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SC-RPN: A Strong Correlation Learning

Framework for Region Proposal
Wenbin Zou, Zhengyu Zhang, Yingqing Peng, Canqun Xiang, Shishun Tian, and Lu Zhang

Abstract—Current state-of-the-art two-stage detectors heavily
rely on region proposals to guide the accurate detection for
objects. In previous region proposal approaches, the interac-
tion between different functional modules is correlated weakly,
which limits or decreases the performance of region proposal
approaches. In this paper, we propose a novel two-stage strong
correlation learning framework, abbreviated as SC-RPN, which
aims to set up stronger relationship among different modules
in the region proposal task. Firstly, we propose a Light-weight
IoU-Mask branch to predict intersection-over-union (IoU) mask
and refine region classification scores as well, it is used to prevent
high-quality region proposals from being filtered. Furthermore, a
sampling strategy named Size-Aware Dynamic Sampling (SADS)
is proposed to ensure sampling consistency between different
stages. In addition, point-based representation is exploited to
generate region proposals with stronger fitting ability. Without
bells and whistles, SC-RPN achieves AR1000 14.5% higher than
that of Region Proposal Network (RPN), surpassing all the
existing region proposal approaches. We also integrate SC-RPN
into Fast R-CNN and Faster R-CNN to test its effectiveness on
object detection task, the experimental results achieve a gain of
3.2% and 3.8% in terms of mAP compared to the original ones.

Index Terms—Region proposal, two-stage, strong correlation,
SC-RPN.

I. INTRODUCTION

O
BJECT detection is one of the most fundamental and

challenging tasks in computer vision, which is widely

used in surveillance [1], biomedical analysis [2], digital map

construction [3], and autonomous driving [4], [5]. As objects

can exist at any positions with different scales in a given

image, it is exhaustive to directly search everywhere. In order

to reduce the searching area and improve the computation

efficiency, region proposals are generated as the Region of

Interest (ROI) where may contain objects. Modern two-stage

object detectors usually begin with a region proposal approach

and followed by a R-CNN head. For example, Faster R-CNN

[6], in the first stage, generates region proposals as coarse

location by using region proposal network (RPN), and then

predicts classification and more accurate location based on

the region proposals in the second stage. Since the subsequent
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detection is based on region proposals, the performance of

two-stage object detector is largely determined by the quality

of region proposals produced by region proposal approach.

Thus it is essential to improve the performance of region

proposal approaches.

Generally, a region proposal approach consists of several

modules, each of which plays its own role. Different com-

binations of these modules will affect the performance of

region proposal approach. In this paper, we focus on the

region proposal approaches with two-stage framework, whose

location results are predicted in the first stage and refined in the

second stage. By revisiting the training process of the pervious

two-stage region proposal approaches, we find several weak

correlation issues in the existing approaches, which lead to

performance degradation. Specifically, these weak correlation

issues can be roughly summarized into three categories:

• The correlation between location and classification

of region proposals. In previous region proposal ap-

proaches, the classification score [6] is the unique cri-

terion to measure the location accuracy. Generally, the

conventional binary cross entropy loss is applied to train

the classification branch, which drives all the positive

samples to learn their classification scores as high as

possible without considering their location quality. Thus,

the training of classification task and location task is

independent of each other, which leads to the fact that

the classification scores of region proposals cannot reflect

their location accuracy correctly. As a result, some can-

didate region proposals with high location accuracy but

low classification score are directly filtered out during

Non-Maximum Suppression (NMS), which causes the

performance degradation of region proposal.

• The correlation of sampling strategy between the

two stages. In the training phase, sampling strategy is

utilized to select positive samples and calculate losses.

The previous two-stage region proposal approaches rarely

consider the importance of the correlation of sampling

strategy between the two stages. In this paper, this

correlation is called “sampling consistency”. Here, the

sampling inconsistency problems are manifested in three

phenomena: (1) The positive samples selected in the first

stage will be all inside the ground-truth box of the object,

but some positive samples selected in the second stage are

outside. (2) The number of the positive samples is stable

in the first stage, but it becomes extremely unstable in the

second stage. (3) When combined with Feature Pyramid

Networks (FPN) [7], the positive samples selected in the
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first stage are associated with the object size, but in the

second stage, the positive samples become unrelated to

the object size.

• The correlation between region proposals and anchor-

based representation. Bounding box representation has

been shown effectiveness to describe region proposals.

Actually, bounding box representation is a kind of anchor-

based representation, which heavily relies on the setting

of anchors. Since the preset anchors are the prototype of

the predicted objects, higher performance can be obtained

when the aspect ratio of the preset anchors are close to

that of the predicted objects. Actually, even though sev-

eral anchors with different aspect ratios are set up to meet

as many kinds of object outlines as possible, it is still

very difficult to fit all possible object outlines. Limited

by the unavoidable shortcoming of anchors, anchor-based

representation is inherently difficult to fit the outline of

objects efficiently. However, region proposals need to fit

the outline of objects well to facilitate the subsequent

detection task.

To solve the weak correlation problems mentioned above,

we propose a strong correlation learning framework for region

proposal, abbreviated as SC-RPN. It mainly contains three

novel components: 1) Light-weight IoU-Mask branch; 2) Size-

Aware Dynamic Sampling; 3) point-based representation.

In summary, the contributions of this paper can be summa-

rized as follows:

1. Facing the weak correlation issue of classification score and

location accuracy in region proposal approach, we propose

an extra Light-weight IoU-Mask branch, which predicts

IoU mask to rebuild the correlation between classification

scores and location accuracy of region proposals with a

small amount of additional computation.

2. We delve into the correlation of sampling strategy between

different stages in two-stage region proposal approach, and

find that it is crucial to ensure the sampling consistency.

Thus we propose a Size-Aware Dynamic Sampling (SADS)

to establish a stronger correlation between different stages,

in terms of location, number and size.

3. We investigate the inherent shortcoming of anchor-based

representation in region proposals. To handle this prob-

lem, we integrate a point-based representation into region

proposal approach to improve the outline fitting ability of

region proposal approach.

4. We demonstrate that the proposed SC-RPN, substantially

outperforms the state-of-the-art region proposal approaches.

The SC-RPN is integrated into different kinds of main-

stream object detectors and consistently achieves the best

performance, which shows the effectiveness of our pro-

posed framework.

II. RELATED WORK

Over the past few years, object detection has attracted

extensive attentions and different variations of object detectors

have been proposed, including one-stage object detectors

(e.g., [8], [9], [10]) and two-stage object detectors (e.g.,

[11], [12], [6]). Although the two-stage object detectors have

achieved promising performance, recently researchers are

still trying to exploit their potential from different aspects.

Cao et al. [13] reweight the training samples according to

a novel ranking method named IoU-HLR. A novel AP-Loss

[14] is formulated to replace the classification loss, which

alleviates foreground-background class imbalance issue. Chen

et al. [15] propose a novel PIoU Loss to exploit both the

angle and IoU for accurate oriented bounding box regression.

