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Abstract

When function approximation is used, solving

the Bellman optimality equation with stability

guarantees has remained a major open problem

in reinforcement learning for decades. The fun-

damental difficulty is that the Bellman operator

may become an expansion in general, resulting in

oscillating and even divergent behavior of popu-

lar algorithms like Q-learning. In this paper, we

revisit the Bellman equation, and reformulate it

into a novel primal-dual optimization problem

using Nesterov’s smoothing technique and the

Legendre-Fenchel transformation. We then de-

velop a new algorithm, called Smoothed Bellman

Error Embedding, to solve this optimization prob-

lem where any differentiable function class may

be used. We provide what we believe to be the first

convergence guarantee for general nonlinear func-

tion approximation, and analyze the algorithm’s

sample complexity. Empirically, our algorithm

compares favorably to state-of-the-art baselines

in several benchmark control problems.

1. Introduction

In reinforcement learning (RL), the goal of an agent is to

learn a policy that maximizes long-term returns by sequen-

tially interacting with an unknown environment (Sutton &

Barto, 1998). The dominating framework to model such

an interaction is the Markov decision process, or MDP, in

which the optimal value function are characterized as a

fixed point of the Bellman operator. A fundamental result

for MDP is that the Bellman operator is a contraction in the

value-function space, so the optimal value function is the

unique fixed point. Furthermore, starting from any initial

value function, iterative applications of the Bellman opera-

tor ensure convergence to the fixed point. Interested readers
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are referred to the textbook of Puterman (2014) for details.

Many of the most effective RL algorithms have their root

in such a fixed-point view. The most prominent family of

algorithms is perhaps the temporal-difference algorithms, in-

cluding TD(λ) (Sutton, 1988), Q-learning (Watkins, 1989),

SARSA (Rummery & Niranjan, 1994; Sutton, 1996), and

numerous variants such as the empirically very successful

DQN (Mnih et al., 2015) and A3C (Mnih et al., 2016) im-

plementations. Compared to direct policy search/gradient

algorithms like REINFORCE (Williams, 1992), these fixed-

point methods make learning more efficient by bootstrap-

ping (a sample-based version of Bellman operator).

When the Bellman operator can be computed exactly (even

on average), such as when the MDP has finite state/actions,

convergence is guaranteed thanks to the contraction prop-

erty (Bertsekas & Tsitsiklis, 1996). Unfortunately, when

function approximatiors are used, such fixed-point methods

easily become unstable or even divergent (Boyan & Moore,

1995; Baird, 1995; Tsitsiklis & Van Roy, 1997), except in a

few special cases. For example,

• for some rather restrictive function classes, such as

those with a non-expansion property, some of the finite-

state MDP theory continues to apply with proper modi-

fications (Gordon, 1995; Ormoneit & Sen, 2002; Antos

et al., 2008);

• when linear value function approximation in certain

cases, convergence is guaranteed: for evaluating a

fixed policy from on-policy samples (Tsitsiklis & Van

Roy, 1997), for evaluating the policy using a closed-

form solution from off-policy samples (Boyan, 2002;

Lagoudakis & Parr, 2003), or for optimizing a policy

using samples collected by a stationary policy (Maei

et al., 2010).

In recent years, a few authors have made important progress

toward finding scalable, convergent TD algorithms, by de-

signing proper objective functions and using stochastic gra-

dient descent (SGD) to optimize them (Sutton et al., 2009;

Maei, 2011). Later on, it was realized that several of these

gradient-based algorithms can be interpreted as solving a

primal-dual problem (Mahadevan et al., 2014; Liu et al.,

2015; Macua et al., 2015; Dai et al., 2017). This insight has
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led to novel, faster, and more robust algorithms by adopting

sophisticated optimization techniques (Du et al., 2017). Un-

fortunately, to the best of our knowledge, all existing works

either assume linear function approximation or are designed

for policy evaluation. It remains a major open problem how

to find the optimal policy reliably with general nonlinear

function approximators such as neural networks, especially

in the presence of off-policy data.

Contributions In this work, we take a substantial step to-

wards solving this decades-long open problem, leveraging a

powerful saddle-point optimization perspective, to derive a

new algorithm called Smoothed Bellman Error Embedding

(SBEED) algorithm. Our development hinges upon a novel

view of a smoothed Bellman optimality equation, which

is then transformed to the final primal-dual optimization

problem. SBEED learns the optimal value function and a

stochstic policy in the primal, and the Bellman error (also

known as Bellman residual) in the dual. By doing so, it

avoids the non-smooth max-operator in the Bellman opera-

tor, as well as the double-sample challenge that has plagued

RL algorithm designs (Baird, 1995). More specifically,

• SBEED is stable for a broad class of nonlinear function

approximators including neural networks, and provably

converges to a solution with vanishing gradient. This

holds even in the more challenging off-policy case;

• it uses bootstrapping to yield high sample efficiency, as

in TD-style methods, and is also generalized to cases

of multi-step bootstrapping and eligibility traces;

• it avoids the double-sample issue and directly opti-

mizes the squared Bellman error based on sample tra-

jectories;

• it uses stochastic gradient descent to optimize the ob-

jective, thus very efficient and scalable.

