity.

Using the two benchmarks, we compare SAVIOR with

the most effective tools from related families. To be specific,

we take AFL [2] as the baseline of coverage-based testing.

As SAVIOR performs testing in a directed manner, we also

include the state-of-the-art directed fuzzer, AFLGO [25]. To

handle complex conditions, recent fuzzing research introduces

a group of new techniques to improve code coverage. From

this category, we cover TFUZZ [56] and ANGORA [29], be-

cause they are open-sourced and representatives of the state-of-

the-art. Finally, we also consider the existing implementations

of hybrid testing, DRILLER [66] and QSYM [73].

Note that the original DRILLER has problems of running

many of our benchmarks, due to lack of system-call modeling

or failure to generate test cases (even with the patch [6] to

support input from files). This aligns with the observations

in [73]. In the evaluation, we re-implement DRILLER on

the top of SAVIOR. More specifically, it runs AFL as the

fuzzing component and it invokes the concolic executor once

the pending_favs attribute in AFL drops to 0. These

implementations strictly follow the original DRILLER [7].

Similar to the Angr-based concolic executor in DRILLER,

our KLEE-based concolic executor focuses on generating new

seeds to cover untouched branches. In addition, we keep the

relaxed constraint solving and the fork-server mode. These two

features increase the effectiveness and efficiency of DRILLER

without introducing algorithmic changes.

In the following, we will explain the experimental setups

and evaluation results for the two groups of benchmarks.

A. Evaluation with LAVA-M

1) Experimental Setup: In this evaluation, we run each

of the fuzzers in Table II with the four LAVA-M programs

and we use the seeds shipped with the benchmark. For

consistency, we conduct all the experiments on Amazon EC2

instances (Intel Xeon E5 Broadwell 64 cores, 256GB RAM,

and running Ubuntu 16.04 LTS), and we sequentially run all

the experiments to avoid interference. In addition, we assign

each fuzzer 3 free CPU cores to ensure fairness in terms

of computation resources. Each test is run for 24 hours. To

minimize the effect of randomness in fuzzing, we repeat each

test 5 times and report the average results.

In Table II, we also summarize the settings specific to

each fuzzer, including how we distribute the 3 CPU cores

and the actions we take to accommodate those fuzzers. In

LAVA-M, each artificial vulnerability is enclosed and checked

in a call to lava_get (in-lined in our evaluation). We use

these calls as the targets to guide AFLGO and we mark them

as vulnerability labels to enable bug-driven prioritization in

SAVIOR. In addition, as the vulnerability condition is hard-

coded in the lava_get function, we naturally have support

for bug-guided verification. Finally, for ANGORA, we adopt

the patches as suggested by the developers [18].

2) Evaluation Results: In the left column of Figure 8,

we show how many vulnerabilities are reached over time

by different fuzzers. The results demonstrate that all the

fuzzers can instantly cover the code with LAVA vulnerabilities.

However, as presented in the right column of Figure 8, TFUZZ,

ANGORA, DRILLER, QSYM, and SAVIOR are able to trigger

most (or all) of the vulnerabilities while AFL and AFLGO can

trigger few. The reason behind is that the triggering conditions

of LAVA vulnerabilities are all in the form of 32-bit magic

number matching. Mutation-based fuzzers, including AFL and

AFLGo, can hardly satisfy those conditions while the other

fuzzers are all featured with techniques to solve them.

Vulnerability Finding Efficiency: Despite TFUZZ, ANGORA,

DRILLER, QSYM, and SAVIOR all trigger large numbers

of LAVA vulnerabilities, they differ in terms of efficiency.

TFUZZ quickly covers the listed vulnerabilities in base64

and uniq. This is attributable to that (1) TFUZZ can reach all

the vulnerabilities with several initial seeds and (2) TFUZZ can

transform the program to immediately trigger the encountered

vulnerabilities. Note that we do not show the results of

TFUZZ on md5sum and who, because TFUZZ gets interrupted
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Fig. 8: Evaluation results with LAVA-M. The left column

shows the number of Lava bugs reached by different fuzzers

and the right column shows the number of LAVA bugs

triggered by the fuzzers. For TFUZZ, we only present the

number of triggered bugs in base64 and uniq, as the other

results are not reliable due to a broken third-party dependency.

because of a broken dependency 3. For all the cases, ANGORA

triggers the vulnerabilities immediately after its start. The

main reason is that the “black-box function” pertaining to all

LAVA vulnerabilities is f(x) = x and the triggering condi-

tions are like f(x) == CONSTANT. ANGORA always starts

evaluating such functions with x = CONSTANT and hence,

it can instantly generate seeds that satisfy the vulnerability

conditions. In the case of who, ANGORA does not find all

the vulnerabilities because of its incomplete dynamic taint

analysis.