Confluence [16] selects optimal bounding boxes and removes

highly confluent neighboring bounding boxes according

to ”Manhattan Distance” instead of the conventional IoU.

AugFPN [17] designs a more robust and powerful structure

to further exploit the conventional FPN. In this paper, we

focus on the first stage of two-stage object detectors, region

proposal approaches, whose previous works can be roughly

divided into three types: grouping proposal approaches,

window scoring proposal approaches and CNN-based

proposal approaches.

A. Grouping proposal approaches

In grouping proposal approaches, oversegmentation ap-

proaches are first adopted to generate superpixels for an

image. Then the similar superpixels are grouped hierarchically

with different merging strategies to obtain the proposals.

Here, grouping proposal approaches are generally based on

diverse low-level cues such as appearance color and superpixel

shape. With manually similarity function, Selective Search

[18], [19] generates proposals by greedily merging the most

similar superpixels. Manen et al. [20] innovatively propose

a randomized superpixel merging strategy to address all the

probabilities. Rantalankila et al. [21] utilize novel features

that differ from Selective Search, then the generated regions

are regarded as seeds to generate more proposals. CPMC [22],

[23] directly uses seeds and unaries to cut the graph on pixels,

which avoids the initial oversegmentation. A hierarchical seg-

mentation is established from occlusion boundaries in [24],

[25], then different seeds and parameters are used to solve

graph cuts. The resulting proposals are ranked by a wide

range of cues. Rigor [26] uses multiple graph-cuts and fast

edge detectors to speed up computing. In Geodesic [27], it

starts with generating superpixels, then a set of precomputed

geodesic distance transforms are selected as proposals. With

multiple segmentation outputs, grouping proposal approaches

can produce the proposals with high location accuracy, but

they are also time-consuming and computationally expensive.

B. Window scoring proposal approaches

Window scoring proposal approaches firstly initialize a large

number of candidate windows with different positions and

scales in an image, then generate proposals by scoring and

ranking each candidate window according to the probability

that they contain objects. Objectness [28], [29] regards the

salient locations in the image as candidate proposals, these

proposals are then sorted by multiple low-level cues. Rahtu

et al. [30] initialize a large proposal pool which contains

sampling regions and multiple randomly sampling boxes,

and adopt a scoring strategy which is similar to Objectness.
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Blaschko et al. [31] add more low-level features on the

basis of Rahtu to distinguish the quality of proposals in

the subsequent scoring work. In Bing [32], a simple linear

classifier is trained by edge information and runs as a sliding

window approach to find high-scoring proposals. When Bing

is applied in video sequences, an extra closed-loop proposal

method [33] is proposed to exploit the sequential nature of

videos which improves the quality of proposals. EdgeBoxes

[34] begins with a coarse pattern of sliding window, then a

subsequent refinement is applied to improve location accuracy.

In RandomizedSeeds [35], each candidate window is scored by

utilizing multiple randomised SEED superpixel maps, without

any additional cues. Since this type of proposal approach

does not return the segmentation results of proposals, they

usually tend to be faster than grouping proposal approaches.

However, in window scoring proposal approaches, all the

sampling sliding windows are defined by hand-crafted scales

and position, which leads to poor location accuracy.

C. CNN-based proposal approaches

As the flourish of convolutional neural network, CNN-based

proposal approaches have been developed rapidly thanks to

the powerful discrimination feature extracted by convolutional

neural network. After obtaining the input feature, these ap-

proaches generally predict the coordinates of proposals for

each local patch of feature. Multi-Box [36], [37] trains a

neural network to produce a certain number of proposals which

contains coordinates and scores, all the proposals are then

sorted according to their scores. RPN [6] firstly generates the

dense candidate proposals with Fully Convolutional Network

[38], and then filters out the high overlapping proposals with

Non-Maximum suppression (NMS). DeepProposal [39] uses

sliding window to search proposals in CNN-based feature

and trains a cascade linear classifiers to generate the high

score proposals. Scale-aware prediction strategy is proposed

in SPOP-net [40] that provides adaptive accurate prediction

for objects of different sizes. Based on RPN, a two-stage

manner is proposed in [41] (denoted as Iterative RPN in this

paper), which refines the scores and location of proposals

stage by stage. As a two-stage region proposal approach,

GA-RPN [42] highlights the importance of feature alignment

and adopts deformable convolution to align the feature before

the second stage. Similar to GA-RPN, Cascade RPN [43]

continues to focus on the feature alignment and proposes

adaptive convolution to obtain better feature alignment. The

recent CNN-based proposal approaches usually focus on the

rule of feature alignment. Instead, in this paper, we pay closer

attention to the weak correlation issues in two-stage region

proposal approach, which distinguishes our work from others.

In summary, grouping proposal approaches can obtain high

location accuracy, but they are more computationally expen-

sive which results in lower speed, while window scoring

proposal approaches are much more time-friendly but poor

in location accuracy. Compared to these approaches based on

hand-craft features, CNN-based proposal approaches achieve

better speed/accuracy trade-offs, thanks to the CNN-based

features with strong discrimination. To further improve the

performance, a couple of previous CNN-based proposal ap-

proaches adopt two-stage framework to refine the result stage

by stage. However, the performance of the two-stage region

proposal approaches is still limited by the weak correlations

between different modules. Therefore, in this paper, we delve

into the existing weak correlation issues in two-stage region

proposal approach, and some corresponding solutions are

proposed to alleviate these issues.

III. THE PROPOSED FRAMEWORK

We propose a novel region proposal approach abbreviated

as SC-RPN, which aims to alleviate the three weak correlation

problems discussed above. Fig. 1 shows the overall pipeline

of SC-RPN, the detailed process is shown as follows: 1) We

firstly utilize FPN-based backbone to generate five feature

maps, which are denoted as P2-P6, then each feature map is

fed into each SC-RPN head. 2) In SC-RPN head, the initial

location (denoted as init offset) is predicted from the feature

map in the first stage. Then the feature alignment operation is

adopted to generate classification feature map and regression

feature map. 3) In the second stage of SC-RPN head, clas-

sification score is predicted from classification feature map,

while the secondary location (denoted as secondary offset) and

IoU mask are carried out from regression feature map. After

that, the refined offset is obtained by combining init offset

and secondary offset, and then the refined offset is converted

into refined region proposals. 4) The mean of IoU mask and

classification score is calculated as IoU-aware score, according

to which the duplicate results in refined region proposals are

filtered out in NMS. 5) Finally, an additional NMS is applied

after the five SC-RPN heads, which filters out the duplicate

region proposals again before the final results are output.

