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Abstract

Cross-domain person re-identification (re-ID) is chal-

lenging due to the bias between training and testing do-

mains. We observe that if backgrounds in the training and

testing datasets are very different, it dramatically intro-

duces difficulties to extract robust pedestrian features, and

thus compromises the cross-domain person re-ID perfor-

mance. In this paper, we formulate such problems as a back-

ground shift problem. A Suppression of Background Shift

Generative Adversarial Network (SBSGAN) is proposed to

generate images with suppressed backgrounds. Unlike sim-

ply removing backgrounds using binary masks, SBSGAN al-

lows the generator to decide whether pixels should be pre-

served or suppressed to reduce segmentation errors caused

by noisy foreground masks. Additionally, we take ID-related

cues, such as vehicles and companions into consideration.

With high-quality generated images, a Densely Associated

2-Stream (DA-2S) network is introduced with Inter Stream

Densely Connection (ISDC) modules to strengthen the com-

plementarity of the generated data and ID-related cues. The

experiments show that the proposed method achieves com-

petitive performance on three re-ID datasets, i.e., Market-

1501, DukeMTMC-reID, and CUHK03, under the cross-

domain person re-ID scenario.

1. Introduction

The task of person re-identification (re-ID) is to match

the identities of a person under non-overlapped camera

views [10, 39, 18, 41, 24]. Most existing methods assume

that the training and testing images are captured from the

same scenario. However, this assumption is not guaran-

teed in many applications. For instance, person images

captured from two different campuses have distinct illu-

mination condition and background (BG) (e.g., Market-

1501 [38] and DukeMTMC-reID [29, 41] datasets). In this

situation, the bias between data distributions on two do-
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Figure 1. Comparison between different input images for

cross-domain person re-ID. Images from Market-1501 and

DukeMTMC-reID show distinct BG shift. Images generated by

SPGAN [7] and PTGAN [36] do not suppress the BG noise, and

have the BG shift problem. The hard-mask solution, i.e., JPP-

Net [25] damages the FG. Our SBSGAN takes all the impacts into

consideration.

mains becomes large. Directly training a classifier from one

dataset (i.e., source domain) often produces a degraded per-

formance when testing is conducted on another dataset (i.e.,

target domain). Therefore, it is important to investigate so-

lutions for such a cross-domain issue. For person re-ID, the

domain adaption solutions have drawn attention in recent

years [4, 7, 35, 36, 42].

Recent cross-domain person re-ID methods usually

adopt (or resort to) Generative Adversarial Network (GAN)

to learn the domain variants [4, 7, 36, 42]. These approaches

can be categorized into two main types: 1) general inter-

domain style transfer [4, 7, 36]; 2) inter-camera style trans-

fer [42]. All of them may perform well on certain cases,

i.e., domain style changes or camera style changes. How-

ever, they do not consider to remove or suppress BGs for

reducing domain gaps. For instance, when a network is

trained based on limited BG information presented in a

source domain, such network may not well distinguish es-
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sential pedestrian features against noise caused by BG vari-

ations in a target domain. Unfortunately, BGs in the tar-

get domain is normally very different from the source do-

main. In this paper, we formulate this problem as a BG

shift problem which may significantly degrade the overall

performance of cross-domain person re-ID.

One possible solution to sort out BG shift is to di-

rectly remove BGs using foreground (FG) masks in a hard

manner (i.e., applying the binary masks on original im-

ages) [9, 17, 30, 33]. However, it is observed that methods,

such as JPPNet [25] and Mask-RCNN [1, 13], specifically

being designed for removing BG may damage the FG infor-

mation. By simply removing BGs, this hard manner solu-

tion does improve the performance of cross-domian person

re-ID to a certain extent (see Table 2). At the same time, it

can be seen that this is still an open problem. “Is there a way

to better suppress BG shift to improve cross-domain re-ID

performance?” This paper makes the first effort to generate

images while BGs being suppressed moderately instead of

completely removing the BGs in a hard manner.

To address the problem above, a Suppression of BG Shift

Generative Adversarial Network (SBSGAN) is proposed.