Furthermore, the algorithm handles both the optimal value

function estimation and policy optimization in a unified

way, and readily applies to both continuous and discrete

action spaces. We compare the algorithm with state-of-the-

art baselines on several continuous control benchmarks, and

obtain excellent results.

2. Preliminaries

In this section, we introduce notation and technical back-

ground that is needed in the rest of the paper. We denote a

Markov decision process (MDP) as M = (S,A, P,R, γ),
where S is a (possible infinite) state space, A an action s-

pace, P (·|s, a) the transition probability kernel defining the

distribution over next states upon taking action a on state

s, R(s, a) the average immediate reward by taking action a
in state s, and γ ∈ (0, 1) a discount factor. Given an MDP,

we wish to find a possibly stochastic policy π : S → PA to

maximize the expected discounted cumulative reward start-

ing from any state s ∈ S: E
[∑∞

t=0 γ
tR(st, at)

∣∣∣s0 = s, π
]
,

where PA denotes all probability measures over A. The set

of all policies is denoted by P := (PA)S .

Define V ∗(s) := maxπ(·|s) E [
∑∞

t=0 γ
tR(st, at)|s0 = s, π]

to be the optimal value function. It is known that V ∗

is the unique fixed point of the Bellman operator T , or

equivalently, the unique solution to the Bellman optimality

equation (Bellman equation, for short) (Puterman, 2014):

V (s) = (T V )(s) := max
a

R(s, a) + γEs′|s,a [V (s′)]. (1)

The optimal policy π∗ is related to V ∗ by the following:

π∗(a|s) = argmax
a

{
R(s, a) + γEs′|s,a [V

∗(s′)]
}
.

It should be noted that in practice, for convenience we often

work on the Q-function instead of the state-value function

V ∗. In this paper, it suffices to use the simpler V ∗ function.

3. A Primal-Dual View of Bellman Equation

In this section, we introduce a novel view of Bellman equa-

tion that enables the development of the new algorithm in

Section 4. After reviewing the Bellman equation and the

challenges to solve it, we describe the two key technical

ingredients that lead to our primal-dual reformulation.

We start with another version of Bellman equation that is

equivalent to Eqn (1) (see, e.g., Puterman (2014)):

V (s) = max
π(·|s)∈PA

Ea∼π(·|s)
[
R(s, a) + γEs′|s,a [V (s′)]

]
.

(2)

Eqn (2) makes the role of a policy explicit. Naturally, one

may try to jointly optimize over V and π to minimize the

discrepancy between the two sides of (2). For concreteness,

we focus on the square distance in this paper, but our results

can be extended to other convex loss functions. Let µ be

some given state distribution so that µ(s) > 0 for all s ∈ S .

Minimizing the squared Bellman error gives the following:

minV Es∼µ

[(
maxπ(·|s)∈PA

Ea∼π(·|s)
[
R(s, a)

+γEs′|s,a [V (s′)]
]
− V (s)

)2]
. (3)

While being natural, this approach has several major diffi-

culties when it comes to optimization, which are to be dealt

with in the following subsections:

1. The max operator over PA introduces non-smoothness

to the objective function. A slight change in V may

cause large differences in the RHS of Eqn (2).

2. The conditional expectation, Es′|s,a [·], composed with

the square loss, requires double samples (Baird, 1995)

to obtain unbiased gradients, which is often impractical

in most but simulated environments.

3.1. Smoothed Bellman Equation

To avoid the instability and discontinuity caused by the

max operator, we use the smoothing technique of Nesterov
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(2005) to smooth the Bellman operator T . Since policies

are conditional distributions over A, we choose entropy

regularization, and Eqn (2) becomes:

Vλ(s) = max
π(·|s)∈PA

(
Ea∼π(·|s)

(
R(s, a)

+γEs′|s,a [Vλ(s
′)]
)
+ λH(π, s)

)
, (4)

where H(π, s) := −∑a∈A π(a|s) log π(a|s), and λ > 0
controls the degree of smoothing. Note that with λ = 0,

we obtain the standard Bellman equation. Moreover, the

regularization may be viewed a shaping reward added to

the reward function of an induced, equivalent MDP; see the

long version of this paper for more details1.

Since negative entropy is the conjugate of the log-sum-exp

function (Boyd & Vandenberghe, 2004, Example 3.25), E-

qn (4) can be written equivalently as

Vλ(s) = (TλVλ) (s) (5)

:= λ log

(
∑

a∈A
exp

(
R(s, a) + γEs′|s,a [Vλ(s

′)]

λ

))
,

where the log-sum-exp is an effective smoothing approxi-

mation of the max-operator.

