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Bundle adjustment constitutes a large, nonlinear least-squares problem that is often solved as the
last step of feature-based structure and motion estimation computer vision algorithms to obtain
optimal estimates. Due to the very large number of parameters involved, a general purpose least-
squares algorithm incurs high computational and memory storage costs when applied to bundle
adjustment. Fortunately, the lack of interaction among certain subgroups of parameters results
in the corresponding Jacobian being sparse, a fact that can be exploited to achieve considerable
computational savings. This article presents sba, a publicly available C/C++ software package for
realizing generic bundle adjustment with high efficiency and flexibility regarding parameterization.
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1. INTRODUCTION

Three-dimensional (3D) reconstruction is an engineering problem whose so-
lution is called for by a wide spectrum of computer vision tasks. Generally
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speaking, 3D reconstruction can be defined as the problem of using 2D mea-
surements arising from a set of images depicting the same scene from different
viewpoints, aiming to derive information related to the 3D scene geometry as
well as the relative motion and the optical characteristics of the camera(s) em-
ployed to acquire these images. Bundle adjustment (BA) is almost invariably
used as the last step of every feature-based 3D reconstruction algorithm; see,
for example, Hartley [1993]; Szeliski and Kang [1994]; Beardsley et al. [1996];
Fitzgibbon and Zisserman [1998]; Shum et al. [1999]; Zhang and Shan [2003];
Pollefeys et al. [2004]; Lourakis and Argyros [2005a]; Snavely et al. [2006] for a
few representative approaches. BA amounts to an optimization problem on the
3D structure and viewing parameters (i.e., camera pose and possibly intrinsic
calibration and radial distortion), to obtain a reconstruction which is optimal
under certain assumptions regarding the noise pertaining to the observed im-
age features [Triggs et al. 1999]: if the image error is zero-mean Gaussian, then
BA is the maximum likelihood estimator. Its name refers to the “bundles” of
light rays originating from each 3D feature and converging on each camera’s
optical center, which are adjusted optimally with respect to both the structure
and viewing parameters. BA was originally conceived in the field of photogram-
metry during 1950s [Brown 1958; Slama 1980] and has increasingly been used
by computer vision researchers during recent years. An excellent overview of its
application to vision-based reconstruction is given in Triggs et al. [1999]. Apart
from computer vision, BA can also find useful applications in areas such as
robotics, image-based computer graphics, digital photogrammetry, aerial map-
ping, industrial metrology, surveying, and geodesy, etc.

BA boils down to minimizing the reprojection error between the observed
and predicted image points, which is expressed as the sum of squares of a
large number of nonlinear, real-valued functions. Thus, the minimization is
achieved using nonlinear least-squares algorithms [Dennis 1977], from which
Levenberg-Marquardt (LM) has proven to be of the most successful due to its
ease of implementation and its use of an effective damping strategy that lends
it the ability to converge quickly from a wide range of initial guesses [Hiebert
1981]. By iteratively linearizing the function to be minimized in the neighbor-
hood of the current estimate, the LM algorithm involves the solution of linear
systems known as the normal equations. Considering that the normal equa-
tions are solved repeatedly in the course of the LM algorithm and that each
computation of the solution to a dense linear system has complexity O(N 3) in
the number of unknown parameters, it is clear that general-purpose LM codes
such as, for example, MINPACK’s LMDER routine [Moré et al. 1980], are com-
putationally very demanding when employed to minimize functions depending
on a large number of parameters. This observation remains true even if non-
linear least-squares algorithms other than LM are employed (e.g., the NL2SOL

algorithm [Dennis et al. 1981] as implemented by PORT3’s DN2G
1 routine [Gay

1990]). The situation is further complicated by the fact that the size of the

1By keeping the terms due to the second derivative in the Hessian of ǫT ǫ (see Section 3), routine
DN2G actually implements a more general strategy compared to that of the classical Levenberg-
Marquardt and is often more appropriate for large residual problems.
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Jacobian of the objective function also increases with the number of parame-
ters. Thus, when performing operations involving such a large Jacobian, special
care has to be taken to avoid thrashing, that is, instead of performing useful
computations, wasting most CPU cycles for writing virtual memory pages out
to disk and reading them back in. Fortunately, when solving minimization prob-
lems arising in BA, the normal equations matrix has a sparse block structure
owing to the lack of interaction among parameters for different 3D points and
cameras. Therefore, considerable computational benefits can be gained by de-
veloping a tailored, sparse variant of the LM algorithm which explicitly takes
advantage of the normal equations zeroes pattern by avoiding storing and op-
erating on zero elements.

The contribution of this article is threefold. First, it describes a strategy for
efficiently dealing with the problem of BA. Second, it materializes this strategy
through the design and implementation of a software package for BA. Third, it
demonstrates experimentally the impact that the exploitation of the problem’s
structure has on computational performance. The practical outcome of this work
is sba, a generic sparse BA package implemented in ANSI C. C was preferred
over higher-level programming environments such as MATLAB owing to its
far superior execution performance and its wide availability in a diverse range
of computer systems. Nevertheless, sba includes a MEX-file external interface
that enables its use directly from MATLAB. sba is also usable from C++ and
is generic in the sense that it grants the user full control over the choice of
coordinate systems, parameters and functional relations describing cameras,
3D structure and image projections. Therefore, it can support a wide range of
manifestations/parameterizations of the multiple view reconstruction problem
such as arbitrary projective, affine or omnidirectional cameras, partially or
fully intrinsically calibrated cameras, exterior orientation (i.e., pose) estimation
from fixed 3D points, 3D reconstruction from extrinsically calibrated images,
refinement of intrinsic calibration parameters, etc. The sba package can be
downloaded in source form from http://www.ics.forth.gr/~lourakis/sba and
is distributed under the terms of the GNU General Public License.2

The rest of the article is organized as follows. Section 2 provides a short in-
troduction to the geometry of perspective projection, helping the reader to gain
some insight into the BA problem. Section 3 briefly explains the conventional,
dense LM algorithm for solving nonlinear least-squares minimization prob-
lems. Section 4 develops a sparse BA algorithm by adapting the LM to exploit
the sparse block structure of the normal equations. Technical details regarding
the implementation and use of the sba package are given in Section 5. Experi-
mental results from the use of sba on real problems are presented in Section 6
and the article is concluded with a brief discussion in Section 7.

2. CAMERA IMAGING GEOMETRY

In abstract terms, a camera is a device that performs central projection of
the 3D world onto a 2D image plane. This is illustrated in Figure 1. For the

2See http://www.gnu.org/copyleft/gpl.html.
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Fig. 1. Perspective projection of a 3D point X on an image point x. Note that the center of projection
C is collinear with x and X. The coordinate system C Xc Yc Zc attached to the camera is related to
the world coordinate system O Xw Yw Zw through a rotation R followed by a translation t.

purposes of this work, the objects of interest in the world are simply sets of
3D points. To facilitate the representation of central projection using familiar
linear algebra operations, vision researchers often employ projective geometry,
which involves vectors and matrices defined up to scale [Mundy and Zisserman
1992; Semple and Kneebone 1952]. Thus, assuming that both world and image
points are represented by homogeneous vectors, central projection is expressed
as a linear mapping between their homogeneous coordinates. This mapping is
written compactly as

λ x = M X, (1)

where X is a 4 × 1 vector representing a 3D point projecting on an image point
represented by a 3×1 vector x and λ is an arbitrary scale factor. Matrix M, also
known as the projection or camera matrix, is an arbitrary homogeneous 3 × 4
matrix having rank 3 and depending on 11 parameters [Hartley and Zisserman
2000].

The camera model defined by Equation (1) is known as projective camera

and encompasses several interesting imaging geometries such as weak per-
spective and affine. A particularly interesting specialization of the general pro-
jective camera is the finite projective or Euclidean camera, for which the left
3 × 3 submatrix of M is nonsingular. In this case, M can be further decom-
posed as3 K [R | t], where K is the 3 × 3, upper triangular intrinsic calibration

matrix which encodes the camera’s optical properties (i.e., focal length, aspect
ratio, and principal point), R is an orthogonal 3 × 3 matrix and t a 3 × 1 vec-
tor. R and t are collectively referred to as the camera’s extrinsic orientation

and correspond, respectively, to the rotation and translation that make up the
rigid transformation from the world to the camera coordinate frame (see also
Figure 1). With the above definitions, the problem of multiview 3D reconstruc-
tion can now be defined more precisely as follows. Assume that n 3D points are
observed in m images and denote by xij the projection of the ith point on the
j th image. Multiview 3D reconstruction amounts to finding the m camera ma-
trices M j and the n 3D points Xi such that each xij is closely approximated by

3We use the notation [M | v] to denote the matrix that results by augmenting matrix M with a new
column equal to vector v.
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the predicted projection M j Xi. For obvious reasons, the reconstruction problem
is also known as the structure and motion estimation problem. Several algo-
rithms have been proposed for obtaining preliminary, sometimes approximate
solutions to the multiple view reconstruction problem. Typically, such solutions
serve as starting points for bootstrapping more accurate refinements that are
based on BA. At this point, it should be pointed out that in practice, the xij are
the outcome of a measurement process involving signal processing algorithms
(e.g., Shi and Tomasi [1994]; Lowe [2004]). Therefore, they are subject to noise,
that is, measurement errors which come in two forms: localization errors that
arise when image projections are not detected at their correct image locations
and matching errors that are the result of erroneous associations of image pro-
jections across images. For this reason, every reconstruction algorithm should
anticipate and be robust to the presence of noise. For the remainder of the ar-
ticle, it will be assumed that while image projections are subject to localization
errors, erroneous matches, that is, gross outliers, have been detected and elimi-
nated using geometry-based techniques such as those described in Zhang et al.
[1995].

