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SBIBD(4k*,2k* + k,k* + k) and Hadamard Matrices
of Order 4k with Maximal Excess Are Equivalent

Jennifer Seberry

Department of Computer Scieace, University College, The University of New South Wales,
Australian Defence Force Academy, Canberra, ACT, 2600 Australia

Abstract. We show that an SBIBD{4k% 2k* + k,k* + k) is equivalent to a regular Hadamard
matrix of order 4k* which is equivalent to an Hadamard matrix of order 4k? with maximal
eXCess,

We find many new SBIBD{4k? 2k* + k k* + k) including those for even & when there is an
Hadamard matrix of order 2k (in particular all 2k < 210) and k e {1,3,5,...,29,33,...,41,45,51,
53,61,..., 69,75,81,83,89,95,99,625,32",25- 32" m = 0}.

1. Imtreduction

An Hadamard matrix of order n is an n x n matrix H with elements +1, —1,
satisfying HTH = HHT = nI,. The sum of the elements of H, denoted by ¢(H),
is called excess of H. The maximum excess of H, over all Hadamard matrices of
order n, is denoted by a{n), i.e.

o{n) = maxo(H)  for all Hadamard matrices of order n (1)

An equivalent notion is the weight w(H) which is the number of 1I's in H, then
o(H) = 2w(H) — n* and o{n) = 2w(n) — n?, see {5, 10, 16, 25}.

Kounias and Farmakis [13] proved that o{n) = n,/n when n = 4(2m + 1)?
thus satisfying the equality of Best’s inequality:

o(n) < ny/n

A regular Hadamard matrix has constant row and column sum. These are
discussed by Seberry Wallis [24, pp. 341-346].

A symmetric balanced incomplete block design or SBIBD (v, k, 1) can be defined
as a square matrix of order v with entries 0 or 1, with k 1’s in row and column and
the inner product of an pair of distinct rows is A, For more detals see Street and
Street [17].

An orihogonal design D = x, A, + x4, + - + x,A, of order n and type
{1s.0058,)} written OD(n;5(,5,,...,s,}, on the commuting variables x,, ..., x, i3
a square matrix with entries 0, +x,, ..., +Xx, where x; or —x; occurs s; times in
each row and column and distinct rows are formally orthogonal. That is
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H
DDT =Y sx2.
=1
Each 4;is a {0, 1, — 1}-matrix satisfying A;A] = s;I, and is called a weighing matrix
of weight s5;. A weighing matrix of order n'and weight n is called an Hadamard
matrix.
We define the excess of the orthogonal design D as

o(D) = o{d;) ++ + o(d.),

where a(A;) is the sum of the entries of A4,, this is equivalent to putting all the
variables equal to + 1.

Suitable matrices are matrices with elements + 1 and — 1 which can be used to
replace the variables of ODs to form Hadamard matrices. Of special interest are
Williamson type matrices, which are 4 matrices, W,, W, W,, W, with ¢lements
+1 or —1 of order w which satisfy

WWT = 4w,
1

WHT = W

4

Our construction follows that of Hammer, Levingston and Seberry [8] who
formed orthogonal designs OD{4t;¢,1,t,1) and then replaced the variables by
suitable matrices. _

This practice for constructing Hadamard matrices derived from extensions due
to Baumert-Hall [1] who found the first 0D(12;3, 3,3, 3} and Cooper and (Seberry)
Wallis [4] who first introduced T-matrices to form OD(4¢; ¢, 4,¢,t). The variables of
these ODs are then replaced by Williamson type matrices of order w to form
Hadamard matrices of order 4wt. These are discussed extensively by Geramita and
Seberry [7, pp. 120-1257. Cohen, Rubie, Koukouvinos, Seberry and Yamada [3]
survey the most recent results. This method was also used by Koukouvinos and
Kounias [12] to find Hadamard matrices with maximal excess.

2. The Equivalence Theorem

Theorem 1. There is an Hadamard matrix of order n = 4s® and maximal excess
ny/n = 8s* if and only if there is an SBIBD(4s%,25* + 5,5 + s).

