
SAX-PAC (Scalable And eXpressive PAcket Classification)

Kirill Kogan
Purdue University and

NetSysAlgo

kirill.kogan@gmail.com

Sergey Nikolenko
Steklov Mathematical Institute

at St. Petersburg,
National Research University
Higher School of Economics

sergey@logic.pdmi.ras.ru

Ori Rottenstreich
Mellanox, Israel

orir@mellanox.com

William Culhane
Purdue University

wculhane@purdue.edu

Patrick Eugster
Purdue University and
Technical University of

Darmstadt
peugster@cs.purdue.edu

ABSTRACT

Efficient packet classification is a core concern for network ser-
vices. Traditional multi-field classification approaches, in both
software and ternary content-addressable memory (TCAMs), en-
tail tradeoffs between (memory) space and (lookup) time. TCAMs
cannot efficiently represent range rules, a common class of classi-
fication rules confining values of packet fields to given ranges. The
exponential space growth of TCAM entries relative to the number
of fields is exacerbated when multiple fields contain ranges. In
this work, we present a novel approach which identifies properties
of many classifiers which can be implemented in linear space and
with worst-case guaranteed logarithmic time and allows the addi-
tion of more fields including range constraints without impacting
space and time complexities. On real-life classifiers from Cisco
Systems and additional classifiers from ClassBench [7] (with real
parameters), 90-95% of rules are thus handled, and the other 5-
10% of rules can be stored in TCAM to be processed in parallel.

Categories and Subject Descriptors

C.2.6 [Computer-Communication Networks]: Internetworking-
Routers

Keywords

packet classification; TCAM

1. INTRODUCTION
Packet classification is a core functionality for implementing

popular commodity services including Quality of Service (QoS)
and access control. Recently packet classification has become even
more prominent with the adoption of OpenFlow [25], which ex-
presses features through hierarchical tuple matching with set ac-
tions. Multi-field classification, i.e. classification based on more

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM’14, August 17–22, 2014, Chicago, IL, USA.
Copyright 2014 ACM 978-1-4503-2836-4/14/08 ...$15.00.
http://dx.doi.org/10.1145/2619239.2626294 .

than one field, has become very common. If a classification rule
sets exact values for all fields, the rule can be represented by con-
catenating all its fields. Such classifiers can be implemented in
content-addressable memory (CAM) or by a simple hash function
in space linear in the number of fields. The problem becomes
harder if a field is represented by a prefix (constraint on most sig-
nificant bits) or a range (confining values inside an interval) since
simple concatenation stops working.

Many sophisticated software-based approaches have been pro-
posed (cf. comprehensive survey [40]). Complexity bounds de-
rived from computational geometry imply that a software-based
packet classifier with N rules and k ≥ 2 fields uses either O(Nk)
space and O(logN) time or O(N) space and O(logk−1 N)
time [26]. Thus, software-based approaches are either too slow or
too memory-intensive even with few prefix- or range-based fields.

Ternary content-addressable memory (TCAM) was introduced to
overcome performance problems for prefix matching [24]. TCAM
is a fast class of memory for matching packet headers against a
set of stored entries represented by tuples of VALUE and MASK

words (the latter hides “don’t care” bits). Currently, TCAM is the
de facto standard for classifier implementation. Unlike software-
based solutions, TCAM can efficiently represent multi-field clas-
sification with prefixes, but suffers an exponential memory blowup
from range expansion; each range-based field in a classification rule
introduces an additional multiplicative factor. Thus in practice the
number of range fields is severely limited.

Defining more sophisticated services requires additional expres-
siveness on existing classification fields or new ones, and many
classifications are naturally represented by ranges. More efficient
implementations for classifiers on ranges of IP or MAC addresses,
dates, packet lengths, etc. are already highly desired [8]. The state-
of-the-art packet classification mechanisms are limited and mostly
consider five-tuples with at most two fields which include ranges.
This greatly restricts emerging classification possibilities.

In this paper we consider a hybrid software- and TCAM-based
approach, which hinges on the order-independence of classifiers
with respect to the rules they encompass. We identify this property
as essential for simple and efficient implementation of classifiers.
We show that if a classifier is order-independent then the addition
of new classification fields — even those represented by ranges —
does not increase the complexity of lookup time or memory space
required. We use this to build efficient classification schemes. We
also consider the general case with order-dependence, leading to a
hybrid approach implementing order-independent rules in software

15

using linear memory and with logarithmic worst-case guaranteed
lookup time, and the rest of the rules in TCAM. More precisely,
our contributions are the following: (1) we identify classifier prop-
erties that guarantee zero cost for additional fields represented by
ranges or prefixes transparently to the implementation scheme; (2)
we propose a technique to reduce the number of classification fields
represented by prefixes or ranges, yielding semantically equiva-
lent classification results; (3) we present a technique to reduce a
multi-field classification problem to a classification problem on at
most two fields with guaranteed worst-case performance and lin-
ear memory which is more sophisticated than previous reducation
attempts which do not provide acceptable worst-case guarantees
when classifiers start with more than two fields [35, 36]; (4) we
demonstrate the viability of our approach through simulations on
12 classifiers from Classbench generated with real parameters [7],
each with≈ 50K rules on 6 fields and on 5 real-life classifiers from
Cisco Systems; we show that up to 90-95% of the rules can be
implemented in software in linear space and with worst-case guar-
anteed logarithmic time, leaving only 5− 10% to be implemented
in TCAM.

The rest of this paper is organized as follows. Section 2 de-
tails the model underlying our work. Section 3 explains the rel-
evance of order-independence, and Section 4 introduces the main
computational problems underlying our approach. Section 5 deals
with the Boolean representation of classifiers, comparing it with
our approach, whereas Section 6 presents heuristics to efficiently
find suboptimal solutions for the computational problems and Sec-
tion 7 proposes new standard representations of classifiers. Sec-
tion 8 presents simulation results. Section 9 discusses related prior
art and Section 10 concludes the paper.

2. MODEL DESCRIPTION
Packets are matched by their headers according to classification

rules stored in a classification database. A packet header contains
k fields; a field i, 1 ≤ i ≤ k, is a string of Wi bits. A classifier K
is an ordered set of N rules, denoted R1 . . . RN . A rule Rj is an
ordered set of k fields and an associated action Aj ; the i-th field Fi

is represented by a range of values on Wi bits, i.e., each rule con-
tains k ranges R = (I1, . . . , Ik), Ii = [li, ui]. We assume the last
rule of each K is a “catch-all” rule RN = (∗, . . . , ∗) with AN =
TRANSMIT to transmit matched packets without changes. We de-
note by K−F the classifier that results from K by removing the set
of fields F from each of its rules; we also usually denote by K+F

a classifier that results from K by extending its rules with the set
of fields F (with values defined separately for every rule), and sim-
plify the notation to K−|F | and K+|F | where the fields themselves
are clear from context.

Rules are applied sequentially, i.e., the set of rules has non-cyclic
ordering ≺, and if a header matches both Rx and Ry for x ≺ y,
rule Rx takes precedence. Classifiers are semantically equivalent if
they match the same rule for every packet.

A classifierK is called order-independent if for any classifierK′

with the same rules in a different order (except the last “catch-all”
rule) and for any packet header p, p is matched by the same rule in
both K and K′. This condition for order-independence of a classi-
fier is satisfied exactly when each pair of its rules do not intersect,
i.e. for each pair of rules there is at least one field in which the two
corresponding ranges (or prefixes) are disjoint. Otherwise, a clas-
sifier is called order-dependent. For instance, the classifier K that
contains two rules that are based on two fields R1 = ([1, 3], [4, 5])
and R2 = ([5, 6], [4, 5]) is order-independent but K′ that contains
two rules R3 = ([1, 3], [4, 5]) and R4 = ([2, 4], [4, 5]) is order-
dependent. This is because R1, R2 do not intersect since the ranges

TCAM space by Theorem 1, binary encoding
TCAM space by Theorem 1, SRGE encoding
“Regular” TCAM space, binary encoding
“Regular” TCAM space, SRGE encoding

0 2 4 6

10
4

10
6

10
8

16-bit range fields, ClassBench

A
ve

ra
ge

sp
ac

e,
K

b

0 2 4 6

10
2

10
5

10
8

16-bit range fields, Cisco

Figure 1: TCAM space required for ClassBench and CISCO clas-
sifiers as a function of the number of additional synthetic 16-bit
range fields.

in their first field are disjoint while R3, R4 do intersect. For in-
stance, the input (3, 4) matches both rules of K′. K(S) denotes a
classifier that uses only a subset S of fields in classification.

