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Abstract

We have studied the problem of generating expressive musical perfor-
mances in the context of tenor saxophone interpretations. We have done
several recordings of a tenor sax playing different Jazz ballads with differ-
ent degrees of expressiveness including an inexpressive interpretation of
each ballad. These recordings are analyzed, using SMS spectral modeling
techniques, to extract information related to several expressive parame-
ters. This set of parameters and the scores constitute the set of cases
(examples) of a case-based system. From this set of cases, the system
infers a set of possible expressive transformations for a given new phrase
applying similarity criteria, based on background musical knowledge, be-
tween this new phrase and the set of cases. Finally, SaxEx applies the
inferred expressive transformations to the new phrase using the synthesis
capabilities of SMS.

1 Introduction

The problem with the automatic generation of expressive musical performances
is that human performers use musical knowledge that is not explicitely noted
in musical scores. Moreover, this knowledge is difficult to verbalize and there-
fore AT approaches based on declatarive knowledge representations have serious
limitations. An alternative approach is that of directly using the knowledge
implicit in examples from recordings of human performances.

Previous work has addressed this problem mainly by means of MIDI in-
struments with the unavoidable limitations regarding expressivity. Our goal
is the generation of expressive musical performances in the context of instru-
ments with rich and continuous expressive capabilities (like wind instruments).
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Figure 1: Snapshot of SMS analysis and synthesis graphical interface for the
beginning of the ‘Autumn Leaves’ theme. The top window shows a graphical
representation of the input sound file, the middle window shows the evolution
of the partials’ frequency, and the bottom window shows the spectral residual.

We have developed SaxEx, a case-based reasoning system for generating ex-
pressive performances of melodies based on examples of human performances.
Case-based Reasoning (Aamodt and Plaza, 1994) (CBR) is a recent approach
to problem solving and learning where new problems are solved using similar
previously solved problems. The two basic mechanisms used by CBR, are (i)
the retrieval of solved problems (also called precedents or cases) using some
similarity criteria and (ii) the adaptation of the solutions applied in the prece-
dents to the new problem. Case-based reasoning techniques are appropriate on
problems where many examples of solved problems can be obtained—Ilike in our
case where multiple examples can be easily obtained from recordings of human
performances.

Sound analysis and synthesis techniques based on spectrum models like Spec-
tral Modeling Synthesis (SMS) (Serra, 1997) (Serra et al., 1997) are useful for
the extraction of high level parameters from real sounds, their transformation
and the synthesis of a modified version of the original. SaxEx uses SMS in or-
der to extract basic information related to several expressive parameters such
as dynamics, rubato, vibrato, and articulation. The SMS synthesis procedure
allows SaxEx the generation of new expressive interpretations (new sound files).

SaxEx incorporates background musical knowledge based on Narmour’s im-
plication/realization model (Narmour, 1990) and Lerdahl and Jackendoff’s gen-
erative theory of tonal music (GTTM) (Lerdahl and Jackendoff, 1993). These
theories of musical perception and musical understanding are the basis of the
computational model of musical knowledge of the system.



SaxEx is implemented in Noos (Arcos and Plaza, 1997) (Arcos and Plaza,
1996), a reflective object-centered representation language designed to support
knowledge modeling of problem solving and learning.

1.1 SMS

SMS is a set of techniques for the analysis, transformation and synthesis of
musical sounds. The goal of SMS is to get a general and musically meaningful
sound representation, based on spectral analysis, from which we can manipulate
musical parameters while maintaining the perceptual identity with the original
sound when no transformations are made. Its particular approach to spectral
analysis is based on decomposing a sound into sinusoids plus a spectral residual
(Serra, 1997).

This process can be controlled by the user, or done automatically depending
on the sound characteristics. The analysis procedure detects partials by study-
ing the time-varying spectral characteristics of a sound and represents them
with time-varying sinusoids. These partials are then subtracted from the orig-
inal sound and the remaining residual can be approximated in the frequency
domain. Figure 1 shows a snapshot of some of the graphical representations of
sounds provided by the SMS graphical interface. Specifically, a window showing
a graphical representation of the input sound file, a window showing the evolu-
tion of the partials’ frequency, and a window showing the spectral residual.