3The broken component is the QEMU based tracer in Angr [4]. This has
been confirmed with the developers.

Fuzzers
Fuzzing results

base64 uniq md5sum who

AFL 0 (0%) 0 (0%) 0 (0%) 0 (0%)

AFLGO 2 (5%) 1 (4%) 0 (0%) 0 (0%)

TFUZZ 47 (100%) 29 (100%) N/A N/A

ANGORA 47 (100%) 28 (100%) 54 (95%) 1743 (79%)

DRILLER 48 (100%) 28 (100%) 58 (100%) 1827 (78%)

QSYM 47 (100%) 29 (100%) 58 (100%) 1244 (53%)

SAVIOR 48 (100%) 29 (100%) 59 (100%) 2213 (92%)

Listed 44 28 57 2136

TABLE III: LAVA-M Bugs triggered by different fuzzers

(before bug-guided verification). “X%” indicates that X% of

the listed LAVA bugs are triggered.

Fuzzers
Fuzzing results

base64 uniq md5sum who

AFL 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)

AFLGO 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)

TFUZZ 47 (100%) 29 (100%) N/A N/A

ANGORA 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)

DRILLER 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)

QSYM 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)

SAVIOR 48 (100%) 29 (100%) 59 (100%) 2357 (96.3%)

Listed 44 28 57 2136

TABLE IV: LAVA-M Bugs triggered by different fuzzers (after

bug-guided verification). “X%” indicates that X% of the listed

LAVA bugs are triggered.

Regarding the three hybrid tools, they trigger every vulner-

ability that their concolic executors encounter. In the cases of

base64, uniq, and md5sum, their concolic executors can

reach all the vulnerabilities with initial seeds. This explains

why they all quickly trigger the listed vulnerabilities, regard-

less of their seed scheduling.

In the case of who, even though the fuzzing component

quickly generates seeds to cover the vulnerable code, the

concolic executor takes much longer to run those seeds.

For instance, while executing the inputs from AFL, QSYM

needs over 72 hours of continuous concolic execution to

reach all the LAVA bugs in who. Differing from DRILLER

and QSYM, SAVIOR prioritizes seeds that have a higher

potential of leading to Lava bugs. As demonstrated by the

results of who in Table III, our technique of bug-driven

prioritization indeed advances the exploration of code with

more vulnerabilities. Note that DRILLER (with a random seed

scheduling) moves faster than QSYM. This is because QSYM

prioritizes concolic execution on small seeds, while reaching

the vulnerabilities in who needs seeds with a larger size.

Vulnerability Finding Thoroughness: We further evaluate

our bug-guided verification design. Specifically, we run the

seeds generated by all the fuzzers with our concolic executor.

In this experiment, we only perform constraint solving when a

vulnerability condition is encountered. As shown in Table IV,

bug-guided verification facilitates all the fuzzers to not only

cover the listed LAVA bugs but also disclose an extra group of

Lava bugs. Due to limited space, those additionally identified

bugs are summarized in Table X at Appendix. Such results

strongly demonstrate the promising potential of bug-guided

verification to benefit fuzzing tools in vulnerability findings.
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Programs Settings

Name Version Driver Source Seeds Options

libpcap 4.9.2/1.9.0 tcpdump [20] build-in -r @@

libtiff 4.0.10 tiff2ps [12] AFL @@

libtiff 4.0.10 tiff2pdf [12] AFL @@

binutils 2.31 objdump [8] AFL -D @@

binutils 2.31 readelf [8] AFL -A @@

libxml2 2.9.7 xmllint [13] AFL @@

libjpeg 9c djpeg [11] AFL

jasper master jasper [9] AFL -f @@ -T pnm

TABLE V: Real-world benchmark programs and evaluation

settings. In the column for Seeds, AFL indicates we reuse

the testcases provided in AFL and build-in indicates that

we reuse the test cases shipped with the program.

B. Evaluation with Real-world Programs

1) Experimental Setup: In this evaluation, we prepare 8

programs. Details about these programs and the test settings

are summarized in Table V. All the programs have been

extensively tested by both industry [16] and academic re-

searches [57, 66, 73]. Since different seed inputs and execution

options could lead to varying fuzzing results [49, 58], we

follow existing works to use the seeds shipping with AFL

or the vendors, as well as to configure the fuzzing options.