There are three novel components in SC-RPN: Light-weight

IoU-Mask branch, Size-Aware Dynamic Sampling (SADS)

and point-based representation. Specifically, IoU mask is

predicted by the Light-weight IoU-Mask branch and region

proposals are described by the point-based representation. In

addition, the Size-Aware Dynamic Sampling (SADS) is used

for generating the training samples and calculating the losses

in the training phase, as shown in Fig. 2. Based on the forward

propagation structure in Fig.1, the training phase of SC-RPN

is detailed below: 1) Firstly, the ground-truth (abbreviated

as GT) and init region proposals are input into SADS. 2)

After that, positive samples are output and all of them are

regarded as regression samples in the first stage. 3) Then in the

second stage, positive and negative samples are output, among

which all the positive samples are regarded as regression

samples in the second stage, while all the positive samples

and the negative samples after random sampling are regarded

as classification samples. 4) Finally, the difference between

GT and the four predictions, including init region proposals,

refined region proposals, IoU mask and classification score are

computed as shown in the formula (4)-(7). All the proposed

components of SC-RPN are detailed in the following sections.

A. Light-weight IoU-Mask Branch

As mentioned above, regarding classification score as the

unique criterion to measure the location accuracy is subop-
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Fig. 1. The overall pipeline of SC-RPN. IoU mask is predicted by the Light-weight IoU-Mask branch and region proposals are described by the point-based
representation. In addition, Size-Aware Dynamic Sampling (SADS) is used for generating the training samples and calculating the losses, which is only used
in the training phase.

timal. Thus we need a novel criterion to establish a strong

correlation between location accuracy and classification score.

In previous work, IoU-Net [44] directly predicts an exact IoU

between ground-truth box and bounding box as location score,

and then replaces the conventional NMS with IoU-guided

NMS. However, predicting an exact IoU requires several fully-

connected layers in IoU-Net, which is too computationally

expensive in region proposal approach. In addition, aiming

to prevent the high location accuracy but low classification

score region proposals from being removed in NMS, IoU-Net

focuses on applying a new location score, but ignores the im-

portance of classification score itself. In this work, instead of

predicting an exact IoU for each region proposal, we directly

refine the suboptimal distribution of classification score map

to correct the wrong classification score of high-quality region

proposals. Therefore, we propose a Light-weight IoU-Mask

branch to predict IoU mask, which is the distribution map

of IoU between ground-truth boxes and region proposals. In

the testing phase, we calculate the mean of IoU mask and

classification score as IoU-aware score, which is regarded as

a novel criterion to measure the location accuracy.

Light-weight Design. Light-weight IoU-Mask branch is de-

signed to be parallel to the secondary regression branch.

Compared to the complex structure of IoU-Net, Light-weight

IoU-Mask branch consists of a 1×1 convolution layer and

two sigmoid function layers, which is extremely computational

friendly for region proposal approach. With a 1×1 convolution

layer, Light-weight IoU-Mask branch predicts IoU mask, the

distribution map of location score. Then the following sigmoid

function layer can keep the IoU mask to the range of (0,1).

Here, IoU mask is used to refine classification score and

generate IoU-aware score. Since we do not want to change

the distribution of classification score dramatically, we use

the sigmoid function layer twice to get a smaller distribution
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Fig. 2. The training phase of SC-RPN with Size-Aware Dynamic Sampling (SADS). In the first stage, positive samples are output and all of them are regarded
as regression samples. Then in the second stage, positive and negative samples are output, among which all the positive samples are regarded as regression
samples, while all the positive samples and the negative samples after random sampling are regarded as classification samples.

variances map of IoU mask.

Weak Supervision Information. In order to predict the

distribution of IoU between ground-truth boxes and region pro-

posals, we need the ground-truth of IoU distribution which is

not provided in the original supervision information. Without

introducing additional supervision information, we utilize the

IoU between GT and the predicted refined region proposals as

supervision information for training Light-weight IoU-Mask

branch. In back-propagation, classification samples selected

in the second stage are regarded as the training samples

of the Light-weight IoU-Mask branch. We firstly calculate

the IoU between GT and refined region proposals, and then

the IoU of classification samples are regarded as GT IoU.

Finally, the conventional binary cross entropy loss is adopted

to calculate the point-wise distance which denoted as Lmask.

The generation of supervision information and the training

phase of Light-weight IoU-Mask branch are shown in Fig. 3.

Why IoU mask Works. As mentioned above, classification

score should not be the unique criterion to measure the

location accuracy because classification score cannot correctly

reflect the location accuracy of region proposals. Now, Light-

weight IoU-Mask branch predicts the distribution map of IoU

between ground-truth boxes and region proposals to refine

the classification score. In the training phase, the proposed

branch is supervised by location information. In the testing

phase, the IoU-aware score is generated from the mean of

classification score and IoU mask. In this way, the IoU-

aware score can better reflect the location accuracy of region

proposals. When multiple region proposals are put into NMS,

refined region proposals

GT

IoU mask

GT IoU

classification samples

Lmask

Fig. 3. The generation of supervision information and the training phase of
Light-weight IoU-Mask branch. As a result, red points in ground-truth IoU
map denote the ground-truth of training samples, while white points denote
the irrelevant samples.

the region proposal with the highest classification score will

be retained first, and then it filters out other region proposals

with high overlap. As shown in Fig. 4, without IoU mask,

region proposal A with high classification score but low

location accuracy will be produced which suppresses those

with low classification score but high location accuracy, thus

the suboptimal region proposal A will be retained. With IoU
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Fig. 4. With IoU mask, the IoU-aware score can better reflect the location
accuracy of region proposals. It prevents the high-quality region proposals
from being removed, thus the best region proposal B will be retained instead
of region proposal A. (Best viewed in color.)

mask, the classification score will be refined according to IoU

mask, and the IoU-aware score can better reflect the location

accuracy. In this situation, the best region proposal B will be

retained.

B. Size-Aware Dynamic Sampling

Generally, in two-stage region proposal approach, the prob-

lems of sampling inconsistency between the two stages are

manifested in location, number and size level, as shown in the

following three phenomena:

1. In the first stage, since all the candidate samples are

uniformly distributed, the selected positive samples will be

all inside the ground-truth box of the object. After adjusting

the location in the first stage, all the candidate samples are

no longer uniformly distributed. As a result, some positive

samples selected in the second stage are outside the ground-

truth box of the object. This phenomenon is more common in

objects with slender outlines, such as toothbrush and knife.

2. The number of positive samples is stable in the first

stage, but it becomes extremely unstable in the second stage.

The instability in the second stage is mainly caused by two

factors: (1) Some easily identifiable objects may have a large

number of positive samples, while objects that are difficult

to identify may have very few positive samples. (2) High

threshold leads to the shortage of positive samples in the early

training, while low threshold results in an excessive number

of positive samples in the late training.

3. When combined with Feature Pyramid Networks (FPN),

positive samples are only selected from the appropriate feature

map corresponding to the object size in the first stage, which

reduces the learning pressure of each feature map. However,

the positive samples selected in the second stage are com-

pletely unrelated to the object size and their corresponding

feature map. These size-independent positive samples will

conflict with the size-aware samples selected in the first stage.

Here, the above unreasonable sampling results mainly lie

on the commonly used sampling strategy, Max IoU assigner,

which is used in both the two stages. In Max IoU assigner,

given a hand-craft overlapping threshold, the sample whose

IoU with ground truth box higher than the threshold is re-

garded as positive sample, otherwise it is regarded as negative

sample. Therefore, in order to address the suboptimal sampling

strategy and ensure the sampling consistency, we propose Size-

Aware Dynamic Sampling (SADS), a simple and efficient

sampling strategy to select training samples. Specifically, it

can be divided into two sampling strategies: Positive Region

assigner in the first stage and Size-Aware Threshold assigner

in the second stage, which are shown in Algorithm 1 and

Algorithm 2, respectively.