From the sinusoidal plus residual representation we can extract high level
attributes when the sound is a note or a monophonic phrase of an instrument.
Attributes such as attack and release times, formant structure, vibrato, or av-
erage pitch and amplitude, can be obtained by the process described in (Serra
et al., 1997). These attributes can be modified and added back to the spectral
representation without any loss of sound quality.

This sound analysis and synthesis system is ideal as a preprocessor for Saxex,
extracting high level musical parameters, and as a post-processor, adding the
transformations specified by the case-based reasoning system to the original
sound.

1.2 Case-Based Reasoning

Case-based Reasoning (Kolodner, 1993) (Aamodt and Plaza, 1994) (CBR) is
a recent approach to problem solving and learning where a new problem is
solved by finding a set of similar previously solved problems, called cases, and
reusing them in the new problem situation. The CBR paradigm covers a family
of methods that may be described in a common subtask decomposition: the
retrieve task, the reuse task, the revise task, and the retain task. Different
CBR methods differ in the way of achieving these four tasks.

The goal of the retrieve task is to recover a set of previously solved problems
similar to the current problem. The retrieval task is usually performed using,
in turn, three subtasks: identify, search, and select tasks. The identify subtask
determines, using domain knowledge, the set of relevant aspects of the current
problem. Then, using these relevant aspects as similarity criterion, the search
subtask retrieves a set of precedent cases. Next, the goal of the select subtask
is to rank the set of precedents using domain knowledge.
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Figure 2: Browse of the score for the ‘All of me’ ballad represented in Noos.
Features are represented as thin boxes, dots indicate not expanded terms, and
gray boxes express references to existing terms.

Given a set of ordered precedent cases, the reuse task constructs a solution
for the current problem adapting the solutions taken in precedent cases. The
ranking over cases is interpreted as preference criterion. An usual policy is to
consider only the maximal precedent determined by the select subtask.

When the solution generated by the reuse task is not correct, an opportunity
for learning arises. The revision phase involves detecting the errors of the current
solution and modifying the solution using repair techniques. This phase, that
is not present in all CBR methods, takes the result from applying the solution
in the real world (or by asking a teacher).

Finally, the new solved problem is incorporated into the system by the retain
task in order to help the resolution of future problems. This task involves
selecting which information of the case retain and how to integrate the new case
in the memory structure.

In Section 2.2 we will see these tasks in the light of the SaxEx system.

1.3 Noos

Noos is a reflective object-centered representation language designed to sup-
port knowledge modeling of problem solving and learning. The Noos language
has been implemented using Common Lisp and currently is running on sev-
eral platforms. The main development platform is the Macintosh (using MCL),
providing a window-based graphical interface.

Modeling a problem in Noos requires the specification of three different
types of knowledge: domain knowledge, problem solving knowledge, and met-
alevel knowledge.

Domain knowledge specifies a set of concepts, a set of relations among con-
cepts, and problem data that are relevant for an application. Concepts and
relations define the domain ontology of an application. For instance, the do-
main ontology of SaxEx is composed by concepts such as notes, chords, im-
plication /realization structures, and expressive parameters. Problem data, de-
scribed using the domain ontology, define specific situations (specific problems)
that have to be solved. For instance, specific inexpressive musical phrases to



be transformed into expressive ones. Noos is based on feature terms (Plaza,
1995). Feature terms are record-like data structures embodying a collection of
features. Figure 2 shows the representation of a score in Noos that is described
in Section 2.1.

Noos has been wused to implement several applications such as
CHROMA (Armengol and Plaza, 1994), a system for recommending a plan for
the purification of proteins from tissues and cultures, SPIN, a sponge identifica-
tion system for a class of marine sponge species, and SHAM, a knowledge-based
system for harmonizing catalan folk songs.

Problem solving knowledge specifies the set of tasks to be solved in an appli-
cation. For instance, the main task of SaxEx is to infer a sequence of expressive
transformations for a given musical phrase. Methods model the ways to solve
tasks. Methods can be elementary or can be decomposed into subtasks. These
new (sub)tasks may be achieved by other methods. A method defines an execu-
tion order of subtasks and an specific combination of the results of the subtasks
in order to solve the task it performs. For a given task there may be multiple
alternative methods that may be capable of solving the task in different situa-
tions. This recursive decomposition of task into subtasks by means of a method
is called the task/method decomposition.

Metalevel (or reflective) knowledge is knowledge about domain knowledge
and problem solving knowledge. Intuitively, metalevel knowledge can be used
to model criteria for preferring some methods over other methods for a task in
a specific situation.

