
SAX: a new and efficient assembler for solving
DNA Fragment Assembly Problem

Gabriela Minetti1, Guillermo Leguizamón2, and Enrique Alba3

1 National University of La Pampa, La Pampa, Argentina,
minettig@ing.unlpam.edu.ar,

2 National University of San Luis, San Luis, Argentina
legui@unsl.edu.ar,

3 University of Málaga, Málaga, Spain
eat@lcc.uma.es

Abstract. In the past, the Fragment Assembly Problem has been solved
efficiently by many metaheuristics. In this work, we propose a new one,
called SAX, which consists in combining two metaheuristics: a trajec-
tory method as Simulated Annealing and a population-based method
as Genetic Algorithm. We also analyze the relative advantages of this
hybridization against other assemblers from literature. From this analy-
sis, we conclude that SAX improves the quality results found by other
metaheuristic and non-metaheuristic assemblers for solving 100% of the
largest instances for this problem.

1 Introduction

The Fragment Assembly Problem (FAP) consists in building a DNA sequence
from several hundreds (or even, thousands) of fragments, which are obtained
by biologists in the laboratory. The DNA fragment assembly is needed because
current technology, such as gel electrophoresis, cannot directly and accurately
sequence DNA molecules longer than 1000 bases. However, most genomes are
much longer. FAP is the primary goal in any genome project and the remaining
phases depend on the accuracy of the results at this stage. Therefore, we need
accurate and efficient methods for solving this NP-complete problem.

Ant Colony Optimization (ACO), Genetic Algorithms (GA), Variable Neigh-
borhood Search (VNS), and Artificial Neural Networks (ANN) are some meta-
heuristics, which have been recently used for solving the DNA Fragment Assem-
bly Problem (FAP). As we can see in [2, 6–9], these methods methods outperform
several algorithms that have been specially developed for this problem, but more
efficacy and efficiency are necessary since smaller DNA sequences are more than
3000 bases long. To achieve these properties, efficacy and efficiency, new meta-
heuristic assemblers were proposed like ISA in [10, 14], PALS in [1], and GAG50

in [11].
ISA [10, 14] is a SA-based metaheuristic that incorporates the inversion pro-

cedure as strategy to generate neighbor solutions. This assembler obtains optimal

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 177



2

layouts for all the instances of different size tested but, the overlapping scores
are decreased for larger instances.

PALS [1] is a metaheuristic that performs a trajectory in the search space
by improving a single-solution using a specific local search. The PALS main
strength is the inexpensive calculation of the variation in the overlap and in
the number of contigs between the current solution and the resulting solution
after applying a movement. This calculation is not computationally expensive
since neither the fitness function nor the number of contigs are calculated in
each iteration. Instead PALS estimates the variation of these values. However,
its most important weakness is the quick convergence to local optima caused by
the local search when PALS solves large instances, as reported in [12, 13].

GAG50 [11] is a GA that initializes 50% of the first population using a greedy
strategy (which is also proposed in [11]). This metaheuristic uses a swap mutation
and the order crossover (OX) as genetic operators. Although, GAG50 achieves
very high overlapping scores, it can not find the optimal layout for the larger
instances of FAP.

Our proposal is to design a metaheuristic that finds optimal layouts with high
overlapping scores for the most complex instances of FAP, the larger ones. In
order to do that, we propose to hybridize the metaheuristics that reach these tar-
gets separately. More specifically, we combine ISA with the order crossover. The
behavior of this new assembler, called SAX, is compared with the performance
of ISA, PALS, GAG50, and two non-metaheuristic assemblers.

The rest of this article is organized as follows. The next section introduces
the DNA Fragment Assembly Problem. Section 3 explains how the ISA is hy-
bridized with OX to solve this problem. In Section 4 the experimental design is
described. In the fifth section, we analyze the SAX behavior and make a com-
parison against ISA, PALS, and GAG50. Further, we compare the performance
of these four metaheuristics against other assemblers proposed in literature. Fi-
nally, we discuss the conclusions and hints to further research.