3. IMPACT OF ORDER-INDEPENDENCE
Order-independence of classifiers, or parts thereof, is a preva-

lent and powerful property for efficient classifier representation and
evaluation. Classifiers using longest-prefix matches on a single
field are at least order-independent among all prefixes of the same
length; forwarding entries in OpenFlow [25] likely preserve order-
independence for simplicity of management; many classifiers rep-
resenting services and implement “best-match” priority schemes
are order-independent. Order-dependent classifiers representing
service-level-agreements (SLAs) are often unintended byproducts
of uniting several services in a single classifier. In our experience
of over a decade of deployments, many classifiers representing ser-
vices such as QoS or ACLs are order-independent in practice. In-
creasing the number of rules of a classifier decreases the chance
that classifier as a whole will stay order-independent, but the size
of its maximal order-independent part increases. Adding fields to
each rule increases the chances of order-independence.

To study the impact of order-independence, we analyze classi-
fiers from ClassBench generated with real parameters [7] and real-
life classifiers provided by Cisco Systems. The data in Table 1 indi-
cate new methods for efficient representation of order-independent
parts of classifiers can greatly reduce requirements for classifica-
tion engines. If a classifier is not wholly order-dependent, we can
lookup its order-independent and order-dependent parts separately
and return the highest-priority match. An order-independent match
preempts the need to match the order-dependent part. Alterna-
tively, we can choose rules for the order-independent part which
have higher priorities than any rule in the other part.

EXAMPLE 1. Consider an order-independent classifier K =
(R1, R2, R3) with two fields of 5 bits each and rules

R1 = ([1, 3], [4, 31]),
R2 = ([4, 4], [2, 30]),
R3 = ([7, 9], [5, 21]).

Let K+1 be a classifier that results from K by adding one new field
of 5 bits, leading to the rules

R+1

1 = ([1, 3], [4, 31], [1, 28]),
R+1

2 = ([4, 4], [2, 30], [4, 27]),
R+1

3 = ([7, 9], [5, 21], [3, 18]).

16

Rules Original classifier Classifier expanded by two 16-bit ranges
Original K By Theorem 2 Original K+2 By Theorem 1

Order-ind. Order-ind.
Total order-ind., Width, Space, Kb width, Space, Kb Width, Space, Kb width, Space, Kb

all fields bits Binary SRGE bits Binary SRGE bits Binary SRGE bits Binary SRGE
acl1 49870 49779 120 7922 7655 31 1517 1517 152 1752769 1462501 31 3857 3509
acl2 47276 44178 120 11289 11289 82 4189 4189 152 2499525 2159699 82 145925 126505
acl3 49859 47674 120 10771 10571 91 5018 5008 152 2391264 2027239 91 177771 152514
acl4 49556 46670 120 10079 9904 97 5379 5370 152 2234839 1895078 97 216994 186701
acl5 40362 38962 120 6121 6121 63 2950 2950 152 1359256 1172403 63 127818 110663
fw1 47778 43675 120 19454 19438 72 3926 3911 152 4303234 3720573 72 194313 164893
fw2 48885 48826 120 10866 10866 52 2498 2498 152 2399603 2071400 52 7382 6695
fw3 46038 41615 120 15090 15073 84 4161 4145 152 3337763 2873120 84 170688 144596
fw4 45340 42857 120 33500 33368 76 4025 4008 152 7438741 6390798 76 195130 165332
fw5 45723 39962 120 12478 12445 76 3759 3745 152 2745105 2366939 76 180420 152652
ipc1 49840 48294 120 8041 7924 50 2580 2579 152 1789100 1521153 50 52378 45391
ipc2 50000 50000 120 5859 5859 36 1757 1757 152 1301839 1123612 36 1757 1757
cisco1 584 538 120 78 78 52 34 34 152 17523 15088 52 1650 1441
cisco2 269 249 120 68 68 21 7 7 152 15662 13510 21 477 415
cisco3 95 92 120 11 11 30 3 3 152 2505 2137 30 76 71
cisco4 364 329 120 79 79 38 18 18 152 17827 15385 38 1484 1237
cisco5 148 120 120 19 19 17 5 5 152 4303 3717 17 695 590

Table 1: Space comparison. Left to right: number of rules (total and in a maximal order-independent set); a comparison of TCAM space
requirements under two encodings (binary [36] and SRGE [3]) for ClassBench classifiers with standard representation and with a representa-
tion reduced by Theorem 2; a similar TCAM space comparison for the same classifiers extended with two additional random synthetic 16-bit
range fields, with standard representation and with a representation reduced by Theorem 1.

Figure 2: Visualizing the lookup procedure on rules with a subset
of fields in Example 1. Fields checked in a certain step are in black;
those irrelevant for the step, in grey. Packet (4, 2, 2) matches R2

but fails the false positive check on the added field of R+1

2 , so the
classifier returns the catch-all rule.

SinceK is order-independent, the new fields can be skipped during
(the main TCAM-based) classification and a single matched rule
verified to avoid false positive matches (see Figure 2). The binary
encoding [36] ofK+1 requires 42+28+50 = 120 TCAM entries
and the SRGE encoding [3] requires 24+ 8+32 = 64 entries. On
the other hand, the binary and SRGE encodings of K require only
6 + 7 + 10 = 23 and 6 + 4 + 8 = 18 TCAM entries respectively.

THEOREM 1 (FIELDS EXPANSION). LetK+m be a classifier

that results from an order-independent classifier K by adding m
new fields of any width, i.e., a rule R = (I1, . . . , Ik) in K is re-

placed with R+m = (I1, . . . , Ik, . . . , Ik+m) in K+m. Then K
with a false-positive check of a single matched rule is a semanti-

cally equivalent representation of K+m.

PROOF. Adding new fields to an order-independent classifier
preserves its order-independence, so K+m is order-independent. If
a header H does not match any rule of K, H cannot match K+m

(we only add constraints). If a header H matches Rj ∈ K, either
H matches R+m

j ∈ K+m or H does not match any rule of K+m.
If Rj ∈ K is matched we check m additional fields to avoid a
false-positive match.

By Theorem 1, introducing additional fields based on prefixes
or ranges to an order-dependent classifier affects only the encod-

ing size of its order-dependent part. The space and lookup time
complexity of classification in the order-independent do not in-
crease since new fields in the order-independent part can be ignored
without affecting the classification outcome; an additional check
of at most one matched rule is required to avoid a false positive
match. Previously new fields based on prefixes or ranges signifi-
cantly increased the complexity of software-based solutions (recall
O(logk−1 N) lookup time in linear memory). Likewise, in TCAM-
based solutions each range is converted to prefixes before configu-
ration, and any new field based on ranges adds an additional mul-
tiplicative factor for the required TCAM space. This contributes
to the fact that 5-tuple classifiers with only source and destination
port fields represented by ranges are the current industry standard.
Support for additional fields amenable to range rules would greatly
improve classification expressiveness (e.g., ranges on dates, packet
length, etc.).

The effect of Theorem 1 is shown in Table 1. We add two new
ranges on 16 bits each to benchmark classifiers, garnering signifi-
cant space savings. We compare memory requirements which re-
sult from Theorem 1 with those of two well-known range encod-
ing schemes: binary [36] and SRGE [3]. In addition, Figure 1
demonstrates how average required space depends on the number
of range-based fields; for our approach, the exponential growth
is significantly deterred. Whereas Theorem 1 shows an equiva-
lent representation of K+m when new fields are added, Theorem 2
states we can ignore a subset of fields if the remaining fields main-
tain the order-independence of the classifier. Table 1 shows the
effect of Theorem 2: for most benchmarks, significant space sav-
ings (by a factor of 2 to 5) caused by order-independence result im-
mediately, on the classifiers themselves rather than their extended
versions. The effect is independent of range encoding schemes.

EXAMPLE 2. Consider a classifier K = (R1, R2, R3) with
three fields of 5 bits each and rules

R1 = ([1, 3], [4, 31], [1, 28]),
R2 = ([4, 4], [2, 30], [4, 27]),
R3 = ([7, 9], [5, 21], [3, 18]).

In this case the first field is necessary but also sufficient to
guarantee order independence, so we have that K−{2,3} =

17

Figure 3: Visualizing the lookup procedure on rules with a subset
of fields in Example 2. Fields to be checked in a step are shown
in black; irrelevant for the step, in grey. Note that packet (4, 2, 2)
matches R−{2,3}

2 but fails the false positive check, so the classifier
returns the catch-all rule.

{R−{2,3}
1 , R

−{2,3}
2 , R

−{2,3}
3 } = {([1, 3]), ([4, 4]), ([7, 9])} is

order-independent (see Figure 3). That the binary encoding of K
requires 42 + 28 + 50 = 120 TCAM entries and the SRGE en-
coding of K requires 24 + 8 + 32 = 64 TCAM entries. On the
other hand, the binary encoding forK−{2,3} requires 2+1+1 = 4
TCAM entries and the SRGE encoding requires only 2+1+2 = 5
TCAM entries.

Note that removing additional classification fields of K−{2,3}

based on ranges can significantly reduce space complexity since the
same K−{2,3} is sufficient to represent K in Example 2. Only one
false-positive check of a matched rule R

−{2,3}
i is required. To fur-

ther improve performance, the removed fields of Ri can be checked
in parallel.