Algorithm 1 Positive Region assigner

Input:

G: all ground-truth boxes on a certain image

F i: the ith feature map

σ: the center ratio of positive region

Output:

P1: a set of positive samples in the first stage

1: for each ground-truth box g ∈ G do

2: Sg ← calculate the area of g

3: ig ← assign positive feature map number based on Sg
4: Rg ← assign positive region on F ig based on σ

5: Pg ← assign samples inside Rg as positive samples

6: P1 = P1 ∪ Pg

7: end for

8: return P1

Algorithm 2 Size-Aware Threshold assigner

Input:

G: all ground-truth boxes on a certain image

F i: the ith feature map

T : all training samples

T i: all training samples on F i

k: the closest samples number selected per feature map

Output:

P2: a set of positive samples in the second stage

N2: a set of negative samples in the second stage

1: for each ground-truth box g ∈ G do

2: Sg ← calculate the area of g

3: ig ← assign positive feature map number based on Sg
4: jg ← assign adjacent positive feature map number

based on Sg and ig
5: Dg ← select k samples closest to g from both T ig

and T jg based on L2 distance

6: mg ← calculate the mean IoU of Dg

7: for each sample d ∈ Dg do

8: if IoU of d > mg and the center of d in g then

9: P2 = P2 ∪ d

10: end if

11: end for

12: end for

13: N2 = T − P2

14: return P2,N2

How SADS works. In the first stage, we apply Positive

Region assigner, an anchor-free sampling strategy, to select
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positive samples. Negative samples are not necessary because

we only predict init offset in the first stage. Since there may be

multiple ground-truth boxes on an image, we assign positive

samples to each ground-truth box of each image. Concretely,

for each ground-truth box g on an image, we firstly calculate

area Sg , and then get the corresponding positive feature map

number ig according to the following formula:

ig =

⌊

log2 Sg − 9

2

⌋

(1)

as described in Line 4 to 5 of Algorithm 1, given a preset

center ratio σ in [0,1], we regard the center region of ground-

truth box as the positive region of F ig , and the size of the

center region is controlled by center ratio σ. The training

samples inside F ig are recognized as positive samples in the

first stage.

In the second stage, Size-Aware Threshold assigner is

adopted to select positive and negative samples. Firstly, we

calculate the area Sg and the corresponding positive feature

map number ig for each ground-truth box g as we did in the

first stage. If g is in moderate size, an extra positive feature

map number jg is assigned for g. Here, feature map Fjg is

adjacent to feature map F ig :

jg = ig − 1 +

⌊

Sg

22×ig+9

⌋

if Sg ∈ [ 210 , 218 ] (2)

For each assigned positive feature maps, we firstly select

k samples closest to the center of ground-truth box g based

on L2 distance, and then calculate the IoU between their

corresponding init region proposal and ground-truth box g.

These IoU of selected samples are denoted as Dg . After that,

the mean of all the IoUs in Dg is calculated and denoted as mg .

Here, mg is regarded as a dynamic overlapping threshold for

ground-truth box g. Finally, the sample whose IoU is greater

than mg and located inside the center of ground-truth box

g is selected as positive samples. On the contrary, the other

samples are considered as negative samples. In addition, the

sample with the highest IoU will be selected if a sample

is assigned to multiple ground-truth boxes. Combined with

Positive Region assigner and Size-Aware Threshold assigner in

SC-RPN, positive samples with different sizes can be assigned

to different feature maps for better learning. Besides, different

dynamic overlapping threshold is assigned to different ground-

truth box in different iteration.

Three corresponding solutions for the three sampling

inconsistency phenomena. The proposed SADS provides

some solutions for the three sampling inconsistency phenom-

ena mentioned above. They are detailed as follows:

1. With Positive Region assigner and uniformly distributed

candidate samples in the first stage, all the selected positive

samples are guaranteed to be inside the ground-truth box. In

the second stage, since all the candidate samples are no longer

uniformly distributed, Size-Aware Threshold assigner directly

considers samples outside the ground-truth box as negative

samples. Therefore, all positive samples are strictly limited

inside the ground-truth box, which ensures the sampling

consistency throughout the training phase.

2. The instability of the positive sample number in the

second stage is mainly caused by two factors: (1) Some

easily identifiable objects may have a large number of positive

samples, while objects that are difficult to identify may have

very few positive samples. (2) High threshold leads to the

shortage of positive samples in the early training, while low

threshold results in an excessive number of positive samples

in the late training. As for the former, Size-Aware Threshold

assigner defines a set of candidate samples for each object

and then selects positive samples for it, guaranteeing a balance

of positive sample number between different objects. For the

latter, since the dynamic overlapping threshold can reflect the

quality of current candidate samples, the model can maintain

a stable number of positive samples throughout the whole

training process. Thus SADS can keep the quantity and quality

of positive samples more reasonable.

3. When combined with FPN, Positive Region assigner in

the first stage maintains the characteristic of size perception.

Specifically, each object is assigned a positive feature map

number based on their size, and then all positive samples

are selected from their corresponding positive feature map.

However, this characteristic is often ignored in the second

stage. Here, Size-Aware Threshold assigner assigns two corre-

sponding positive feature maps for most objects based on their

size, and generates dynamic overlapping threshold to select

positive samples. With Size-Aware Dynamic Sampling, size-

aware positive samples are produced to ensure the sampling

consistency, which improves the training efficiency.

Selecting Dg with L2 distance instead of positive region

in the second stage. To select the sample closest to the

center of the ground-truth box, positive region is adopted in

the first stage while L2 distance is used in the second stage.

Although they are both used to select the closest samples, there

is a certain difference between these two methods. Given a

fixed center ratio, even if two objects are assigned to the same

positive feature map, the difference of area will lead to a large

difference in the number of positive samples, which aggravates

the phenomenon 2 mentioned above. On the contrary, given a

fixed hyper-parameter k to define Dg for ground-truth box g

based on L2 distance, the number of positive samples will be

more reasonable and stable since all the positive samples are

selected from Dg .

Calculating the mean of size-aware samples from two

positive feature maps as dynamic overlapping threshold.

In order to ensure the sampling consistency, Size-Aware

Threshold assigner selects positive samples which are related

to the object size. For each ground-truth box g, since only

positive samples of ig feature map are trained in the first

stage, we can easily find that the quality of region proposals

predicted from ig feature map is higher than any other feature

maps. In the second stage, if all the feature maps are used to

calculate the dynamic overlapping threshold like ATSS [45],

the positive samples selected in this situation will no longer

be associated with the size-aware positive samples selected in

the first stage. On the contrary, if only one feature map is used

for calculating, the threshold will be too high, which leads to
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Fig. 5. The entire process of point-based representation. For better visualiza-
tion, we use the original image instead of the feature map.

the shortage of positive samples. Thus we apply two positive

feature maps to calculate the dynamic overlapping threshold,

ensuring a reasonable dynamic overlapping threshold and a

moderate number of positive samples. Besides, different from

calculating the overlapping threshold with both variance and

mean, we only calculate the mean of Dg as the dynamic

overlapping threshold in Size-Aware threshold assigner, which

is more concise to produce a reasonable threshold for g.