2 The DNA Fragment Assembly Problem

The fragment assembly reconstructs an original DNA sequence from a set of
separate fragments, which are obtained by a sequencing procedure. One of the
most used sequencing procedure is the shotgun sequencing, which first cuts the
DNA into small pieces, second individually sequences each of these fragments,
and third puzzles together to create the original contiguous sequence, i.e., the
contig. The main advantages of the shotgun sequencing method are its high
level of automation and scalability. Specifically, the shotgun sequencing method
consists in:

1. Several copies of the DNA are produced and each copy is broken into millions
of random fragments.

2. Those fragments are read by a DNA sequencing machine.
3. An assembler pieces together the many overlapping fragments and recon-

structs the original sequence.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 178



3

Fig. 1. DNA Fragment Assembly Process.

The assembling of DNA fragments is divided into three different phases (as show
Figure 1):

1. Overlap: finding the overlapping among fragments -score-. This phase con-
sists in finding the best or longest match between the suffix of every sequence
and the prefix of another one. We compare all possible pairs of fragments to
determine their similarity. Usually, the dynamic programming algorithm is
used in this step to find semi-global alignments.

2. Layout : finding the order of fragments based on computed similarity scores.
This is the most difficult step because true overlaps are hard to determine.
After the order is determined, an alignment algorithm is applied to combine
all the pairwise alignments obtained in the overlap phase.

3. Consensus: deriving the DNA sequence from the layout. The most common
technique used in this phase is to apply the majority rule in building the
consensus.

If no sequencing error was detected at the overlap phase, the process simply
finds the longest suffix of one string that exactly matches the prefix of another
one. However, when sequencing errors exist, the process finds the best matches
but a small percentage of errors remains (1-3%). During the assembling process,
the only information available is the sequence of bases, and thus the ordering

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 179



4

of the fragments must rely primarily on the similarity of fragments and on how
much they overlap.

Once the fragments have been ordered (layout), the final consensus is gener-
ated. This means that a multiple alignment is computed to obtain a consensus
sequence that will be used as the genomic sequence. To measure the quality of
a consensus, we can look at the distribution of the coverage. The coverage at
a base position is defined as the number of fragments at that position. It is a
measure of the redundancy of the fragment data, and it denotes the number of
fragments, on average, in which a given nucleotide in the target DNA is expected
to appear. The coverage is computed as the number of bases read from fragments
over the length of the target DNA:

Coverage =

∑n
i=1 length of the fragment i

target sequence length
(1)

where n is the number of fragments. The higher the coverage, the fewer the
number of gaps, and the better the result. An incomplete coverage is provoked
when the algorithm is not able to assemble a given set of fragments into a single
contig. More specifically, a contig is defined as a layout consisting of contiguous
overlapping fragments. The overlap between adjacent fragments must be greater
or equal to a predefined threshold (cutoff parameter).

Particularly, the assembly of DNA fragments into a consensus sequence cor-
responding to the parent sequence constitutes the “fragment assembly problem”.
It is a permutation NP-hard problem [15].

3 SAX, a Hybrid Metaheuristic for Solving FAP

SAX is a low-level teamwork hybrid algorithm according the Talbi’s classification
[16], which combines ISA with a genetic crossover operator. This new metaheuris-
tic unifies the good performance of ISA with the heuristic information obtained
by using the OX crossover operator. This information guides the search toward
regions of solution space where the high fitness values are combined with the
optimal number of contigs.

As algorithm 1 shows, SAX creates the initial solution (S0) using the greedy
strategy proposed in [11] then, it uses the inversion mutation to generate two
new and different solutions (S1 and S2) from S0. S3 arises by recombining S1

and S2 using OX, besides S3 replaces the current solution if it is better than S0

or if it is accepted under the Boltzman distribution.
In other words, SAX extends the exploration to generate two solutions from

S0, but it also increases the exploitation to recombine them. For illustrating the
SAX working, we show an operating scheme of this new hybrid metaheuristic in
Figure 3. On one hand, the inversion mutation increases the structural diversity
of the current solution by inverting the substring between two random positions.
As we can see, it is clearly an exploration operator that helps to discover new
and promising regions of the search space.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 180



5

Algorithm 1 SAX
k = 0;
init S0 and T ; {initial solution and temperature}
evaluate S0 in E0;
repeat

repeat
k = k + 1;
generate S1 from S0 by applying the inversion mutation;
{Pc is the crossover probability}
if (random(0,1)< Pc) then

generate S2 from S0 by applying the inversion mutation;
generate S3 applying OX to S1 and S2;
S1 = S3;

end if
evaluate(S1) in E1;
{if the new solution, S1, is better than the current one, then S1 is accepted}
if (E1 − E0) ≥ 0 then