THEOREM 2 (FIELDS REDUCTION). Let K−m be a classi-

fier that results from an order-independent classifier K by re-

moving m fields, i.e., each R = (I1, . . . , Ik) is replaced with

R−m = (I1, . . . , Ik−m). If K−m is order-independent then K−m

with a false-positive check of a single matched rule is a semanti-

cally equivalent representation of K.

PROOF. If a header H does not match K−m, H cannot match
K (we only remove new constraints). If a header H matches R−m

j ,
H can match only Rj or H does not match K (if a header matched
both R−m

i and some Rj , i 6= j, it would contradict the order-
independence of K−m).

By Theorem 2, detecting a false-positive match of a rule R−m
i ∈

K−m requires only to check m additional fields of Ri. If a false
positive is found the catch-all rule is used. At most one rule can
match in K−m classifiers, which hugely impacts the complexity
and feasibility of implementation.

There are significantly different complexities involved in adding
and removing fields with the suggested approach. In the first case
it suffices to maximize the size of the order-independent part on the
same set of fields. In the second case, there is an additional trade-
off between the size of the order-independent part and the subset
of fields necessary to retain order-independence. In the following
section we suggest efficient representations of order-independent
parts. The effect of Theorem 2 will be demonstrated in Section 8.

4. EFFICIENT REPRESENTATIONS OF

CLASSIFIERS
Since the tradeoff between lookup time and memory space for

multi-field classification heavily depends on the number of fields
k participating in classification, it is reasonable to explore ways to
reduce k. For software-based solutions, any additional field that is

represented by a prefix or range incurs additional complexity on the
lookup time or memory space [26]. If the reduced classifier K−m

contains at most two fields, we can efficiently implement lookup in
time logarithmic in N with linear memory [36]. For TCAM-based
solutions, if a classifier field is represented by a range, removing
it reduces the required TCAM space proportionally to the number
of prefixes used to express the range. In this section we present
optimization problems as a step to achieve this goal. Moreover,
removing fields can create a shorter classification format. Com-
mon TCAM formats include 72, 144, or 288 bits, so reducing the
representation size across one of those barriers halves the required
TCAM space.

4.1 Semantically Equivalent Representations
of All Rules

We begin by optimizing order-independent classifiers based on
Theorem 2 (see Example 2).

PROBLEM 1 (FIELDS SUBSET MINIMIZATION (FSM)).
Find a maximal subset of fields M of an order-independent

classifier K such that K−M is order-independent; if there are

several such subsets, choose M with maximal total width (to

minimize lookup word width).

FSM can only be applied to order-independent classifiers, and it
does not always reduce the number of classification fields for order-
independent classifiers. It is enough that every field of a single rule
is required to keep order-independence of a classifier. One way to
address these shortcomings is a multi-group representation. A sub-
set of classification fields may suffice for order-independence of a
subset of rules of a classifier. Assume that the rules of a classifier
K can be assigned to β groups such that: (1) each rule belongs to a
single group; (2) the rules of each group are order-independent on
a subset of k fields of K (except the “catch-all” rule); (3) different
groups can reuse the same fields to keep order-independence. By
Theorem 2, a lookup to a group returns a single matched rule to
be checked for false-positives on all remaining fields; the matched
non-false-positive rule with the highest priority (from exactly β
matched rules) is returned. We call this the multi-group repre-
sentation of K. Multi-group representations exist for any order-
dependent classifier, but each group should be order-independent.
The following theorem immediately follows by construction.

THEOREM 3. The multi-group representation of a classifier is

semantically equivalent to the original classifier.

Lookups to groups can be issued in parallel. If each group in
a multi-group representation can be order-independent on at most
two fields, we have a semantically equivalent representation of a
classifier in linear memory and with worst-case guaranteed loga-
rithmic lookup time. Example 3 shows how the rules of a classifier
K can be split into groups.

EXAMPLE 3. Consider K = {R1, R2, R3, R4, R5} with three
fields of four bits each and rules

R1 = ([5, 10], [4, 7], [4, 5]),
R2 = ([1, 4], [4, 7], [4, 5]),
R3 = ([1, 9], [1, 3], [4, 6]),
R4 = ([1, 9], [4, 7], [1, 3]),
R5 = ([1, 9], [4, 7], [5, 6]).

While the set of all rules {R1, R2, R3, R4, R5} is not order in-
dependent (for instance, R1 ∩ R5 6= ∅), the rules can be di-
vided into two independent subsets, {R1, R2, R3} and {R4, R5}.

18

Figure 4: A visualization of the lookup procedure with a multi-
group representation of the rules in Example 3. Fields to be
checked on a certain step are in black; those that are irrelevant for
this step, in grey.

The first two fields are necessary to keep the first group order-
independent and the last field is enough to keep the second group
order-independent.

Figure 4 shows a visualization of the lookup procedure af-
ter the grouping has been accomplished: for an incoming packet
p = (2, 4, 5), we issue parallel lookups for the two groups; these
lookups return R2 and R5 and look only at fields {1, 2} and {3}
respectively. Then we check if it was a false positive, matching p
against the rest of the fields for the returned rules, and then select
the match by rule priority. At most one rule will make it to the false
positive test for each group. In case when no rule matches or the
final test finds that the result was a false positive, the catch-all rule
is sent to the priority comparison, so each group sends exactly one
rule to the priority comparison for any packet.

In some order-independent classifiers removing any of the fields
make it be order-dependent and accordingly the FSM cannot reduce
the number of fields. This leads us to the following optimization
problem that can be applied also to order-dependent classifiers.

PROBLEM 2 (l-GROUPS OF RULES (l-MGR)). Given a

classifier K, find an assignment of K’s rules to a minimal number

of disjoint groups such that different groups of rules can be based

on the same or different subset of at most l ≤ k fields, and each

group is order-independent on these fields.

4.2 Representation of a Subset of Rules
Problem 2 shows how to deal with order-dependent classifiers.

However, the number of lookups that can be issued in parallel is
a system parameter, and the minimal number of groups found by
solving Problem 2 may be unacceptable. In this situation, we can
decompose an order-dependent classifier K into order-independent
part I and order-dependent part D. We can perform parallel
lookups on both parts and return the best matched rule. TCAM
or another general implementation can be used to storeD. Since in
practice a subset of order-dependent rules on k fields should be sig-
nificantly smaller than N , significant TCAM space can be saved.
The problem is finding which rules to put in I . One possibility is
to find a maximal order-independent subset of rules on all k fields
and run Problems 1 or 2 on I. Finding maximal order-independent
set on k fields is interesting when we extend already existing clas-
sifiers with new fields (Theorem 1). Another direction is finding an
order-independent part that already has the desired properties.

PROBLEM 3 (MAXIMUM RULES COVERAGE (l-MRC)).
Given a classifier K and a positive number l ≤ k, find a maximal

subset I ⊆ K which is order-independent on at most l fields.

Figure 5: Example 5. Top: a multi-group representation of I =
{R1, R2, R3, R4} and D = {R5}. Bottom: a more compact rep-
resentation of I = {R1, R2, R4} and D = {R3, R5}. Fields to be
checked in a group lookup are in black; those that are irrelevant for
this step, in grey.

EXAMPLE 4. Consider a classifier K = {R1, R2, R3}
with three fields and the first three rules from Example 3
R1 = ([5, 10], [4, 7], [4, 5]), R2 = ([1, 4], [4, 7], [4, 5]), R3 =
([1, 9], [1, 3], [4, 6]). If l = 2, we can have a maximal subset
K′ = K of three rules, as the first two fields guarantee that the
set K of these three rules is order-independent. Likewise, if l = 1
and only one field can be selected to distinguish between the rules,
we can have order-independent sets of two rules. By considering
the first field, we can have the subset K′ = (R1, R2). Using only
the second field we can have other possible order-independent sub-
sets such as K′ = (R1, R3) or K′ = (R2, R3). We can also see
that the three rules together are not order-independent based on any
single field and accordingly the three mentioned possible subsets
are all maximal subsets.

The generalized version of l-MRC problem reuses the advan-
tages of the decomposition into I and D and multi-groups repre-
sentation.

PROBLEM 4 ((β, l)-MRC). Given a classifier K and two

positive numbers l ≤ k and β, find a maximal subset of rules

I ⊆ K that can be assigned to at most β groups, where each group

is order-independent on at most l fields.

In some cases, it may be feasible to send a few more rules to
D and thus significantly reduce the number of groups; this usually
happens in practice with more general rules at the bottom of a clas-
sifier.

EXAMPLE 5. Consider a classifier K with three fields of five
bits each and five rules

R1 = ([5, 9], [4, 4], [4, 4]),
R2 = ([2, 4], [5, 7], [5, 5]),
R3 = ([2, 3], [1, 4], [4, 6]),
R4 = ([1, 5], [1, 7], [1, 3]),
R5 = ([1, 9], [1, 7], [1, 6]).