Remark. While Eqns (4) and (5) are inspired by Nestorov

smoothing technique, they can also be derived from other

principles (Rawlik et al., 2012; Fox et al., 2016; Neu et al.,

2017; Nachum et al., 2017; Asadi & Littman, 2017). For

example, Nachum et al. (2017) propose PCL which use en-

tropy regularization in the policy space to encourage explo-

ration, but arrive at the same smoothed form; the smoothed

operator Tλ is called “Mellowmax” by Asadi & Littman

(2017), which is obtained as a particular instantiation of the

quasi-arithmetic mean. In the rest of the subsection, we

review the properties of Tλ, although some of the results

have appeared in the literature in slightly different forms.

First, we show Tλ is also a contraction, as with the standard

Bellman operator (Fox et al., 2016; Asadi & Littman, 2017):

Proposition 1 (Contraction) Tλ is a γ-contraction. Con-

sequently, the corresponding smoothed Bellman equa-

tion (4), or equivalently (5), has a unique solution V ∗
λ .

Second, we show that while in general V ∗ 6= V ∗
λ , their

difference is controlled by λ. To do so, define H∗ :=
maxs∈S,π(·|s)∈PA

H(π, s). For finite action spaces, we im-

mediately have H∗ = log(|A|).
Proposition 2 (Smoothing bias) Let V ∗ and V ∗

λ be fixed

points of (2) and (4), respectively. Then,

‖V ∗(s)− V ∗
λ (s)‖∞ 6

λH∗

1− γ
.

Consequently, as λ → 0, V ∗
λ converges to V ∗ pointwisely.

Finally, the smoothed Bellman operator has the very nice

1Proofs of the theorems in the paper as well as further details
and extensions of the SBEED algorithm are available in the long
version at https://arxiv.org/abs/1712.10285 .

property of temporal consistency (Rawlik et al., 2012;

Nachum et al., 2017):

Proposition 3 (Temporal consistency) Assume λ > 0.

Let V ∗
λ be the fixed point of (4) and π∗

λ the corresponding

policy that attains the maximum on the RHS of (4). Then,

(V ∗
λ , π

∗
λ) is the unique (V, π) pair that satisfies the following

equality for all (s, a) ∈ S ×A:

V (s) = R(s, a) + γEs′|s,a [V (s′)]− λ log π(a|s) . (6)

In other words, Eqn (6) provides an easy-to-check condi-

tion to characterize the optimal value function and optimal

policy on arbitrary pair of (s, a), therefore, which is easy

to incorporate off-policy data. It can also be extended to the

multi-step or eligibility-traces cases as in the long version.

Later, this condition will be one of the critical foundations

to develop our new algorithm.

3.2. Bellman Error Embedding

A natural objective function inspired by (6) is the mean
squared consistency Bellman error, given by:

min
V,π∈P

ℓ(V, π) := Es,a

[

(

R(s, a) + γEs′|s,a

[

V (s′)
]

−λ log π(a|s)− V (s)
)

2
]

, (7)

where Es,a[·] is shorthand for Es∼µ(·),a∼πb(·|s)[·]. Unfortu-

nately, due to the inner conditional expectation, it would

require two independent samples of s′ (starting from the

same (s, a)) to obtain an unbiased estimate of gradient of f ,

a problem known as the double-sample issue (Baird, 1995).

In practice, however, one can rarely obtain two independent

samples except in simulated environments.

To bypass this problem, we make use of the conjugate
of the square function (Boyd & Vandenberghe, 2004):

x2 = maxν
(
2νx− ν2

)
, as well as the interchangeabili-

ty principle (Shapiro et al., 2009; Dai et al., 2017) to rewrite
the optimization problem (7) into an equivalent form:

min
V,π∈P

max
ν∈FS×A

L(V, π; ν) := 2Es,a,s′

[

ν(s, a)
(

R(s, a)

+γV (s′)− λ log π(a|s)− V (s)
)

]

− Es,a,s′

[

ν
2(s, a)

]

, (8)

where FS×A is the set of real-valued functions on S ×
A, Es,a,s′ [·] is shorthand for Es∼µ(·),a∼πb(·|s),s′∼P (·|s,a)[·].
Note that (8) is not a standard convex-concave saddle-point

problem: the objective is convex in V for any fixed (π, ν),
and concave in ν for any fixed (V, π), but not necessarily

convex in π ∈ P for any fixed (V, ν).