Similar to our evaluation with LAVA-M, we conduct all the

experiments on Amazon EC2 instances. To reduce randomness

during testing, we run each test 5 times and report the average

results. In addition, we leverage Mann Whitney U-test [53] to

measure the significance of our improvements, following the

suggestion by George etc [49].

In this evaluation, we also prepare the setups that are

specific to each fuzzing tool. These setups mostly follow

Table II except the following. First, we use UBSan labels as

the target locations for AFLGO and as the guidance of bug-

driven prioritization in SAVIOR. Second, to prevent ANGORA

from terminating the fuzzing process once it encounters un-

instrumented library functions, we follow suggestions from

the developers and add the list of un-instrumented func-

tions into ANGORA’s dfsan_abilist.txt configuration

file. Third, we do not include TFUZZ, because it does not

function correctly on our benchmark programs due to issues

in the aforementioned third-party component. Furthermore,

we prepare these benchmark programs such that they are

instrumented with UBSan for all fuzzers to ensure a fair

comparison. This also means that bug-guided verification is

enabled by default in DRILLER, QSYM, and SAVIOR.

2) Evaluation Results: In Figure 9, we summarize the re-

sults of our second experiment. It shows the outputs over time

from two metrics, including the number of triggered UBSan

bugs and basic block coverage. In addition, we calculate the

p-values for Mann Whitney U-test of SAVIOR vs. DRILLER

and SAVIOR vs. QSYM. Note that we use the IDs of UBSan

labels for de-duplication while counting the UBSan bugs, as

each UBSan label is associated with a unique potential defect.

In the following, we delve into the details and explain how

these results testify our design hypotheses.

Vulnerability Finding Efficiency: As shown in Figure 9

(the left column of each program), SAVIOR triggers UBSan

violations with a pace generally faster than all the other

fuzzers. In particular, it outperforms DRILLER and QSYM in

all the cases except djpeg. On average, SAVIOR discovers

vulnerabilities 43.4% faster than DRILLER and 44.3% faster

than QSYM. The low p-values (< 0.05)4 of Mann Whitney

U-test well support that these improvements are statistically

significant. Since the three hybrid tools only differ in the way

of seed scheduling, these results strongly demonstrate that the

scheduling scheme in SAVIOR— bug-driven prioritization —

accelerates vulnerability finding. In the case of djpeg, all

six fuzzers trigger the same group of UBSan violations. This

is because djpeg has a tiny code base, with which these

fuzzers quickly saturate on code exploration. In addition, the

conditions of those UBSan violations are simple that even

mutation-based approaches can solve. For a better reference,

we also summarize the number of triggered violations at the

end of 24 hours in Table XII at Appendix A-D.

Going beyond, we examine the number of labels that

are reached by different fuzzers. In Table VI, we list the

average results from our 24-hour tests. Not surprisingly, the

hybrid tools cover higher volumes of UBSan labels than the

ordinary fuzzers. This is likely because a hybrid tool can

solve complex conditions, enabling the coverage on the code

and labels behind. Among the hybrid tools, SAVIOR reaches

19.68% and 15.18% more labels than DRILLER and QSYM,

respectively. Such results are consistent with the number of

triggered UBSan violations. This also signifies that our bug-

driven prioritization guides SAVIOR to spend more resources

on code with richer UBSan labels. In the case of djpeg,

SAVIOR nearly ties with the other tools. This is due to a

similar reason as explained above.

We further find that the efficiency boost of SAVIOR in vul-

nerability finding is not due to high code coverage. As shown

in Figure 9 (the right column for each program), we compare

the code coverage of the six fuzzers. As demonstrated by the

results, the efficiency of code coverage and UBSan violation

discovery are not positively correlated. Particularly, in the case

of tcpdump, libxml, tiff2pdf, objdump and jasper,

SAVIOR covers code in a similar or even slower pace than

DRILLER and QSYM (the high p-values also support that

SAVIOR is not quicker). However, SAVIOR triggers UBSan

violations significantly quicker in these cases. Such results

validate the above hypothesis with high confidence.

Vulnerability Finding Thoroughness: In this experiment, we

also measure the performance of bug-guided verification in en-

hancing the thoroughness of vulnerability finding. Specifically,

we re-run the seeds from all the fuzzers with our concolic

executor. In this test, we enable SAVIOR to do constraint

solving only when encountering un-solved UBSan labels.