S0 = S1;
E0 = E1;
{if the new solution is worst than the current one,
S1 is accepted under the Boltzman probability}

else
if exp((E1 − E0)/T ) > random[0, 1) then

S0 = S1;
E0 = E1;

end if
end if

until (k mod Length of Markov Chain) == 0
update T ;

until stop criterion is satisfied
return S0;

Fig. 2. SAX Operating Scheme.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 181



6

On the other hand, SAX uses the OX operator to combine fragments of
S1 and S2 and obtain an improved solution. The idea behind this information
exchange is to implement a depth search or exploitation in order to improve the
current solution.

In this way, SAX jumps to new and promising regions of the search space and
carries out a very efficient exploitation. Consequently, unlike ISA, our assembler
will be able to find optimal layouts with very high overlapping score. Besides, as
SAX is a general purpose method, it can be used for solving other optimization
problems with a permutation representation like the traveling salesman problem.

4 Data Sets and Experimentation Methodology

In this section, we describe the problem instances that have been used in the
different experimentations, as well as the execution environment.

We have chosen four sequences from the NCBI web site1: a human MHC
class II region DNA with fibronectin type II repeats HUMMHCFIB, with ac-
cession number X60189; a human apolopoprotein HUMAPOBF, with accession
number M15421; the complete genome of bacteriophage lambda, with accession
number J02459; and a sequence of Neurospora crassa BAC, with accession num-
ber BX842596 (GI38524243). We used GenFrag [4] to generate the different data
sets from these sequences, shown in Table 1. GenFrag is a UNIX/C application
created to accept a DNA sequence as input and generate a set of overlapping
fragments as output that are used to test assemblers.

Furthermore, we have selected other sequences from the NCBI web site;
they correspond to a human microbion bacterium ATCC 49176 with accession
numbers from ACIN02000001 to ACIN02000026. Particularly, we have used the
longer sequences from this genome, and we have fragmented them with DNAgen
application. These new instances2 are shown in the second part of the Table 1.
The cutoff, which we have set to thirty (a very high value), provides one filter
for spurious overlaps introduced by experimental error.

We use the MALLBA library [3] to implement each algorithm. The results are
obtained after performing 30 independent runs on a AMD Phenom 8450-Triple
core processors at 2 GHz and 2 GB RAM. The Operating System is Slackware
Linux with 2.6.27 kernel version.

In order to get concluding results from the comparison made, we have per-
formed some statistical tests on the results. Before performing the statistical
tests, we first check whether the data follow a normal distribution by applying
the Shapiro-Wilks test. When the data are normally distributed, we perform an
ANOVA test. Otherwise, the tool we use is the Kruskal-Wallis test. This sta-
tistical study allows us to asses if there are meaningful differences among the
compared algorithms with 95% confidence level.

The main goal of this research is to study if the proposed algorithm solves
efficiently FAP, thus demonstrating its usefulness to act as a practical assembler.

1 http://www.ncbi.nlm.nih.gov/
2 http://mdk.ing.unlpam.edu.ar/ lisi/

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 182



7

In order to do that, we compare the SAX results with those obtained ones by
other practical and relevant assemblers like ISA, PALS, and GAG50.

Given the features from those four assemblers, we need to find a same stop
criterion for the four algorithms to make a right comparison. For example, the
numbers of iterations is not an adequate criterion to measure and compare the
computational effort between trajectory methods like ISA, PALS, and SAX and
population-based methods like GAG50. The reason for this lies in the first ones
works with only one solution by iteration, while the second one uses several so-
lutions in each iteration. Otherwise, the number of fitness evaluations is another
inappropriate termination condition because PALS does not calculate this value
on the search.

Consequently, we choose the runtime as stop criterion. Thus, ISA, PALS,
GAG50, and SAX search their best solution during 60 seconds. In this way, we
can measure the behavior of each assembler in a given period and compare with
others under the same conditions. In Table 2 we resume the parametric settings
of each one of these assemblers.