Compared with hard-mask solutions, images generated by

the proposed SBSGAN can be regarded as FG images, with

BG being suppressed moderately. The generated images by

SBSGAN can be called as soft-mask images. In addition,

previous works [7, 36] show that keeping the consistency

of image style between domains can improve the perfor-

mance of cross-domain person re-ID. Such an idea is also

integrated into our SBSGAN to further reduce the domain

gap. Fig. 1 shows images selected from two different per-

son re-ID datasets. The BGs are quite different. A model

trained on one dataset may easily be biased on another one

due to the BG shift problem mentioned above. Images gen-

erated by recent cross-domain re-ID approaches, such as

SPGAN [7] and PTGAN [36] still present some undesir-

able results. If we directly use FG masks obtained by JPP-

Net [25] to zero out BGs, the FG can be badly damaged by

the noisy masks. On the contrary, every pixel in our gen-

erated images are preserved in a soft manner. Fig. 1 shows

that our SBSGAN generates visually better images which

can further reduce the domain gap caused by BG shift.

In order to enhance FG information and better integrate

ID-related cues into the network, we propose a Densely As-

sociated 2-Stream (DA-2S) network. This work is to argue

that certain context information, e.g., companions and ve-

hicles in BG may also provide ID-related cues. Both im-

ages with suppressed BGs (our generated images) and im-

ages with full BGs are respectively fed into the two individ-

ual streams of DA-2S. Unlike previous 2-stream methods

(e.g., [2, 5, 40]), we propose Inter-Stream Densely Con-

nection (ISDC) modules as new components used between

the two streams of DA-2S. With ISDCs, more gradients

produced by the final objective function can participate to

strengthen the relationship between signals coming from

two different streams in the back-propagation.

The contributions of this paper can be summarized in

three-fold. 1) BG shift is comprehensively investigated as

an impact on cross-domain person re-ID. A SBSGAN is

proposed to make the first effort by generating soft-mask

images in order to reduce domain gaps. Compared with pre-

vious methods, BGs are mitigated rather than completely

removed in our generated images. 2) A DA-2S CNN net-

work with the proposed ISDC components is presented to

facilitate complementary information between our gener-

ated data and more ID-related cues from the BG. 3) A com-

prehensive experiment is given to show the effectiveness of

our soft-mask images in reducing domain gaps as well as

the DA-2S model for cross-domain person re-ID.

2. Related Work

Recently, followed by image-to-image translation ap-

proaches (e.g., CycleGAN [43] and StarGAN [6]), some

researches focus on the inter-domain style transfer to re-

duce domain gaps for person re-ID. Deng et al. [7] proposed

SPGAN to transfer general image style between domains.

Wei et al. [36] introduced PTGAN to transfer the body

pixel values and generate new BGs with the similar statis-

tic distribution of the target domain. Unlike SPGAN, PT-

GAN explicitly considered the BG shift problem between

domains. However, PTGAN overlooked the fact that BGs

should be suppressed rather than retained, because the BG

shift may degrade the cross-domain re-ID performance. In

addition to the inter-domain style transfer, Zhong et al. [42]

proposed to transfer the style of images between cameras

to reduce the domain gap by using StarGAN [6]. A syn-

thetic dataset was proposed to generalize illumination be-

tween different light conditions for cross-domain person re-

ID in [4]. Cycle-consistency translation of GAN was em-

ployed to retain identities of the synthetic dataset. Unlike

the these approaches, our SBSGAN concentrates on the BG

shift problem by generating soft-mask images amongst dif-

ferent domains. We also take the style consistency into con-

sideration to further reduce the domain gap.

To deal with the BG shift problem, one possible solution

is to completely remove BGs using the binary body mask

obtained by semantic segmentation or human parsing meth-

ods. Currently, methods such as Mask-RCNN [13] and JPP-

Net [25] can obtain body masks with the pre-trained model

on large-scale datasets, e.g., MS COCO [26] and LIP [25].

However, masks obtained by these methods often contained

errors due to reasons such as low-resolution person images

and highly dynamic person poses. Directly using the noisy

masks may further jeopardize the cross-domain re-ID per-

formance. Instead, we make the first effort to suppress the

BG noise by generating soft-mask images. Previous work
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such as [22] embeded the concept of ‘soft’ to learn more

informative features by using probability maps of different

body parts on the feature level. Our SBSGAN focuses on

the data level that tries to deal with the BG shift problem for

cross-domain person re-ID.

2-Stream Models have been used in many computer vi-

sion tasks [2, 5, 31, 40, 41, 19]. Generally, the learning ob-

jective of 2-stream models are categorized into two types.