3. THE LEVENBERG-MARQUARDT ALGORITHM

The LM algorithm, originally suggested by Levenberg [Levenberg 1944] and
later by Marquardt [Marquardt 1963], is an iterative technique that finds a lo-
cal minimum of a multivariate function that is expressed as the sum of squares
of nonlinear real-valued functions. It has become a standard technique for non-
linear least-squares problems, widely adopted in various disciplines for dealing
with data-fitting applications. LM can be thought of as a combination of steep-
est descent and the Gauss-Newton method. When the current solution is far
from a local minimum, the algorithm behaves like a steepest descent method:
slow, but guaranteed to converge. When the current solution is close to a local
minimum, it becomes a Gauss-Newton method and exhibits fast convergence.
For the sake of completeness, a short description of the LM algorithm based
on the material in Madsen et al. [2004] is supplied next. Note, however, that
a detailed analysis of the LM algorithm is beyond the scope of this article and
the interested reader is referred to Nocedal and Wright [1999], Kelley [1999],
and Madsen et al. [2004] for more extensive treatments.

In the following, vectors and arrays appear in boldface and T is used to denote
transposition. Also, ||.|| and ||.||∞, respectively, denote the L2 and infinity norms.
Let f be an assumed functional relation which maps a parameter vector p ∈ R

m

to an estimated measurement vector x̂ = f (p), x̂ ∈ R
n. An initial parameter

estimate p0 and a measured vector x are provided and it is desired to find the
vector p+ that best satisfies the functional relation f locally, that is, minimizes
the squared distance ǫT ǫ with ǫ = x − x̂ for all p within a sphere having a
certain, small radius. The basis of the LM algorithm is an affine approximation
to f in the neighborhood of p. For a small ||δp||, f is approximated by (see
Dennis and Schnabel [1996], p. 75)

f (p + δp) ≈ f (p) + Jδp, (2)

where J is the Jacobian of f . Like all nonlinear optimization methods, LM

ACM Transactions on Mathematical Software, Vol. 36, No. 1, Article 2, Publication date: March 2009.



2:6 • M. I. A. Lourakis and A. A. Argyros

is iterative: initiated at the starting point p0, it produces a series of vectors
p1, p2, . . . , that converge toward a local minimizer p+ for f . Hence, at each
iteration, it is required to find the step δp that minimizes the quantity ||x −

f (p + δp)|| ≈ ||x − f (p) − Jδp|| = ||ǫ − Jδp||. The sought δp is thus the solution
to a linear least-squares problem: the minimum is attained when Jδp − ǫ is
orthogonal to the column space of J. This leads to JT (Jδp − ǫ) = 0, which yields
δp as the solution of the so-called normal equations [Golub and van Loan 1996]:

JT Jδp = JT ǫ. (3)

Matrix JT J in the above equation is the first order approximation to the Hessian
of 1

2
ǫT ǫ [Nocedal and Wright 1999] and δp is the Gauss-Newton step. Note also

that JT ǫ corresponds to the steepest descent direction since the gradient of
1
2
ǫT ǫ is −JT ǫ. The LM method actually solves a slight variation of Equation (3),

known as the augmented normal equations

Nδp = JT ǫ, with N ≡ JT J + μI, μ > 0. (4)

The strategy of altering the diagonal elements of JT J is called damping and
μ is referred to as the damping term. If the updated parameter vector p + δp

with δp computed from Equation (4) leads to a reduction in the error ǫT ǫ, the
update is accepted and the process repeats with a decreased damping term.
Otherwise, the damping term is increased, the augmented normal equations
are solved again, and the process iterates until a value of δp that decreases
the error is found. The process of repeatedly solving Equation (4) for different
values of the damping term until an acceptable update to the parameter vector
is found corresponds to one iteration of the LM algorithm.

In LM, the damping term is adjusted at each iteration to assure a reduction in
the error. If the damping is set to a large value, matrix N in Equation (4) is nearly
diagonal and the LM update step δp is skewed toward the steepest descent
direction JT ǫ. Moreover, the magnitude of δp is reduced in this case, ensuring
that excessively large Gauss-Newton steps are not taken. Damping also handles
situations where the Jacobian is rank deficient and JT J is therefore singular
[Dennis and Schnabel 1996; Lampton 1997]. The damping term can be chosen
so that matrix N in Equation (4) is safely nonsingular and, therefore, positive
definite, thus ensuring that the δp computed from it is a descent direction. If
the damping is small, the LM step approximates the Newton minimizer of the
local quadratic model m(δp) = 1

2
ǫT ǫ − (JT ǫ)T δp + 1

2
δT

p JT Jδp of 1
2
ǫT ǫ about p (cf.

Equation (3)), which is exact in the case of a fully linear problem [Kelley 1999].
LM is adaptive because it controls its own damping: it raises the damping if a
step fails to reduce ǫT ǫ; otherwise it reduces the damping. By doing so, LM is
capable of alternating between a slow descent approach when being far from the
minimum and a fast convergence when being at the minimum’s neighborhood
[Lampton 1997]. An efficient updating strategy for the damping term that is
also used in this work has been described in Nielsen [1999]. The LM algorithm
terminates when any of the following conditions is met:

—the magnitude of the gradient drops below a threshold ε1;

—the relative magnitude of δp drops below a threshold involving a parameter ε2;
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Fig. 2. Pseudocode for the Levenberg-Marquardt nonlinear least-squares algorithm; see text for
details. ρ is the gain ratio, defined by the ratio of the actual reduction in the error ||ǫp||2 that
corresponds to a step δp and the reduction predicted for δp by the linear model of Equation (2). The
sign of ρ determines whether δp is accepted or not. Furthermore, in the case of accepted steps, the
value of ρ controls the reduction in the damping term. The reason for enclosing a statement in a
rectangular box will be explained in Section 4.

—the magnitude of the residual ǫ drops below a threshold ε3;

—the relative reduction in the magnitude of the residual ǫ drops below thresh-
old ε4;

—a maximum number of iterations kmax is reached.

If a covariance matrix �x describing the uncertainty of the measured vector
x is available, it can be incorporated into the LM algorithm by minimizing the
squared �−1

x -norm ǫT �−1
x ǫ instead of the Euclidean norm ǫT ǫ. Accordingly, the

minimum is found by solving a weighted least-squares problem defined by the
augmented weighted normal equations

(JT �−1
x J + μI)δp = JT �−1

x ǫ. (5)

Except from substituting the L2 norm of the error ||ǫ|| with its �−1
x -norm,

the rest of the algorithm remains unchanged. It is noted that the initial damp-
ing factor is chosen equal to the product of a parameter τ with the maximum
element of JT J in the main diagonal. The complete LM algorithm is shown
in pseudocode in Figure 2; more details regarding it can be found in Madsen
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Fig. 3. Schematic illustration of n = 7 points projecting on m = 3 images.

et al. [2004]. Typical values for the user-defined parameters are τ = 10−3,
ε1 = ε2 = ε3 = 10−12, ε4 = 0, kmax = 100.

At this point, it should be mentioned that, rather than directly controlling
the damping parameter μ in Equation (4), modern implementations of the
Levenberg-Marquardt algorithm such as Moré [1977] and Moré et al. [1980]
seek a nearly exact solution for μ using Newton’s root finding algorithm in a
trust-region framework [Moré and Sorensen 1983; Conn et al. 2000]. This ap-
proach, however, requires expensive repetitive Cholesky factorizations of the
augmented approximate Hessian and, therefore, is not well suited to solving
large-scale problems such as those arising in the context of BA.

4. SPARSE BUNDLE ADJUSTMENT

This section shows how a sparse variant of the LM algorithm presented in
Section 3 can be developed to deal efficiently with the problem of bundle ad-
justment. The developments that follow are along the lines of the presentation
regarding sparse bundle adjustment in Appendix 4 of Hartley and Zisserman
[2000]. As illustrated in Figure 3, assume that n 3D points are seen in m views
and let xij be the (generally two-dimensional) projection of the ith point on im-
age j . Bundle adjustment is equivalent to jointly refining a set of initial camera
and structure parameter estimates for finding the set of parameters that most
accurately predict the locations of the observed n points in the set of the m

available images. More formally, assume that each camera j is parameterized
by a vector a j and each 3D point i by a vector bi. For notational simplicity, it
is also assumed that all points are visible in all images. This assumption, how-
ever, is not necessary and, as will soon be made clear, points may in general be
visible in any subset of the m views. BA minimizes the reprojection error with
respect to all 3D point and camera parameters, specifically

min
a j ,bi

n
∑

i=1

m
∑

j=1

d (Q(a j , bi), xij)
2, (6)

where Q(a j , bi) is the predicted projection of point i on image j and d (x, y)
denotes the Euclidean distance between the image points represented by the
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inhomogeneous vectors x and y. It is clear from (6) that BA is by defini-
tion tolerant to missing image projections and, in contrast to algebraic ap-
proaches for multiview reconstruction, minimizes a physically meaningful cri-
terion. Observe that, through Q(), the definition in (6) is general enough to
accommodate any camera and structure parameterization. Note also that if κ

and λ are, respectively, the dimensions of each a j and bi, the total number
of minimization parameters in (6) equals mκ + nλ and is therefore large even
for BA problems defined for rather short sequences. For example, in the case
of projective reconstruction, κ = 12 and λ = 4 and, therefore, a moderately
sized BA problem defined by, say, 1000 points projecting on each of 30 images
involves 4360 variables. Sample dimensions of real Euclidean reconstruction
problems that are employed in the experimental results section of this article
can be found in the first columns of Table I.