C. Point-based Representation

As discussed above, even if the number of anchors is

increased, it is still very difficult to meet all possible object

outlines. Furthermore, with the increasing number of anchors,

higher accuracy will be obtained, as well as more parameters

and computations. However, region proposals need to fit the

outline of objects well, which conflicts with the inherent

shortcoming of anchors. Hence we draw the conclusion that

such a weak correlation between region proposals and anchor-

based representation is suboptimal.

Inspired by Reppoint representation [46], we integrate a

point-based representation into SC-RPN to describe region

proposal instead of anchor-based representation. Specifically,

for each feature point on the feature map, we firstly pre-

dict init offset that utilizes 9 groups of offset to adaptively

find the object boundary. After that, to get a more accurate

location, we adopt the point alignment operation and then

predict secondary offset. Finally, refined offset is generated by

combining init offset and secondary offset, then the maximum

and the minimum value of the refined offset are converted

into the boundary of the refined region proposal. Different

from anchor-based representation, point-based representation

automatically finds the boundary point of the object and forms

a semantic set of points, which gets rid of the cumbersome

anchor setting. Thus, point-based representation can capture

the object information in a more detailed way and enhance

the outline fitting ability in SC-RPN. The entire process of

point-based representation is shown in Fig. 5.

D. Learning

As an end-to-end approach, SC-RPN is trained under the

guidance of a standard multi-task objective function. The total

loss Ltotal is generated by adding up the losses of all the

branches, which is defined as follow:

Ltotal = λclsLcls + λmaskLmask

+ λinitLinit + λrefinedLrefined, (3)

here, Lcls is the classification loss and Lmask is the loss

of Light-weight IoU-Mask branch. Linit and Lrefined are

the regression loss of the first stage and the second stage,

respectively. In addition, λcls, λmask, λinit and λrefined

denote the weight of Lcls, Lmask, Linit and Lrefined, re-

spectively. Finally, classification branch and Light-weight IoU-

Mask branch are both driven by the conventional binary cross

entropy loss (denoted as LBCE), the regression branch of the

two stages are both supervised by IoU loss [47] (denoted as

LIoU ). The loss functions of all branches are defined below:

Lcls =
1

Mcls

(
∑

i∈pos,neg

LBCE(ci, ĉi)), (4)

Lmask =
1

Mcls

(
∑

i∈pos,neg

LBCE(mi, m̂i)), (5)

Linit =
1

Nreg

(
∑

i∈pos

LIoU (Bi, B̂i)), (6)

Lrefined =
1

Mreg

(
∑

i∈pos

LIoU (Bi, B̂
′

i)), (7)

here, Nreg is the number of regression samples in the first

stage, Mcls and Mreg are the number of classification and

regression samples in the second stage. Furthermore, ĉ, m̂,

B̂ and B̂
′

denote the predictions of the classification branch,

Light-weight IoU-Mask branch, initial regression branch and

secondary regression branch, respectively. The predictions

with no hat represent their corresponding ground-truth.

IV. EXPERIMENT RESULTS

A. Experiment Settings

1) Dataset. Most of the experiments are based on MS COCO

2017 detection dataset [48]. Specifically, both region proposal

approaches and object detectors are trained on train split which

contains 115k images. The performance of region proposal

approaches and ablation experiments are tested on val split

which contains 5k images. The performance of object detectors

is tested on test-dev split which contains 20k images.

2) Implementation Details. All the region proposal ap-

proaches consist of two stages except for RPN. ResNet50-FPN

is used as the backbone network. Without changing the aspect

ratio, the input images are resized to the scale of 1333×800

for both training and testing. No data augmentation is used

except for standard flipping. The center ratio σ is set to 0.2

for selecting positive samples in the first stage. In the multi-

task loss function, we assign different weights based on the

importance of each loss. Specifically, we use λcls = 2.0, λinit

= 0.5, λrefined = 10.0 and λmask = 1.0 to balance each loss.

The NMS post-processing is applied for each head, whose

overlapping threshold is set to 0.8. With SGD optimizer, all

the detectors are trained with 2 GPUs and a total batch size

of 4 for 12 epochs. We use an initial learning rate of 0.005
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and divide the learning rate by 10 after 8 and 11 epochs. The

runtime is measured on GTX 1080Ti GPU. All the code are

implemented with mmdetection [49].

3) Evaluation Metrics. The performance of region proposal

approach is measured with Average Recall (AR), which is the

average of recalls across IoU thresholds (from 0.5 to 0.95 with

a step of 0.05). AR100, AR300, and AR1000 mean AR for 100,

300, and 1000 region proposals per image. Computed for 100

region proposals, AR for small, medium, and large objects are

denoted as ARS , ARM , ARL. Detection results are reported

with the averages mAP of IoUs from 0.5 to 0.95 of standard

COCO metric.

B. Results

1) Region Proposal Performance. As Table I shows, we

compare SC-RPN with the state-of-the-art region proposal

approaches, including SharpMask [50], GCN-NS [51], At-

tractioNet [52], ZIP [53], RPN [6], Iterative RPN [41], GA-

RPN [42] and Cascade RPN [43]. The weak correlations limit

the performance of the previous region proposal approaches.

By using the proposed Light-weight IoU-Mask branch, point-

based representation and Size-Aware Dynamic Sampling, the

correlations between these modules are greatly enhanced.

Without bells and whistles, SC-RPN achieves an improvement

of 14.5% in terms of AR1000 compared to the RPN. Even

under different region proposal numbers and object sizes, SC-

RPN consistently outperforms all the existing region proposal

approaches.

2) Detection Performance. To further investigate the ability

of generating high-quality region proposals and its potential

to improve the detection performance, we integrate SC-RPN

into two common object detectors, including Fast R-CNN

and Faster R-CNN. In Fast R-CNN, the pre-computed region

proposals are produced by SC-RPN. While in Faster R-CNN,

we utilize SC-RPN to generate region proposals instead of

RPN in the first stage and train the whole model end to end.

The previous works have proved that aiming to train a detector

successfully, several adjustments should be made when replac-

ing RPN with other high-quality region proposal approaches.

Therefore, following [42], the overlapping threshold in R-CNN

is set to 0.65 and the region proposal number is set to 300.

The detection performance are reported in Table II. Besides,

the detection performance of Iterative RPN, GA-RPN, Cascade

RPN are cited from the previous paper [43]. With RPN, Fast R-

CNN yields 37.0 mAP while Faster R-CNN yields 37.1 mAP.