Remark. In contrast to our saddle-point formulation (8),

Nachum et al. (2017) get around the double-sample obsta-

cle by minimizing an upper bound of ℓ(V, π): ℓ̃(V, π) :=

Es,a,s′

[
(R(s, a) + γV (s′)− λ log π(a|s)− V (s))

2
]
. As

is known (Baird, 1995), the gradient of ℓ̃ is different from

that of f , as it has a conditional variance term coming from

the stochastic outcome s′. In problems where this variance

is highly heterogeneous across different (s, a) pairs, impact

of such a bias can be substantial.
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Finally, substituting the dual function ν(s, a) = ρ(s, a) −
V (s), the objective in the saddle-point problem becomes

min
V,π

max
ρ∈FS×A

L1(V, π; ρ) := Es,a,s′

[

(

δ(s, a, s′)− V (s)
)

2
]

−Es,a,s′

[

(

δ(s, a, s′)− ρ(s, a)
)

2
]

, (9)

where δ(s, a, s′) := R(s, a)+γV (s′)− λ log π(a|s). Note

that the first term is ℓ̃(V, π), the objective used by PCL, and
the second term will cancel the extra variance term, which
is rigorously proved in our long version. The use of an
auxiliary function to cancel the variance is also observed
by Antos et al. (2008). On the other hand, when function
approximation is used, extra bias will also be introduced.
We note that such a saddle-point view of debiasing the
extra variance term leads to a useful mechanism for better
bias-variance trade-offs, leading to the final primal-dual
formulation we aim to solve in the next section:
min

V,π∈P
max

ρ∈FS×A

Lη(V, π; ρ) := Es,a,s′

[

(

δ(s, a, s′)− V (s)
)

2
]

−η Es,a,s′

[

(

δ(s, a, s′)− ρ(s, a)
)

2
]

, (10)

where η ∈ [0, 1] is a hyper-parameter controlling the trade-

off. When η = 1, this reduces to the original saddle-point

formulation (8). When η = 0, this reduces to the surrogate

objective used in PCL.

4. Smoothed Bellman Error Embedding

In this section, we derive the Smoothed Bellman Error Em-

beDding (SBEED) algorithm, based on stochastic mirror

descent (Nemirovski et al., 2009), to solve the smoothed

Bellman equation. For simplicity of exposition, we main-

ly discuss the one-step optimization (10), although it is

possible to generalize the algorithm to the multi-step and

eligibility-traces settings our extened version.

Due to the curse of dimensionality, the quantities (V, π, ρ)
are often represented by compact, parametric functions in

practice. Denote these parameters by w = (wV , wπ, wρ).
Abusing notation a little bit, we now write the objective

function Lη(V, π; ρ) as Lη(wV , wπ;wρ).

First, we note that the inner (dual) problem is standard least-

squares regression with parameter wρ, so can be solved

using a variety of algorithms (Bertsekas, 2016); in the p-

resence of special structures like convexity, global optima

can be found efficiently (Boyd & Vandenberghe, 2004).

The more involved part is to optimize the primal (wV , wπ),
whose gradients are given by the following theorem.

Theorem 4 (Primal gradient) Define

ℓ̄η(wV , wπ) := Lη(wV , wπ;w
∗
ρ), where w∗

ρ =
argmaxwρ

Lη(wV , wπ;wρ). Let δs,a,s′ be a short-

hand for δ(s, a, s′), and ρ̂ be dual parameterized by w∗
ρ.

Then,

∇wV
ℓ̄η =2Es,a,s′

[

(δs,a,s′ − V (s))
(

γ∇wV
V (s′)−∇wV

V (s)
)]

− 2ηγEs,a,s′

[

(δs,a,s′ − ρ̂(s, a))∇wV
V (s′)

]

,

∇wπ ℓ̄η =− 2λEs,a,s′

[

(1− η)δs,a,s′ · ∇wπ log π(a|s)

+ (ηρ̂(s, a)− V (s)) · ∇wπ log π(a|s)
]

.

Algorithm 1 Online SBEED learning with experience replay

1: Initialize w = (wV , wπ, wρ) and πb randomly, set ǫ.
2: for episode i = 1, . . . , T do

3: for size k = 1, . . . ,K do

4: Add new transition (s, a, r, s′) into D by executing

behavior policy πb.

5: end for

6: for iteration j = 1, . . . , N do

7: Update wj
ρ by solving

min
wρ

Ê{s,a,s′}∼D
[
(δ(s, a, s′)− ρ(s, a))

2
]
.

8: Decay the stepsize ζj in rate O
(
1/
√
j
)
.

9: Compute the stochastic gradients w.r.t. wV and

wπ as ∇̂wV
ℓ̄(V, π) and ∇̂wπ

ℓ̄(V, π).
10: Update the parameters of primal function by solv-

ing the prox-mappings, i.e.,

update V : wj
V = Pwj−1

V
(ζj∇̂wV

ℓ̄(V, π))

update π: wj
π = Pwj−1

π
(ζj∇̂wπ

ℓ̄(V, π))

11: end for

12: Update behavior policy πb = πN .