Proof. If there is an SBIBD, B, with parameters (452, 25> + 5,5” + s)then 4 = 2B — J
haselements + 1 and — 1. A has 25? + selements + 1 in each row (and column) and
2s* — selements — 1 in each row (and column). Thus the row {column) sum of each
row {column) of A is 25> + s — (257 — 5} = 25. Thus the excess of A = 4s* x 25 =
85" = number of rows (columns) of A times the row {column) sum of 4.
Further
AAT = (2B — J)(2B — J)T

=4BBT — 2JBY — 2BJ + J*?
= (s + (s* + 8)J) — 4(25% + s)J + 457J
= 45%]
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Thus A is an Hadamard matrix.

Conversely, let A be an Hadamard matrix of order n = 4s* and maximal excess
857

Let the column sum of the ith column of A4 be x;. Then all x; > 0, otherwise that
entire column could be negated giving an Hadamard matrix with greater excess

Y x;=8s%  x=z0alli ' 2)
i=1
since the sum of the column sums is the excess. Now let e be the 1 x n matrix of
ones. Since A4 is an Hadamard matrix we have
AAT = 4571
eAATe” = 4sPee™ = 165* = (x x5, .. X, HX x5 %, ).

So

Also

Thus

h

2 =0,
i=1
sot;=0foralli]

But this means each column of 4 has 2s* + s elements + ! and 25 — s elements
— 1. Now, since A4 is an Hadamard matrix, the columns of 4 are orthogonal, so if
two columns are written

1...1 1...1 —1...—-1 —1...—-1
1...1 —1...—1 1...1 —1...—1
et e —— —? - —

x 2%4s5—x 2% +s—x 42027 +5—x)—x

where x,25° + 5 — x,25% + s — x, —2s + x are the number of columns of each type.
Now since the rows are orthogonai

X—(2%+s~x)—(25°+5s—x)—2s+x=0
45® 4 4s = 4x

X=SZ+S
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Thus A has 2s* + selements +1 in each column and s* + s elements + 1 in any
column overlapping with elements + 1 in every other column. A similar argument
can be used for the rows. Thus B = 3(4 + J)is an SBIBD(4s%,2s* + 5,s* +5). O

In Seberry Wallis [24, p. 343] it is pointed out that Goethals and Seidel [9] and
Shrikhande and Singh [19] have established:

Theorem 2. If there exists a BIBD(2k* — k,4k* — 1,2k + 1,k, 1) then there exists
a symmetric Hadamard matrix with constant diagonal of order 4k2,

Morcover Shrikhande [ 18], {21] has studied these designs and showed they exist
fork =2t = 1. They are also known for k = 3, 5,6, 7 [7].

In Seberry Wallis [24, pp. 344—346] it is established that symmetric Hadamard
matrices with constant diagonal thus exist for 2%, ¢ > 1, 36, 100, 144, 196 (after
Theoem 5.14 of [24]) and using results of (Seberry) Wallis-Whiteman [23] and
Szekeres [20] they arc shown to exist with the extra property of regularity for

3 2
4:5%,4-132,4-29%,4-512, and4(2'(pT) + 1) .for p = 3(mod 4} a prime power
{after Theorem 5.15 of [24]).

Remark 1. Now a Theorem of Goethals and Seidel [9] (see Geramita and Seberry
[81) tells us that if there is an Hadamard matrix with constant diagonal of order 4k
there is a regular symmetric Hadamard matrix with constant diagonal of order
4(2k)*. So an Hadamard matrix of order 4r gives a regular symmetric Hadamard
matrix of order 4k%, k = 2t. In particular known results give these matrices for
2t < 210,

Remark 2, Now combining these results, and noting that regular symmetric
Hadamard matrices with constant diagonal of orders 4s® and 4¢? give a regular
symmetric Hadamard matrix with constant diagonal with order 4(2st)?, we have
them for orders 4k for

(i) all even k < 210, afl even 2t when there is an Hadamard matrix of order 4;

(ii) ke{1,3,59,11,13,15,21,23, 25,29, 33, 35, 39, 41, 45, 51, 53, 63, 65, 69, 75, 81,
83, 89,95, 99, 105, 111, 113, 119, 125, 131, 135, 141, 153, 155, 165, 173, 179, (83,
189, 191, 209}.

We now wish to establish the existence of some of the remaining undecided
cases.
We first note a theorem given by Seberry Wallis: [24, p. 280]

Theorem 3. A regular Hadamard matrix H of order 4k* with row sum +2k exists
if and only if there exists an SBIBD(4k”,2k* + k, k* + k).

We observe that the stipulation that the row sum is 4 2k is unnecessary for if
the matrix is regular it must have constant row sum, x, say.