BA can be cast as a nonlinear minimization problem as follows. A parameter
vector P ∈ R

M is defined by all parameters describing the m projection matrices
and the n 3D points in Equation (6), namely, P = (aT

1 , . . . , aT
m, . . . , bT

1 , . . . , bT
n )T .

A measurement vector X ∈ R
N is made up of the measured image point coor-

dinates across all cameras:

X =
(

xT
11, . . . , xT

1m, xT
21, . . . , xT

2m, . . . , xT
n1, . . . , xT

nm

)T
. (7)

Let P0 be an initial parameter estimate and �X be the covariance matrix ex-
pressing the uncertainty of the measured vector X; in the absence of any further
knowledge, �X is taken equal to the identity matrix. For each parameter vec-
tor, an estimated measurement vector X̂ is generated by a functional relation
X̂ = f (P), defined by

X̂ =
(

x̂T
11, . . . , x̂T

1m, x̂T
21, . . . , x̂T

2m, . . . , x̂T
n1, . . . , x̂T

nm

)T
, (8)

with x̂ij = Q(a j , bi).

Thus, BA corresponds to minimizing the squared �−1
X

-norm (i.e., Maha-

lanobis distance) ǫT �−1
X

ǫ, ǫ = X − X̂ over P. Evidently, this minimization prob-
lem can be solved by employing the LM nonlinear least-squares algorithm,
which calls for repeatedly solving the augmented weighted normal equations

(JT �−1
X

J + μI)δ = JT �−1
X

ǫ, (9)

where J is the Jacobian of f and δ is the sought update to the parameter vector
P. As will be demonstrated below, the normal equations in Equation (9) have a
regular sparse block structure that results from the lack of interaction between
parameters of different cameras and different 3D points. To keep the demon-
stration manageable, a case with small n and m is worked out in detail; however,
as will later become apparent, the results are straightforward to generalize to
arbitrary numbers of 3D points and cameras.

Assume that n = 4 points are visible in m = 3 views. The measurement
vector is X = (xT

11, xT
12, xT

13, xT
21, xT

22, xT
23, xT

31, xT
32, xT

33, xT
41, xT

42, xT
43)T .

The parameter vector is given by P = (aT
1 , aT

2 , aT
3 , bT

1 , bT
2 , bT

3 , bT
4 )T . Notice

that
∂x̂ij
∂ak

= 0, ∀ j �= k and
∂x̂ij
∂bk

= 0, ∀ i �= k. Let Aij and Bij denote
∂x̂ij
∂a j

and
∂x̂ij
∂bi

, respectively. The LM updating vector δ can be partitioned into camera and
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structure parameters as (δT
a , δT

b
)T and further as (δT

a1
, δT

a2
, δT

a3
, δT

b1
, δT

b2
, δT

b3
, δT

b4
)T .

The remainder of this section is devoted to elaborating a scheme for efficiently
solving the normal equations arising in LM minimization by taking advantage
of their sparse structure.

Employing the notation for the derivatives introduced in the previous para-
graph, we can write the Jacobian J as

∂X

∂P
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

A11 0 0 B11 0 0 0
0 A12 0 B12 0 0 0
0 0 A13 B13 0 0 0

A21 0 0 0 B21 0 0
0 A22 0 0 B22 0 0
0 0 A23 0 B23 0 0

A31 0 0 0 0 B31 0
0 A32 0 0 0 B32 0
0 0 A33 0 0 B33 0

A41 0 0 0 0 0 B41

0 A42 0 0 0 0 B42

0 0 A43 0 0 0 B43

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (10)

Equation (10) clearly reveals the sparse nature of the matrix J. It is due to J’s
sparseness that the normal equations are themselves sparse. Let the covariance
matrix for the complete measurement vector be the block diagonal matrix �X =

diag(�x11
, �x12

, �x13
, �x21

, �x22
, �x23

, �x31
, �x32

, �x33
, �x41

, �x42
, �x43

).
(11)

By substituting J and �−1
X

from Equations (10) and (11) and by denoting

U j ≡

4
∑

i=1

AT
ij �

−1
xi j

Aij, Vi ≡

3
∑

j=1

BT
ij �

−1
xi j

Bij, Wij ≡ AT
ij �

−1
xi j

Bij, (12)

we can express the matrix product in the left-hand side of Equation (9) as
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U1 0 0 W11 W21 W31 W41

0 U2 0 W12 W22 W32 W42

0 0 U3 W13 W23 W33 W43

WT
11 WT

12 WT
13 V1 0 0 0

WT
21 WT

22 WT
23 0 V2 0 0

WT
31 WT

32 WT
33 0 0 V3 0

WT
41 WT

42 WT
43 0 0 0 V4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (13)

Also, using Equations (10) and (11), we can expand the right-hand side of
Equation (9) as
(

4
∑

i=1

(

AT
i1�

−1
xi1

ǫi1

)T
,

4
∑

i=1

(

AT
i2�

−1
xi2

ǫi2

)T
,

4
∑

i=1

(

AT
i3�

−1
xi3

ǫi3

)T
, (14)

3
∑

j=1

(

BT
1j�

−1
x1 j

ǫ1j

)T
,

3
∑

j=1

(

BT
2j�

−1
x2 j

ǫ2j

)T
,

3
∑

j=1

(

BT
3j�

−1
x3 j

ǫ3j

)T
,

3
∑

j=1

(

BT
4j�

−1
x4 j

ǫ4j

)T

)T

.
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Letting

ǫa j
≡

4
∑

i=1

AT
ij �

−1
xi j

ǫij, ǫbi
≡

3
∑

j=1

BT
ij �

−1
xi j

ǫij, with ǫij ≡ xij − x̂ij ∀ i, j , (15)

we can abbreviate the vector in (14) to
(

ǫT
a1

, ǫT
a2

, ǫT
a3

, ǫT
b1

, ǫT
b2

, ǫT
b3

, ǫT
b4

)T
. (16)

By substituting the expressions for JT �−1
X

J and JT �−1
X

ǫ from (13) and (16),
we find that the normal Equations (9) become

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U1 0 0 W11 W21 W31 W41

0 U2 0 W12 W22 W32 W42

0 0 U3 W13 W23 W33 W43

WT
11 WT

12 WT
13 V1 0 0 0

WT
21 WT

22 WT
23 0 V2 0 0

WT
31 WT

32 WT
33 0 0 V3 0

WT
41 WT

42 WT
43 0 0 0 V4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

δa1

δa2

δa3

δb1

δb2

δb3

δb4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ǫa1

ǫa2

ǫa3

ǫb1

ǫb2

ǫb3

ǫb4

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (17)

Denoting the upper left, lower right, and upper right parts of the matrix in
Equation (17), respectively, with U, V and W, allows us to further compact the
augmented normal equations to

(

U∗ W
WT V∗

) (

δa

δb

)

=

(

ǫa

ǫb

)

, (18)

where ∗ designates the augmentation of the diagonal elements of U and V. Left
multiplication of Equation (18) by the block matrix

(

I −W V∗−1

0 I

)

(19)

results in
(

U∗ − W V∗−1 WT 0
WT V∗

) (

δa

δb

)

=

(

ǫa − W V∗−1
ǫb

ǫb

)

. (20)

Since the top right block of the above left hand matrix is zero, the dependence
of the camera parameters on the structure parameters has been eliminated in
Equation (20) and, therefore, δa can be determined from its top half, which is

(U∗ − W V∗−1 WT ) δa = ǫa − W V∗−1
ǫb. (21)

Matrix S ≡ U∗ − W V∗−1 WT is the Schur complement of V∗ in the left-hand
side matrix of Equation (18). Since the Schur complement of a symmetric pos-
itive definite matrix is itself symmetric and positive definite [Prasolov 1994],
the system of Equation (21) can be efficiently solved using the Cholesky factor-
ization of S. Having solved for δa, we can compute δb by back substitution into
the bottom half of Equation (20), which yields

V∗ δb = ǫb − WT δa. (22)
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The choice of solving first for δa and then for δb is justified by the fact that
the total number of camera parameters is in general much smaller than the
total number of structure parameters. Therefore, Equation (21) involves the
solution of smaller systems that can be carried out with considerably fewer
computations. Observing that V∗

i
−1 is equal to

⎛

⎜

⎜

⎜

⎝

V∗
1
−1 0 0 0

0 V∗
2
−1 0 0

0 0 V∗
3
−1 0

0 0 0 V∗
4
−1

⎞

⎟

⎟

⎟

⎠

(23)

and substituting U∗, W, and V∗ with their corresponding blocks from Equa-
tion (17), matrix S in the left hand side of Equation (21) can be written as

S =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

U∗
1 −

4
∑

i=1

Yi1WT
i1 −

4
∑

i=1

Yi1WT
i2 −

4
∑

i=1

Yi1WT
i3

−

4
∑

i=1

Yi2WT
i1 U∗

2 −

4
∑

i=1

Yi2WT
i2 −

4
∑

i=1

Yi2WT
i3

−

4
∑

i=1

Yi3WT
i1 −

4
∑

i=1

Yi3WT
i2 U∗

3 −

4
∑

i=1

Yi3WT
i3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (24)

where Yij = WijV
∗
i
−1. Further, the right-hand side of Equation (21) equals

ǫa −

(

4
∑

i=1

(Yi1 ǫbi
)T ,

4
∑

i=1

(Yi2 ǫbi
)T ,

4
∑

i=1

(Yi3 ǫbi
)T

)T

. (25)