Table 1. Information of datasets. Accession numbers are used as instance names.

Instances Coverage
Mean Number Original

Fragment of Sequence
Length Fragments Length

GenFrag Instances
x60189 4 4 395 39

3835
x60189 5 5 386 48
x60189 6 6 343 66
x60189 7 7 387 68
m15421 5 5 398 127

10089m15421 6 6 350 173
m15421 7 7 383 177
j02459 7 7 405 352 20000

bx842596 4 4 708 442
77292

bx842596 7 7 703 773
DNAgen Instances

acin1 26 182 307 2170
acin2 3 1002 451 147200
acin3 3 1001 601 200741
acin5 2 1003 751 329958
acin7 2 1003 901 426840
acin9 7 1003 1049 156305

Table 2. Parametric values used by ISA, PALS, GAG50, and SAX.

Parameter Value

ISA and SAX
Length of Markov Chain 10

Initial temperature 0.99
PALS Movement Selection The Best Movements

GAG50

μ 256
λ 256

Mutation Op. Swap
and its probability 0.2
Parents Selection Binary Tournament

Replacement The best μ solutions of (μ + λ)

GAG50 and SAX
Recombination Op. Order Crossover (OX)
and its probability 0.7 for GAG50 and 1.0 for SAX

ISA, PALS,
Stop Criterion 60”

GAG50, and SAX

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 183



8

5 Analysis of Results

In this section we compare the performance of SAX against other metaheuristic
assemblers like ISA, PALS, and GAG50. Our aim is to offer an analysis from
the accuracy (quality) and performance points of view. Hence, tables 3 and
4 show the best and the average values for the fitness and the percentage of
optimal contigs found by the algorithm, and the average run time. The best
results for each instance are in boldface. Additionally, we show the results
of the statistical tests in the comparison of the different algorithms for each
tested instance. Symbol + means that significant differences where found at the
95% confidentiality, and cells with distinct backgrounds in the same row means
the respective assemblers behaves statically different for the given instance. For
example, in Table 3, we see that the ISA and PALS behaviors are different
from the GAG50 and SAX behaviors for instance 38524243 7, while there are no
significant differences between ISA and PALS and between GAG50 and SAX.

Table 3. Best and average fitness found by ISA, PALS, GAG50, and SAX.

Instances
Best fitness Average Fitness KW

ISA PALS GAG50 SAX ISA PALS GAG50 SAX Test

x60189 4 11478 11478 11478 11478 11332.90 11416.17 11478.00 11380.47 +

x60189 5 14027 14021 13553 14027 13872.40 13758.47 13275.50 13999.20 +

x60189 6 18301 18301 17866 18301 18147.93 17890.43 17414.90 18131.33 +
x60189 7 21271 21210 20884 21268 20913.10 20832.83 20737.23 21070.37 -

m15421 5 38583 38526 37932 38726 38474.17 38402.30 37506.83 38557.97 +

m15421 6 48048 48048 47152 48048 47891.70 47925.13 46788.87 47894.03 +

m15421 7 55048 55067 52702 55072 54702.47 54525.20 52277.93 54789.90 +

j02459 7 116257 115320 110869 115301 115164.87 114575.13 110223.87 114160.87 +

38524243 4 226538 225783 218250 223029 225647.07 224833.10 217186.55 221677.70 +

38524243 7 436739 438215 417702 417680 433482.17 436645.40 416011.13 415455.13 +

acin1 44511 46876 45565 46865 44258.94 46758.20 45377.03 46636.97 +

acin2 138699 144634 143444 144567 136719.33 144112.00 142499.33 143972.87 +

acin3 152177 156776 154947 155789 150193.90 156507.50 153980.90 154991.57 +

acin5 143864 146591 145332 145880 142770.50 146563.80 145193.87 145309.40 +

acin7 155117 158004 155873 157032 154977.53 157972.80 155801.40 156939.40 +

acin9 311035 325930 313203 314354 308603.93 324620.30 312005.55 311863.23 +

In the first place, we study the behavior of these assemblers taking into
account the quality of solutions. In this sense, we analyze the fitness values
and the percentage of optimal contigs for each instance (see tables 3 and 4)
and we can notice several facts. ISA and SAX get the optimal layout (only one
contig) in all instances, regardless of their sizes. But, for the larger instances
(Acin group), the ISA fitness values are lesser than the obtained ones by PALS,
GAG50, and SAX. The difference between these two groups of algorithms is
statistically significant as we can see in Table 3 (different backgrounds on the
Average Fitness columns).