Thus eH” =(x,...,x) where e is the 1 x 4k? matrix of ones. Now HTH = 4k?/,
50

16k* = dk?ee™ = eH He™ = (x,...,x)(x,...,x)T = 4k3x?.
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Thus x = =+ 2k. The matrix with constant row sum — 2k is the negative of the matrix
with constant row sum 2k. 4

We can now combine the results obtained so far as

Theorem 4 (Equivalence Theorem). The following are equivalent:

(i) there exists an Hadamard matrix of order 4k* with maximal excess (8k°);

(ii) there exists a regular Hadamard matrix of order 4k*;

(iii) there is an SBIBD(4k*,2k? + k,k* + k) (and its complement the SBIBD(4k?,
2k — k, k? + k)).

This result was also observed by Best [1].
We now wish to consider the undecided cases. First we look at a known family
of Williamson matrices.

3. Matrices of Order 4¢4% 2¢% — 1 a Prime Power

We show that if p = 1{mod 4) is a prime power, p = 24> — 1, then the Hadamard
matrix found as in Hammer, Levingston and Seberry [10, p. 244] with excess
2(p + 1){x + ¥ p=x% + y* has

¢(2(p + 1)) > 2(p + 1)(x + y}

Since p = x? + y? = 247 — 1 the excess is 4g%(x + y) and the order is 4¢4°. But
an Hadamard matrix of order 4% has maximal excess 8¢°. So we consider x + y.

dE
Now x = (2¢° — 1 — y*)"* so E = x + y is maximal for i 0 or x = y. But that
means
x =y =(g*>—05)'"

As x is an integer this means x=y < g so x +y<2q and the excess
2(p + 1){x + y) < 8¢>. So this method cannot give maximal excess for matrix
orders 44>,

In some cases the construction gives quite high excess. The results are tabulated
in Table 1.

Table 1
g | 2¢° - 1=2"+y* (prme) | Hadamard order | Maximal Excess | Found Excess

=4¢? = 44%.2¢ = 4g%(z + y)
13 3657 = 367 + 497 1437 4.437.86 443785
49 4801 = 247 4 652 4.49% 4.492.08 4.40% .80
59 6061 = 20 4 812 4.59% 4.59%.118 4.59%.101
69 9521 = 40% 4 89° 1.49% 4,694,138 4.692.129
73 10657 = 642 + 812 173 4,737 148 4.73%.145
85 14449 = 72 4+ 1207 4857 4.852.170 4.857.127
a7 15137 = 412 4 1162 4872 4872174 4.87%.157
91 16561 = 817 4+ 1002 1917 4,917 182 4.912.181
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4, The Hammer — Levingston — Seberry Construction Revisited

Hammer, Levingston and Seberry [10] suggested (following Cooper and (Seberry)
Wallis [4}) using 4 circulant {or type 1) matrices of order ¢, X, X,, X, X,, with
entries 0, +1, — 1 row sums x,, x,, X3, X, respectively satisfying

() DX Xy =1,

(i) X = xJ,

(iid) X, %X, =0, j.

{iv) Y1 X, is a (1, —1)-matrix,
(V) x}+xj+x5+x5=1

These matrices are called T-matrices.

This means o(X), the excess of X, is tx;, i = 1,2, 3, 4, becanse each X; is circulant
{or type 1 = block circulant).

Let vy, v,, ¥3, ¥4 be commuting variabies and

- ¥V, ¥a ¥Ya Y1 Y2 Vi Ya
Y2 Y1 Yao —)a Y2 =¥ —Wa ¥
U= B = (“ij)s V= . _ = (vi.r')‘
Y3 Ya ¥1 Y2 ¥s Vs Y Yo
Y4 Yz —¥2 Y1 _ Yo —Js Y2 =X

Now we can form 4; by either choosing
4
Ai = Z uikas i= ls 29 3’ 4&
k=1
or
4
Ai= Z Uika’ P= 1,2, 3, 4,
k=1

A; will be circulant (or type 1} according as X; is circulant {or type 1).