By combining (24) and (25), we can compute δa by solving the system
⎛

⎜

⎜

⎜

⎜

⎜

⎝

U∗
1 −

4
∑

i=1

Yi1WT

i1 −

4
∑

i=1

Yi1WT

i2 −

4
∑

i=1

Yi1WT

i3

−

4
∑

i=1

Yi2WT

i1 U∗
2 −

4
∑

i=1

Yi2WT

i2 −

4
∑

i=1

Yi2WT

i3

−

4
∑

i=1

Yi3WT

i1 −

4
∑

i=1

Yi3WT

i2 U∗
3 −

4
∑

i=1

Yi3WT

i3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(

δa1

δa2

δa3

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ǫa1
−

4
∑

i=1

Yi1 ǫbi

ǫa2
−

4
∑

i=1

Yi2 ǫbi

ǫa3
−

4
∑

i=1

Yi3 ǫbi

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (26)

Finally, left multiplication of Equation (22) by V∗−1 from (23) yields δb from δa

as

δb =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

V∗
1
−1

(

ǫb1
−

3
∑

j=1

WT
1j δa j

)

V∗
2
−1

(

ǫb2
−

3
∑

j=1

WT
2j δa j

)

V∗
3
−1

(

ǫb3
−

3
∑

j=1

WT
3j δa j

)

V∗
4
−1

(

ǫb4
−

3
∑

j=1

WT
4j δa j

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (27)
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Fig. 4. Algorithm for solving the sparse, augmented normal equations arising in generic bundle
adjustment. Combined with the algorithm portrayed in Figure 2, yields a sparse BA algorithm.

At this point, it should be evident that the approach for solving the normal
equations that was illustrated above can be directly generalized to arbitrary n

and m. Note also that if a point k does not appear in an image l then Akl = 0
and Bkl = 0. Hence, index i in the summations appearing in the definitions of
U j and ǫa j

(see Equations (12) and (15)) runs through all points appearing in
the specified camera j . Similarly, index j in the definitions of Vi and ǫbi

runs
through all cameras to which the given point i is projected. Figure 4 summarizes
the general procedure for solving the sparse normal equations involved in the
LM algorithm. This procedure can be embedded in the LM algorithm of Section 3
at the point indicated by the rectangular box in Figure 2, leading to a sparse
bundle adjustment algorithm.

5. IMPLEMENTATION DETAILS

This section provides some details regarding the practical implementation of
the sparse bundle adjustment algorithm sketched in Sections 3 and 4. The
primary emphases of the design were on flexibility and performance efficiency.
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To cater for different user needs, expert and simple drivers to sparse bundle
adjustment have been developed. The expert drivers, discussed in Section 5.1,
are aimed at the highest performance but require that the user understands
and conforms to certain rules regarding the internal representation of the data
objects involved in sparse bundle adjustment. On the other hand, the simple
drivers presented in Section 5.2 are designed for the less knowledgeable user
who is willing to trade some potential loss in performance for increased ease of
use. The reader should be cautioned that reported details refer to sba v.1.5 (rel.
July 08); future versions may differ slightly.

5.1 Expert Drivers

Let us begin by considering the matrices A and B consisting, respectivel, of the
blocks Aij and Bij defined in the algorithm of Figure 4. Note that, if a point i

does not appear in image j , then Aij = Bij = 0, which implies that both A and
B are sparse. For instance, referring to the sample problem with n = 4 and
m = 3 outlined in Section 4, assuming that point 1 is not visible in image 3 and
points 2, 3, 4 are not visible in image 1 implies that A13 = A21 = A31 = A41 = 0.
Hence, the corresponding A in block form is as shown in the left part of (28); B
has a similar structure.

A =

⎛

⎜

⎜

⎝

A11 A12 0
0 A22 A23

0 A32 A33

0 A42 A43

⎞

⎟

⎟

⎠

, I =

⎛

⎜

⎜

⎝

0 1 −1
−1 2 3
−1 4 5
−1 6 7

⎞

⎟

⎟

⎠

. (28)

While storing all zero elements of A and B is acceptable for moderately sized
BA problems, it becomes inefficient in terms of memory use when the numbers
of 3D points and cameras are large. To save memory, A is stored in a contiguous
memory buffer by arranging its non-zero blocks Aij in succession and setting up
a matrix I whose (i, j ) element contains the index (i.e., offset) k of the block in
the memory buffer that has been allocated to Aij. Matrix I for the sample A is
shown in the right part of (28). Indices stored in I conform to the C convention
and start from zero. Elements equal to −1 indicate that the corresponding Aij is
zero and therefore does not need to be stored. Clearly, I is itself a sparse matrix
and therefore special techniques are used for storing it.

To reduce the memory requirements of large sparse matrices, researchers in
numerical linear algebra have devised various memory storage schemes. Those
schemes allocate a contiguous memory segment for storing the nonzero matrix
elements along with some additional information for keeping track where the
stored elements fit into the full matrix. In the context of this work, we have
chosen to represent sparse matrices using the compressed row storage (CRS)
format [Barrett et al. 1994], which is described next. CRS makes no assump-
tions regarding the sparsity structure of the matrix and does not store any
unnecessary elements. It employs contiguous memory locations to store the fol-
lowing vectors: the val vector which stores the values of the nonzero matrix
elements in row-major order, the colidx vector that stores the column indices
of the elements in the val vector, and the rowptr vector which stores the loca-
tions in the val vector, that start a row. In other words, if val[k]=a[i][j] then
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colidx[k]=j and rowptr[i] <= k < rowptr[i+1]. To simplify algorithms oper-
ating on CRS structures, rowptr by convention contains an extra element at its
end, equal to the number of nonzero array elements. As an example, the CRS
vectors for the 4×3 matrix I, with 8 nonzero elements defined above, are shown
below. Again, array indices conform to the C convention and start from zero:

val : (0, 1, 2, 3, 4, 5, 6, 7),
colidx : (0, 1, 1, 2, 1, 2, 1, 2),
rowptr : (0, 2, 4, 6, 8).

Thus, the sba routines store A by keeping its nonzero Aij blocks in a con-
tiguous memory buffer and using a CRS structure to store I. B is stored in
a similar manner, and, since Bij is zero whenever Aij is zero, I can be reused
to provide the mapping between block pair indices (i, j ) for each Bij and the
corresponding contiguous memory block indices. Note also that blocks Wij and
Yij defined in the algorithm of Figure 4 are zero if either of Aij or Bij is zero.
Therefore, the matrices W and Y consisting of blocks Wij and Yij are also sparse
and can be stored in memory as explained for A and B, again using the same I

to hold the indices mapping. The aforementioned strategy for storing matrices
A, B, W, and Y makes efficient use of the processor’s cache since the elements of
nonzero blocks are kept in consecutive memory locations, which are very likely
to fit in a single cache block while they are being processed. Also, note that if
point i does not appear in image j , then elements xij and x̂ij are missing from

X and X̂ in Equation (7) and (8), respectively. The CRS structure holding I is
once again employed to provide the mapping between xij, x̂ij and their actual

storage locations in X, X̂. The CRS format is represented by sba in C/C++ using
a structure with the following declaration:
struct sba crsm{

int nr, nc; /* #rows, #columns for the sparse matrix */
int nnz; /* number of non-zero array elements */
int *val; /* storage for non-zero array elements. size: nnz */
int *colidx; /* column indices of non-zero elements. size: nnz */
int *rowptr; /* nr+1 locations in val that start a row. rowptr[nr]=nnz. */

};

Nonetheless, when solving large BA problems, the amount of memory that
is necessary for storing the matrices A, B, W, and Y defined in the algorithm
of Figure 4 might be excessive, even if sparse representations are employed for
them. Close examination of the algorithm reveals that matrices A and B are not
needed anymore after computing the auxiliary variables. Therefore, sba saves
memory by making the nonzero blocks of derivative matrices A and B for the
Jacobian share the same storage with the nonzero blocks of matrix W. At each it-
eration, matrices A and B are computed in a working memory that is later over-
written during the computation of W. This is the reason for requiring that blocks
Aij and Bij are ordered back-to-back by the function evaluating the Jacobian
(see also the description of argument fjac below). Besides facilitating the reduc-
tion of the required amount of memory, this choice improves locality during the
computation of blocks Wij, thus reducing execution time. Memory requirements
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are further lowered by choosing not to store the full matrix consisting of the Yij

blocks. Instead, for each image j the block column consisting of the nonzero Yij,
i = 1, . . . , n is stored and then used in the calculations involving S j k and e j (cf.
Figure 4). This memory storage is reused when computing the Yij correspond-
ing to other block columns. Yet another performance improvement concerns the
computation of auxiliary matrices U j , Vi, and S, which is sped up by exploiting
their symmetry and explicitly computing only their triangular parts.

An important observation concerning the matrix S from Figure 4 is that
typical point tracks do not span the whole image sequence but rather extend
over a relatively small number of successive images. This means that, especially
in long image sequences, it is rare to have points that are tracked across all
images, which in turn implies that it is very likely that certain images j and
k have no visible points in common and thus the corresponding off-diagonal
block j k of S is zero. In other words, matrix S can be sparse. For all but one of
the sequences employed in the experiments reported in Section 6, the density
of S (defined as the ratio of nonzero elements over the product of rows and
columns) was at least 84%; actually five out of the total eight sequences used
had a density of 100%. Therefore, considering that the memory savings of a
sparse representation would be outweighted by the extra overhead for accessing
the nonzero matrix elements, it was chosen to represent S as a dense matrix
containing zeros. For very long sequences, however, S is expected to be much
sparser and should be dealt with accordingly.