One verified inputs of the two individual streams belonging

to the same or different classes, e.g., [2, 40, 41, 19] in per-

son re-ID and [31] in face recognition. The other type tried

to enrich the representation by considering the complemen-

tarity between the inputs, e.g., [5] in person search. We

follow the latter type and propose a DA-2S model. Unlike

the above-mentioned 2-Stream models, ISDC is introduced

between two individual streams of our DA-2S to strengthen

the inter-stream relationship and explore a stronger comple-

mentarity between input images.

3. SBSGAN for Soft-Mask Image Generation

3.1. Objective Functions in SBSGAN

There are two tasks in the generator (G) of SBSGAN.

The main task is to generate soft-mask images with sup-

pressed BGs. The auxiliary task is to generate inter-domain

style-transferred images (retain BG) to normalize the style

of soft-mask images across all the training domains. Our

discriminator (D) is used to distinguish the real and fake

images, and classify these images to their corresponding do-

mains. Fig. 2 shows the proposed SBSGAN.

Specifically, given an input image (e.g., IDs
) from source

domain Ds, G can generate its corresponding soft-mask im-

age ID̄ by G(IDs
, D̄) → ID̄. G takes both the input image

(e.g., IDs
) and an indicator (e.g., D̄) as inputs. In addition,

G can also transfer the style of IDs
to the k-th (k 6= s)

target domain Dk via G(IDs
,Dk) → IDk

. The proposed

SBSGAN supports multi-domain data as inputs. If there are

K domains in training, then, all IDk
(k ∈ [1,K] ∩ k 6= s)

and the input image IDs
will be used to normalize the style

of ID̄, ensuring it is consistent across all the K domains.

Several loss functions are involved to train SBSGAN.

(1) ID Constraint Loss. The ID constraint (IDC) loss

was proposed to preserve the underlying image information

(e.g., color) for data generation [32]. We use IDC loss to

preserve the color of person images for the auxiliary style-

transferred image generation. The IDC loss is defined as

follows:

Lidc = EIDs ,Dk
[‖G(IDs

,Dk)− IDs
‖
1
] . (1)

We observe that without the IDC loss, G may change the

color of input images. Consequently, the color of generated

soft-mask images are changed (see Fig. 5) when the auxil-

iary style-transferred images are directly applied to the soft-

mask images for normalizing the style of them (see Eq. 4).

(2) Reconstruction Loss. We apply a reconstruction

(REC) loss to ensure the content between an input im-

age and its corresponding generated image remains un-

changed. REC loss is a conventional objective function for

the domain-to-domain image style transfer [6, 7, 36, 43].

In our soft-mask image (or style-transferred image) gen-

eration, the image content of the FG (or FG+BG) should

be kept with the input image. We only expect the domain-

related parts being changed by the G. The REC loss is given

as follows:

Lrec = EIDs ,Dk∨D̄

[∥

∥G(G(IDs
,Dk ∨ D̄),Ds)− IDs

∥

∥

1

]

,

(2)

where ∨ is ‘or’ operator.

(3) BG Suppression Loss. We propose a BG Suppres-

sion (BGS) loss to suppress BG in data generation. The

BGS loss also can preserve the FG color information of the

generated soft-mask images. Therefore, part of functions

between IDC loss and BGS loss are similar, but concentrate

on generating different types of data. The BGS loss is for-

mulated as follows:

Lbgs = EIDs ,D̄

[
∥

∥IDs
⊙M(IDs

)−G(IDs
, D̄)

∥

∥

2

]

. (3)

An auxiliary body mask M(IDs
) is used to suppress BG of

the input image IDs
. L2 distance is applied to minimize the

loss. The JPPNet [25] is employed to extract M(IDs
). We

find that masks obtained by JPPNet often contain segmen-

tation errors. However, our SBSGAN is robust to the seg-

mentation errors in the data generation process (see Fig. 4).

(4) Style Consistency Loss. The Style Consistency (SC)

Loss is proposed to encourage the style of soft-mask images

(particular the part of FG) to be consistent across all the in-

put domains, by which the domain gap of soft-mask images

can be further reduced. The SC loss is given as follows:

Lsc = EIDs ,D̄,Dk
[
∥

∥G(IDs
, D̄)− IDs

⊙M(IDs
)
∥

∥

1
+

K
∑

k=1,k 6=s

∥

∥G(IDs
, D̄)−G(IDs

,Dk)⊙M(IDs
)
∥

∥

1
].

(4)

We first transfer the style of IDs
to all the other K − 1 do-

mains. Then, IDs
and all its corresponding style-transferred

images are used to encourage the style of G(IDs
, D̄) being

consistent across all the K domains.