In Table VII, we summarize the comparison results. For all

the 8 programs, bug-guided verification facilitates different

4The p-values of readelf and objdump are larger than 0.05 but they
are at the level of quasi-significance. In the two programs, the variances are
mainly due to randomness.
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(c) Number of UBSan violations

triggered in tiff2ps (p1=0.005,

p2=0.046).
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p2=5.63 ∗ e−5).
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(g) Number of UBSan violations

triggered in libxml (p1=7.04 ∗

e−5, p2=2.15 ∗ e−7).

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

0

1000

2000

3000

4000

5000

# 
of

 c
ov

er
ed

 b
as

ic 
bl

oc
ks

AFL
AFLGO
ANGORA
DRILLER
QSYM
SAVIOR
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violations triggered in djpeg

(p1=0.777,p2=0.203).
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reached in djpeg (p1=3.28 ∗

e−7,p2=3.79 ∗ e−6).
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olations triggered in tiff2pdf

(p1=0.002,p2=3.95 ∗ e−6).
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(p1=0.009,p2=0.807).
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violations triggered in jasper

(p1=0.010,p2=0.002).
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Fig. 9: Evaluation results with real-world programs. Each program takes two columns, respectively showing the number of

triggered UBSan violations and the amount of covered basic blocks by the fuzzers over 24 hours. p1 and p2 are the p-values

for the Mann Whitney U-test of SAVIOR vs. DRILLER and SAVIOR vs. QSYM, respectively.

fuzzers to trigger new violations. The average increase ranges

from 4.5% (SAVIOR) to 61.2% (ANGORA). In particular, it

aids ANGORA to trigger 82 new UBSan bugs in total. In the

case of djpeg bug-guided verification does not help much.

This is because djpeg has a relatively smaller code base

and contains fewer vulnerability labels, making bug-guided

verification less utilized. These results are further evidence

that bug-guided verification can truly benefit fuzzing in terms

of vulnerability finding thoroughness.

C. Vulnerability Triage

The UBSan violations triggered by SAVIOR could lead to

various consequences and some of them might be harmless.

Therefore, we manually examine all the UBSan violations

triggered by SAVIOR. These violations include those trig-

gered in the 8 programs in Table V and also those from mjs,

catdoc, and c++filt. We do not include the results of

mjs, catdoc, and c++filt in the evaluation above, as

all fuzzers trigger fewer than 10 UBSan violations. A small

difference would result in a big variance in comparison.
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Prog.
Number of reached UBSan labels

AFL AFLGO ANGORA DRILLER QSYM SAVIOR

tcpdump 2029 1235 1333 1906 2509 2582

tiff2ps 748 927 770 931 852 970

readelf 91 79 102 104 106 183

xmllint 588 580 456 567 568 597

djpeg 2746 2588 2546 2713 2707 2746

tiff2pdf 1488 1467 919 1448 1369 1478

jasper 649 660 679 691 731 752

objdump 780 715 844 835 906 1039

Avg. 1139 1031 956 1149 1218 1289

TABLE VI: Number of unique UBSan labels reached by

different fuzzers in 24 hours. On average SAVIOR reaches

19.68% and 15.18% more labels than DRILLER and QSYM.

Prog.
Improvements by bug-guided verification

AFL AFLGO ANGORA DRILLER QSYM SAVIOR

tcpdump +10/11% +22/41.5% +29/76.3% +9/9.9% +4/4% +8/7%

tiff2ps +4/133% +0/0% +3/42.9% +0/0% +0/0% +0/0%

readelf +10/82% +9/72.2% +16/107% +9/68.4% +8/63.2% +7/29.2%

libxml +4/33.3% +4/33.3% +5/166.7% +4/33.3% +4/33.3% +0/0%

tiff2pdf +5/50% +1/7.7% +4/44.4% +3/27.2% +5/62.5% +0/0%

djpeg +0/0% +7/5.2% +7/5.2% +0/0% +0/0% +0/0%

objdump +7/10.9% +7/11.7% +11/17.2% +7/11.7% +6/9.5% +0/0%

jasper +0/0% +0/0% +7/30.4% +7/26.9% +7/26.9% +0/0%

Ave. +5/40.1% +6/21.5% +10/61.2% +5/22.2% +4.3/25% +1.8/4.5%

TABLE VII: New UBSan violations triggered with bug-

guided verification in the evaluation with real-world programs.

“+X/Y%” means “X” new violations are triggered, increasing

the total number by “Y%”.