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 184



9

Table 4. Percentage of optimal layouts found by ISA, PALS, GAG50, and SAX and
the average time spent by these algorithms to find the best solution.

Instances
% Optimal Average time to
contigs KW find the best solution KW

ISA PALS GAG50 SAX Test ISA PALS GAG50 SAX Test

x60189 4 100.00% 100.00% 100.00% 100.00% - 0.01 0.00 0.22 0.21 -

x60189 5 100.00% 100.00% 100.00% 100.00% - 0.04 0.00 0.41 0.99 -

x60189 6 100.00% 100.00% 100.00% 100.00% - 0.10 0.01 0.69 1.46 +

x60189 7 100.00% 100.00% 100.00% 100.00% - 0.07 0.00 0.62 5.32 +

m15421 5 100.00% 96.67% 90.00% 100.00% - 0.54 0.03 2.57 8.17 +

m15421 6 100.00% 0.00% 0.00% 100.00% + 0.79 0.07 6.24 12.99 +

m15421 7 100.00% 0.00% 0.00% 100.00% + 1.15 0.09 6.08 14.07 +

j02459 7 100.00% 86.67% 10.00% 100.00% + 8.77 0.69 25.94 58.17 +

38524243 4 100.00% 0.00% 0.00% 100.00% + 16.88 1.23 46.04 58.96 +

38524243 7 100.00% 0.00% 0.00% 100.00% + 30.46 1.64 47.36 59.25 +

acin1 96.77% 0.00% 0.00% 100.00% + 6.29 0.39 29.56 55.38 +

acin2 100.00% 0.00% 0.00% 100.00% + 15.44 2.42 58.30 59.42 +

acin3 100.00% 0.00% 0.00% 100.00% + 17.73 6.50 59.42 59.49 +

acin5 100.00% 0.00% 0.00% 100.00% + 26.11 19.30 59.82 59.73 +

acin7 100.00% 0.00% 0.00% 100.00% + 35.57 33.16 59.98 59.63 +

acin9 100.00% 0.00% 0.00% 100.00% + 43.78 39.84 2.27 59.77 +

Furthermore, as we can see in Table 4, PALS and GAG50 cannot find the
optimal layout for the largest instances, although PALS can achieve similar (and
sometimes better) fitness values than ISA and SAX for those instances. These
results confirm that ISA and SAX are better than PALS and GAG50 for solving
all instances, regardless of their sizes.

Given the aforementioned facts, we infer that the optimal number of contigs
is not necessarily associated with a high overlapping score. ISA needs to sacrifice
this score to obtain the optimal layout. This happen when ISA accepts worse
solutions than the current one depending on an accepting probability. In this
way, ISA escapes from local optima, explores new regions of the search space,
and finds the optimal layout.

However, SAX, which also accepts worse solutions than the current one,
achieves both objectives through the OX operator. This crossover operator en-
ables SAX to make a better exploitation of the new-found regions. In other
words, SAX achieves the optimal layout of fragments with a high overlapping
score.

In a second place, we analyze the assembler behavior considering the exe-
cution time. If we look at the average time that is necessary to find the best
solution in Table 4, we can see that ISA highlights a direct relationship between
the instance size and the time to find the best solution.

Moreover, PALS is the least consuming-time assembler. However, consider-
ing the results obtained in the experimentation, we infer that PALS converges
quickly a local optima. Besides, GAG50 spends the total time allocated when it
solves the larger instances. This means that GAG50 needs more time to find a

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 185



10

better solution. Although SAX also requires almost 60 seconds for solving the
larger instances, it can find optimal layouts with very high fitness values for
these instances.

As to the resulting ranking according to the solution quality and the exe-
cution time, SAX is in the first place because it outperforms ISA, PALS, and
GAG50 in 100% of the largest instances. SAX is followed by ISA, after that we
can find PALS and finally GAG50.