The metalevel of Noos incorporates preferences to model decision making
about sets of alternatives present in domain knowledge and problem solving
knowledge. For instance, preference knowledge can be used to model criteria
for ranking some precedent cases over other precedent cases for a task in a
specific situation.

Once a problem is solved, Noos automatically memorizes (stores and indexes)
that problem. The collection of problems that a system has solved is called the
Episodic memory of Noos. The problems solved by Noos are accessible and
retrievable. This introspection capability of Noos is the basic building block for
integrating learning, and specifically case-based reasoning, into Noos.

Noos also incorporates perspectives (Arcos and Lépez de Mantaras, 1997),
a mechanism to describe declarative biases for case retrieval in structured and
complex representations of cases. Perspectives provide a flexible and dynamical
way of retrieval in the episodic memory and are used by SaxEx for making
decisions about the relevant aspects of a problem.

2 Saxex

An input for SaxEx is a musical phrase described by means of its musical score
(a MIDI file) and a sound. The score contains the melodic and the harmonic
information of the musical phrase. The sound contains the recording of an
inexpressive interpretation of the musical phrase played by a musician. The
output of the system is a new sound file, obtained by transformations of the
original sound, containing an expressive performance of the same phrase. Solv-
ing a problem in SaxEx involves three phases: the analysis phase, the reasoning
phase, and the synthesis phase (see Figure 3).
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Figure 3: General view of SaxEx blocks.

Analysis and synthesis phases are implemented using SMS sound analysis
and synthesis techniques. The reasoning phase is performed using case-based
techniques and implemented in Noos and is the main focus of this paper.

SaxEx has been developed specifying two different types of knowledge: (1)
modeling the concepts and structures relevant for representing musical knowl-
edge, and (2) developing a problem solving method for inferring a sequence of
expressive transformations for a given musical phrase.

2.1 Modeling musical knowledge

Problems solved by SaxEx are represented as complex structured cases (see
Figure 4) embodying three different kinds of musical knowledge: (1) concepts
related to the score of the phrase such as notes and chords, (2) concepts re-
lated to background musical theories such as implication/realization structures
and GTTM’s time-span reduction nodes, and (3) concepts related to the per-
formance of musical phrases. A Problem to be solved is represented by the
score.

A score (see Figure 2) is represented by a melody, embodying a sequence
of notes, and a harmony, embodying a sequence of chords. Each note holds in
turn a set of features such as the pitch of the note (C5, G4, etc), its position
with respect to the beginning of the phrase, its duration, a reference to its
underlying-harmony, and a reference to the next note of the phrase. Moreover,
a note holds the metrical-strength feature, inferred using GTTM theory,
expressing the note’s relative metrical importance into the phrase. Chords hold
also a set of features such as the name of the chord (Cmaj7, E7, etc), their
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Figure 4: Overall structure of a SaxEx case.

position, their duration, and a reference to the next chord.

The musical analysis structure embodies analysis structures of the
phrase built using the background musical knowledge. Narmour’s implica-
tion/realization model (IR) proposes a theory of cognition of melodies based
on eight basic structures. These structures characterize patterns of melodic
implications that constitute the basic units of the listener perception. Other
parameters such as metric, duration, and rhythmic patterns emphasize or in-
hibit the perception of these melodic implications. The use of the IR model
provides a musical analysis based on the structure of the melodic surface.

On the other hand, Lerdahl and Jackendoff’s generative theory of tonal
music (GTTM) offers a complementary approach to understanding melodies
based on a hierarchical structure of musical cognition. GTTM proposes four
types of hierarchical structures associated with a piece. This structural approach
provides the system with a complementary view for determining relevant aspects
of melodies.

Our goal in using both, IR and GTTM models, is to take advantage of
combining the IR analysis of melodic surface with the GTTM structural analysis
of the melody. These are two complementary views of melodies that influence
the execution of a performance.

Examples of GTTM analysis structures are the prolongational-reduction
structure embodying a hierarchical structure describing tension-relaxation rela-
tionships among groups of notes, the time-span-reduction structure embody-
ing a hierarchical structure describing the relative structural importance of notes
within the heard rhythmic units of a phrase, and the process-structure em-
bodying a sequence of implication/reduction (IR) Narmour’s structures.