13: end for

With gradients given above, we may apply stochastic mirror

descent to update wV and wπ; that is, given a stochastic gra-

dient direction (for either wV or wπ), we solve the following

prox-mapping in each iteration,

PzV (g) = argmin
wV

〈wV , g〉+DV (wV , zV ) ,

Pzπ (g) = argmin
wπ

〈wπ, g〉+Dπ(wπ, zπ) ,

where zV and zπ can be viewed the current weight, and

DV (w, z) and Dπ(w, z) are Bregman divergences. We can

use Euclidean metric for both wV and wπ, and possibly

KL-divergence for wπ . The per-iteration computation com-

plexity is therefore very low, and the algorithm can be scaled

up to complex nonlinear approximations.

Algorithm 1 instantiates SBEED, combined with experience

replay (Lin, 1992) for greater data efficiency, in an online

RL setting. New samples are added to the experience replay

buffer D at the beginning of each episode (Lines 3–5) with

a behavior policy. Lines 6–11 correspond to the stochastic

mirror descent updates on the primal parameters. Line 12

sets the behavior policy to be the current policy estimate,

although other choices may be used. For example, πb can

be a fixed policy (Antos et al., 2008), which is the case we

will analyze in the next section.

Remark (Role of dual variables): The dual variable is
obtained by solving

min
ρ

Es,a,s′

[

(

R(s, a) + γV (s′)− λ log π(a|s)− ρ(s, a)
)

2
]

.

The solution to this optimization problem is

ρ
∗(s, a) = R(s, a) + γEs′|s,a

[

V (s′)
]

− λ log π(a|s) .
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Therefore, the dual variables try to approximate the one-step

smoothed Bellman backup values, given a (V, π) pair. Simi-

larly, in the equivalent (8), the optimal dual variable ν(s, a)
is to fit the one-step smoothed Bellman error. Therefore,

each iteration of SBEED could be understood as first fitting

a parametric model to the one-step Bellman backups (or

equivalently, the one-step Bellman error), and then applying

stochastic mirror descent to adjust V and π.

Remark (Connection to TRPO and NPG): The up-

date of wπ is related to trust region policy optimiza-

tion (TRPO) (Schulman et al., 2015) and natural pol-

icy gradient (NPG) (Kakade, 2002; Rajeswaran et al.,

2017) when Dπ is the KL-divergence. Specifically,

in Kakade (2002) and Rajeswaran et al. (2017), wπ is

updated by argminwπ
E [〈wπ,∇wπ

log πt(a|s)A(a, s)〉] +
1
η KL(πwπ

||πwold
π

), which is similar to Pwj−1

π
with the dif-

ference in replacing the log πt(a|s)A(a, s) with our gra-

dient. In Schulman et al. (2015), a related optimiza-

tion with hard constraints is used for policy updates:

minwπ
E [π(a|s)A(a, s)], such that KL(πwπ

||πwold
π

) 6 η.

Although these operations are similar to Pwj−1

π
, we empha-

size that the estimation of the advantage function, A(s, a),
and the update of policy are separated in NPG and TRPO.

Arbitrary policy evaluation algorithm can be adopted for

estimating the value function for current policy. While in

our algorithm, (1− η)δ(s, a) + ηρ∗(s, a)− V (s) is differ-

ent from the vanilla advantage function, which is designed

for off-policy learning particularly, and the estimation of

ρ(s, a) and V (s) is also integrated as the whole part.

5. Theoretical Analysis

In this section, we give a theoretical analysis for our algorith-

m in the same setting of Antos et al. (2008) where samples

are prefixed and from one single β-mixing off-policy sample

path. For simplicity, we consider the case that applying the

algorithm for η = 1 with the equivalent optimization (8).

The analysis is applicable to (9) directly. There are three

groups of results. First, in Section 5.1, we show that under

appropriate choices of stepsize and prox-mapping, SBEED

converges to a stationary point of the finite-sample approxi-

mation (i.e., empirical risk) of the optimization (8). Second,

in Section 5.2, we analyze generalization error of SBEED.

Finally, in Section 5.3, we give an overall performance

bound for the algorithm, by combining four sources of er-

rors: (i) optimization error, (ii) generalization error, (iii) bias

induced by Nesterov smoothing, and (iv) approximation er-

ror induced by using function approximation.

Notations. Denote by Vw, Pw and Hw the parametric

function classes of value function V , policy π, and dual vari-

able ν, respectively. Denote the total number of steps in the

given off-policy trajectory as T . We summarize the notation-

s for the objectives after parametrization and finite-sample

approximation and their corresponding optimal solutions in

the table for reference:

minimax obj. primal obj. optimum

original L(V, π; ν) ℓ(V, π) (V ∗
λ , π

∗
λ)

parametric Lw(Vw, πw; νw) ℓw(Vw, πw) (V ∗
w , π

∗
w)

empirical L̂T (Vw, πw; νw) ℓ̂T (Vw, πw) (V̂ ∗
w , π̂

∗
w)

Denote the L2 norm of a function f w.r.t. µ(s)πb(a|s)
by ‖f‖2 :=

∫
f(s, a)2µ(s)πb(a|s)dsda. We introduce a

scaled norm :

‖V ‖2
µπb

:=

∫

(

γEs′|s,a

[

V (s′)
]

− V (s)
)

2

µ(s)πb(a|s)dsda

for value function; this is indeed a well-defined norm since

‖V ‖2µπb
= ‖(γP − I)V ‖22 and I − γP is injective.