6 Comparison Against Existing Assemblers

In this section we compare the performance of our approaches against other
assembler algorithms proposed in the literature: CAP3 [5] and PHRAP
(http://www.phrap.org). These packages automate fragment assembly using a
variety of techniques that are greedy-based. In the next paragraphs we briefly
describe these assembler programs.

CAP3 is an extended version of CAP2 and CAP. CAP performs three differ-
ent tasks: fragment overlap detection, contig formation, and consensus sequence
generation. During the first task, this assembler computes the overlaps between
every pair of input fragments. After that, contigs are assembled in a greedy fash-
ion, by adding the best overlapping fragment (found in the previous fragment
overlap detection phase) one at a time. Finally, CAP generates consensus se-
quences from the contigs, CAP merges each pairwise alignment into a multiple
alignment of fragments. CAP2 improves CAP since it filters out potentially non-
overlapping fragments called singlets, identifies chimeric fragments, and handles
repetitive sequences. CAP3, a pretty specialized assembler, has a capability to
clip 5’ and 3’ low-quality regions of reads, uses base quality values in computa-
tion of overlaps between reads, and uses clone-mate information (forward-reverse
constraints) to correct assembly errors and link contigs.

PHRAP is an assembly program that performs comparison, alignment, and
assembly of large sets of DNA sequences. PHRAP compares sequences by search-
ing for pairs of perfectly matching words or sequence regions that meet certain
criteria. If a match is found, PHRAP then tries to extend the alignment into
contigs. PHRAP uses quality values produced by the PHRED base-caller that
reads DNA sequence chromatogram files and analyzes the peaks in it to call
bases, assigning quality scores to each base call.

In order to make that comparison, we show in Table 5 the best number of
contigs achieved by ISA, PALS, GAG50, SAX, and CAP3 for instances of Table
1. We also show the results reached by PHRAP only for some instances: x60189,
m15421, j02459 and 38524243. This happens because the process to generate
the noisy instances studied in this work does not consider the generation of the
associated chromatograms which are necessary to apply PHRAP.

If we analyze Table 5, we can see that ISA and SAX outperforms PALS,
GAG50, CAP3, and PHRAP for solving all instances, regardless their sizes.
Besides, we can detect similar behaviors among PALS, GAG50, CAP3, and
PHRAP given that they can not find optimal layouts for the same instances,

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 186



11

Table 5. Best final number of contigs for of ISA, PALS, GAG50, SAX, CAP3, and
PHRAP. Symbol - indicates that this information can not be computed.

Instances ISA PALS GAG50 SAX CAP3 PHRAP
x60189 4 1 1 1 1 1 1
x60189 5 1 1 1 1 1 1
x60189 6 1 1 1 1 1 1
x60189 7 1 1 1 1 1 1
m15421 5 1 1 1 1 3 1
m15421 6 1 2 2 1 2 -
m15421 7 1 2 2 1 1 2
j02459 7 1 1 1 1 1 1

38524243 4 1 6 6 1 8 6
38524243 7 1 3 3 1 2 2

acin1 1 4 5 1 9 -
acin2 1 236 236 1 239 -
acin3 1 358 358 1 361 -
acin5 1 552 552 1 556 -
acin7 1 722 722 1 727 -
acin9 1 552 552 1 552 -

e.g., m15421 6, m15421 7, 38524243 4, and the whole Acin group. Furthermore,
we also should put special emphasis in making a comparison between CAP3 and
GAG50, since the number of contigs obtained by CAP3 is equal or larger than
the obtained ones by GAG50. This indicates that GAG50 designs better layouts
of fragments than CAP3. As to the resulting ranking according to the numbers
of contigs, ISA and SAX are in the first place, followed by PALS, GAG50, CAP3,
and finally PHRAP.

7 Conclusions

In this paper we present a new hybrid metaheuristic for solving FAP based on
Simulated Annealing, called SAX. This new development was born to hybridize
a SA-based assembler (ISA) with a genetic crossover operator (OX). The ISA
component helps SAX to escape from local optima and OX expresses the ability
of the algorithm to reach the best local solutions within the search space. The
quality of the results found by SAX clearly outperforms ISA, PALS, GAG50,
CAP3, and PHRAP.