The maximal order-independent subset on all three fields is I =
{R1, R2, R3, R4}, and one possible multi-group representation of
I consists of two groups: {R1, R2, R3} (based on the first two
fields) and {R4}. But if we setD = {R3, R5}, the rest will form a
single group which is order-independent on a single field, the third
one. This example is illustrated on Figure 5.

4.3 Efficient Cache Implementation
The (β, l)-MRC problem maximizes the number of rules in I

that can be assigned to at most β groups that are order-independent

19

on at most l fields. Previously, we discussed a decomposition of
K into I and D, returning the best match between them. We wish
to construct I in such a way that if a non-catch-all rule of I is
matched, the lookup to D is no longer required. If such I exists,
its content can be configured in cache. If K is order-independent,
I that is returned by the (β, l)-MRC problem satisfies the “cache”
property. In the order-dependent case we just need to guarantee that
there exist no two rules R1 ∈ I and R2 ∈ D such that R1 “inter-
sects” with R2 with priority R2 ≺ R1. As a result, we formulate
the following variant of the (β, l)-MRC problem.

PROBLEM 5 ((β, l)-MRCC). Given a classifier K and two

positive numbers l ≤ k and β, find a maximal subset of rules

I ⊆ K that can be assigned to at most β groups, where each group

is order-independent on at most l fields and no two rules R1 ∈ I
and R2 ∈ D such that R1 “intersects” with R2 and R2 ≺ R1.

The built I by (β, l)-MRCC has not only a space-efficient repre-
sentation but also implements a power-efficient solution that does
not require a lookup to D (if I is matched) that is usually will be
implemented in TCAMs that suffer from power-inefficiency.

4.4 Resolution of Optimization
In case when only a part of the fields are represented by ranges

or ranges are remapped to ternary bit-strings the boundaries of
real classification fields as SrcIP, DstIP, ToS, etc., are removed. A
rule becomes a ternary bitstring where any number of bits can be
grouped to virtual fields.

EXAMPLE 6. Consider a classifier K with two fields of four
bits each and four rules:

R1 = (100*, 001*),
R2 = (1010, 0001),
R3 = (000*, ****),
R4 = (001*, ****).

In this case, the first field of four bits is enough to ensure order-
independence, so if we run FSM on two four-bit fields, we get a
classifier

R−1

1 = (100*), R−1

2 = (1010),
R−1

3 = (000*), R−1

4 = (001*).

However, note that only the first and third bits suffice to provide
order-independence in this case. Hence, if we treat the same K as
8 one-bit fields, FSM yields a classifier of width two:

R−6

1 = (10), R−6

2 = (11), R−6

3 = (00), R−6

4 = (01).

We have performed experiments on how the resulting reduced
classifier width depends on the width of virtual fields. The results
are summarized in Figure 6 that shows average widths of Class-
Bench and CISCO classifiers for different resolutions.

In light of Example 6, solutions to problems in this section are
very promising even for the case of a single field represented by a
range. This is actually the case of minimization of representation
in forwarding tables. Since every prefix corresponds to a single
range, finding a maximal order-independent set of ranges is equiv-
alent to maximum independent sets in interval graphs, i.e. a graph
in which the nodes are 1-dimensional intervals (e.g., time inter-
vals) and there is an edge between two intervals iff they intersect.
This problem can be solved exactly in O(N logN) time using the
earliest-deadline-first (EDF) algorithm [17].

Using the order-independent property of a classifier can in some
sense reduce its representation memory size beyond the theoretical
entropy lower bounds presented in [27]. Of course, this relates to

1 2 4 8 16 32
0

50

100

Virtual Field Width (in bits), ClassBench

1 2 4 8 16 32
0

50

100

Virtual Field Width (in bits), CISCO

Figure 6: Classifier width (in bits) as a function of virtual field
width for ClassBench and CISCO classifiers. Dashed grey line
presents average original classifier width; grey solid line shows
average classifier width after MinDNF reduction (see Section 5);
black line illustrates classifier width after FSM optimization.

the space required in the first step of the classification and does not
include the additional memory required to examine the case of a
false-positive match.

Consider for instance, a classifier with four rules R1, R2, R3, R4

defined on a single field of W = 8 bits such that R1 =
[148, 148] = (10010100), R2 = [83, 83] = (01010011), R3 =
[165, 165] = (10100101), R4 = [102, 102] = (01100110). The
rules are associated with four distinct actions A1, A2, A3 and A4.
We can see that two bits are enough in order to distinguish be-
tween the rules. These can be for instance the third and the seventh
bits which have the values of 00, 01, 10 and 11 in the four rules
R1, R2, R3, R4, respectively. Accordingly, the representation of
this subset of the bits of the rules together with the encoding of
the action of each rule (in two additional bits) has a total space of
4 · (2 + 2) = 16 bits.

For this classifier, the binary tree representation T includes 4
leaves and a total of 27 < (32 = 4 ·W) nodes since some nodes
for the first bits in the rules are shared among more than one rule.
The suggested XBW-l transform [27] for the tree, denoted xbwl(T),
consists of three strings (Slast, SI , Sα), where the bit length of the
binary strings Slast, SI that encodes tree structure equals the num-
ber of nodes. Likewise, the length of string Sα that encodes the
actions equals the number of leaves times the size of each action in
bits. This results in a space requirement of 27 + 27 + 4 · 2 = 62
bits, almost four times the space required in the suggested scheme.
Furthermore, the DAG representation [27], a more complicated en-
coding scheme for the tree T , cannot reduce the space required
since in this example actions of the rules are disjoint and the tree
does not have any isomorphic subtrees. In future work, we plan to
compare the size of forwarding table representations computed by
heuristics proposed in [27] with the results of semantically equiva-
lent representations considered in this section. We believe that re-
sults for representations of IPv6 forwarding tables should be even
better since in wider classifiers there is a better chance to find more
order-independent rules on fewer bits.

5. REPRESENTING CLASSIFIERS AS

BOOLEAN EXPRESSIONS
In this section, we discuss a special case when each field is rep-

resented by a prefix, and thus fields can be represented by a string
of individual bits. This special case lets us represent classifiers as
Boolean expressions and apply well known Boolean optimization
techniques to reduce the width and number of rules.

We can represent rules and sets of rules as discrete-valued func-
tions. For the purposes of this exposition, we concatenate all fields

20

and treat rules as a ternary bit-string in the Value–Mask–Action
format (since fields have a fixed width, we do not lose informa-
tion with this transformation). In this part we consider the case of
order-independent classifiers; we decide whether an action should
be applied to an incoming packet, i.e., compute a Boolean function.

A rule s = s1s2 . . . sk, sj ∈ {0, 1, ∗}, can be expressed as
a conjunction fs(x1, . . . , xk) =

∧

si=1
xi ∧

∧

si=0
x̄i. Further,

an order-independent set of rules R = {R1, . . . , RN} with rules
s1, . . . , sk can be written as an unordered disjunction of individual
rules, i.e., as a formula of depth 2 in disjunctive normal form (DNF,
disjunction of conjunctions).

EXAMPLE 7. The following set of rules with width 5

(0 1 ∗ ∗ ∗) → 1
(∗ 1 0 ∗ ∗) → 1
(∗ 1 1 ∗ 0) → 1
(∗ 1 1 ∗ 1) → 1

is order-independent and equivalent to f(x1, x2, x3, x4, x5) =
(x̄1 ∧ x2) ∨ (x2 ∧ x̄3) ∨ (x2 ∧ x3 ∧ x̄5) ∨ (x2 ∧ x3 ∧ x5).

Thus, minimizing order-independent TCAMs is equivalent to the
following problem.

PROBLEM 6 (MINDNF). For a given Boolean function f ,

find a minimal size DNF representation for f .

DNF minimization may result in both reducing the number of
rules (merging clauses in the DNF) and reducing the width of
lookup necessary for classification (removing extra variables in the
clauses).

EXAMPLE 8. Let us minimize the set of rules from Example 7.
We apply the well-known resolution heuristic to clauses in the DNF
representation of f :

(x1 ∧ x̄2 ∧ x̄5) ∨ (x1 ∧ x̄2 ∧ x5) = (x1 ∧ x̄2),
(x1 ∧ x̄2) ∨ (x1 ∧ x̄2) = x2.

At this point, we have f(x1, x2, x3, x4, x5) = (x̄1 ∧ x2) ∨
x2, and we can subsume the first clause into the second:
f(x1, x2, x3, x4, x5) = x2. After minimizing the corresponding
DNF expression, we can express the result as a set of rules, a single
rule in this case:

(∗ 1 ∗ ∗ ∗) → 1

Thus, in this example we have reduced the number of rules from
four to one and have reduced the number of bits participating in
the lookup from four (to apply the rules in Example 7 as stated, we
would have to query all bits except bit 4) to one (bit 2).