Now the elements of 4; are variables, so the excess is a linear expression in x;
{constants)and y; (variables). Depending on which coefficients are used {the u;, or v, )
the excesses of the 4; will be:

Case 1,
o(Ay) ={—y1x; + y2X3 + Y3X3 + yaXy)t
0(Ay) = (y2xs + y1Xz + yaxs — y3Xa)t
0(As) = (y3x1 — yaXz + y1X3 + paXa)t
o{Ag) = (Vaxy + ¥aXs — x5 + ¥yX)t
Case 2,

o(A,) = (¥ X3 + y2x; + paxs + VX Jt
o{A,) = (¥aXy — ¥1X; — yaX3 + Y3Xa)t
o(Az) = (Vax; + ¥aXy — yyx3 — YaXo)t
J(A4) = (J’4x1 = VaXy + ¥pX3 — .V1x4)f
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Write

A4, AR AsR AR

co| R A AIR —AlR
| AR —AIR A, AIR [

| AR AJR —4IR A4, |

[ A4, AR A3R AR

go| R A AIR —AIR

7| —4;R AR A AIR

| —4,R  AJR —AJR A, |

where R is the back diagonal matrix and 4,, A,, A5, A, are circulant matrices
(or type 1).
Now if the matrices from Case 1 are used in G we get
o{0D) = 2a{A,} + 26{4,) + 20(4;) + 20{4,)
-1 1 1 INNE A
1 1 -1 11]x,
= 2t(P1J’2J’3}’4) 1 1 1 -1 -
1 -1 1 1||x

Cail this case 1G. If the matrices from Case 1 are used in H we get

x
o(0D) = 40(A,) = 4t(y1y293¥s) xz
3
X4
Call this case 1H,
Ii the matrices of Case 2 are used in G we get
1 -1 —1 —1]([x
1 1 1 —=iflx
1 -1 1 1 ) X3
1 1 —1 1 X4

Call this Case 2G. While if the matrices from Case 2 are used in H we get

J(OD] = 21(%)’2}’3}’4]

x1

O'(OD) = 4t(J’1)"2}’33’4)
X4
Call this Case 2H.
Case 1H is never used as for positive x; and y; {(which can always be assumed as
a row or matrix with negative row sum or excess can be just negated to get a row

or matrix with positive row sum or excess).
If each of the variables y; is replaced by 1 we get the excesses
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4t(xy + X5 + X3 4 X4), dt(—x; + X, + X3+ Xq), Bixy, 4t{x; + x5 + X3 + x4),

respectively. So the excess of the corresponding Hadamard matrix of order 4z is
o4t} = dtmax(2x,,x, + x; + X3 + X4).

Where x; is the row sum of the T-matrices,

Example 1. Suppose that X, X,, X,, X, are the circulant matrices of order 9 with
first rows

(t 10100000),(0010—10000),(00000100 —1),(0000001 —10)
Then x; =3, x, =0,x; =0, x, =0and
0(36) > 36 max(6,3 + 0 + 0 + 0) = 216 = 36,/36

So we in fact have the matrix of order 36 with maximal excess.

Now instead of replacing y,, ¥z, ¥a. ¥4 by 1 we replace them by suitable matrices
(for example Williamson matrices) W;, W,, W;, W, of order w with row and column
sums a, b, ¢, d respectively where

4
e(z W;WQT)eT= wla? + b* + ¢ + d?) = dwee” = 4w?
i=1

e being the 1 x w matrix of 1s.
So '

a(W)=aw, o(W,)=bw, o(W)=cw, o(W,)=dw
and

aldtw) = 2tw(a b ¢ d) : { s (case 1G})
- 3
1 -t 1 t]lx
—x,
o(dtw) = dewia b ¢ d) ? (case 1H)
3
X4
1 =1 —1 —1](x
1 1 -1
o(dtw) = 2tw(a b ¢ d) A | | 2 {case 2G)
to1 —1 1| {x
X3
oldtw) = awa b ¢ ) | 72 (case 2H)
3
*a

Example 2. Suppose that X, X,, X;, X, are as in Example 1. Then x, =3,
X, = %3 = x4 = 0. Thus
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o(36w) = 54»;'(—41 +b+c+d) (case 1G)
o{36w) = —108wa (case 1H)
o(36w) =S54w(a + b +c + d} (case 2G)
o(36w) = 108wa (case 2H)
We now observe that if
1 1 1 —1 1 1
J=|1 11 B= 1 -1 1
1 1 1 1 1 -1
then
J B —B B B B
W,=W,=W,=| -B J B W,=|B B B
B -B J B B B

where > &L, WiW," =361, W,W," = W,W,”, and therow sumsarea = b=c=d =3
Thus ¢(36-9) > max(54-9-6,54-9-12,108-9-3} from cases 1G, 2G and 2H
respectively ie.

o(4-9-9) > 8-3° = 9-36,/9-36

So we have the Hadamard matrix with maximal excess.