A performance is represented as a sequence of events. There is an event for
each note within the phrase embodying knowledge about expressive parameters
applied to that note. Specifically, an event holds knowledge about expressive
parameters of notes such as dynamics, rubato, vibrato level, articulation,
and attack. Expressive parameters are described using qualitative labels as
follows:

Changes on dynamics are described relative to the average loudness of the
phrase by means of a set of five ordered labels. The middle label represents
average loudness and lower and upper labels represent respectively, increasing
or decreasing degrees of loudness.
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Figure 5: Task decomposition of the SaxEx CBR method.

Changes on rubato are described relative to the average tempo also by means
of a set of five ordered labels. Analogously to dynamics, qualitative labels about
rubato cover the range from a strong accelerando to a strong ritardando.

The vibrato level is described using two parameters: the frequency vibrato
level and the amplitude vibrato level. Both parameters are described using five
qualitative labels from no-vibrato to highest-vibrato.

The articulation between notes is described using again a set of five ordered
labels covering the range from legato to staccato.

Finally, SaxEx distinguishes two transformations over a note attack: (1)
reaching the pitch of a note starting from a lower pitch, and (2) increasing the
noise component of the sound. These two transformations were chosen because
they are characteristic of saxophone playing but other transformations can be
introduced without altering the system.

In the conclusions section we discuss different alternatives we are considering
for improving the expressive model of the system.

2.2 The SaxEx task

Given a musical phrase, SaxEx infers a specific set of expressive transformations
to be applied to every note in the phrase. These sets of transformations are
inferred note by note. For each note in the phrase the same problem solving
method is performed.

The problem solving method developed in SaxEx follows the usual subtask
decomposition of CBR methods described in Section 1.2: retrieve, reuse, and
retain (see Figure 5). Since the revise subtask requires a global vision of the
phrase, it is not included as a subtask. Nevertheless, we are studying the pos-
sibility of providing an interactive revision mechanism of the proposed SaxEx



solutions.
Given a current note problem of a problem phrase, the overall picture of the
subtask decomposition of SaxEx method is the following:

e Retrieve: The goal of the retrieve task is to choose the set of notes (cases)
most similar to the current note problem. This task is decomposed in
three subtasks:

— Identify: The goal of this task is to build retrieval perspectives using
two complementary biases: a first bias based or Narmour’s impli-
cation/realization model, and a second bias based on Lerdahl and
Jackendoff’s generative theory.

— Search: The goal of this second task is to search cases in the case
memory using Noos retrieval methods and previously constructed
perspectives.

— Select: The goal of the select task is to rank the retrieved cases
using Noos preference methods. The preference methods use criteria
such as similarity in duration of notes, harmonic stability, or melodic
directions.

e Reuse: the goal of the reuse task is to choose a set of expressive trans-
formations to be applied in the current problem from the set of more
similar cases. The first criterion used is to adapt the transformations of
the most similar case. When several cases are considered equally similar,
transformations are selected according to the majority rule. Finally, when
previous criteria are not sufficient, all the cases are considered equally
possible alternatives and one of them is selected randomly.

e Retain: the incorporation of the new solved problem to the memory of
cases is performed automatically in Noos. All solved problems will be
available for the reasoning process in future problems.

After describing the subtask decomposition of SaxEx problem solving
method, we will introduce a simplified example, using musical notation, to help
its understanding. Let us suppose that SaxEx has to infer a set of expressive
transformations for the encircled note within the following phrase:

Ly

The first subtask engaged is the retrieve task. The retrieve task engages
in turn the identify subtask. Taking as example the following bias based on
Narmour’s model:

Determine as relevant the role that a given

note plays in a implication/realization struc-

ture.
We obtain the following perspective for our note problem:

-
Lp

that is, the first note of a P process.



Then, the search subtask is engaged in order to find similar situations among
the precedent cases. Let us assume that the search subtask finds the following
two notes (called P1 and P2) as precedent cases.

Pl% %

Next, the select subtask is engaged for ranklng the precedents. Taking as
preference criterion the melodic direction, precedent P1 is considered as the most
relevant precedent (since it belongs to a process with descending direction like
the note problem).

After choosing precedent P1 as the most relevant precedent, the reuse sub-
task is engaged. For this simplified example, since we have only selected one
precedent, the set of expressive transformations to be applied to the current
note problem A are the same that were applied to precedent P1 and that are
stored as part of precedent case P1 information.