Apart from the above-mentioned loss functions, we add

the conventional adversarial loss (Ladv) [11] of GAN to dis-

tinguish real and fake images in training. Also, Lr
cls [6] is

used to classify the source domains of real images for op-

timizing D, and Lf
cls [6] is used to classify the target do-

mains of fake images for optimizing G. Since the style of

ID̄ is normalized across all the K domains, a uniform distri-

bution (i.e., 1

K
) over the K domains is assigned as the target

domain of ID̄.
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Figure 2. Overview of SBSGAN. Three domains are used as an example, including DukeMTMC-reID (source domain), Market-1501

(target domain1), and CUHK03 (target domain2). (a) shows an input image from DukeMTMC-reID. The FG mask is obtained by JPPNet.

The generated soft-mask image and inter-domain style-transferred images are listed in the second row. (b) G takes both input images and

indicators as the inputs. All images (real/fake) participate in the different training process of G to optimize different loss functions (1)-(4).

(c) All the real and fake images are used to optimize the real/fake classification and domain classification losses in D.

Finally, the objective functions of G and D are respec-

tively given as follows:

LD = Ladv + Lr
cls, (5)

LG =Ladv + Lf
cls + λrecLrec+

λidcLidc + λbgsLbgs + λscLsc,
(6)

where λ is hyper-parameter to control the importance of dif-

ferent loss functions. We empirically set λrec = 10 and

λidc = λbgs = λsc = 5 in all our experiments.

3.2. Indicators in Data Generation

The proposed SBSGAN supports multi-domain im-

ages as inputs. In experiments, images from three do-

mains/datasets are used in training. When images are fed

into G, an indicator is concatenated after each image on the

dimension of channel to let G knows which kind of image

should be generated. A 3D tensor D is used as the indicator

(see Fig. 2). The height and width of D equal to the input

image. There are K channels in D. For the auxiliary style-

transferred image generation, D is denoted as Dk; all values

in the k-th channel of Dk are set to be one, and other values

in the remaining K − 1 channels are set to be zero. For the

soft-mask image generation, D is denoted as D̄; all values

of D̄ are set to be 1

K
.

3.3. Network Architecture

Adapted from [43], given an input image, we use two

down-sampling convolutional layers followed by six resid-

ual blocks [14] in G. Then, unlike [43], two branches

(without parameters sharing) are respectively used for gen-

erating soft-mask images and auxiliary style-transferred im-

ages followed by the output of the last residual block. Each

branch contains two up-sampling transposed convolutional

layers with the stride of 2. For D, we use the Patch-

GAN [21, 43] structure.

4. Densely Associated 2-Stream Network

The main contribution of this paper is to deal with the

cross-domain person re-ID task from a brand new perspec-

tive, i.e., suppression of the inter-domain BG shift. More-

over, to make use of helpful background cues, a DA-2S net-

work is proposed. We argue that the context information,

e.g., companions and vehicles in BG is also useful in cross-

domain person re-ID. Therefore, our DA-2S network is used

to enrich person representations by using both our soft-

mask images and the image after general inter-domain style

transfer. Fig. 3 shows the DA-2S network. A pair of in-

put images (a soft-mask image and its style-transferred im-

age to the target domain) is fed into two ImageNet-trained

Densenet-121 [16] networks (without parameters sharing).

It can be observed that the companion in white clothes is re-

garded as BG being suppressed in the soft-mask image. To

use the companion as an ID-related cue, a style-transferred

images is fed into the second stream without suppressed

BGs. To strengthen the complementarity of the two inputs,

ISDC is proposed after the first pooling layer and every

Dense Block. Specifically, the input information of each

ISDC module is accumulated from both the outputs of the

two streams as well as the previous ISDC module. Thus,

the output of each ISDC module is defined as:

OISDC
n = δ(F(y ·OISDC

n−1 ⊕ [OS1
n , OS2

n ], {Wn})), (7)

where S1 and S2 respectively represent the two streams,

OS1
n and OS2

n are their respective output after the first pool-

ing layer or each Dense Block, n ∈ [1, 4] represents the in-
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Figure 3. Overview of DA-2S. ISDC, GAP, FC, and CE respec-

tively represent Inter-Stream Densely Connection, Global Average

Pooling, Fully-Connected layer, and Cross-Entropy loss.

dex of ISDC modules, F is a CNN encoder parameterized

by Wn, ⊕ is element-wise summation, [·] refers to concate-

nation along channel dimension, y indicates whether this is

the first (i.e., n = 1) ISDC module between the two streams.