The MinDNF problem has been extensively studied in complex-
ity theory. Its decision version (given a formula ϕ in DNF and a
number k, find whether there exists an equivalent DNF with size
less than k) is unlikely to be in NP. It is obviously in NPNP: to
solve this problem, one needs to guess a small DNF and verify
with the NP oracle that solves the satisfiability problem that these
two formulas are indeed equivalent. In fact, MinDNF has been
shown to be NPNP-complete (ΣP

2 -complete), and some inapprox-
imability results have also been proven [16,37]. In practice, classi-
cal heuristics for MinDNF were based on Karnaugh maps and the
Quine–McCluskey algorithm.

A different view of the problem appeared for the case of func-
tions given by truth tables [1]; this means that the input size is ex-
ponential in the number of variables, and an algorithm is thus also

allowed to use exponential memory. In this case, one can represent
MinDNF as a special case of the SetCover problem which leads
to using the Greedy SetCover algorithm to find minimal DNFs
(see Algorithm 3). This algorithm has been shown to be O(n)-
approximate, where n is the number of variables in the formula
(for functions given by truth tables, O(log T)-approximate, where
T is the truth table size), and a matching lower bound has also been
provided [1]. However, this approach is impractical for classifier
optimization since practical classifiers look up several hundred bits,
and it would be infeasible to construct the truth table explicitly.

At the first glance MinDNF is a more general problem than FSM

since it can reduce both classification width and the number of
rules. However, due to an additional check for a false-positive
match FSM can significantly reduce classification width beyond
optimal results of MinDNF.

EXAMPLE 9. Consider the classifier from Example 6:

R1 = (100*, 001*),
R2 = (1010, 0001),
R3 = (000*, ****),
R4 = (001*, ****).

As we have discussed in Example 6, FSM can reduce the width of
K from eight bits to four (if we treat fields as indivisible) or even
two (if we are able to get down to the bit level). On the other hand,
the only MinDNF heuristic applicable here is the resolution rule
that can be applied to R3 and R4, getting

R1 = (100*, 001*),
R2 = (1010, 0001),
R′

3 = (00**, ****).

This classifier has width 8; if we discard bits with identical values
(second bit in the first field), we get width 7, but the width savings
are still small compared to FSM.

Table 2 shows how MinDNF heuristics apply to our experi-
mental set of classifiers; we have applied MinDNF to the order-
independent set from Table 1. The number of binary rules is some-
times significantly larger than the number of original rules, and
MinDNF does not have a significant effect on width, i.e., few bits
become purely “don’t care” bits even after MinDNF-style reduc-
tions. In Table 2, we show both “pure” width (cutting out bits that
are purely “don’t care”) and further reduced width where we have
cut out bits that have the same value, not necessarily “don’t care”.
This is a Boolean counterpart of our reduction shown in Section 3
since we can use a single look up to check bits that always have the
same value, and they do not change which rule matches an incom-
ing packet. MinDNF does not significantly decrease width even
with this reduction.

The example of FSM shows us that algorithms with usage of an
additional constant number of checks for false-positive match can
significantly reduce a required space of an optimal representation
of Boolean expressions. We believe that developing new Boolean
expression minimization techniques that are based on the results of
Theorem 2 is a very promising direction.

6. PROPRIETARY HEURISTICS
The reduction in classifier size with a false-positive check opens

new horizons that are not addressed by general Boolean expression
minimization. In this section we study the complexity of the algo-
rithms for the problems defined in Section 4.

21

Original classifier MinDNF reduced Order-indep.
Rules, Rules, Rules, Rules, Width, Rules, Width, Red. wid., Rules, Width, Red. wid., width,
orig. order-ind. binary SRGE bits binary bits bits SRGE bits bits bits

acl1 49870 49779 67511 65240 120 67505 90 90 65234 90 90 31
acl2 47276 44178 90772 90772 120 90233 104 104 90230 104 104 82
acl3 49859 47674 85252 83630 120 85226 106 106 83605 106 106 91
acl4 49556 46670 77837 76424 120 77755 106 106 76338 106 106 97
acl5 40362 38962 47514 47514 120 46261 96 94 46249 96 94 63
fw1 47778 43675 159525 159519 120 159461 112 112 159458 112 112 72
fw2 48885 48826 92646 92646 120 92316 88 88 92316 88 88 52
fw3 46038 41615 122495 122477 120 122259 112 112 122244 112 112 84
fw4 45340 42857 278887 277921 120 277799 104 104 276807 104 104 76
fw5 45723 39962 99574 99412 120 99421 112 112 99273 112 112 76
ipc1 49840 48294 66718 65734 120 66715 112 112 65731 112 112 50
ipc2 50000 50000 50000 50000 120 50000 112 112 50000 112 112 36
cisco1 584 538 603 603 120 475 104 86 474 104 86 52
cisco2 269 249 565 565 120 564 104 84 564 104 84 21
cisco3 95 92 92 92 120 92 88 68 92 88 68 30
cisco4 364 329 629 629 120 629 104 84 629 104 84 38
cisco5 148 120 139 139 120 139 104 84 139 104 84 17

Table 2: Experimental results of MinDNF reduction in the order-independent subsets of classifiers.

6.1 Exact Algorithms
We first consider the existence of algorithms to build exactly the

proposed semantically equivalent representations of classifiers.
FSM is NP-complete by reduction from the SetCover problem.

Since FSM is exponential on k, an exact algorithm is feasible only
for a sufficiently small number of fields (e.g., the 5-tuple case).

Algorithm 1 ISORDERINDEPENDENT(M)

1: for i = 1→ N − 1 do

2: for j = i+ 1 to N do

3: if R−M
i ∩R−M

j 6= ∅ then return False
return True

Algorithm 2 FSMBINSEARCH(k,min,max)

1: m = ⌊min+max
2

⌋
2: if min = max then return m
3: for M ⊆ {1, . . . , k}, |M | = m do

4: if ISORDERINDEPENDENT(M) then

5: min = m
6: return FSMBINSEARCH(k,min,max)

7: max = m− 1
8: return FSMBINSEARCH(k,min,max)

Algorithm 1 checks order-independence of a classifier with N
rules and a set M of m removed fields with complexity O(N2(k−
m)). To solve FSM, we can use a binary search. If the classifier
is order-independent for some removed subset with k

2
fields, try to

find a subset of size 3k
4

, otherwise check order-independence for
subsets of size k

4
, and so on. We call this algorithm FSMBIN-

SEARCH. At worst we need to run ISORDERINDEPENDENT once
for each subset of size k

2
, once for each subset of size 3k

4
and so on,

(

k
k/2

)

+
(

k
k/4

)

+ . . .+
(

k
1

)

< 2k−1 times in total. Thus, we get the
following theorem.

THEOREM 4. FSMBINSEARCH(k, 0, k − 1) finds a minimal

subset of k fields for which an original classifier is order-

independent in time O(k2k−1N2).

When the number of fields grows (e.g, by a resolution increase as
in Section 4.4 or adding new fields), FSM requires approximation
heuristics.

The 2-MRC problem is NP-complete already for the case when
k = 2 [4]. Since the (β, l)-MRC problem simply generalizes the
2-MRC problem when β = 1, k = 2, we can directly deduce
based on the hardness of the 2-MRC problem that the (β, l)-MRC
is NP-complete as well. As considered in Section 4.4 for k = 1,
only the 1-MRC problem has an exact solution by EDF algorithm
in O(NlogN) time [17]. Unfortunately, even the 2-MRC problem
is exponential on N , so we do not consider exact algorithms similar
to FSM when a number of fields is small.

6.2 Approximate Solutions
Algorithms for the FSM problem are exponential in the number

of fields k; exact algorithms for the other considered problems are
exponential even in the number of rules N . Therefore, as k and
N grow, approximations are needed. In this section, we discuss
efficient approximate algorithms that are crucial to achieve TCAM
space savings.

6.2.1 Representation of All Rules

Algorithm 3 Algorithm GreedySetCover

1: X ← ∅; T ← S
2: while T not empty do

3: Choose Si in T that contains maximal number of uncov-
ered elements in U

4: X ← X ∪ {Si}
5: T ← T \ Si

6: return X

THEOREM 5. FSM is reducible to SetCover in O(k ·N2) time

and has an approximation factor of 2 · ln(N) + 1.

PROOF. Given an instance of the FSM problem, i.e., a set of
N rules R1, ..., RN , each with k fields, we would like to find a
subset of the fields that can distinguish between any pair of rules.
A field distinguishes between two rules if they do not intersect in
the field. We look at the (unordered) possible pairs of rules as the
universe U that we would like to cover, i.e., to make sure that each
of these pairs of rules can be distinguished by one of the fields.
We define U = {(i, j)|i < j, i, j ∈ [1, N]}. The size of U is
|U | =

(

N
2

)

≤ 1/2 · N2. We also define k sets S1, ..., Sk that
are used to cover U such that the set Sℓ represents the ℓth field
out of k. For ℓ ∈ [1, k], we define Sℓ = {(i, j)|i < j, i, j ∈

22

[1, N], Ri(ℓ) ∩ Rj(ℓ) = ∅}. Sℓ contains all pairs of rules that do
not intersect in this field. To construct S1, ..., Sk, one has to check
all pairs out of N rules. Therefore, this construction requires a time
complexity of O(k · N2) – polynomial in size of the input to the
FSM problem. Given a solution to the set cover instance, i.e., a
subset of S1, ..., Sk, the corresponding set of fields are guaranteed
to distinguish between any pair of rules and therefore comprise an
admissible solution to the FSM problem.