5.1. Convergence Analysis

It is well-known that for convex-concave saddle-point prob-

lems, applying stochastic mirror descent ensures global

convergence in a sublinear rate (Nemirovski et al., 2009).

However, this result no longer holds for problems without

convex-concavity. Our SBEED algorithm, on the other hand,

can be regarded as a special case of the stochastic mirror

descent algorithm for solving the non-convex primal min-

imization problem minVw,πw
ℓ̂T (Vw, πw). The latter was

proven to converge sublinearly to a stationary point when

stepsize is diminishing and Euclidean distance is used for

the prox-mapping (Ghadimi & Lan, 2013). For complete-

ness, we list the result below.

Theorem 5 (Convergence, Ghadimi & Lan (2013))

Consider the case when Euclidean distance is used in

the algorithm. Assume that the parametrized objective

ℓ̂T (Vw, πw) is K-Lipschitz and variance of its stochastic

gradient is bounded by σ2. Let the algorithm run for N iter-

ations with stepsize ζk = min{ 1
K , D′

σ
√
N
} for some D′ > 0

and output w1, . . . , wN . Setting the candidate solution to

be (V̂ N
w , π̂N

w ) with w randomly chosen from w1, . . . , wN

such that P (w = wj) =
2ζj−Kζ2

j∑
N
j=1

(2ζj−Kζ2

j
)
, then it holds that

E

[∥∥∥∇ℓ̂T (V̂
N
w , π̂N

w )
∥∥∥
2
]
6

KD2

N + (D′ + D
D′ )

σ√
N

where

D :=

√
2(ℓ̂T (V 1

w , π
1
w)−min ℓ̂T (Vw, πw))/K represents

the distance of the initial solution to the optimal solution.

The above result implies that the algorithm converges sub-

linearly to a stationary point, whose rate will depend on the

smoothing parameter.

In practice, once we parametrize the dual function, ν or

ρ, with neural networks, we cannot achieve the optimal

parameters. However, we can still achieve convergence by

applying the stochastic gradient descent to a (statistical)

local Nash equilibrium asymptotically. We provided the

variant of SBEED algorithm and the convergence analysis

in our extended version.
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5.2. Statistical Error

In this section, we characterize the statistical error, namely,

ǫstat(T ) := ℓw(V̂
∗
w , π̂

∗
w)− ℓw(V

∗
w , π

∗
w), induced by learning

with finite samples. We first make the following standard

assumptions about the MDPs:

Assumption 1 (MDP regularity) Assume ‖R(s, a)‖∞ 6

CR and that there exists an optimal policy, π∗
λ(a|s), such

that ‖log π∗
λ(a|s)‖∞ 6 Cπ .

Assumption 2 (Sample path property, Antos et al. (2008))

Denote by µ(s) the stationary distribution of behavior

policy πb over the MDP. We assume πb(a|s) > 0,

∀ (s, a) ∈ S × A, and the corresponding Markov process

Pπb(s′|s) is ergodic. We further assume that {si}Ti=1 is

strictly stationary and exponentially β-mixing with a rate

defined by the parameters (b, κ)2.

Assumption 1 ensures the solvability of the MDP and bound-

edness of the optimal value functions, V ∗ and V ∗
λ . As-

sumption 2 ensures the β-mixing property of the samples

{(si, ai, Ri)}Ti=1 (see, e.g., Proposition 4 in Carrasco &

Chen (2002)), which is often necessary to obtain large devi-

ation bounds.

Invoking a generalized version of Pollard’s tail inequality to

β-mixing sequences and prior results in Antos et al. (2008)

and Haussler (1995), we show that

Theorem 6 (Statistical error) Under Assumption 2, it

holds with at least probability 1− δ that

ǫstat(T ) 6 2

√
M (max (M/b, 1))

1/κ

C2T
,

where M,C2 are some constants.

5.3. Error Decomposition

As one shall see, the error between (V̂ N
w , ŵN ) (optimal so-

lution to the finite sample problem) and the true solution

(V ∗, π∗) to the Bellman equation consists of three parts: (i)

the error introduced by smoothing, which has been charac-

terized in Section 3.1, (ii) the approximation error, which

is tied to the flexibility of the parametrized function classes

Vw, Pw, Hw, and (iii) the statistical error. More specifically,

we arrive at the following explicit decomposition:

Specifically, we arrive at the following explicit decompo-

sition, where ǫπapp := supπ∈P infπ′∈Pw
‖π − π′‖∞ is the

function approximation error between Pw and P , and ǫVapp

and ǫνapp are the approximation errors for V and ν, respec-

tively.