However, integrating SC-RPN into Fast R-CNN and Faster

R-CNN can boost the performance to 40.2 mAP and 40.9

mAP, respectively. Here, it can be found that the improvement

of SC-RPN for Faster R-CNN is greater than that of Fast

R-CNN, which shows that an end-to-end manner can better

exploit the potential of SC-RPN and achieve higher detection

performance.

C. Ablation Studies

Component-wise Performance. In order to demonstrate the

effectiveness of each component of SC-RPN, we show an

overall component-wise performance in Table III, which omits

different components progressively. Firstly, RPN with three

preset anchors is regarded as baseline, yielding AR1000 of

58.3. Then the performance falls to 55.8 when we use only one

anchor, implying that the model cannot fit the object outline

well. Even after predicting location twice, the AR1000 is still

similar to the baseline. After that, we apply the conventional

alignment operation and IoU loss, the performance improves to

65.7 and 66.3, respectively. The incorporation of point-based

representation increases the AR1000 to 66.7, implying that

abandoning the use of anchors can produce more high-quality

region proposals. When the Size-Aware Dynamic Sampling

is added, the AR1000 incrementally surges to 72.4, showing

the effectiveness of ensuring the sampling consistency. Finally,

applying IOU mask gets the AR1000 of 72.8, indicating that

IoU-aware score can reflect the location accuracy correctly.

Overall, SC-RPN achieves 17.1%, 15.5%, and 14.5% higher

than that of RPN in terms of AR100, AR300, and AR1000.

1) Ablation Studies on Size-Aware Dynamic Sampling

(SADS). Table IV shows the experiment results of different

sampling strategy combinations in two stages. The proposed

Size-Aware Dynamic Sampling is made up of Positive Region

assigner in the first stage and Size-Aware Threshold assigner

in the second stage. Here, PosR and SAT denote Positive

Region assigner and Size-Aware Threshold assigner, respec-

tively. When Max IoU assigner is applied to both the first

and the second stage, the model yields the AR1000 of 66.7.

The incorporation of SAT in the second stage can surge the

performance to 69.6, indicating the importance of ensuring

sampling consistency. Furthermore, when PosR is added in

the first stage, the AR1000 increases to 72.4, implying that

selecting positive samples with the preset anchors will limit

the model performance.

The performance dependency of different hyper-parameters

in SADS is shown in Table V. At the top of the Table V, firstly,

we evaluate the effectiveness of Positive Region assigner with

different hyper-parameters σ, which denotes the center ratio of

positive region in the first stage. The experiment results show

that the performance is similar to each other when σ is set to

0.1, 0.2 or 0.3. After that, the performance decreases with the

increase of σ, implying that training the model with a small

positive region can achieve a more reliable result.

Then the performance dependency results of different hyper-

parameters k in Size-Aware Threshold assigner are reported at

the middle of the Table V. Here, k denotes the number of

the closest samples selected per feature map in Size-Aware

Threshold assigner. As shown in the Table, a small k value

results in the shortage of positive samples and performance

degradation. On the contrary, a big k value leads to the

excessive number of positive samples, which has a negative

impact on model performance. Thus, adopting a moderate

value, k = 9, can maintain a reasonable number of positive

samples and obtain the best model performance.

Finally, we explore the effectiveness of different number of

feature map N selected in Size-Aware Threshold assigner, and

the experiment results are shown at the bottom of the Table V.

The results show that when the number of the selected feature

maps is insufficient, too few positive samples are assigned for

proper training due to the high dynamic overlapping threshold.
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TABLE I
PERFORMANCE OF REGION PROPOSAL APPROACHES ON MS COCO 2017 VAL SPLIT.

Approach Backbone AR100 AR300 AR1000 ARS ARM ARL Time(s)

SharpMask [50] ResNet50 36.4 - 48.2 - - - 0.76

GCN-NS [51] VGG-16(Sync BN) 31.6 - 60.7 - - - 0.10

AttractioNet [52] VGG-16 53.3 - 66.2 31.5 62.2 77.7 4.00

ZIP [53] BN-inception 53.9 - 67.0 31.9 63.0 78.5 1.13

RPN [6] 44.6 52.9 58.3 29.5 51.7 61.4 0.04

Itertive RPN [41] 48.5 55.4 58.8 32.1 56.9 65.4 0.05

GA-RPN [42] ResNet50-FPN 59.1 65.1 68.5 40.7 68.2 78.4 0.06

Cascade RPN [43] 61.1 67.6 71.7 42.1 69.3 82.8 0.06

SC-RPN(ours) 61.7 68.4 72.8 42.9 69.9 82.8 0.07

TABLE II
PERFORMANCE OF OBJECT DETECTORS ON MS COCO 2017 TEST-DEV SPLIT.

Approach Proposal Approach # proposals AP AP50 AP75 APS APM APL

RPN 37.0 59.5 39.9 21.1 39.4 47.0

Cascade RPN 1000 40.1 59.5 43.7 22.8 42.4 50.9

SC-RPN(ours) 40.2 59.7 44.0 22.8 42.6 51.3

Fast R-CNN [12]
RPN 36.6 58.6 39.5 20.3 39.1 47.0

Iterative RPN 38.6 58.8 42.2 21.1 41.5 50.0

GA-RPN 300 39.5 59.3 43.2 21.8 42.0 50.7

Cascade RPN 40.1 59.4 43.8 22.1 42.4 51.6

SC-RPN(ours) 40.2 59.5 44.2 22.2 42.5 51.8

RPN 37.1 59.3 40.1 21.4 39.8 46.5

Cascade RPN 1000 40.5 59.3 44.2 22.6 42.9 51.5

SC-RPN(ours) 40.8 59.6 44.6 23.1 43.2 51.7

Faster R-CNN [6]
RPN 36.9 58.9 39.9 21.1 39.6 46.5

Iterative RPN 39.2 58.2 43.0 21.5 42.0 50.4

GA-RPN 300 39.9 59.4 43.6 22.0 42.6 50.9

Cascade RPN 40.6 58.9 43.6 22.0 42.8 52.6

SC-RPN(ours) 40.9 59.5 45.0 22.5 43.3 52.4

TABLE III
COMPONENT-WISE PERFORMANCE OF SC-RPN.

Baseline One anchor Two-stage Alignment IOU loss Point-based rep SADS IOU mask AR100 AR300 AR1000

X 44.6 52.9 58.3

X X 44.7 51.2 55.8

X X X 42.9 51.7 58.9

X X X X 55.1 61.7 65.7

X X X X X 55.7 62.3 66.3

X X X X X X 56.1 62.7 66.7

X X X X X X X 61.3 67.9 72.4

X X X X X X X X 61.7 68.4 72.8

Over Improvement +17.1 +15.5 +14.5

Meanwhile, the excessive number of selected feature maps

introduces too much noise and limits the model performance.

When two feature maps are selected in SADS, the model gets

the best performance, achieving 61.3, 67.9, and 72.4 in terms

of AR100, AR300, and AR1000, respectively.