Using Algorithm 3, in which each step selects an additional set
with maximal number of uncovered elements, we can achieve an
approximate solution to the FSM problem. In such a solution, the
number of selected fields is within a constant factor of the optimal
number of fields. The approximation ratio is H(|U |) = H(

(

N
2

)

),
where H is the harmonic number, such that the approximation ratio
satisfies H(|U |) ≤ ln(|U |) + 1 ≤ 2 · ln(N) + 1.

Next we consider an estimate for a lower bound on β (number of
groups) in multi-group representations and how that bound relies
on N and k for order-independent classifiers.

THEOREM 6. 1. For each N and k ≥ 2, there exists an order-

independent classifier K of N rules on k fields such that it can-

not be divided into less than
√
N −O(1/

√
N) groups where each

group is order-independent by a single field.

2. Moreover, if k ≥ 4, there exists K such that it cannot be

divided into less than
√
N −O(1/

√
N) groups where each group

is order-independent by two fields.

3. Moreover, if N ≥ 2k, there exists K such that it cannot

be divided into less than 2k−l groups where each group is order-

independent by some l fields.

PROOF. 1. For some natural n, consider a classifier on two
fields with n(n − 1) rules; the rules span all pairs of intervals
([i, i], [j, j]) for 1 ≤ i 6= j ≤ n. Any group of rules that are
independent with respect to any single field cannot contain more
than n rules (since there are only n distinct intervals in each field),
so there are at least n− 1 groups.

2. To extend this counterexample to pairs of fields, consider a
classifier on 4 fields that contains n(n − 1)(n − 2)(n − 3) rules
that implement all quadruples of intervals ([i, i], [j, j], [k, k], [l, l]),
1 ≤ i 6= j 6= k 6= l ≤ n. Now any group of rules that are
independent with respect to any pair of rules can contain at most
n(n− 1) rules, so there are at least (n− 2)(n− 3) groups in total.

3. Now the example is a classifier consisting of 2k rules that
implement all possible combinations of two disjoint intervals (say,
[1, 1] and [2, 2]) in k rules. Now any group independent with re-
spect to l fields can contain at most 2l rules (exhausting all possible
combinations of [1, 1] and [2, 2] of length l), so there must be at
least 2k−l such groups.

In Section 6.2.2 we propose a simple heuristic to resolve Prob-
lem 2 and evaluate its performance in Section 8.

6.2.2 Representation of a Maximal Number of Rules

For the case of k = 2, the 2-MRC problem can be approxi-
mated with factor O(log logN) [4]. Consider the l-MRC prob-
lem in the case of l = k, i.e., finding a maximal subset of rules
order-independent on all k fields. In this special case, the prob-
lem reduces to the maximum independent set problem where each
rule represents a node and an edge between two rules exists iff they
intersect by some field.

In Theorem 5, we showed how the FSM problem reduces to Set-
Cover; in order to find an independent set of rules based on a subset
of the fields, we must make sure that each pair of rules does not in-
tersect on at least one of the fields and defined the corresponding

coverage problem. We considered the coverage of a field as the set
of pairs of rules it can separate. Unfortunately, it is not straightfor-
ward to make use of the same idea in order to reduce the l-MRC
problem to the MSC because a field that separates the maximal
number of pairs of rules does not necessarily yield the maximal
size of an independent set of rules.

For example, consider the following classifier K =
(R1, R2, R3, R4) with four rules of two fields: R1 =
([0, 1], [0, 0]), R2 = ([2, 3], [1, 1]), R3 = ([0, 1], [2, 2]) , R4 =
([2, 3], [0, 3]). There are four pairs of rules that do not intersect
in the first field. These are pairs (R1, R2), (R1, R4), (R2, R3),
(R3, R4). Likewise, there are three pairs of rules with disjoint sec-
ond field: (R1, R2), (R1, R3) and (R2, R3). For this classifier, in
the 1-MRC problem we should select the second field to obtain a
maximal independent subset of rules although it distinguishes be-
tween fewer pairs of rules than the first field. Based only on the
first field, the maximal set of independent rules includes two rules
({R1, R2}, {R1, R4}, {R2, R3}, or {R3, R4}). Adding the sec-
ond field, we get an independent set of three rules {R1, R2, R3}
because we can separate all pairs of rules in it, so the size of the
maximal independent set is not determined by the number of dis-
joint pairs of rules.

Nevertheless, we can use an algorithm for the l-MSC problem as
a heuristic to solve the l-MRC problem. We give the pairs of rules
each field can separate as input to an algorithm that solves l-MSC.

PROBLEM 7 (MAXIMUM SET COVERAGE (l-MSC)).
Given a set of elements U = {1, 2, . . . N} (the universe), a set

S of k sets whose union equals U , and a positive number l ≤ k,

select at most l sets of S such that as many elements of U as

possible are covered (the union of selected sets has maximal size).

A variant of Algorithm 3 that stops after l subsets are added
solves the l-MSC problem and has an approximation factor of
1− 1

e
+ o(1) [10].

To solve (β, l)-MRC, we can run l-MRC; once any unassigned
rule “intersects” with any rule assigned to the current group a new
group is opened if the total number of groups does not exceed β.
The algorithm for l-MGR is the same as for (β, l)-MRC but now we
stop to create new groups once we covered all rules of the original
classifier.

The proposed heuristic for the l-MRC problem and its variant
for (β, l)-MRC have worst-case guaranteed lookup time O(logN)
and a linear space requirement when l = 2. In practice there is
an excess of information that preserves order-independence on a
relatively small subset of bits (see Section 8)

7. CLASSIFIER CONFIGURATION
This section proposes new standard representations of classifiers

and discusses updates.

7.1 Standardization of Policy Classifiers
We group classifiers into two categories: those required for

switching and those implementing service-level-agreement (SLA)
policies. The former type can be changed frequently, while the lat-
ter is typically static. Dynamic updates for the latter type are sig-
nificantly less important and we can consider offline computation
for more efficient representations.

We suggest explicitly specifying certain classifier characteristics
(that can be computed offline) as part of a classifier configuration.
The following traits (or variations thereof) are important: (1) maxi-
mal size of the order-independent part; (2) minimal subset of fields
that preserve order-independence; (3) minimal number of order-
independent groups based on at most two fields; (4) assignments of

23

rules to a predefined number of groups based on at most two fields.
With these the optimal implementation can be chosen based on the
constraints of a configured network element.

7.2 Dynamic Updates
Suppose that classifier represents packet flows that can change

frequently. It is straightforward to remove a rule from the order-
independent part I; for the order-dependent part D, it depends on
the representation. Insertion is more complicated. If an inserted
rule R is order-dependent with the current I, insert R to D. If D
is full, recompute I and D for the new set. If D is still full, re-
ject R. If R is order-independent with I on k fields and does not
increase the subset of fields in FSM, or there is an assignment to
one of the groups in MGR without increasing the number of order-
independent groups, add R to I. To avoid long delays, recomputa-
tion of I and D can start in the background. In this case there is a
tradeoff between the current optimality of I representation and the
delay before inserting the next rule.

We can increase the chance of successfully inserting a new rule
in I. Recall that for order-independent classifiers we must check
all k fields for a matched rule to check for false-positive matches on
a subset of the fields. We can define an additional parameter C: the
maximal number of rules that can be checked for false-positives in
a line rate. Suppose an inserted rule is order-independent with each
rule of the current I on k fields and increases the number of fields
for FSM or requires more groups to keep the order-independence
of all groups for MGR. We can still assign R to I if the number of
rules to be checked for false-positives is at most C. By doing so,
we increase |I| by up to a factor of C.

It is also desirable to support modifications in existing rules.
If a rule in I is only modified in fields not required for order-
independence, we can simply change it in additional memory. If
the change is in one of the fields required for order-independence,
we have to make sure this rule does not intersect other rules in I
after the change. If so, we can simply update this rule in the rep-
resentation of I, and if it now intersects with some other rule, we
can move this modified rule to D. In an offline process, we can re-
calculate the selection of fields to distinguish among rules to match
the recent new rules. As in the rule insertion case, modification of
a rule in D depends on the representation of D.

EXAMPLE 10. Consider a classifier K = (R1, R2, R3) with
three fields of four bits each and rules

R1 = ([1, 3], [4, 8], [1, 5]),
R2 = ([7, 7], [1, 8], [4, 5]),
R3 = ([4, 5], [6, 9], [4, 6]).