Theorem 7 Under Assumptions 1 and 2, it holds that∥∥∥V̂ N
w − V ∗

∥∥∥
2

µπb

6 12(K+C∞)ǫνapp+2Cν(1+γ)ǫVapp(λ)+

6Cνǫ
π
app(λ)+16λ2C2

π+
(
2γ2 + 2

) (
γλ
1−γH

∗
)2

+2ǫstat(T )+

2A β-mixing process is said to mix at an exponential rate with
parameter b, κ > 0 if βm = O(exp(−bm−κ)).

2
∥∥∥V̂ N

w − V̂ ∗
w

∥∥∥
2

µπb

, where C∞ := max
{

CR

1−γ , Cπ

}
and

Cν := maxν∈Hw
‖ν‖2.

Detailed proof can be found in the extended version. Ignor-

ing the constant factors, the above results can be simplified

as∥∥∥V̂ N
w − V ∗

∥∥∥
2

µπb

6 ǫapp(λ) + ǫsm(λ) + ǫstat(T ) + ǫopt,

where ǫapp(λ) := O(ǫνapp + ǫVapp(λ) + ǫπapp(λ)) corresponds

to the approximation error, ǫsm(λ) := O(λ2) corresponds to

the bias induced by smoothing, and ǫstat(T ) := O(1/
√
T )

corresponds to the statistical error.

There exists a delicate trade-off between the smoothing bias

and approximation error. Using large λ increases the s-

moothing bias but decreases the approximation error since

the solution function space is better behaved. The con-

crete correspondence between λ and ǫapp(λ) depends on

the specific form of the function approximators, which is

beyond the scope of this paper. Finally, when the approxi-

mation is good enough (i.e., zero approximation error and

full column rank of feature matrices), then our algorithm

will converge to the optimal value function V ∗ as λ → 0
and (N,T ) → ∞.

6. Related Work

One of our main contributions is a provably convergent

algorithm when nonlinear approximation is used in the off-

policy control case. Convergence guarantees exist in the

literature for a few rather special cases, as reviewed in the

introduction (Boyan & Moore, 1995; Gordon, 1995; Tsitsik-

lis & Van Roy, 1997; Ormoneit & Sen, 2002; Antos et al.,

2008; Melo et al., 2008). Of particular interest is the Greedy-

GQ algorithm (Maei et al., 2010), who uses two time-scale

analysis to shown asymptotic convergence only for linear

function approximation in the controlled case. However, it

does not take the true gradient estimator in the algorithm,

and the update of policy may become intractable when the

action space is continuous.

Algorithmically, our method is most related to RL algo-

rithms with entropy-regularized policies. Different from

the motivation in our method where the entropy regulariza-

tion is introduced in the dual form for smoothing (Nesterov,

2005), the entropy-regularized MDP has been proposed for

exploration (de Farias & Van Roy, 2000; Haarnoja et al.,

2017), taming noise in observations (Rubin et al., 2012;

Fox et al., 2016), and ensuring tractability (Todorov, 2006).

Specifically, Fox et al. (2016) proposed soft Q-learning

for the tabular case, but its extension to the function ap-

proximation case is hard, as the summation operation in

log-sum-exp of the update rule becomes a computationally

expensive integration. To avoid such a difficulty, Haarnoja

et al. (2017) approximate the integral by Monte Carlo using

the Stein variational gradient descent sampler, but limited
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theory is provided. Another related algorithm is develope-

d by Asadi & Littman (2017) for the tabular case, which

resembles SARSA with a particular policy; also see Liu

et al. (2017) for a Bayesian variant. Observing the duality

connection between soft Q-learning and maximum entropy

policy optimization, Neu et al. (2017) and Schulman et al.

(2017) investigate the equivalence between these two types

of algorithms.

Besides the difficulty to generalize these algorithms to multi-

step trajectories in off-policy setting, the major drawback

of these algorithms is the lack of theoretical guarantees

when combined with function approximation. It is not clear

whether the algorithms converge or not, let alone the quality

of the stationary points. That said, Nachum et al. (2017;

2018) also exploit the consistency condition in Theorem 3

and propose the PCL algorithm which optimizes the upper

bound of the mean squared consistency Bellman error (7).

The same consistency condition is also discovered in Rawlik

et al. (2012), and the proposed Φ-learning algorithm can be

viewed as a fix-point iteration version of the PCL with a tab-

ular Q-function. However, as we discussed in Section 3, the

PCL algorithms becomes biased in stochastic environment,

which may lead to inferior solutions Baird (1995).

Several recent works (Chen & Wang, 2016; Wang, 2017; Dai

et al., 2018) have also considered saddle-point formulations

of Bellman equations, but these formulations are fundamen-

tally different from ours. These saddle-point problems are

derived from the Lagrangian dual of the linear programming

formulation of Bellman equations (Schweitzer & Seidmann,

1985; de Farias & Van Roy, 2003). In contrast, our formu-

lation is derived from the Bellman equation directly using

Fenchel duality/transformation. It would be interesting to

investigate the connection between these two saddle-point

formulations in future work.