Covariances �xij
are accommodated by computing the upper triangular ma-

trices Cxij
from the Cholesky decompositions of their inverses as �−1

xij
= CT

xij
Cxij

and using the Cxij
at every iteration to weigh Aij, Bij and ǫij by left multipli-

cation. Auxiliary variables such as U j are actually computed as
∑

i AT
ij

Aij; if

the Aij have been pre-weighted with the covariances, the computation for U j

is equivalent to
∑

i(Cxij
Aij)

T Cxij
Aij =

∑

i AT
ij
�−1

xi j
Aij. Variables Vi, Wij, ǫa j

, and

ǫbi
are computed in a similar fashion. This strategy permits the incorporation

of covariances with minimal overhead when they are all equal to identity ma-
trices and in the opposite case, with fewer matrix multiplications than those
that would be required by the straightforward computation suggested by the
definitions of U j , Vi, Wij, ǫa j

, and ǫbi
in Figure 4.

Sparse BA is implemented in sba by the expert function sba motstr

levmar x(). The prototype declaration of sba motstr levmar x() is supplied in
the sba.h header file that defines sba’s API and reads as follows:

int sba motstr levmar x(int n, int m, int mcon, char ∗vmask, double ∗p,

int cnp, int pnp, double ∗x, double ∗covx, int mnp,

void (∗func)(double ∗p, struct sba crsm ∗idxij, int ∗wk1, int ∗wk2, double ∗hx, void

∗adata),

void (∗fjac)(double ∗p, struct sba crsm ∗idxij, int ∗wk1, int ∗wk2, double ∗jac, void

∗adata),

void ∗adata, int itmax, int verbose, double opts[SBA OPTSSZ], double

info[SBA INFOSZ]);

In case of successful termination, the function returns the number of it-
erations required for the minimization (≥ 0), and otherwise the negative
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constant SBA ERROR. The linear system of Equation (21) is solved with the aid
of Cholesky factorization, implemented using LAPACK routines DPOTRF and
DPOTRS [Anderson et al. 1999]. For experimenting with other approaches (not
necessarily relying on positive definiteness), sba also includes implementations
of LAPACK-based linear system solvers employing LDLT, LU, QR, and SVD de-
compositions [Golub and van Loan 1996; Demmel 1997]. LAPACK can be sub-
stituted by any equivalent vendor library (e.g., ESSL, MKL, NAG, etc) that con-
forms to the API described in the LAPACK User’s Guide. sba motstr levmar x()

implements a forward communication mechanism; its arguments are explained
one by one in the following, where I and O denote input and output arguments,
respectively:

—n: The number of 3D points. (I)

—m: The number of cameras (i.e., images). (I)

—mcon: The number of cameras (starting from the first) whose parameters
should not be modified. All Aij with j < mcon are assumed to be zero. This is,
for example, useful when the world’s coordinate frame is aligned with that
of the first camera, therefore the (projective) first camera matrix should be
kept fixed to

[

I | 0
]

. (I)

—vmask: Point visibility mask: vmask[(i-1)*m+j-1] equals 1 if point i is visible
in image j , 0 otherwise. Note that in the preceding presentation points and
images are numbered as 1, 2, . . ., whereas C array indices start from zero,
hence the −1s in the expression (i-1)*m+j-1. The size of vmask is n*m. (I)

—p: On input, the initial parameter vector P0 = (aT
1 , . . . , aT

m, . . . , bT
1 , . . . , bT

n )T ,
where a j are the parameters of image j and bi are the parameters of point
i. On output, the estimated minimizer. Its size is m*cnp + n*pnp. (I/O)

—cnp: The number of parameters defining a single camera. For example, a
Euclidean camera parameterized using an angle-axis representation for ro-
tation depends on six parameters (3 rotational + 3 translational). If quater-
nions are used for the rotations, the number of parameters increases to seven
(i.e., 4 + 3). An affine camera can be modeled using seven parameters, while a
fully projective one can be parameterized with eleven or, including the scale
factor, twelve parameters. (I)

—pnp: The number of parameters defining a single 3D point: for example, three
for Euclidean points, four for projective, etc. (I)

—x: The measurement vector X consisting of all image projections in the order
(xT

11, . . . , xT
1m

, . . . , xT
n1, . . . , xT

nm)T . For every point i that is not visible in image
j (see vmask above), the corresponding xij is missing from x. Its size is NZ*mnp,
where NZ ≤ n*m denotes the number of nonzeros in vmask and amounts to the
total number of point projections in all images. (I)

—covx: The nonzero diagonal blocks of the covariance matrix �X corresponding
to the measurement vector X. covx consists of the covariance matrices of
image projections arranged as �x11

, . . . , �x1m
, . . . , �xn1

, . . . , �xnm
, with each of

the mnp*mnp matrices �xij
being stored in row-major order. Similarly to x

above, for every point i that is not visible in image j , the corresponding
�xij

is missing from covx. Its size is NZ*mnp*mnp, with NZ again denoting the
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number of nonzeros in vmask. A NULL value for covx forces identity matrices
to be used for all �xij

, omitting covariance information. (I)

—mnp: The number of parameters defining an image point (typically two). (I)

—func: The function computing the estimated measurement vector. Given an
estimate of the parameters vector P in p, computes X̂ in hx by evaluating
the parameterizing function Q() of (6) for all points and cameras. The mea-
surement vector should be returned as (x̂T

11, . . . , x̂T
1m

, . . . , x̂T
n1, . . . , x̂T

nm)T . Ar-
gument idxij is built up by sba motstr levmar x() according to the infor-
mation contained in its vmask argument. It specifies which points are visible
in each image and provides the mapping between every x̂ij and its mnp-sized
storage location in hx. Arguments wk1 and wk2 are arrays of size max(n, m)
that have been allocated by the caller and can be used as working memory
for the routines manipulating the idxij structure. Argument adata is identi-
cal to the so named argument of sba motstr levmar x(), pointing to possibly
additional data (see below). (I)

—fjac: The function evaluating in jac the sparse Jacobian J at p. J is made up
of the derivatives of the parameterizing function Q() and should be laid out as

(A11, B11, . . . , A1m, B1m, . . . , An1, Bn1, . . . , Anm, Bnm, where Aij =
∂Q(a j ,bi )

∂a j
and

Bij =
∂Q(a j ,bi )

∂bi
. Each of the Aij (respectively Bij) blocks is made up of mnp*cnp

(respectively mnp*pnp) elements and is stored in a row-major order, occupying
a distinct storage block in jac. Note that the Aij and Bij for a certain image
projection xij consist of mnp*(cnp+pnp) elements and are placed back-to-back
in the jac array, which is comprised of exactly idxij->nnz pairs of Aij, Bij

blocks. The offset of each Aij and Bij in jac is determined through the idxij

argument. The contents of idxij also specify which of the Aij and Bij are
missing. Arguments wk1 and wk2 again point to working memory allocated
by the caller. sba offers the option of automatically verifying the correctness
of user-supplied Jacobians; please refer to the comments regarding itmax be-
low. If the user specifies a NULL value for fjac, the Jacobian is approximated
using forward finite differences on data provided by successive invocations
of func. In order to reduce the total number of func invocations, the Jaco-
bian is approximated using a scheme that computes several of its columns
with a single func evaluation, exploiting its sparse structure as explained in
Nocedal and Wright [1999], chapter 7. This scheme requires only cnp+pnp+1

func evaluations, that is, many fewer compared to the m*cnp+n*pnp+1 that
would be required by the naive approach of computing a single column of the
Jacobian per func evaluation. Still, the overhead associated with this finite
difference Jacobian approximation might be significant. Therefore, such an
approximation is primarily intended for use during initial testing and de-
bugging and should be avoided when execution speed is a major concern, in
which case the Jacobian should be computed analytically by a user-supplied
function. (I)

—adata: Pointer to possibly additional data, passed unchanged to func

and fjac. It is intended to facilitate accessing problem-specific data,
avoiding direct use of global variables in the routines func and fjac. For
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example, a structure containing pointers to appropriate data structures
can be set up and a pointer to it can be passed as the value of adata to
sba motstr levmar x(), which then passes it unchanged to each call of the
user-supplied routines. This argument should be set to NULL if not needed. (I)

—itmax: Maximum number of Levenberg-Marquardt iterations (kmax in the
algorithm of Figure 2). A zero value for itmax triggers verification of the
user-supplied Jacobian followed by an immediate return with a value of
zero. The correctness of the Jacobian is verified using an approach similar
to that of MINPACK’s CHKDER routine [Moré et al. 1980]. The verification
routine prints suspicious gradients (i.e., Jacobian rows) to stderr. (I)

—verbose: Verbosity level. A value of zero specifies silent operation, larger
values correspond to increasing verbosity levels. (I)

—opts: An array with SBA OPTSSZ elements that specify the minimization
options τ, ε1, ε2, ε3, ε4 for the Levenberg-Marquardt algorithm (see Figure 2).
These are, respectively, the scale factor for the initial damping term and the
stopping tolerance thresholds. SBA OPTSSZ is a constant defined in sba.h. (I)

—info: Array of SBA INFOSZ elements containing information regarding the
outcome of the minimization. It can be set to NULL if not needed. SBA INFOSZ

is a constant defined in sba.h. (O)
—info[0]: ||ǫp0

||2, that is, the error at the initial parameters estimate. Note
that info[0] divided by the total number of image point measurements
(i.e., the number of nonzeros in vmask) corresponds to the initial mean
squared reprojection error.