The first field suffices for order-independence, so we have
K−{2,3} = (([1, 3]), ([7, 7]), ([4, 5])) and I = {R1, R2, R3}. Let
us try to insert R4 = ([2, 4], [2, 2], [3, 3]); it is order-independent
with I but requires the second field for order-independence with
R1 and R3. In this (somewhat unlucky) case we can still use only
the first field for I and test R4 additionally if either R1 or R3 is
matched (this requires C ≥ 2). Note that it is not necessary to
match R4 if R2 is matched since it is order-independent with R2

on the first field. This example is illustrated on Figure 7.

8. SIMULATIONS
To validate our scheme, we run simulations on 12 classifiers

from Classbench [7] (generated with real parameters), each with
≈ 50K rules on 6 fields, and on 5 real life classifiers provided by
Cisco Systems. In Figure 1 and Table 1, we have already presented

Figure 7: Example 10. Left: a multi-group representation of
I = {R1, R2, R3}. Right: a representation of the two-step lookup
procedure for C ≥ 2 and recently inserted R4. Fields to be checked
in a group lookup are in black; those irrelevant in this step, in grey.

the TCAM space savings resulting from the FSM approach when
adding new fields to these classifiers; we have shown that order-
independence greatly simplifies adding new fields to classifiers. In
Table 2, we compared the proposed FSM approach with MinDNF
heuristics, showing that FSM algorithms can have a much greater
effect.

The next set of simulations deals with maximal order-
independent sets. We use the greedy algorithm for the l-MRC prob-
lem (see Section 6.2.2) to find a maximal order-independent set on
all k fields. Then we apply the FSM problem on the computed max-
imal order-independent set. To simulate Problem 2 (l-MGR) with
one- and two-field order-independent groups, we use the algorithm
proposed in Section 6.2.2.

The results are summarized in Table 3. In most cases, the
vast majority of rules are covered by very few groups of order-
independent rules. In some cases the maximal order-independent
set constructed with a subset of fields F = {0, 1} is larger than
such a set constructed with all fields; this is due to a few rules with
large intervals in the first two fields that have been taken up to the
set because they are independent on some other field and prevented
more rules to join the set later. For example, a rule of the form

0.0.0.0/0 0.0.0.0/0 1234 : 1234 0 : 65535 0x00/0x00 0x0000/0x0000

would block all further rules with source port 1234 if this port has
not appeared earlier but would not be taken if only the IP addresses
had been taken into account. Thus, interestingly, a greedy approach
is not necessarily monotonic as the number of fields taken into ac-
count increases.

The effect explained in Example 5 is also seen in simulations. In
many cases we see many very small groups (of size ≤ 2 or ≤ 5)
created by general rules at the bottom of the lists; in practice it
makes sense to send these rules to D. Table 3 also shows that a
maximal order-independent subset mostly takes care of the small
groups, as very few such groups are left when running l-MGR on
the resulting maximal order-independent set.

The majority of the proposed approximate algorithms are greedy
without backtracking (the variants of GreedySetCover algorithm)
with |U| = O(N2), the running time of these algorithms is
O(kN2), where N is a number of rules and k is a number of fields
in a classifier. As a result we do not evaluate a computational time
of the proposed algorithms.

9. RELATED WORK
Research towards efficient implementations of packet classifiers

falls into two main categories: algorithmic solutions (usually soft-
ware based) and TCAM-based solutions. Algorithmic solutions
mainly rely on one of three techniques: decision trees, hashing,
or coding-based compression. The works [11, 32, 39] suggest how

24

MGR on the entire set MGR on the k-MRC result
Total
rules

k-MRC 1-MGR 2-MGR 1-MGR 2-MGR
size FSM {0, 1} all 95% 99% ≤ 2 ≤ 5 all 95% 99% ≤ 2 ≤ 5 all 95% 99% ≤ 2 ≤ 5 all 95% 99% ≤ 2 ≤ 5

acl1 49870 49779 0, 1, 4 49768 16 1 1 6 9 12 1 1 5 7 5 1 1 1 2 2 1 1 0 0
acl2 47276 44178 0, 1, 3, 4 43819 67 5 13 19 32 39 2 5 10 20 17 4 7 1 2 6 1 2 1 1
acl3 49859 47674 0, 1, 2, 3, 4 46114 31 3 5 11 20 18 2 3 7 10 11 3 4 1 2 6 1 3 1 1
acl4 49556 46670 0, 1, 2, 3, 4 40518 42 8 14 6 15 16 3 5 3 5 21 7 10 0 3 6 2 3 0 0
acl5 40362 38962 0, 1, 3, 4 22725 43 18 27 2 6 11 4 6 1 1 37 17 25 0 2 10 4 6 1 1
fw1 47778 43675 0, 1, 2, 3, 4 44713 71 2 5 18 42 41 2 3 10 19 7 2 2 2 2 4 1 2 0 1
fw2 48885 48826 0, 1, 2, 4 48755 20 3 3 15 15 12 1 1 5 9 7 3 3 2 3 2 1 1 0 0
fw3 46038 41615 0, 1, 2, 3, 4 40581 101 2 17 42 57 56 2 7 11 28 17 2 2 2 4 7 1 2 0 0
fw4 45340 42857 0, 1, 2, 3, 4 43912 109 2 40 9 28 57 1 17 10 16 20 2 2 2 3 8 1 1 0 1
fw5 45723 39794 0, 1, 2, 3, 4 39007 94 2 13 38 58 49 2 8 6 21 8 2 2 2 3 5 1 2 1 2
ipc1 49840 48294 0, 1, 3, 4 48385 22 2 2 9 16 16 1 3 6 11 6 1 2 1 2 4 1 1 0 0
ipc2 50000 50000 0, 1 50000 2 2 2 0 0 1 1 1 0 0 2 2 2 0 0 1 1 1 0 0
cisco1 584 538 0, 1, 3, 4 406 15 8 13 2 8 10 4 7 3 4 9 5 7 2 3 5 2 4 1 2
cisco2 269 249 0, 1, 4 246 4 2 3 1 1 2 2 2 0 0 4 2 3 1 2 2 1 2 0 1
cisco3 95 92 0, 1, 3, 4 89 5 3 5 2 3 3 2 3 1 2 4 2 4 2 2 2 1 2 0 1
cisco4 364 329 0, 1, 3, 4 324 7 3 5 2 4 4 2 3 1 1 5 2 3 2 3 3 1 2 1 2
cisco5 148 120 0, 1 120 3 2 3 0 1 2 2 2 0 0 2 2 2 0 0 1 1 1 0 0

Table 3: Simulation results. Columns, left to right: total no. of rules |K|; |I|, where I = MRC(K, {0, . . . , 5}); minimal size subset of fields
w.r.t. which I is order-independent; |I′|, where I′ = MRC(K, {0, 1}) (i.e., order-independent w.r.t source IP and destination IP); for the
one-field result {G} = MGR(K): total number of order-independent groups |{G}|, no. of groups covering 95% and 99% of the rules, no.
of groups of size ≤ 2 and of size ≤ 5; similar statistics for the two-field MGR; similar statistics for one-field and two-field MGR run on I.

to partition the multi-dimensional rule space. Possible matching
rules are found by tracing a path in a decision tree. Techniques to
balance the partition in each node exist, but rule replication often
cannot be avoided. A related approach is described in [43]. There is
an inherent tradeoff between space and time complexities in these
approaches. Song and Turner’s ABC algorithm for filter distribu-
tion offers higher throughput with lower memory overhead and the
ability to tune the implementation for better time complexity or
better space complexity [34]. The works [9,13] discuss hash-based
solutions to match a packet to its possible matching rules. Effi-
cient coding-based representations are shown in [27, 28, 31]. Other
works discuss efficient TCAM implementations. TCAMs do not
natively support ranges, so one has to translate range fields into
prefix representations. Bounds for the maximal number of TCAM
entries required to encode a range have been proposed. A range of
W bits can be encoded in at most 2W − 2 entries using only en-
tries with a positive action (“accept”) [36]. This bound improves to
2W − 4 using gray coding [3]. Both schemes encode a multi-field
range with a number of entries that is exponential in the number of
fields k with upper bounds of (2W − 2)k and (2W − 4)k, respec-
tively. When including negative action entries (“deny”), the upper
bound is improved to W entries [29]. The works [29,30] suggested
schemes to encode a k-field range with complexity linear in k. Un-
fortunately, these schemes apply only to the encoding of a single
rule; the encoding of a classifier with more rules requires changing
the conventional TCAM architecture.

Several works have considered reducing the number of TCAM
entries in the encoding of a given classifier by relying on heuris-
tics [5, 23]. These techniques include encoding the most com-
mon ranges with additional bits [6, 21], applying block permuta-
tions [42], designing tree-based architectures [38], and redundancy
removal [20]. While many of these heuristics could be improved
with randomization [19], they usually limit the number of fields in
a rule or perform badly as the number of fields increases. Rule dis-
jointness is not a new topic; efficient schemes for classification and
update supporting that rely on this property have been proposed
in [2, 35, 41].