Among the main future research lines, we propose the fine tune of the SAX
parametric configuration to reduce the computational time of our algorithm and
in order to face larger instances with true guarantee of success. Besides, as SAX
is a metaheuristic, an interesting work is to analyze its application to other
NP-complete problems with a permutation representation.

Acknowledgements

This work has been partially funded by the Spanish Ministry of Science and
Innovation and FEDER under contracts TIN2008-06491-C04-01 (the MSTAR
project) and TIN2011-28194 (the roadME project), and by the Andalusian
Government under contract P07-TIC-03044 (the DIRICOM project). Gabriela

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 187



12

Minetti and Guillermo Leguizamón are supported by the Universidad Nacional
de La Pampa, Universidad Nacional de San Luis, and the ANPCYT.

References

1. E. Alba and G. Luque. A New Local Search Algorithm for the DNA Fragment
Assembly Problem. In Evolutionary Computation in Combinatorial Optimiza-
tion, EvoCOP’07, volume 4446 of Lecture Notes in Computer Science, pages 1–12.
Springer, Valencia, Spain, 2007.

2. E. Alba, G. Luque, and G. Minetti. Variable neighborhood search for solving
the DNA fragment assembly problem. In Anales del XIII Congreso Argentino de
Ciencias de la Computacin (CACIC), pages 1359 – 1370, Corrientes y Resistencia,
Argentina, October 2007.

3. E. Alba, G. Luque, J.M. Nieto, G. Ordónez, and G. Leguizamón. MALLBA:
A Software Library To Design Efficient Optimization Algorithms. International
Journal of Innovative Computing and Applications, 1(1):74–85, 2007.

4. M.L. Engle and C. Burks. Artificially generated data sets for testing DNA FA
algorithms. Genomics, 16, 1996.

5. W. Huang and A. Madan. CAP3: A DNA Sequence Assembly Program. Genome
Research, 9(9):868–877, 1999.

6. L. Li and S. Khuri. A Comparison of DNA Fragment Assembly Algorithms. In
Proc. of the 2004 International Conference on Mathematics and Engineering Tech-
niques in Medicine and Biological Sciences, pages 329–335, Las Vegas, 2004.

7. G. Luque and E. Alba. Metaheuristics for the DNA Fragment Assembly Problem.
International Journal of Computational Intelligence Research, 1(2):98–108, 2005.

8. G. Luque, E. Alba, and S. Khuri. Chapter 16: Assembling DNA Fragments with a
Distributed Genetic Algorithm. In Parallel Algorithms for Bioinformatics. Wiley,
2006.

9. P. Meksangsouy and N. Chaiyaratana. DNA fragment assembly using an ant
colony system algorithm. In The 2003 Congress on Evolutionary Computation,
2003. CEC03, volume 3, pages 1756– 1763. IEEE. ISBN: 0-7803-7804-0, 2003.

10. G. Minetti. Problema de ensamblado de fragmentos de ADN resuelto mediante
metaheuŕısticas y paralelismo. PhD thesis, Universidad Nacional de San Luis,
November 2011.

11. G. Minetti, E. Alba, and G. Luque. Seeding strategies and recombination operators
for solving the DNA fragment assembly problem. Information Processing Letters,
108(3):94–100, October 2008.

12. G. Minetti, G. Leguizamón, and E. Alba. A new Parallel and Hybrid Metaheuristic
for Solving Noisy DNA Strands. Journal of Information Sciences, Elsevier (in
evaluation), 2011.

13. G. Minetti, G. Leguizamón, and E. Alba. Assembling DNA Sequences Contain-
ing Noisy Information With Metaheuristic Algorithms. Journal of Information
Sciences, Elsevier (in evaluation), 2011.

14. G. Minetti, G. Luque, G. Leguizamón, and E. Alba. A new Hybrid SA for Solving
the DNA Fragment Assembly Problem. In XXVIII Internacional Conference of
the Chilean Computing Science Society (SCCC), pages 109 – 116, Santiago, Chile,
November 2009.

15. P. Pevzner. Computational molecular biology: An algorithmic approach. The MIT
Press, 2000.

16. El-Ghazali Talbi. Metaheuristics - From Design to Implementation. Wiley, 2009.

13th Argentine Symposium on Artificial Intelligence, ASAI 2012

41 JAIIO - ASAI 2012 - ISSN: 1850-2784 - Page 188