—info[1-4]: (||ǫp||2, ||JT ǫp||∞, ||δp||2, μ/ max
k

{[JT J]kk}), all computed at the

final p. Analogously to info[0], info[1] divided by the number of image
point measurements yields the final mean squared reprojection error.

—info[5]: Total number of iterations.
—info[6]: Reason for terminating:

1 : Stopped by small ||J(p)T ǫp||∞.
2 : Stopped by small ||δp||.
3 : Stopped by itmax.
4 : Stopped by small relative reduction in ||ǫp||.
5 : Stopped by small ||ǫp||.
6 : Stopped due to excessive failed attempts to increase damping for

getting a positive definite normal equations matrix. Typically, this
indicates a programming error in the user-supplied Jacobian.

7 : Stopped due to infinite values in the coordinates of the set of
predicted projections x̂ij. This signals a programming error in the
user-supplied projection function func.

—info[7]: Total number of func evaluations.
—info[8]: Total number of fjac evaluations.
—info[9]: Total number of times that the augmented normal equations

were solved. This is always larger that the number of iterations, since
during a single LM iteration, several damping factors might be tried,
each requiring the solution of the corresponding augmented normal
equations (cf. the innermost loop of the algorithm in Figure 2).
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The discussion of the arguments of sba motstr levmar x() has made clear
that all information pertaining to BA is selectable by its user: Any number of
cameras and 3D points may be specified, each described by as many parameters
as the user sees fit. The exact parameterization of motion and structure is
defined by supplying appropriate func and fjac routines. Therefore, the user
has complete freedom on the evaluation of the estimated measurement vector
and its Jacobian. The user also has the ability to specify the visibility of point
projections on an image basis.

Additionally, sba offers the expert function sba mot levmar x() that mini-
mizes the reprojection error with respect to the camera viewing parameters
only. In other words, all 3D structure parameters are kept constant (therefore
all Bij=0) and only the camera motion/calibration parameters are modified.
Strictly speaking, this function does not perform BA. Nevertheless, it is very
useful when dealing with camera resectioning, that is, the problem of estimat-
ing the camera matrix from the 2D image projections of some 3D points that
are assumed fixed and precisely known [Lu et al. 2000; Hartley 1993]. The
prototype of sba mot levmar x() is the following:

int sba mot levmar x(int n, int m, int mcon, char *vmask, double *p,

int cnp, double *x, double *covx, int mnp,

void (*func)(double *p, struct sba crsm *idxij, int *wk1, int *wk2, double *hx, void

*adata),

void (*fjac)(double *p, struct sba crsm *idxij, int *wk1, int *wk2, double *jac, void

*adata),

void *adata, int itmax, int verbose, double opts[SBA OPTSSZ],

double info[SBA INFOSZ]);

Function sba mot levmar x() implements the algorithm resulting from that
in Figure 4 after setting Bij = Vi = Wij = Yij = 0. Notice that in this
case, the augmented normal equations of Equation (18) are simplified to a
set of linear systems U∗

j δa j
= ǫa j

, which, due to the positive definiteness of
all U∗

j , can be solved with the aid of Cholesky factorizations. Since the argu-
ments of sba mot levmar x() have the same meaning as their counterparts in
sba motstr levmar x(), no further explanation is given here.

Finally, sba includes the expert function sba str levmar x(), which
is in a sense complementary to sba mot levmar x(). More specifically,
sba str levmar x() keeps the camera viewing parameters unchanged and min-
imizes the reprojection error with respect to the scene structure parameters
only. This function is, for example, useful when reconstructing 3D points seen
in a set of extrinsically calibrated images. It implements the algorithm re-
sulting from that in Figure 4 after setting Aij = U j = Wij = Yij = 0, hence
reducing the normal equations to the set V∗

i δbi
= ǫbi

. The prototype of function
sba str levmar x() is as follows:

int sba str levmar x(int n, int m, char ∗vmask, double ∗p,

int pnp, double ∗x, double ∗covx, int mnp,

void (∗func)(double ∗p, struct sba crsm ∗idxij, int ∗wk1, int ∗wk2, double ∗hx, void

∗adata),
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void (∗fjac)(double ∗p, struct sba crsm ∗idxij, int ∗wk1, int ∗wk2, double ∗jac, void

∗adata),

void ∗adata, int itmax, int verbose, double opts[SBA OPTSSZ], double

info[SBA INFOSZ]);

Again, the arguments of sba str levmar x() have the same meaning as their
counterparts in sba motstr levmar x().

5.2 Simple Drivers

For users who are unwilling to spend much time understanding its in-
ner workings, sba offers three simple drivers, namely, sba motstr levmar(),
sba mot levmar(), and sba str levmar(), which are implemented as wrappers
around the expert drivers sba motstr levmar x(), sba mot levmar x(), and
sba str levmar x(), respectively. They differ from the latter in that, instead
of accepting arguments for estimating the whole measurement vector and its
sparse Jacobian (i.e., func and fjac), they should be provided with routines to
estimate a single image projection and its Jacobian (i.e., proj and projac). The
wrappers then estimate the measurement vector and its sparse Jacobian by
repeatedly invoking proj and projac for all points and cameras. Thus, at the
moderate cost induced by the extra function calls, the simple drivers free the
user from worrying about how the measurement vector and its sparse Jacobian
are laid out in memory internally.

The prototype of sba motstr levmar() is

int sba motstr levmar(int n, int m, int mcon, char ∗vmask, double ∗p,

int cnp, int pnp, double ∗x, double ∗covx, int mnp,

void (∗proj)(int j, int i, double ∗aj, double ∗bi, double ∗xij, void ∗adata),

void (∗projac)(int j, int i, double ∗aj, double ∗bi, double ∗Aij, double ∗Bij, void ∗adata),

void ∗adata, int itmax, int verbose, double opts[SBA OPTSSZ], double

info[SBA INFOSZ]);

that of sba mot levmar():

int sba mot levmar(int n, int m, int mcon, char ∗vmask, double ∗p,

int cnp, double ∗x, double ∗covx, int mnp,

void (∗proj)(int j, int i, double ∗aj, double ∗xij, void ∗adata),

void (∗projac)(int j, int i, double ∗aj, double ∗Aij, void ∗adata),

void ∗adata, int itmax, int verbose, double opts[SBA OPTSSZ], double

info[SBA INFOSZ]);

and that of sba str levmar():

int sba str levmar(int n, int m, char ∗vmask, double ∗p,

int pnp, double ∗x, double ∗covx, int mnp,

void (∗proj)(int j, int i, double ∗bi, double ∗xij, void ∗adata),

void (∗projac)(int j, int i, double ∗bi, double ∗Bij, void ∗adata),

void ∗adata, int itmax, int verbose, double opts[SBA OPTSSZ], double

info[SBA INFOSZ]);

In all cases, the function pointed to by proj is assumed to estimate in xij the
projection in image j of the point i. Arguments aj and bi are, respectively, the
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parameters of the jth camera and ith point. In other words, proj implements
the parameterizing function Q(). Similarly, projac is assumed to compute in Aij

and Bij the functions
∂Q(a j ,bi )

∂a j
and

∂Q(a j ,bi )
∂bi

, that is, the Jacobians with respect

to aj and bi of the projection of point i in image j. If projac is NULL, the
Jacobians are approximated through the finite differentiation of proj. Note
that the computation of this finite approximation is more efficient than the one
in the case of the expert drivers. This is because the availability of Q() permits
the explicit computation of only the finite differences which actually depend
on the differentiating parameters. Both proj and projac are called only for
points i which are visible in image j. The remaining arguments to the three
functions are identical to their homonymous ones in sba motstr levmar x(),
sba mot levmar x(), and sba str levmar x().

6. EXPERIMENTAL RESULTS

As has already been mentioned, sba can facilitate the solution of a wide range of
reconstruction-related computer vision problems. This section concerns the use
of sba for Euclidean BA, a task which is a key ingredient for dealing with the
problem of camera tracking. Camera tracking refers to using solely visual input
for estimating the 3D position and orientation of a freely moving camera. The
authors have routinely employed sba in this context for dealing with camera
tracking problems involving a few thousand 3D points whose image projections
depended on a few hundred camera parameters. More specifically, it is assumed
that a set of Euclidean 3D points are seen in a number of images acquired by
an intrinsically calibrated moving camera. It is also assumed that the image
projections of each Euclidean 3D point have been identified and that initial
estimates of the 3D point structure and the Euclidean camera matrices have
been obtained as described in Lourakis and Argyros [2005a]. The remainder of
this section describes the application of sba for refining those camera matrix
and structure estimates and compares its performance against a variant that
employs a more straightforward way for solving the augmented normal equa-
tions. Source code demonstrating Euclidean BA using sba is included in the
eucsbademo program distributed with the former.