To further demonstrate the effectiveness of SADS, the

IoU distribution of region proposals with and without SADS

are shown in the Fig. 6. Here, x coordinate denotes IoU

between region proposals and ground-truth boxes, while y

coordinate denotes the statistics number of region proposals

tested on MS COCO 2017 val split. The figure shows that

the incorporation of SADS significantly reduces the number

TABLE IV
ABLATION ANALYSIS OF DIFFERENT SAMPLING STRATEGY

COMBINATIONS IN SADS. POSR AND SAT DENOTE POSITIVE REGION

ASSIGNER AND SIZE-AWARE THRESHOLD ASSIGNER, RESPECTIVELY.

PosR SAT AR100 AR300 AR1000

56.1 62.7 66.7

X 58.2 65.0 69.6

X X 61.3 67.9 72.4

of region proposals with low IoU. Besides, SADS consistently

increases the number of high-quality region proposals under

different IoUs.
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TABLE V
PERFORMANCE DEPENDENCY ON DIFFERENT HYPER-PARAMETERS IN

SADS. HERE, σ DENOTES THE CENTER RATIO OF POSITIVE REGION IN

POSITIVE REGION ASSIGNER. k DENOTES THE NUMBER OF THE CLOSEST

SAMPLES SELECTED PER FEATURE MAP AND N DENOTES THE NUMBER OF

THE SELECTED FEATURE MAPS IN SIZE-AWARE THRESHOLD ASSIGNER.
THE EXPERIMENT RESULTS OF EACH HYPER-PARAMETER ARE REPORTED

WHEN THE OTHER HYPER-PARAMETERS ARE OPTIMAL AND CONSTANT.

hyper-parameter AR100 AR300 AR1000

0.1 61.1 67.8 72.4

0.2 61.3 67.9 72.4

σ 0.3 61.2 67.8 72.3

0.4 60.8 67.6 72.1

0.5 60.2 67.2 71.8

3 54.7 63.3 69.7

6 56.8 64.4 70.4

k
9 61.3 67.9 72.4

12 60.8 67.7 72.4

15 58.9 66.5 71.9

18 58.1 65.8 71.2

1 60.6 67.3 71.8

2 61.3 67.9 72.4

N 3 60.9 67.7 72.4

4 60.2 67.3 72.3

5 59.4 66.7 72.2
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Fig. 6. The IoU distribution of region proposals with and without SADS. The
incorporation of SADS significantly reduces the number of region proposals
with low IoU and increases the number of high-quality region proposals under
different IoUs.

2) Ablation Studies on Light-weight IoU-Mask branch.

The performance comparisons on training Light-weight IoU-

Mask branch with different training samples and in different

location accuracy cases are shown in Table VI. With and

without SADS stand for the cases of high location accuracy

and low location accuracy, respectively. As we can see from

the Table VI, training with regression samples in low location

accuracy achieves the highest improvement, while training

with classification samples in high location accuracy achieves

the best performance. This phenomenon is due to the fact

that there are larger difference between the quality of positive

samples and negative samples in high location accuracy case,

compared to that in low location accuracy case. Thus, training

TABLE VI
PERFORMANCE COMPARISONS ON TRAINING LIGHT-WEIGHT IOU-MASK

BRANCH WITH DIFFERENT TRAINING SAMPLES AND IN DIFFERENT

LOCATION ACCURACY CASES. WITH AND WITHOUT SADS STAND FOR

THE CASES OF HIGH LOCATION ACCURACY AND LOW LOCATION

ACCURACY, RESPECTIVELY.

train with
training samples

test with
AR100 AR300 AR1000

SADS IoU mask

without IoU mask × 56.1 62.7 66.7

regression samples
× 56.5 63.0 67.0

×
X 56.5 63.0 67.0

regression samples and × 56.2 62.7 66.6

all negative samples X 56.2 62.7 66.6

classification samples
× 56.3 62.9 66.8

X 56.4 62.9 66.8

without IoU mask × 61.3 67.9 72.4

regression samples
× 61.5 68.2 72.7

X
X 61.6 68.3 72.7

regression samples and × 61.2 68.0 72.5

all negative samples X 61.2 68.0 72.5

classification samples
× 61.5 68.2 72.4

X 61.7 68.4 72.8

Light-weight IoU-Mask branch with classification samples in

high location accuracy case contributes to a stronger discrimi-

nation of the model. However, training with too many negative

samples will have an adverse effect in either case.

The performance comparisons on predicting IoU mask with

different feature maps and in different location accuracy cases

are shown in Table VII. Here, cls feature map and reg

feature map denote classification feature map and regression

feature map, respectively. Fused feature map is obtained by

combining classification feature map and regression feature

map. With and without SADS stand for the cases of high

location accuracy and low location accuracy, respectively.

Table VII shows similar experiment results in different location

accuracy cases. Since the direct fusion of two feature maps

with different properties may cause information confusion,

predicting IoU mask with fused feature map only yields a

slight improvement. When IoU mask is predicted by classi-

fication or regression feature map, the model obtains similar

performance in either case. Finally, the model in high location

accuracy case achieves 61.7, 68.4, and 72.8 in terms of AR100,

AR300, and AR1000, respectively.

Combined with experiment results in Table VI and Table

VII, we can easily observe that in the case of high location

accuracy, testing with IoU mask can achieve higher perfor-

mance than testing without IoU mask. But in the case of low

location accuracy, testing with IoU mask can hardly obtain

improvement. In addition, the overall improvement of Light-

weight IoU-Mask branch in high location accuracy case is

more significant than that in the case of low location accuracy.

Since the supervision information of Light-weight IoU-Mask

branch is derived from the refined region proposals, the higher

the location accuracy is, the higher the quality of supervision

information will obtain. Therefore, Light-weight IoU-Mask
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TABLE VII
PERFORMANCE COMPARISONS ON PREDICTING IOU MASK WITH

DIFFERENT FEATURE MAPS AND IN DIFFERENT LOCATION ACCURACY

CASES. HERE, CLS FEATURE MAP AND REG FEATURE MAP DENOTE

CLASSIFICATION FEATURE MAP AND REGRESSION FEATURE MAP,
RESPECTIVELY. FUSED FEATURE MAP IS OBTAINED BY COMBINING

CLASSIFICATION FEATURE MAP AND REGRESSION FEATURE MAP.

train with
feature map

test with
AR100 AR300 AR1000

SADS IoU mask

without IoU mask × 56.1 62.7 66.7

fused feature map
× 56.1 62.7 66.7

×
X 56.2 62.7 66.7

cls feature map
× 56.3 62.9 66.9

X 56.3 63.0 66.9

reg feature map
× 56.3 62.9 66.8

X 56.4 62.9 66.8

without IoU mask × 61.3 67.9 72.4

fused feature map
× 61.4 68.1 72.5

X
X 61.6 68.3 72.5

cls feature map
× 61.6 68.2 72.6

X 61.7 68.4 72.7

reg feature map
× 61.5 68.2 72.4

X 61.7 68.4 72.8
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Fig. 7. The changes in the IoU distribution of region proposals with
and without IoU mask. Here, (a) and (b) describe the changes in the IoU
distribution of the top 300 region proposals and the top 1000 region proposals,
respectively. Both (a) and (b) verify that IoU mask can refine the classification
scores of region proposals and prevent the high-quality region proposals from
being removed in NMS.

branch can effectively exploit the potential of high-quality

model.