If n = 1, y = 0, it refers to the first ISDC module. If

n ∈ [2, ..., 4], y = 1, element-wise summation is used to

transfer the knowledge from one previous ISDC module to

the other. δ denotes ReLU [27]. Also, Batch Normalization

(BN) [20] is used before each ReLU activation function.

We re-weigh the final output of the two Densenet-121

backbone networks (after concatenation by channel) using

SEBlock [15] to emphasize informative features and sup-

press useless ones. The output of the last ISDC is directly

connected to the re-weighted feature maps by an element-

wise summation. Hence, gradients produced by objective

function can be directly used to update parameters of layers

connected to ISDC modules. Then, a global pooling is used

followed by a fully-connected layer (FC1), BN, and ReLU.

Another fully-connected layer (FC2) is used with N neu-

rons, where N is the number of training identities. At last, a

cross-entropy loss is adopted by casting the training process

as an ID classification problem. Notably, we use DenseNet-

121 as the backbone network because in each layer it takes

all preceding feature maps as input to strengthen the gradi-

ents received by all preceding layers. The proposed ISDC

module is also designed to strengthen the gradients pro-

duced by the inter-streams connections. We aim to verify

whether the proposed ISDC module is still workable even

with dense gradients being existed in the two individual

streams (refer to Table 3).

5. Experiments

In this section, comprehensive evaluations (qualitative

and quantitative) are carried out to verify the effective-

ness of SBSGAN and DA-2S for cross-domain person re-

ID. In the qualitative evaluation, we verify the effective-

ness of soft-mask images generated by SBSGAN. In the

quantitative evaluation, we evaluate our soft-mask images

Table 1. Person re-ID datasets for evaluations.

Dataset
Train Gallery (Test) Query (Test)

#ID #Img #ID #Img #ID #Img

Market [38] 751 12,936 750 19,732 750 3,368

Duke [29, 41] 702 16,522 702 17,661 702 2,228

CUHK03 [24] 1,367 13,009 100 987 100 100

and DA-2S for cross-domain person re-ID. Our experiment

is mainly conducted on Market-1501→ DukeMTMC-reID

(using Market-1501 [38] for training and DukeMTMC-

reID [29, 41] for testing), since both datasets have fixed

training/testing splits. In addition, other results are given on

three widely used person re-ID datasets, including Market-

1501, DukeMTMC-reID, and CUHK03 [24].

5.1. Person Re­ID Datasets

Table 1 lists the training/testing settings of the three

datasets. In the testing set, all query images are used

to retrieve corresponding person images in the galley set.

CUHK03 contains two image settings: one is annotated by

hand-drawn bounding boxes, the other one is produced by

a person detector. We only use and report the result of de-

tected images which is more challenging. For all datasets,

we use the single-query evaluation. The conventional rank-

n accuracy and mean Average Precision (mAP) are used as

evaluation protocols [38].

5.2. Implementation Details

SBSGAN. All images of the three datasets (K = 3) are

used to train the proposed SBSGAN. Only weak domain la-

bels are used. Input images and their corresponding body

masks are resized to 256 × 128. Adam [23] is used with

β1 = 0.5 and β2 = 0.999. The batchsize is set to 16. To

train G, K+1

16
images of each mini-batch are randomly se-

lected for soft-mask images generation as well as the aux-

iliary style-transferred images generation. The remaining

images in a mini-batch are used for the general style trans-

fer to stabilize the performance of data generation in G. We

initially set the learning rate to 0.0001 for both G and D,

and model stops training after 5 epochs. We perform one G

update after five D updates as in [12]. In testing, an indi-

cator (i.e., D̄) and an original image (i.e., IDs
) are concate-

nated for the soft-mask image generation. Notably, there is

no need to use any FG or body mask in testing.

DA-2S. Both soft-mask and style-transferred images (to

the target domain) are used to train DA-2S (refer to Sec-

tion 4). The soft-mask images are generated by the pro-

posed SBSGAN. PTGAN [36] is used to get the general

style-transferred images as the input to DA-2S. The batch-

size is set to 50. Input images are resized to 256 × 128
with random horizontal flipping. The SGD is used with

momentum 0.9. The initial learning rate is set to 0.1 and

decay to 0.01 after 40 epochs. We stop training after the
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Market-1501 DukeMTMC-reID CUHK03

Figure 4. Comparison between hard-mask and soft-mask images. Images are selected from three different person re-ID datasets. The

original images are listed in the first row. The second and the third rows respectively show hard-mask images by Mask-RCNN [1, 13] and

JPPNet [25]. The last row shows our soft-mask images generated by the proposed SBSGAN.