3 Experiments

We study the issue of musical expression in the context of tenor saxophone
interpretations. We have done several recordings of a tenor sax performer play-
ing several Jazz standard ballads (“All of me”, “Autumn leaves”, “Misty”, and
“My one and only love”) with different degrees of expressiveness, including an
(almost) inexpressive interpretation of each piece. These recordings are ana-
lyzed, using the SMS spectral modeling techniques, in order to extract basic
information related to the expressive parameters. The set of extracted parame-
ters together with the scores of the pieces constitute the set of structured cases
of the case-based system. From this set of cases and using similarity criteria
based on background musical knowledge, the system infers a set of possible
expressive transformations for a given piece. Finally, using the set of inferred
transformations and the SMS synthesis procedure, SaxEx generates new expres-
sive interpretations of the same jazz ballads as well as of other similar melodies.

We have performed two sets of experiments combining the different Jazz
ballads recordered. The first set of experiments consisted in using examples of
three different expressive performances of twenty note phrases of a piece in order
to generate new expressive performances of another phrase of the same piece.
This group of experiments has revealed that SaxEx identifies clearly the relevant
cases even though the new phrase introduces small variations with respect to
the phrases existing in the memory of precedent cases.

The second set of experiments consisted in using examples of expressive
performances of some pieces in order to generate expressive performances of
other pieces. More concretely, we have worked with three different expressive
performances of pieces having about fifty notes in order to generate expressive
performances of new twenty note phrases. This second group of experiments
has revealed that the use of perspectives allows to identify situations such as
long notes, ascending or descending melodic lines, etc. Such situations are also
usually identified by a human performer.

As an example, let as describe briefly some of the expressive transformations
applied by SaxEx to the first phrase of the ‘Autumn Leaves’ theme (see the
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Figure 6: First phrase from the ‘Autumn Leaves’ theme.

score in Figure 6) based on precedent cases of similar phrases. Concerning
to changes of dynamics, the ascending melodic progressions are transformed
using crescendo. For instance, the first note (E) of the theme starts piano
and the dynamics is successively increased yielding a forte in the fourth note
(C). Concerning rubato, after the fourth note (C) the attack of the fifth note
(D) is delayed and brought closer to the next note, then the duration of sixth
note (E) is expanded, and finally the duration of the next note (F) is reduced.
Vibrato is applied over notes with long duration combined with a dynamics
decay (for instance, over the fourth note). In ascending melodic progressions,
the articulation is also transformed by decreasing the interruption between notes
(i.e. playing closer to legato than to staccato). Finally, the transformation of
the attack consisted in reaching the eighth and ninth notes (B and B) starting
from a lower pitch.

The reader can visit our web site for sound examples at
<http://www iiia.csic.es/Projects/music/Saxex>.

4 Related work and conclusions

Previous work on the analysis and synthesis of musical expression has addressed
the study of at most two parameters such as rubato and vibrato (Clynes, 1995)
(Desain and Honing, 1995) (Honing, 1995), or rubato and articulation by means
of an expert system (Johnson, 1992). Other work such as in (De Poli et al., 1998)
is focalized on the study of how musician’s expressive intentions influence the
performances.

However, to the best of our knowledge, the only previous work addressing
the issue of learning to generate expressive performances based on examples
is that of Widmer (Widmer, 1996), who uses explanation-based techniques to
learn rules for dynamics and rubato in the context of a MIDI electronic piano.
In our approach we deal with additional expressive parameters in the context
of an expressively richer instrument.

Furthermore, to the best of our knowledge, this is the first attempt to deal
with this problem using case-based techniques as well as the first attempt to
cover the full cycle from an input sound file to an output sound file going in the
middle through a symbolic reasoning and learning phase.

The results obtained are comparable to a human performance specially for
dynamics, rubato and vibrato, however the articulation and attack needs further
work.

Concerning future work, we intend to:

e model the degree of the different expressive parameters by means of fuzzy
sets, since they are closer than discrete labels to the continuous character
of the SMS analysis.
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e model the decay of long notes by means of different envelope functions
decreasing more or less rapidly.

e experiment further with different expressive parameters and their different
degrees of expressiveness.

e With the aim of making our system useful for musicians we intend to
provide the possibility of interactive revision of the proposed solutions
by the user. In this way the user will have the possibility to filter those
solutions that should be retained. This capability will allow the user to
tailor the system according to his preferences.
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