6.1 Parameterizing Euclidean BA

The employed world coordinate frame is taken to be aligned with that of the
camera at the initial location. All subsequent camera motions are defined rel-
ative to the initial location, through the combination of a 3D rotation and a 3D
translation. A 3D rotation by an angle θ about a unit vector u = (u1, u2, u3)T

is represented by the quaternion E = (cos( θ
2
), u1 sin( θ

2
), u2 sin( θ

2
), u3 sin( θ

2
))T

[Horn 1987; Vicci 2001]. A 3D translation is defined by a vector t. A 3D point
is represented by its Euclidean coordinate vector X. Thus, the parameters of
each camera j and point i are a j = (ET

j , tT
j )T and bi = Xi, respectively. With

the previous definitions, the predicted projection of point i on image j is

Q(a j , bi) = K (E j Ni E−1
j + t j ), (29)
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where K is the 3 × 3 intrinsic camera calibration matrix, E−1
j is the inverse

quaternion of E j , and Ni = (0, XT
i )T is the vector quaternion corresponding to

the 3D point Xi. The expression E j Ni E−1
j corresponds to point Xi rotated by

an angle θ j about unit vector u j , as specified by the quaternion E j . Routines
for evaluating the estimated measurement vector and its Jacobian with respect
to all camera and 3D point parameters were implemented. These serve as the
func and fjac arguments of the expert drivers sba XXX levmar x()4. The com-
putation of the measurement vector’s Jacobian relies on a routine for computing
the Jacobian of function Q() in Equation (29), whose code was generated au-
tomatically using Maple’s symbolic differentiation facilities. Alternatively, the
source code for computing the Jacobian of Q() could have been coded by hand or
generated by an automatic differentiation package such as ADOL-C [Griewank
et al. 1996]. Additional arguments of sba XXX levmar x() assume the following
values: mcon=1, cnp=7, pnp=3, mnp=2. Notice that setting mcon equal to 1 allows
the projection matrix of the first camera to be kept constant during bundle
adjustment, equal to K [I3×3 | 0].

6.2 Applying sba to Euclidean BA

Sample experimental results from a series of camera tracking experiments are
presented next. In all experiments, it is assumed that a set of 3D points are seen
in a number of images acquired by an intrinsically calibrated moving camera
and that the image projections of each 3D point have been identified. Initial es-
timates of the Euclidean 3D structure and camera motions are then computed
using the sequential structure and motion estimation technique described in
Lourakis and Argyros [2005a]. With the aid of sba, those estimates were then
refined through full (i.e., motion and structure) Euclidean BA. No covariance
information was considered, that is, �X was assumed equal to the identity ma-
trix. Alternatively, point covariance matrices could have been computed as de-
tailed in Brooks et al. [2001]. The set of employed sequences includes the “movi”
toy house circular sequence from INRIA’s MOVI group, “sagalassos” and “aren-
berg” from Leuven’s VISICS group, “basement” and “house” from Oxford’s VGG
group, and three sequences acquired by ourselves, namely “maquette,” “desk,”
and “calgrid.” The first five are standard sequences, widely used as benchmarks
in the reconstruction literature. One frame from each of the employed test se-
quences is shown in Figure 5. To help the reader visualize the sparseness of the
BA problems associated with the sequences at hand, Figure 6 illustrates the
sparsity pattern of the 992×992 approximate Hessian matrix (i.e., JT J) which
corresponds to the “basement” sequence.

Table I illustrates several statistics gathered from the application of Eu-
clidean sparse BA to the eight test sequences. Each row corresponds to a single
sequence and columns are as follows: the first column corresponds to the total
number of images that were employed in BA. The second column is the total
number of 3D points involved in BA. The third column is the total number of mo-
tion and structure variables pertaining to the minimization. The fourth column

4XXX stands for any of motstr, mot or str.
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Table I. Execution Statistics for the Application of sba to Euclidean BA
(Total number of images, total number of 3D points, total number of variables, average initial
squared reprojection error in pixels, average final squared reprojection error in pixels, total

number of objective function/Jacobian evaluations, total number of iterations, elapsed
execution time in seconds. Identical values for the user-defined parameters have been used

throughout all experiments.)

Sequence Imgs Pts Vars Init. err. Fin. err. Func/jac Iter. Time

“movi” 59 1778 5747 5.03 0.3159 20/20 20 3.27

“sagalassos” 26 1709 5309 11.04 1.2703 38/30 30 3.40

“arenberg” 22 1335 4159 1.35 0.5399 27/18 18 2.57

“basement” 11 305 992 0.37 0.2447 37/23 23 0.29

“house” 10 515 1615 1.43 0.2142 28/19 19 0.36

“maquette” 54 5207 15999 2.15 0.1765 30/22 22 7.15

“desk” 46 3422 10588 4.16 1.5760 32/22 22 5.41

“calgrid” 27 722 2355 3.21 0.2297 20/20 20 7.14

corresponds to the average squared reprojection error of the initial reconstruc-
tion. The fifth column shows the average squared reprojection error after BA.
The sixth column shows the total number of objective function/Jacobian eval-
uations during BA. The number of iterations needed for convergence is shown
in column seven and the last column shows the time (in seconds) elapsed dur-
ing execution of BA. In all cases, the sparse LM algorithm terminated due to
the magnitude of the computed step δ being very small. All experiments were
conducted on a 1.8 GHz Intel P4 (512MB RAM, 8KB L1 and 256KB L2 cache)
running Linux, gcc -O3 (v.2.96) and unoptimized BLAS.

As is evident from these results, sba has successfully solved all underlying
minimization problems in a short time. For comparison, we have also imple-
mented BA using a dense, general purpose version of the LM algorithm.5 Note
that the dense Jacobians for some of the test problems are extremely large: For
example, the “movi” sequence involves 5747 variables and 12,415 image pro-
jections. Taking into account that each image projection is a 2D vector and that
each double precision real number requires 8 bytes to be stored, the amount
of physical memory necessary to store the Jacobian in this case exceeds 1 GB
and is thus beyond the capacity of many current desktop computers. Therefore,
using dense BA, we have been able to solve only the problems associated with
the shortest of the test sequences, namely, those for “basement” and “house,”
for which the corresponding execution times were 481.54 and 1960.92 seconds,
respectively. Compared to the fractions of a second that were spent by sba for
solving those problems, these figures clearly demonstrate the enormous com-
putational gains achieved by the sparse BA implementation.

6.3 Comparison with a Variant Employing Sparse Cholesky Factorization

At this point, a question arising naturally concerns the efficiency of the al-
gorithm of Figure 4 for solving the augmented normal equations in compari-
son with an approach based on a general purpose, sparse matrix factorization

5Our free C/C++ implementation of a dense LM algorithm can be found at http://www.ics.forth.
gr/~lourakis/levmar.
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Fig. 5. First frames of the test image sequences employed in Euclidean BA: (a) “movi”; (b) “sagalas-
sos”; (c) “arenberg”; (d) “basement”; (e) “house”; (f) “maquette”; (g) “desk”, and (h) “calgrid.”
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Fig. 6. Sparsity pattern of the approximate 992 × 992 Hessian corresponding to the “basement”
sequence. Black dots correspond to nonzero elements.

algorithm. More specifically, an alternative approach for exploiting the sparse-
ness of the augmented normal equations matrix, would be to factorize it us-
ing an appropriate sparse factorization and then solve the augmented normal
equations through substitution. Taking into account that the augmented nor-
mal equations matrix is symmetric and positive definite, the most appropriate
factorization method in this case is Cholesky. To investigate the performance of
such an approach, we have implemented a variant of sba, which instead of the
algorithm of Figure 4, relies on a sparse Cholesky factorization implemented
by the LDL algorithm [Davis 2005]. LDL factorizes a symmetric positive-definite
sparse matrix supplied in compressed column storage [Barrett et al. 1994] as
LDLT , where L is lower triangular and D diagonal. To ensure good perfor-
mance, it is crucial that LDL be applied to a sparseness-preserving ordering of
the original matrix. More formally, letting N denote the sparse block matrix
of Equation (18), LDL is employed to factorize the preordered matrix PNPT .
P is a permutation matrix, which we have chosen to compute with the aid of
the AMD set of routines [Amestoy et al. 2004]. AMD finds P using a minimum de-
gree ordering algorithm, so that the Cholesky factorization of PNPT has fewer
nonzero entries (i.e., reduced fill-in) than that of N. Note that, given the LDLT

factorization of PNPT , the solution of the linear system Nδ = ǫ of Equation (18)
can be determined by first solving Ly = Pǫ for y, then LT z = D−1y for z, and
finally setting δ = PT z.

Table II summarizes the execution statistics gathered by using the LDL vari-
ant of sba to perform Euclidean BA for the same image sequences that were
employed in the experiments of Section 6.2. All experiments were conducted on
the same Linux system, using the same initial motion and structure estimates
as in the experiments of Table I as well as identical user-defined minimization
parameters. As can be verified from the figures in the last column, the approach
for solving the augmented normal equations that was outlined in Figure 4 is
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Table II. Execution Statistics for Euclidean BA
Using LDL (Total number of objective

function/Jacobian evaluations, total number of
iterations, elapsed execution time in seconds.

The remaining measures such as number of images,
points and variables, average initial squared

reprojection error, etc, are as in Table I and are
therefore not repeated here.)

Sequence func/jac iter. time

“movi” 23/19 19 8.52

“sagalassos” 42/30 30 9.60

“arenberg” 24/21 21 5.89

“basement” 32/21 21 0.64

“house” 28/19 19 1.04

“maquette” 29/22 22 17.59

“desk” 30/25 25 15.04

“calgrid” 26/20 20 15.71

between 2.2 and 2.9 times faster compared to that based on the LDL factoriza-
tion, thus confirming the expectation that a custom solver is faster compared to
a general purpose one. Therefore, the approach of Figure 4 is preferable for pro-
duction quality BA. However, when execution time is not the primary concern,
the results in Table II indicate the LDL-based approach is a viable and sim-
pler to implement approach for dealing with the augmented normal equations
originating from BA.