60-th epoch. A reduction rate of 16 is used for SEBlock as

in [15]. A dropout layer with the rate of 0.5 is inserted af-

ter FC1 (see Fig. 3) to reduce the risk of over-fitting. The

FC1 has 512 neurons. According to the number of training

identities, we set FC2 to have 751, 702, and 1,367 neurons

when training is conducted on Market-1501, DukeMTMC-

reID, and CUHK03 respectively. For each convolutional

layer of ISDC, the kernel size=3, and padding=1. In addi-

tion, we use stride=2 for the first three ISDC modules and

stride=1 for the last ISDC module. The number of channels

is doubled by each ISDC. Finally, 2,048 channels are ob-

tained after four ISDC modules. In testing, original images

of the target domain and their corresponding soft-mask im-

ages are used as the inputs of DA-2S. We extract 2,048-dim

CNN features for each testing image after the GAP layer.

The Euclidean distance is used to compute the similarity

between query and gallery images.

5.3. Qualitative Evaluation

Soft-Mask Images Are Better Than Hard-Mask Im-

ages in Suppression of BG Shift. In Fig. 4, we compare

our soft-mask images with the hard-mask images. The hard-

mask images are respectively obtained by JPPNet [25] and

Mask-RCNN [1, 13]. Both methods have shown compelling

performance in person parsing or object instance segmenta-

tion. However, we find that the two methods cannot perform

well in the segmentation of body from the BG on existing

person re-ID datasets. It can be observed in Fig. 4 that when

people carry objects (e.g., bags), these objects are regarded

as BGs and removed by noisy FG masks with segmentation

errors. However, such features are significant to person re-

ID, which should be retained rather than removed. In our

soft-mask images, important cues such as bags and body

parts can be well generated and retained. This is because

we do not directly utilize the binary body mask on original

images to remove the BGs. Although we use the mask ob-

tained by JPPNet (the third row in Fig. 4) to suppress the

Input

 Image

w/o 

idc,bgs,sc

w/o 

idc,bgs

w/o 

sc SBSGAN

Figure 5. The effectiveness of different loss functions.

BG (refer to Eq. 3) in data generation, our images visually

show better results. This phenomenon also shows that the

proposed SBSGAN is robust to the noisy masks in the data

generation.

The Effectiveness of Loss Functions in SBSGAN. The

proposed SBSGAN jointly optimizes over several loss func-

tions (see Eq. 5 and Eq. 6). Fig. 5 shows images gener-

ated by SBSGAN using different loss functions. We elab-

orate on the effectiveness of Lidc, Lbgs, and Lsc. The

others are conventional GAN-based loss functions, and

their effectiveness is already verified by several previous

works [3, 6, 12, 21, 32, 43]. It can be observed in Fig. 5 that

when Lidc and Lbgs are removed, the color information of

original images cannot be well preserved. In addition, the

BG cannot be well suppressed. By only removing Lsc, SB-

SGAN can generate soft-mask images which are close to

our objective. The Lsc is proposed to encourage the style of

generated soft-mask images being consistent (refer to Sec-

tion 3). Apart from the qualitative comparison in Fig. 5, a

quantitative evaluation can be found in Table 2 to further

verify the effectiveness of Lsc.

Reducing the BG Shift Is Effective to Reduce Do-

main Gaps: Visualization of Data Distributions Be-

tween Two Domains. We visualize the domain distance

using different types of data, including the popular style-

transferred images, hard-mask images, and our soft-mask

images. Three recently published methods SPGAN [7], PT-

GAN [36], and StarGAN [6] are used to transfer the im-
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(b) StarGAN [6]
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(c) SPGAN [7].
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(d) PTGAN [36].
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(e) Hard-mask images (JPPNet).
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(f) Soft-mask images (Ours).