Program
Defect categories Note

OOB Logic Error Exploitable* Confirmed

tcpdump 6 102 6+ 7

libjpeg 8 23 0+ N/A

objdump 41 4 4+ N/A

readelf 1 9 10+ 3

libtiff 20 0 0+ N/A

jasper 21 2 2+ 2

mjs 1 0 0+ 1

catdoc 3 0 3+ 1

c++filt 1 1 0 2

Total 102 141 25+ 16

TABLE VIII: Triage of UBsan violations triggered by SAV-

IOR in 24 hours.

Triage Result: In total, we collect 481 UBSan violations and

we manually classify them based on their consequences and

present the results in Table VIII. Specifically, 102 of them lead

to OOB reads/writes and 141 of them result in logic errors.

Those logic errors consist of different categories, such as

incorrect computation, wrong outputs, and polluted conditional

variables. Among the 243 OOB and logic errors, 16 of them

have been confirmed by the developers. Our further analysis

so far reveals at least 25 of them are exploitable for goals such

as information leak and control flow manipulation.

The remaining 238 cases are likely harmless according to

our triage result. They mainly consist of the following cate-

gories: (1) the variables triggering UBSan violations are used

as storage (e.g., int as char[4]) instead of computation-

related objects; (2) the affected variables expire immediately

after the violations; (3) the program already considers the case

of UBSan violations and has handlers.

Case Studies: From each of the three categories (OOB, logic

errors, and those without harm), we pick a case and explain

the details here. All the cases have been fixed.

The first case is an OOB in readelf. The code is shown

below. The variable inote.namesz is copied from input.

By making it equal to 0, (inote.namesz − 1) under-flows

to the maximal unsigned value. It causes an OOB access to

inote.namedata.

1 static bool process_notes_at(...){

2 //readelf.c:18303

3 if(inote.namedata[inote.namesz-1] != '\0')

4 ...

5 }

The second case is a logic error in libtiff. Variable

twobitdeltas[delta] is controlled by user. With a

specially crafted input, one can cause an overflow in the re-

sult of lastpixel + twobitdeltas[delta], making

SETPIXEL set the wrong pixel value to the decoded image.

1 static int ThunderDecode(...){

2 //tif_thunder.c:125

3 if((delta = ((n >> 4) & 3)) != DELTA2_SKIP)

4 SETPIXEL(op, lastpixel + twobitdeltas[

delta]);

5 ...

6 }

The last case is harmless, as the program already considers

overflow. This case locates in libxml. As shown below,

with a special input, the variable okey can be overflowed.

However, the program modulo okey with dict->size

before using it, making the overflow harmless.

1 static int xmlDictGrow(...) {

2 // dict.c:417

3 okey = xmlDictComputeQKey(...);

4 key = okey % dict->size;

5 ...

6 }

VI. RELATED WORKS

The lines of works mostly related to our work include ad-

vanced fuzzing, concolic execution, the state-of-the-art hybrid

testing techniques, and those that facilitate guided testing.

A. Advanced Fuzzing

Many recent works focus on improving the capability of

code exploration in fuzzing. CollAFL [39] aims to reduce

hash collision in coverage feedback to decrease false negatives.

PTrix [30] enables path-sensitive fuzzing based on efficient

hardware tracing. TFUZZ [56] transforms tested programs

to bypass complex conditions and improve code coverage,

and later uses a validator to reproduce the inputs that work

for the original program. To generate high-quality seeds,

ProFuzzer [72] infers the structural information of the inputs.

Along the line of seed generation, Angora [29] assumes a

black-box function at each conditional statement and applies

gradient descent to find satisfying input bytes. This method

is later improved by NEUZZ [63] with a smooth surrogate
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function to approximate the behavior of the tested program.

Compared with these approaches, SAVIOR takes the bug-

driven guidance to maximize bug coverage and verifies the

(non-)existence of these bugs in the explored paths.

B. Concolic Execution

Symbolic execution, a systematic approach introduced in the

1970s [46, 48] for program testing, has attracted new attention

due to the advances in satisfiability modulo theory [33, 34, 40].

However, classic symbolic execution has the problems of

high computation cost and path explosion. To tackle these

issues, Sen proposes concolic execution [59], which combines

the constraint solving from symbolic execution and the fast

execution of concrete testing. Concolic execution increases

the coverage of random testing [41, 42] while also scales

to large software. Hence, it has been adopted in various

frameworks [26, 31, 60, 61]. Recently, concolic execution is

also widely applied in automated vulnerability detection and

exploitation, in which the concolic component provides critical

inputs by incorporating security-related predicates [24, 28].