In Fig. 7, we visualize the changes in the IoU distribution of

region proposals after using IoU mask. All the region proposal

results are tested on MS COCO 2017 val split. Fig. 7 (a)

and Fig. 7 (b) describe the changes in the IoU distribution

of the top 300 region proposals and the top 1000 region

proposals, respectively. These two figures consistently show

a trend: when we apply IoU mask for testing, the number

of region proposals with high IoU increases significantly.

This phenomenon verifies that using IoU mask can refine the

classification scores of region proposals and prevent the high-

quality region proposals from being removed in NMS.

3) Ablation Studies on Point-based Representation. The

experiment results of different components in point-based

representation are shown in Table VIII. In this work, point-

TABLE VIII
ABLATION ANALYSIS OF DIFFERENT COMPONENTS IN POINT-BASED

REPRESENTATION. THE FIRST LINE DENOTES THE PERFORMANCE OF

ADOPTING ANCHOR-BASED REPRESENTATION.

point-based representation
AR100 AR300 AR1000

point alignment point description

55.7 62.3 66.3

X 56.0 62.6 66.5

X X 56.1 62.7 66.7
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Fig. 8. The performance of bounding box representation and point-based
representation on objects with different aspect ratios. Here, (a) and (b) denote
the high-quality threshold is set to 0.7 and 0.8, respectively. Both (a) and
(b) show that with point-based representation, the model can better fit the
object outline and generate more high-quality region proposals for objects
with different aspect ratios.

based representation can be divided into two parts: point

alignment and point description. Here, the point-based rep-

resentation consistently outperforms the anchor-based repre-

sentation under different region proposal numbers in terms of

AR, implying that abandoning the use of anchors can better

fit the object outline and achieve higher performance.

In order to further demonstrate the effectiveness of point-

based representation, we delve into the performance of bound-

ing box representation and point-based representation on

objects with different aspect ratios. We firstly regard the

intersection-over-union (IoU) between refined region proposals

and ground-truth box as the IoU of region proposals. Then

the region proposals whose IoU higher than “high-quality

threshold” are regarded as high-quality region proposals. As

shown in Fig. 8, x coordinate denotes different aspect ratio

of objects, while y coordinate denotes the statistics number of

high-quality region proposals. Fig. 8 (a) and Fig. 8 (b) denote

the high-quality threshold is set to 0.7 and 0.8, respectively.

All the region proposal results are tested on MS COCO

2017 val split. The figure reveals that under point-based

representation, objects with different aspect ratios have more

high-quality region proposals. In other words, since point-

based representation is not sensitive to the object outline, it

can better fit the object outline and generate more high-quality

region proposals for all objects.

4) Extension With More Object Detectors. More detec-

tion results of SC-RPN combined with other object detector

pipelines are reported in Table IX. Here, we investigate

Double-Head R-CNN [54] and Cascade R-CNN [55] with

different proposal approaches. Both the baseline of Double-
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TABLE IX
PERFORMANCE OF MORE OBJECT DETECTORS ON MS COCO 2017 TEST-DEV SPLIT.

Approach Proposal Approach # proposals AP AP50 AP75 APS APM APL

Double Head R-CNN [54]
RPN

1000
39.6 59.9 43.2 23.2 42.5 49.3

SC-RPN (ours) 40.6 60.3 44.1 23.3 43.6 51.0

Cascade R-CNN [55]
RPN

1000
40.7 59.2 44.3 23.0 43.3 51.3

SC-RPN (ours) 41.7 60.2 45.3 23.9 44.4 52.9

TABLE X
PERFORMANCE OF REGION PROPOSAL APPROACHES ON IMAGENET-DET DATASET.

Approach Dataset Backbone AR100 AR300 AR1000 ARS ARM ARL

RPN 41.1 49.2 55.0 29.8 51.7 61.1

GA-RPN
ImageNet-DET ResNet50-FPN

63.6 67.5 69.7 43.0 64.1 77.3

Cascade RPN 67.3 71.6 74.3 46.6 68.3 82.4

SC-RPN (ours) 67.1 71.7 75.0 46.8 69.4 82.7

Head R-CNN and Cascade R-CNN are two-stage frameworks

and adopt RPN in the first stage. Combined with SC-RPN,

Double-Head R-CNN and Cascade R-CNN surge the mAP

to 40.6 and 41.7, respectively. It can be concluded that the

proposed SC-RPN significantly outperforms the RPN in terms

of AP under different settings of thresholds and object sizes.

5) Performance on ImageNet-DET Dataset. We present

the performance of different region proposal approaches on

ImageNet-DET (ILSVRC 2015) [56] dataset in Table X. To

make a fair comparison, all the experimental implementation

details are consistent with the experiments on MS COCO

2017 detection dataset. Regarded as the most important perfor-

mance indicator, the proposed SC-RPN achieves the highest

performance in AR1000, surpassing all the existing region

proposal approaches. Furthermore, in terms of AR under

different settings of thresholds and object sizes, the proposed

SC-RPN achieves the best performance except AR100. And

we can easily find that SC-RPN gains slighter improvement on

ImageNet-DET dataset compared to that on MS COCO 2017

detection dataset. The average object number on each image

of ImageNet-DET dataset is several times lower than that of

MS COCO 2017 detection dataset, in other words, MS COCO

2017 detection dataset is much more complex than ImageNet-

DET dataset. However, the proposed training method SADS

in SC-RPN, which brings the most significant improvement, is

proposed to set independent dynamic overlapping threshold for

each object on an image. When training with a simple dataset,

the potential of SADS isn’t fully exploited, nor is the SC-

RPN. Therefore, SC-RPN can achieve stronger improvement

on complex dataset (e.g., MS COCO 2017 detection dataset).

V. CONCLUSION

In this paper, we propose a novel two-stage strong corre-

lation learning framework, abbreviated as SC-RPN, to gen-

erate high-quality region proposals. In order to tackle the

weak correlation between location and classification of region

proposals, we subtly design an extra Light-weight IoU-Mask

branch to refine the classification score, which prevents the

high-quality region proposals from being filtered in NMS.

Besides, considering the shortcoming of anchors to represent

region proposals, point-based representation is adopted in SC-

RPN to generate region proposals with strong fitting ability.

Furthermore, to address the weak correlation of sampling strat-

egy between the two stages, Size-Aware Dynamic Sampling

(SADS) is applied to ensure the sampling consistency during

the training. Finally, we report the overall performance of

the proposed SC-RPN, which surpasses all the state-of-the-art

region proposal approaches. The effectiveness of the proposed

approach and its components are also validated in ablation

experiments. Even when combined with several object detector

pipelines, SC-RPN achieves the state-of-the-art performance in

terms of AP under different settings of thresholds and object

sizes. As for future work, we will extend the concept of weak

correlation and the proposed approach to other related tasks,

e.g., instance segmentation and object tracking.
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