Figure 6. Data visualization. 5000 images are randomly selected

from Market-1501 and DukeMTMC-reID to learn data distribu-

tions via the Barnes-Hut t-SNE [34], respectively. Another 200

images of each domain are used for visualization. The red cir-

cle and blue triangle respectively represent images belonging to

Market-1501 and DukeMTMC-reID. The center points (i.e., ‘C-’)

are shown using their corresponding domain color. Domain dis-

tance (i.e., L1 distance) is given between center points.

age style from Market-1501 to DukeMTMC-reID, respec-

tively. Fig. 6 shows the result. Compared with the general

style-transferred results, the hard-mask and soft-mask im-

ages can reduce the domain gap by a large margin. This

phenomenon verifies the effectiveness of reducing domain

gaps by considering the BG shift problem. The domain dis-

tance of hard-mask images is on par with our soft-mask im-

ages (10.19 vs. 10.90). However, compared with hard-mask

images, our soft-mask images show better performance in

cross-domain person re-ID (e.g., rank-1: 43.3% vs. 38.6%,

see Table 2). Naturally, it is unfair to directly compare the

domain distance between soft-mask and hard-mask images.

This is because many pixel values of hard-mask images are

simply zeroed out, which makes approximately half the in-

formation of hard-mask images already being discarded in

the comparison. Our soft-mask images suppress the BGs

rather than simply removing them.

Table 2. Baseline performance of cross-domain person re-ID.

Market-1501 is for training and DukeMTMC-reID is for testing.

Training Data mAP R-1 R-5 R-10

Original 17.7 33.5 49.3 55.1

Hard-mask Images

Mask-RCNN [1, 13] 20.6 37.5 53.4 59.1

JPPNet [25] 21.5 38.6 54.3 60.0

Style-transferred Images

PTGAN [36] 22.7 42.9 58.0 64.2

SPGAN [7] 22.8 42.0 57.9 64.1

StarGAN [6] 21.6 39.8 53.4 59.9

Soft-mask Images (Ours)

Soft-mask w/o Lsc 21.2 41.7 56.3 62.7

Soft-mask 22.3 43.3 58.2 64.4

Soft-mask2−Domains 23.5 44.2 59.5 65.3

Table 3. Ablation study of DA-2S. Market-1501 is used for train-

ing and DukeMTMC-reID is used for testing. The baseline does

not use SEBlocks and any ISDC modules. We also try to add SE-

Blocks to every ISDC module to re-weight the output of ISDC in

the middle layers (denoted as ISDC-SE). The DA-2S† (DA-2S‡)

means only using the style-transferred images (soft-mask images)

as the inputs of the 2-stream network.

Methods mAP R-1

Basel. 28.8 50.2

Basel.+SEBlock 28.9 50.5

Basel.+SEBlock+ISDC-SE 30.4 51.5

Basel.+SEBlock+ISDC (DA-2S) 30.8 53.5

DA-2S† (2*Style-transfer) 28.4 49.6

DA-2S‡ (2*Soft-mask) 27.0 51.5

5.4. Quantitative Evaluation

Soft-mask Images vs. Other Types of Images.

The popular IDE model [7, 41] with ImageNet-trained

DenseNet-121 as backbone network is adopted to compare

our soft-mask images with the general style-transferred im-

ages and hard-mask images. Table 2 lists the performance.

By directly using the original images for cross-domain

learning, the performance is inferior (mAP: 17.7%, rank-

1: 33.5%). A clear performance improvement is achieved

by simply removing BGs from both training and testing im-

ages using masks obtained by JPPNet and Mask-RCNN, re-

spectively. However, the performance of our soft-mask im-

ages outperforms the hard-mask images by +4.7% in rank-

1 accuracy (43.3% vs. 38.6%). This is because hard-mask

images often involve segmentation errors. General style-

transferred results such as PTGAN and SPGAN achieve

competitive performance. However, our soft-mask images

obtain the best rank-1 accuracy (43.3%), which shows their

effectiveness by considering the BG shift problem in cross-

domain person re-ID. In addition, without Lsc, images gen-

erated by SBSGAN can satisfy the visual requirement (see

Fig. 5), but the cross-domain re-ID performance is dropped

by 1.1% in mAP and 1.6% in rank-1 accuracy. This is be-

cause we use Lsc to normalize the style of soft-mask images

across multiple domains, by which the inter-domain gap can
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Table 4. Comparison with state-of-the-art methods. M, C, and D respectively represent Market-1501, CUHK03, and DukeMTMC-reID.

X→Y means training is conducted on X and testing is conducted on Y.