However, concolic execution operates based on emulation or

heavy instrumentation, incurring tremendous execution over-

head. Purely relying on concolic execution for code explo-

ration is less practical for large software that involves large

amounts of operations. In contrast, hybrid testing runs fuzzing

for code exploration and invokes concolic execution only on

hard-to-solve branches. This takes advantage of both fuzzer’s

efficiency and concolic executor’s constraint solving.

C. Hybrid Testing

Majundar et al. [51] introduce the idea of hybrid concolic

testing a decade ago. This idea offsets the deficiency of

both random testing and concolic execution. Specifically, their

approach interleaves random testing and concolic execution

to deeply explore a wide program state space. Subsequent

development reinforces hybrid testing by replacing random

testing with guided fuzzing [55]. This approach could rapidly

contributing more high-quality seeds to concolic execution.

Recently, DRILLER [66] engineers the state-of-the-art hy-

brid testing system. It more coherently combines fuzzing and

concolic execution and can seamlessly test various software

systems. Despite the advancement, DRILLER still achieves

unsound vulnerability detection. DigFuzz [74] is a more recent

work that tries to better coordinate the fuzzing and concolic

execution components. Using a Monte Carlo algorithm, Dig-

Fuzz predicts the difficulty for a fuzzer to explore a path and

prioritizes to explore seeds with a higher difficulty score.

Moreover, motivated by the growing demands in software

testing, researchers have been reasoning the performance of

hybrid testing. As commonly understood, hybrid testing is

largely restricted by the slow concolic execution. To this end,

QSYM [73] implements a concolic executor that tailors the

heavy but unnecessary computations in symbolic interpretation

and constraint solving. It leads to times of acceleration.

Differing from the above works that bring code-coverage

improvement, SAVIOR changes the philosophy of hybrid

testing. It drives the concolic executor on seeds with higher

potential and guides the verification of the encountered vul-

nerabilities. This leads to quicker and better bug coverage.

D. Guided Software Testing

This line of research [25, 32, 43, 52] aims to guide the

testing towards exploring specific code locations. Katch [52]

prioritizes the seeds that approach patches to guide the sym-

bolic executor. Together with three other guiding schemes,

Katch can efficiently cover the target code. With a similar goal,

AFLGO [25] calculates the distance from each code region

to the targets (e.g., vulnerable code regions or patches). In

fuzz testing, AFLGO favors seeds that exercise code regions

with smaller distances. Christakis et al. [32] proposes to prune

paths in dynamic symbolic execution. It discards paths that

carry properties that have been verified. However, the existing

works generally prefer seeds that approach the targets quicker,

which oftentimes carry shallow contexts. Instead, SAVIOR

values all the seeds with high potential, creating various

contexts to exercise the target code. This enables SAVIOR

to outperforms these existing guided testing techniques in bug

finding. Some other works use static analysis to label potential

vulnerabilities, such as using data flow analysis to pinpoint

data leaks [23], using slicing to mark use-after-free paths [38],

and using taint analysis to mark possible races [50]. they then

rely on subsequent symbolic execution to confirm detection.

These analyses are complementary to SAVIOR. In addition,

SAVIOR relies on fuzz testing to stably approach the to-be-

verified paths, while others use heuristic based approaches to

guide symbolic execution towards the marked label.

VII. CONCLUSION

We introduce SAVIOR, a new hybrid testing approach in

this work. Unlike the mainstream hybrid testing tools which

follow the coverage-driven design, SAVIOR moves towards

being a bug-driven. We accordingly propose in SAVIOR two

novel techniques, named bug-driven prioritization and bug-

guided verification, respectively. On one hand, SAVIOR prior-

itizes the concolic execution to run seeds with more potentials

of leading to vulnerabilities. On the other hand, SAVIOR

examines all vulnerable candidates along the running program

path in concolic execution. By modeling the unsafe conditions

in SMT constraints, it solves for proofs of valid vulnerabilities

or proves that the corresponding vulnerabilities do not exist.

SAVIOR significantly outperforms the existing coverage-

driven tools. On average, it detects vulnerabilities 43.4% faster

than DRILLER and 44.3% faster than QSYM, resulting in the

discovery of 88 and 76 more security violations in 24 hours.
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APPENDIX A

SUPPLEMENTARY FIGURES AND EVALUATION DATA

A. Program Instrumentation

Figure 10 shows the UBSan-instrumented LLVM IR for the

objdump defect in our motivating example, of which source

code is presented in Figure 2. In Figure 10, we highlight

the instrumentation with !saviorBugNum metadata for bug-

driven prioritization.

B. UBSan Label Reduction

In the process of vulnerability labelling, SAVIOR also

reduces labels that can be confirmed as false positives. Table

IX shows the results of label reduction on our benchmark

programs.