This method is that used by Koukouvinos and Kounias [12] {but not quite in
this form) to construct their maximal excess Hadamard matrices. For convenience
we state these results as a theorem.

Theorem 5. Suppose there are Williamson type matrices of order w and row sums
a, b, ¢, d. Suppose there are T-matrices of order t and row sums x, X5, X3, X, then
the excess of the Hadamard matrix of order 4wt formed from these matrices satisfies
{writing A for(a b ¢ d)and X for (x,x,x3x,)".)

-1 1 1 1 1 -1 -1 —1
1 1-1 1 1 1 1-1
4wi) > dwtAX, 2wiA
o(4wt) > max(dwtAX, 2w U111 X, 2wtA L1 11 X)
1 -1 1 1 1 1 -1 1

5. Some Numerical Resalts

We have seen that we can extablish the existence of SBIBDs and regular Hadamard
matrices by looking for Hadamard matrices with maximal excess.
First we note that Koukouvinos and Kounias {12] have shown:

Theorem 6. Hadamard matrices of order 4k” with maximal excess exist for k=1,
3,....13,...,17,19,21,..., 25,33, 37.
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Combining the results of Remark 2 with this theorem and using the Equivalence
Theorem we get many more matrices with maximal excess.
Yamada [26, Section 3] has shown there are Hadamard matrices

(i) of order 4-3%" and excess 8-3°"

(i) of order 2%*- 5% and excess 2% - 5°,

This means there are Hadamard matrices with maximal excess for orders 4- 272
and 4- 812

In Geramita and Seberry [8, p. 175] the T-matrices to construct an OD{4-61;
61,61,61,61) with row sums 6, 5, 0, 0 are given. This gives an ¢xcess of ¢ither
4-61(6y, + Sy,) 01 2-61(y, + Lly, + 3 + 1tp,). Now 121 = 112 + 0% is a prime
121 +1

2
sums 1, 11, 1, 11. Thus there is an Hadamard matrix of order 4-61? with excess
2-612-4-61.

Now the sequences {1 0,,},{011111 -1 —11 —11 —1} can be used for
AorBand {1010 -1010—-101},{01010 —101010} can be used for C
or D in Yang's construction [27] to form T-matrices of order 69. Depending on
the order the matrices are used we can get T-matrices of row sums 6, 5,2, 2 or 7,4 0,2
or 6, 1, 4, 4 and order 69. We use the T-matrices with row sums 6, 5, 2, 2.

For ¢ = 25 use the T-matrices given in Geramita and Seberry [8, p. 175] which
give an 0D(100;25,25,25,25) and which have row sums 3, 0, 0, 0. This gives an
excess of 50{5y; + 5y, + 5¥2 + 5y4) = 2-53(y, + y2 + ¥3 + ¥4). Now as Yamada
remarks [26, section 3] there are Williamson matrices of order 2 = 32" with row
sums 3" 3™ 3™ 3" So there are Hadamard matrices of order 4-5%-3%™ with
maximal excess 8- 5%+ 3™ There are also (see [24, p. 389] Williamson matrices of
order n = 25 with row sums 5, 5, 5, 5. So there are Hadamard matrices of order 4 - 5%
with maximal excess 8 - 55.

power so there are Williamson matrices of order n = = 61, with row

Lemma 7. There are Hadamard matrices of order 100-3*™ m > 0 and maximal
excess 1000 3", There are Hadamard matrices of order 4-5* and maximal excess
8- 5°.

6. Summarizing

Theorem 8. Hadamard matrices of order 4k* with maximal excess exist for
(i) k even k < 210, or an Hadamard matrix of order 2k exists,
) ke{1,3,5,...,29,33,...,41,45,51,53,61,...,69, 75, 81, 83,89, 95, 99, 625, 3
52.32m > 0},
This means that regular Hadamard matrices of order 4k? and SBI BD(4k?, 2> L k,
k* + k} also exist for these k values.

Remark. Koukouvinos, Kounias and Seberry have subsequently, in “Further
Hadamard matrices with maximal excess and new SBIBD(4k?,2k? + k. k* + k)"
Utilitas Math. (to appear) extended (ii) to include

k € {31,43,49,55 57,85,87,91,93, 115,117}
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