Multi-group representations to reduce power consumption have
appeared at [22, 33], while the space-time tradeoff for representa-
tion of hierarchical classifiers has been considered in [15]. The
relation between packet classifiers and optimization of Boolean ex-

pressions was recently studied in [18]. We also note that reusing
order-independence can significantly simplify splitting of a classi-
fier over several network elements [12, 14].

10. CONCLUSION
Packet classification depends on the number of entries N in a

classifier and the classification width W of its rules. In fact, for a
given number of entries width is the determining factor for lookup
complexity. Once we pass to multi-field classification, width, and
thus matching complexity, tend to grow significantly. This is espe-
cially the case for expressive classification with ranges. In practice,
the rules contain excessive information to distinguish between N
entries. Various techniques have been proposed to determine sim-
ilar patterns across table entries and represent and evaluate them
efficiently (see, e.g., [27]).

In this work, we take a different route, identifying new properties
of classifiers that let us ignore superfluous information in classifi-
cation lookup. Our proposed concept of order-independence sim-
plifies classifier matching by splitting the problem into two sub-
problems: (a) the rule selection problem which is based only on
parts of rules (not their entire width) and (b) the matching of the
selected rule which is based only on the remainder of the fields not
considered in (a). As we have demonstrated, the proposed clas-
sifier representations can significantly outperform dedicated space
minimization approaches. While the proposed techniques are moti-
vated by packet classification problems and demonstrated thereon,
we believe that our simple yet effective concepts can be reused for
significant improvements also in neighboring areas (e.g., matching
in databases or data mining) and can also open new lines of research
in other areas (e.g., Boolean minimization).

11. ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Ali Ghodsi

for their insightful comments. The work of Patrick Eugster and Kir-
ill Kogan was partially supported by Cisco Systems under grant “A
Fog Computing Architecture”. The work of Sergey Nikolenko was
partially supported by the President Grant for Leading Scientific
Schools NSh-3856.2014.1.

25

12. REFERENCES

[1] E. Allender, L. Hellerstein, P. McCabe, T. Pitassi, and M. E.
Saks. Minimizing DNF formulas and AC0

d circuits given a
truth table. In IEEE Conference on Computational

Complexity, 2006.
[2] A. Bremler-Barr, D. Hay, and D. Hendler. Layered interval

codes for TCAM-based classification. In IEEE Infocom,
2009.

[3] A. Bremler-Barr and D. Hendler. Space-efficient
TCAM-based classification using Gray coding. IEEE Trans.

Computers, 61(1):18–30, 2012.
[4] P. Chalermsook and J. Chuzhoy. Maximum independent set

of rectangles. In ACM-SIAM SODA, 2009.
[5] Y.K. Chang, C.I. Lee, and C.C. Su. Multi-field range

encoding for packet classification in TCAM. In IEEE

Infocom Mini-Conference, 2011.
[6] H. Che, Z. Wang, K. Zheng, and B. Liu. DRES: Dynamic

range encoding scheme for TCAM coprocessors. IEEE

Trans. Computers, 57(7):902–915, 2008.
[7] ClassBench: A packet classification benchmark.

http://www.arl.wustl.edu/classbench/.
[8] Configuring IP ACLs.

http://www.cisco.com/en/US/docs/switches/
datacenter/sw/4_1/nx-
os/security/configuration/guide/sec_ipacls.pdf.

[9] S. Dharmapurikar, H. Song, J. S. Turner, and J. W.
Lockwood. Fast packet classification using bloom filters. In
ACM/IEEE ANCS, 2006.

[10] U. Feige. A threshold of ln n for approximating set cover. J.

ACM, 45(4):634–652, 1998.
[11] P. Gupta and N. McKeown. Classifying packets with

hierarchical intelligent cuttings. IEEE Micro, 20(1):34–41,
2000.

[12] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the
"one big switch" abstraction in software-defined networks. In
ACM CoNEXT, 2013.

[13] Y. Kanizo, D. Hay, and I. Keslassy. Optimal fast hashing. In
IEEE Infocom, 2009.

[14] Y. Kanizo, D. Hay, and I. Keslassy. Palette: Distributing
tables in software-defined networks. In IEEE INFOCOM,
2013.

[15] A. Kesselman, K. Kogan, S. Nemzer, and M. Segal. Space
and speed tradeoffs in TCAM hierarchical packet
classification. J. Comput. Syst. Sci., 79(1):111–121, 2013.

[16] S. Khot and R. Saket. Hardness of minimizing and learning
DNF expressions. In IEEE FOCS, 2008.

[17] J. M. Kleinberg and É. Tardos. Algorithm design.
Addison-Wesley, 2006.

[18] K. Kogan, S. I. Nikolenko, W. Culhane, P. Eugster, and
E. Ruan. Towards efficient implementation of packet
classifiers in sdn/openflow. In ACM HotSDN, 2013.

[19] N. Lesh and M. Mitzenmacher. Bubblesearch: A simple
heuristic for improving priority-based greedy algorithms. Inf.

Process. Lett., 97(4):161–169, 2006.
[20] A. X. Liu, C. R. Meiners, and Y. Zhou. All-match based

complete redundancy removal for packet classifiers in
TCAMs. In IEEE Infocom, 2008.

[21] H. Liu. Efficient mapping of range classifier into
Ternary-CAM. In IEEE Hot Interconnects, 2002.

[22] Y. Ma and S. Banerjee. A smart pre-classifier to reduce
power consumption of tcams for multi-dimensional packet
classification. In ACM SIGCOMM, 2012.

[23] C. R. Meiners, A. X. Liu, and E. Torng. Bit weaving: A
non-prefix approach to compressing packet classifiers in
TCAMs. IEEE/ACM Trans. Netw., 20(2):488–500, 2012.

[24] Netlogic Microsystems. Content addressable memory.
http://www.netlogicmicro.com.

[25] OpenFlow 1.3 specification, 2012. http://www.openflow.org/
wk/index.php/OpenFlow_1_3_proposal.

[26] M. H. Overmars and A. Frank van der Stappen. Range
searching and point location among fat objects. J.

Algorithms, 21(3):629–656, 1996.
[27] G. Rétvári, J. Tapolcai, A. Korösi, A. Majdán, and

Z. Heszberger. Compressing ip forwarding tables: towards
entropy bounds and beyond. In ACM SIGCOMM, 2013.

[28] O. Rottenstreich, A. Berman, Y. Cassuto, and I. Keslassy.
Compression for fixed-width memories. In IEEE ISIT, 2013.

[29] O. Rottenstreich, R. Cohen, D. Raz, and I. Keslassy. Exact
worst-case TCAM rule expansion. IEEE Trans. Computers,
62(6):1127–1140, 2013.

[30] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan, and
E. Porat. On finding an optimal TCAM encoding scheme for
packet classification. In IEEE Infocom, 2013.

[31] O. Rottenstreich, M. Radan, Y. Cassuto, I. Keslassy, C. Arad,
T. Mizrahi, Y. Revah, and A. Hassidim. Compressing
forwarding tables for datacenter scalability. IEEE Journal on

Selected Areas in Communications, 32(1):138–151, 2014.
[32] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet

classification using multidimensional cutting. In ACM

SIGCOMM, 2003.
[33] M. Somasundaram. Memory and power efficient mechanism

for fast table lookup.
[34] H. Song and J. S. Turner. ABC: Adaptive binary cuttings for

multidimensional packet classification. IEEE/ACM Trans.

Netw., 21(1):98–109, 2013.
[35] V. Srinivasan, S. Suri, and G. Varghese. Packet classification

using tuple space search. In ACM SIGCOMM, 1999.
[36] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast

and scalable layer four switching. In ACM SIGCOMM, 1998.
[37] C. Umans. The minimum equivalent DNF problem and

shortest implicants. J. Comput. Syst. Sci., 63(4):597–611,
2001.

[38] B. Vamanan and T. N. Vijaykumar. TreeCAM: decoupling
updates and lookups in packet classification. In ACM

CoNEXT, 2011.
[39] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. EffiCuts:

optimizing packet classification for memory and throughput.
In ACM SIGCOMM, 2010.

[40] G. Varghese. Network Algorithmics: An Interdisciplinary

Approach to Designing Fast Networked Devices. Morgan
Kaufmann, 2005.

[41] Z. Wang, H. Che, M. Kumar, and S. K. Das. CoPTUA:
Consistent policy table update algorithm for TCAM without
locking. IEEE Trans. Computers, 53(12):1602–1614, 2004.

[42] R. Wei, Y. Xu, and H. J. Chao. Block permutations in
Boolean space to minimize TCAM for packet classification.
In IEEE Infocom Mini-Conference, 2012.

[43] X. Zhao, Y. Liu, L. Wang, and B. Zhang. On the
aggregatability of router forwarding tables. In IEEE

INFOCOM, 2010.

26