Methods
M→ D M→ C D→ M D→ C C→ M C→ D

mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1 mAP R-1

UMDL [28] CVPR16 7.3 18.5 - - 12.4 34.5 - - - - - -

CAMEL [37] ICCV17 - - - - 26.3 54.5 - - - - - -

PUL [8] TOMM18 16.4 30.0 - - 20.5 45.5 - - 18.0 41.9 12.0 23.0

PTGAN [36] CVPR18 - 27.4 - 26.9 - 38.6 - 24.8 - 31.5 - 17.6

SPGANLMP [7] CVPR18 26.4 46.9 - - 26.9 58.1 - - - - - -

TJ-AIDL [35] CVPR18 23.0 44.3 - - 26.5 58.2 - - - - - -

HHL [42] ECCV18 27.2 46.9 - - 31.4 62.2 - - 29.8 56.8 23.4 42.7

DA-2S (Ours) 30.8 53.5 32.5 42.2 27.3 58.5 27.3 33.7 28.5 57.6 27.8 47.7

be further reduced. Since SPGAN and PTGAN only sup-

port images of two domains as inputs, we also train our SB-

SGAN in the same way instead of using images from three

domains. Without interference from images of the third do-

main (i.e., CUHK03), we obtain performance gains by Soft-

mask2−Domains (mAP: 23.5%, rank-1: 44.2%). However,

we still use multiple domains as inputs in all the other ex-

periments to generate soft-mask images. This is because

we can train only one model instead of multiple models be-

tween any two domains.

Ablation Study of DA-2S. An ablation study of our DA-

2S network is given in Table 3. Without SEBlock and ISDC

(i.e., baseline), we achieve 28.8% in mAP and 50.2% in

rank-1 accuracy. By using SEBlock (similar to [5]), the per-

formance is improved from 50.2% to 50.5% in rank-1 accu-

racy. To strengthen the inter-stream relationship, the base-

line+SEBlock+ISDC produces the best performance (mAP:

30.8%, rank-1: 53.5%), demonstrating the effectiveness of

the proposed ISDC modules. If we add SEBlock to ev-

ery ISDC modules (ISDC-SE), the performance is dropped

by 2% in rank-1 accuracy. This is because additional SE-

Blocks produce more parameters which can potentially in-

crease the risk of over-fitting. Moreover, we also change the

inputs of our 2-stream DA-2S to style-transferred images or

soft-mask images only (i.e., the network receives two style-

transferred images or two soft-mask images). The results

demonstrate that the combination of the two types of im-

ages is better than using them independently.

Comparison With State-of-the-Art Methods. We

compare our method with several recently published state-

of-the-art approaches, including three unsupervised meth-

ods, i.e., UMDL [28], CAMEL [37], and PUL [8], and

four cross-domain re-ID approaches, i.e., PTGAN [36], SP-

GAN+LMP [7], TJ-AIDL [35], and HHL [42]. For a fair

comparison, all the selected cross-domain methods (includ-

ing our method) use images from one domain/dataset for

training the re-ID model and the other domain/dataset for

testing; no extra training images or strong labels are used

from the target domain.

Table 4 lists the comparison results. It is clear to see that

our DA-2S method achieves very competitive performance.

For instance, on M→D, our method outperforms the state-

of-the-art method HHL by +3.6% in mAP and +6.6% in

rank-1 accuracy; on C→D, our performance is higher by

+4.4% in mAP and +5.0% in rank-1 accuracy. Compared

with our method, the HHL achieves the best performance

on D→M and competitive performance on C→M. How-

ever, HHL uses extra camera labels in the target domain.

Specifically, N times images are generated according to the

number of cameras to learn about the camera invariant fea-

tures. This inherently limits its expansibility to the large

camera networks (e.g., N = 100), where the training data

should be increased by N (e.g., 100) times. Amongst all

the methods, only PTGAN gives the performance on M→C

and D→C. Under the same experimental setting, our DA-2S

outperforms PTGAN by a large margin (+15.3% and +8.9%

in rank-1 accuracy) when training is respectively conducted

on Market-1501 and DukeMTMC-reID, and testing is con-

ducted on CUHK03.

6. Conclusion

In this paper, we verify that the BG shift problem can be

considered to reduce domain gaps for cross-domain person

re-ID. SBSGAN is proposed to generate soft-mask images

with the BG being suppressed. Compared with hard-mask

solutions, soft-mask images are able to suppress the BG

in a moderate way. Compared with general inter-domain

style-transferred approaches, soft-mask images can further

reduce the domain gap by considering the BG shift prob-

lem. A DA-2S model is introduced along with the pro-

posed ISDC module to make use of helpful background

cues. Experiment results demonstrate the effectiveness of

our method in both the qualitative and quantitative evalua-

tions.
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