7. CONCLUSIONS

This article has presented the mathematical theory behind a LM-based sparse
bundle adjustment algorithm and has resolved the technical/practical issues
pertaining to its implementation in C. The outcome of this work is a generic
sparse BA package called sba that has experimentally been demonstrated to be
capable of dealing efficiently with very large BA problems. The package can be
very useful to researchers working in fields such as computer vision, robotics,
image-based graphics, photogrammetry, surveying, geomatics, etc., and there-
fore it has been made freely available. Indeed, several works employing sba

in diverse fields have already been published; a partial list includes Xin et al.
[2005], Snavely et al. [2006], Bianchi et al. [2006], Sünderhauf et al. [2005],
Templeton et al. [2007], Irschara et al. [2007], and Besnerais et al. [2008]. To
the best of our knowledge, sba is the first and currently the only such software
package to be offered free of charge.

A possible future enhancement to sbamight concern to treat the block matrix
S as sparse whenever its density is sufficiently low. In such cases, Equation (21)
should be solved with a sparse direct solver such as CHOLMOD [Chen et al. 2006]
or SUPERLU [Demmel et al. 1999]. Another improvement would be to replace
the LM algorithm with a more efficient nonlinear least-squares optimization
technique such as Powell’s dog leg that was proposed in Lourakis and Argyros
[2005b].

ACM Transactions on Mathematical Software, Vol. 36, No. 1, Article 2, Publication date: March 2009.



2:28 • M. I. A. Lourakis and A. A. Argyros

ACKNOWLEDGMENTS

The authors wish to thank the two anonymous referees whose meticulous read-
ing of earlier versions of the article have contributed to considerable improve-
ments both in the text and sba’s code.

REFERENCES

AMESTOY, P., DAVIS, T., AND DUFF, I. 2004. Algorithm 837: AMD, an Approximate Minimum Degree
Ordering Algorithm. ACM Trans. Math. Softw. 30, 3 (Sep.), 381–388.

ANDERSON, E., BAI, Z., BISCHOF, C., BLACKFORD, S., DEMMEL, J., DONGARRA, J., CROZ, J. D., GREENBAUM, A.,
HAMMARLING, S., MCKENNEY, A., AND SORENSEN, D. 1999. LAPACK Users’ Guide, 3rd ed. SIAM,
Philadelphia, PA.

BARRETT, R., BERRY, M., CHAN, T. F., DEMMEL, J., DONATO, J., DONGARRA, J., EIJKHOUT, V., POZO, R.,
ROMINE, C., AND DER VORST, H. V. 1994. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd ed. SIAM, Philadelphia, PA. http://www.netlib.org/linalg/
html_templates/report.html.

BEARDSLEY, P., TORR, P., AND ZISSERMAN, A. 1996. 3D model acquisition from extended image se-
quences. In Proceedings of the. European Conference on Computer Vision. Springer-Verlag, Berlin,
Germany, 683–695.

BESNERAIS, G. L., SANFOURCHE, M., AND CHAMPAGNAT, F. 2008. Dense height map estimation from
oblique aerial image sequences. Comput. Vis. Image Understand. 109, 2, 204–225.

BIANCHI, G., JUNG, C., KNOERLEIN, B., SZEKELY, G., AND HARDERS, M. 2006. High-fidelity visuo-haptic
interaction with virtual objects in multi-modal AR systems. In Proceedings of the IEEE/ACM

ISMAR’06 (Santa Barbara, CA), 187–196.
BROOKS, M., CHOJNACKI, W., GAWLEY, D., AND VAN DEN HENGEL, A. 2001. What value covariance

information in estimating vision parameters? In Proceedings of the International Conference on

Computer Vision. Vol. I. IEEE Press, Los Alamitos, CA, 302–308.
BROWN, D. 1958. A solution to the general problem of multiple station analytical stereo triangu-

lation. Tech. rep. 43. RCA-MTP. Feb.
CHEN, Y., DAVIS, T., HAGER, W., AND RAJAMANICKAM, S. 2006. Algorithm 8xx: CHOLMOD, supernodal

sparse cholesky factorization and update/downdate. Tech. rep. 005. Computer and Information
Science and Engineering Dept., University of Florida. Gainesville, FL. Submitted to ACM Trans.

Math. Software.
CONN, A., GOULD, N., AND TOINT, P. 2000. Trust Region Methods. MPS-SIAM Series On Optimiza-

tion. SIAM, Philadelphia, PA.
DAVIS, T. A. 2005. Algorithm 849: A concise sparse cholesky factorization package. ACM Trans.

Math. Softw. 31, 4, 587–591.
DEMMEL, J. 1997. Applied Numerical Linear Algebra. Titles in Applied Mathematics. SIAM Pub-

lications, Philadelphia, PA.
DEMMEL, J., EISENSTAT, S., GILBERT, J., LI, X., AND LIU, J. 1999. A supernodal approach to sparse

partial pivoting. SIAM J. Matrix Anal. Appl. 20, 3, 720–755.
DENNIS, J. 1977. Nonlinear least-squares. In State of the Art in Numerical Analysis, D. Jacobs,

Ed. Academic Press, New York, NY, 269–312.
DENNIS, J., GAY, D., AND WELSCH, R. 1981. An adaptive nonlinear least-squares algorithm. ACM

Trans. Math. Softw. 7, 3 (Sep.), 348–368.
DENNIS, J. AND SCHNABEL, R. 1996. Numerical Methods for Unconstrained Optimization and

Nonlinear Equations. Classics in Applied Mathematics. SIAM Publications, Philadelphia,
PA.

FITZGIBBON, A. AND ZISSERMAN, A. 1998. Automatic camera recovery for closed or open image se-
quences. In Proceedings of the European Conference on Computer Vision. Springer-Verlag, Berlin,
Germany, 311–326.

GAY, D. 1990. Usage summary for selected optimization routines. Tech. rep. 153. AT&T Bell
Laboratories, Murray Hill, NJ.

GOLUB, G. AND VAN LOAN, C. 1996. Matrix Computations, 3rd ed. Johns Hopkins University Press,
Baltimore, MD.

ACM Transactions on Mathematical Software, Vol. 36, No. 1, Article 2, Publication date: March 2009.



SBA: A Software Package for Generic Sparse Bundle Adjustment • 2:29

GRIEWANK, A., JUEDES, D., AND UTKE, J. 1996. ADOL–C, a package for the automatic differentiation
of algorithms written in C/C++. ACM Trans. Math. Softw. 22, 2, 131–167.

HARTLEY, R. 1993. Euclidean reconstruction from uncalibrated views. In Applications of Invari-

ance in Computer Vision, J. Mundy and A. Zisserman, Eds. Lecture Notes in Computer Science,
Vol. 825. Springer-Verlag, Berlin, Germany, 237–256.

HARTLEY, R. AND ZISSERMAN, A. 2000. Multiple View Geometry in Computer Vision, 1st ed. Cam-
bridge University Press, Cambridge, MA.

HIEBERT, K. 1981. An evaluation of mathematical software that solves nonlinear least squares
problems. ACM Trans. Math. Softw. 7, 1 (Mar.), 1–16.

HORN, B. 1987. Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc.

Amer. A 4, 4, 629–642.
IRSCHARA, A., ZACH, C., AND BISCHOF, H. 2007. Towards wiki-based dense city modeling. In Proceedings

of the International Conference on Computer Vision. IEEE Press, Los Alamitos, CA, 1–8.
KELLEY, C. 1999. Iterative Methods for Optimization. SIAM Publications, Philadelphia.
LAMPTON, M. 1997. Damping-undamping strategies for the Levenberg-Marquardt nonlinear

least-squares method. Comput. Phys. J. 11, 1 (Jan./Feb.), 110–115.
LEVENBERG, K. 1944. A method for the solution of certain non-linear problems in least squares.

Quart. Appl. Math. 2, 2 (Jul.), 164–168.
LOURAKIS, M. AND ARGYROS, A. 2005a. Efficient, causal camera tracking in unprepared environ-

ments. Comput. Vis. and Image Understand. 99, 2 (Aug.), 259–290.
LOURAKIS, M. AND ARGYROS, A. 2005b. Is Levenberg-Marquardt the most efficient optimization

algorithm for implementing bundle adjustment? In Proceedings of the International Conference

on Computer Vision. IEEE Press, Los Alamitos, CA, 1526–1531.
LOWE, D. 2004. Distinctive image features from scale-invariant keypoints. Int. J. Comput.

Vis. 60, 2 (Nov.), 91–110.
LU, C.-P., HAGER, G., AND MJOLSNESS, E. 2000. Fast and globally convergent pose estimation from

video images. IEEE Trans. Patt. Anal. Mach. Intell. 22, 6 (Jun.), 610–622.
MADSEN, K., NIELSEN, H., AND TINGLEFF, O. 2004. Methods for non-linear least squares problems.

Technical University of Denmark. Lecture notes. http://www.imm.dtu.dk/pubdb/views/edoc_
download.php/3215/pdf/imm3215.pdf.

MARQUARDT, D. 1963. An algorithm for the least-squares estimation of nonlinear parameters.
SIAM J. Appl. Math. 11, 2 (Jun.), 431–441.
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MORÉ, J., GARBOW, B., AND HILLSTROM, K. 1980. User guide for MINPACK-1. Tech. rep. ANL-80-74.
Argonne National Laboratory, Argonne, IL.
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