1 ...
2 %23 = load

%struct.dwarf_section*,%struct.dwarf_section**
%section, align 8

,→

,→

3 %size10 = getelementptr %struct.dwarf_section,
%struct.dwarf_section* %23, i32 0, i32 6,→

4 %24 = load i64, i64* %size10, align 8
; load value of section->size,→

5 %25 = call { i64, i1 }
@llvm.uadd.with.overflow.i64(i64 %24, i64
1) ; section->size + 1

,→

,→

6 %26 = extractvalue { i64, i1 } %25, 0

7 %27 = extractvalue i64, i1 %25, 1

8 %28 = xor i1 %27, true, !saviorBugNum !1

9 ; check if the summation results in a carry
10 br i1 %28, label %cont, label %handler.add_overflow
11 cont:
12 %call11 = call noalias i8* @malloc(i64 %26)

#10 ; malloc(section->size + 1),→

13 handler.add_overflow: ; preds = %if.end6
14 call void @__ubsan_handle_add_overflow()
15 ...

Fig. 10: SAVIOR instrumentation of UBSan label.

Prog.
Label reduction results

Total UBSan Labels Removed UBSan Labels Percentage

tcpdump 13926 1924 13.8%
tiff2ps 1768 57 3.2%
readelf 2476 99 4.0%
xmllint 5258 195 3.7%
djpeg 9391 573 6.1%
tiff2pdf 3126 80 2.6%
jasper 3838 228 5.9%
objdump 9025 346 3.8%

Average 6106 438 5.36%

TABLE IX: Number of UBSan labels removed in our bench-

mark programs. On average, 5.36% of the labels are reduced.

C. LAVA-M Evaluation

In the evaluation with LAVA-M, bug-guided verification

helps identify a group of LAVA bugs that are not listed.

Table X shows the IDs of these LAVA bugs.

D. Real World Benchmark Evaluation

For a better reference of our evaluation with real-world

programs, we summarize the number of triggered violations

at the end of 24 hours in Table XII.

In addition, we also compare the UBSan violations trig-

gered by SAVIOR and the other 5 fuzzers. The results are

summarized in Table XI. In general, these fuzzers are explor-

ing a similar group of UBSan violations. More importantly,

for most of the cases, SAVIOR triggers a super-set of the

violations that are made by the other fuzzers (in particular

AFL and AFLGO). This indicates that SAVIOR has a better

thoroughness in vulnerability finding.

APPENDIX B

TECHNICAL DISCUSSION AND FUTURE WORK

In this section, we discuss the limitations of our current

design, insights we learned and possible future directions.

Over-approximation in Vulnerability Labeling: As ex-

plained in Section III, SAVIOR leverages sound algorithms

to label vulnerabilities where the over-approximation may

introduce many false-positive labels. This imprecision can
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Program Bugs unlisted by LAVA-M but exposed by bug-guided verification