7. Experiments

The goal of our experimental evalution is two folds: (i)

to better understand of the effect of each algorithmic com-

ponent in the proposed algorithm; (ii) to demonstrate the

stability and efficiency of SBEED in both off-policy and on-

policy settings. Therefore, we conducted an ablation study

on SBEED, and a comprehensive comparison to state-of-

the-art reinforcement learning algorithms. While we derive

and present SBEED for the single-step Bellman error case,

it can be extended to multi-step cases as shown in the long

version. In our experiment, we used this multi-step version.

7.1. Ablation Study

To get a better understanding of the trade-off between the

variance and bias, including both the bias from the smooth-

ing technique and the introduction of the function approx-

imator, we performed ablation study in the Swimmer-v1

environment with stochastic transition by varying the coef-

ficient for entropic regularization λ and the coefficient of

the dual function η in the optimization (10), as well as the

number of the rollout steps, k.

The effect of smoothing. We used entropy regularization

to avoid non-smoothness in the squared Bellman error ob-

jective, at the cost of an introduced bias. We varied λ and

evaluated the performance of SBEED. The results in Fig-

ure 1(a) are as expected: there is indeed an intermediate

value for λ that gives the best bias/smoothness trade-off.

The effect of dual function. One of the important com-

ponents in our algorithm is the dual function, which cancels

the variance. The effect of such cancellation is controlled

by η ∈ [0, 1], and we expected an intermediate value gives

the best performance. This is verified by the experiment of

varying η, as shown in Figure 1(b).

The effect of multi-step. SBEED can be extended to the

multi-step version. However, increasing the length of looka-

head will also increase the variance. We tested the perfor-

mance of the algorithm with different lookahead lengths

(denoted by k). The results shown in Figure 1(c) confirms

that an intermediate value for k yields the best result.

7.2. Comparison in Continuous Control Tasks

We tested SBEED across multiple continuous control

tasks from the OpenAI Gym benchmark (Brockman

et al., 2016) using the MuJoCo simulator (Todorov et al.,

2012), including Pendulum-v0, InvertedDoublePendulum-

v1, HalfCheetah-v1, Swimmer-v1, and Hopper-v1. For

fairness, we follows the default setting of the MuJoCo simu-

lator in each task in this section. These tasks have dynamics

of different natures, so are helpful for evaluating the be-

havior of the proposed SBEED in different scenarios. We

compared SBEED with several state-of-the-art algorithm-

s, including two on-policy algorithms, trust region policy

optimization (TRPO) (Schulman et al., 2015) dual actor-

critic (Dual AC) (Dai et al., 2018), and one off-policy algo-

rithm, deep deterministic policy gradient (DDPG) (Lillicrap

et al., 2015). We did not include PCL (Nachum et al., 2017)

as it is a special case of our algorithm by setting η = 0, i.e.,

ignoring the updates for dual function. Since TRPO and

Dual-AC are only applicable for the on-policy setting, for

fairness, we also conducted the comparison with these two

algorithm in on-policy setting. Due to the space limitation,

these results are provided in the extened version.

We ran the algorithms with 5 random seeds and reported the

average rewards with 50% confidence intervals. The results

are shown in Figure 2. We can see that our SBEED achieves

significantly better performance than all other algorithms

across the board. These results suggest that the SBEED can

exploit the off-policy samples efficiently and stably, and

achieve a good trade-off between bias and variance.
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Figure 1. Ablation study of the SBEED on Swimmer-v1. We vary λ, η, and k to justify three major components in our algorithm.
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Figure 2. The results of SBEED against TRPO, Dual AC and DDPG. Each plot shows the average reward during training across 5 random

runs, with 50% confidence interval. The x-axis is the number of training iterations. SBEED achieves significantly better performance than

the competitors on all tasks.

It should be emphasized that the stability of algorithm

is an important issue in reinforcement learning. As we

can see from the results, although DDPG can also exploit

the off-policy sample, which promotes its efficiency in

stable environments, e.g., HalfCheetah-v1 and Swimmer-

v1, it may fail to learn in unstable environments, e.g.,

InvertedDoublePendulum-v1 and Hopper-v1, which was

observed by Henderson et al. (2018) and Haarnoja et al.

(2018). In contrast, SBEED is consistently reliable and

effective in different tasks.

8. Conclusion

We provided a new optimization perspective of the Bellman

equation, based on which we developed the new SBEED

algorithm for policy optimization in reinforcement learning.

The algorithm is provably convergent even when nonlin-

ear function approximation is used on off-policy samples.

We also provided a PAC bound for its sample complexity

based on one single off-policy sample path collected by a

fixed behavior policy. Empirical study shows the proposed

algorithm achieves superior performance across the board,

compared to state-of-the-art baselines on several MuJoCo

control tasks.
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