base64 274, 521, 526, 527

uniq 227

md5sum 281, 287

who

1007, 1026, 1034, 1038, 1049, 1054, 1071, 1072, 117, 12

125, 1329, 1334, 1339, 1345, 1350, 1355, 1361, 1377, 1382

1388, 1393, 1397, 1403, 1408, 1415, 1420, 1429, 1436, 1445

1450, 1456, 1461, 16, 165, 169, 1718, 1727, 1728, 173

1735, 1736, 1737, 1738, 1747, 1748, 1755, 1756, 177, 181

185, 189, 1891, 1892, 1893, 1894, 1903, 1904, 1911, 1912

1921, 1925, 193, 1935, 1936, 1943, 1944, 1949, 1953, 197

1993, 1995, 1996, 2, 20, 2000, 2004, 2008, 2012, 2014

2019, 2023, 2027, 2031, 2034, 2035, 2039, 2043, 2047, 2051

2055, 2061, 2065, 2069, 2073, 2077, 2079, 2081, 2083, 210

214, 2147, 218, 2181, 2189, 2194, 2198, 2219, 222, 2221

2222, 2223, 2225, 2229, 2231, 2235, 2236, 2240, 2244, 2246

2247, 2249, 2253, 2255, 2258, 226, 2262, 2266, 2268, 2269

2271, 2275, 2282, 2286, 2291, 2295, 2302, 2304, 24, 2462

2463, 2464, 2465, 2466, 2467, 2468, 2469, 2499, 2500, 2507

2508, 2521, 2522, 2529, 2681, 2682, 2703, 2704, 2723, 2724

2742, 2796, 2804, 2806, 2814, 2818, 2823, 2827, 2834, 2838

2843, 2847, 2854, 2856, 2919, 2920, 2921, 2922, 294, 2974

2975, 298, 2982, 2983, 2994, 2995, 3002, 3003, 3013, 3021

303, 307, 3082, 3083, 3099, 312, 316, 3189, 3190, 3191

3192, 3198, 3202, 3209, 321, 3213, 3218, 3222, 3237, 3238

3239, 3242, 3245, 3247, 3249, 325, 3252, 3256, 3257, 3260

3264, 3265, 3267, 3269, 327, 334, 336, 338, 3389, 3439

346, 3466, 3468, 3469, 3470, 3471, 3487, 3488, 3495, 3496

350, 3509, 3510, 3517, 3518, 3523, 3527, 355, 359, 3939

4, 4024, 4025, 4026, 4027, 4222, 4223, 4224, 4225, 4287

4295, 450, 454, 459, 463, 468, 472, 477, 481, 483

488, 492, 497, 501, 504, 506, 512, 514, 522, 526

531, 535, 55, 57, 59, 6, 61, 63, 73, 77

8, 81, 85, 89, 974, 975, 994, 995, 996

TABLE X: IDs of unlisted bugs in LAVA-M that are triggered

with bug-guided verification.

Prog.
Difference of triggered UBSan violations

AFL AFLGO ANGORA DRILLER QSYM SAVIOR

tcpdump +5/-43 +0/-61 +0/-76 +7/-30 +15/-28 +0/-0

tiff2ps +0/-13 +0/-6 +0/-9 +0/-8 +0/-8 +0/-0

readelf +0/-7 +1/-7 +4/-13 +2/-7 +2/-7 +0/-0

xmllint +0/-6 +0/-6 +0/-15 +0/-6 +0/-6 +0/-6

djpeg +0/-0 +0/-7 +0/-7 +0/-0 +0/-0 +0/-0

tiff2pdf +0/-7 +0/-4 +5/-13 +0/-6 +0/-9 +0/-0

jasper +2/-13 +0/-13 +1/-22 +0/-18 +0/-8 +0/-0

objdump +14/-18 +10/-18 +16/-20 +10/-18 +12/-17 +0/-0

TABLE XI: Difference between violations triggered by SAV-

IOR and other fuzzers. (+X/-Y) means X violations are

triggered by the fuzzer but not by SAVIOR and Y violations

are triggered by SAVIOR but not by that fuzzer.

Prog.
Number of triggered UBSan violations

AFL AFLGO ANGORA DRILLER QSYM SAVIOR

tcpdump 87 59 43 102 113 128

tiff2ps 3 10 7 8 8 16

readelf 14 16 14 15 16 22

xmllint 12 12 3 12 12 18

djpeg 141 134 134 141 141 141

tiff2pdf 13 13 9 13 10 17

jasper 33 31 23 26 26 44

objdump 64 60 64 60 63 79

Total 367 335 297 377 389 465

TABLE XII: Number of unique UBSan violations triggered by

different fuzzers in 24 hours. In particular, 43.4% and 44.3%

more violations than DRILLER and QSYM, respectively.

consequently weaken the performance of SAVIOR’s prioriti-

zation. A straightforward reaction to this issue is to eliminate

as many dummy labels as possible. In our design, we utilize

a rule-based scheme to filter those false-positive labels in

Section III-B. In the future, we plan to include more precise

static analysis for finer-grained label pruning. For instance,

the STACK system developed by Wang et. al [69, 70] and the

approach proposed by Hathhorn et. al [45] can be incorpo-

rated into SAVIOR, which are complementary to UBSan in

identifying code snippets that may lead to undefined behavior.

Prediction in Vulnerability Detection: Once reaching a

potentially vulnerable program location in concolic execution,

SAVIOR extracts the guarding predicates of the vulnerability

label. However, these predicates may contradict the current

path condition. In case of such contradiction, SAVIOR ter-

minates the exploration of the labeling site immediately, since

continuing the analysis cannot contribute to any valuable test

input.

Moreover, in many cases, we can predict whether an exe-

cution path can trigger a vulnerability or not by studying the

runtime information of previous executions. Also, more impor-

tantly, before that execution arrives the vulnerability site. To

achieve this goal, we need a method to backwardly summarize

path constraints from the labeled site to its predecessors in

the explored paths. The core technique of this summary is

the weakest precondition [44] (derived from the Hoare Logic)

which has been applied to both sequential and concurrent

program analysis domains [22, 43, 71].
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