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Abstract 
 
Single-cell RNA-seq (scRNA-seq) enables a quantitative cell-type characterisation        
based on global transcriptome profiles. We present Single-Cell Consensus Clustering          
(SC3), a user-friendly tool for unsupervised clustering which achieves high accuracy           
and robustness by combining multiple clustering solutions through a consensus          
approach. We demonstrate that SC3 is capable of identifying subclones based on the             
transcriptomes from neoplastic cells collected from patients. 
 
  

 



 

Main text 
 
One of the key applications of scRNA-seq is determining cell types based on             
transcriptome profiles alone through unsupervised clustering ​1–3​. A full characterisation of          
the transcriptional landscape of individual cells holds an enormous potential, both for            
basic biology and clinical applications. SC3 is an interactive and user-friendly           
R-package for clustering and its integration with Bioconductor ​4 and scater ​5 makes it            
easy to incorporate into existing bioinformatic workflows. 
 
The SC3 pipeline is presented in Fig. 1a, Methods. Each of the steps requires the               
specification of a number of parameters. Choosing optimal parameter values is difficult            
and time-consuming. To avoid this problem, SC3 utilizes a parallelisation approach,           
whereby a significant subset of the parameter space is evaluated simultaneously to            
obtain a set of clusterings. SC3 then combines ​all the different clustering outcomes into              
a consensus matrix that summarises how often each pair of cells is located in the same                
cluster. The final result provided by SC3 is determined by complete-linkage hierarchical            
clustering of the consensus matrix into ​k​ groups. 
 
To constrain the parameter values of the SC3 pipeline, we first considered six publicly              
available scRNA-Seq datasets (Fig. 1b). The datasets were selected on the basis that             1

one can be highly confident in the cell-labels as they represent cells from different              
stages, conditions or lines, and thus we consider them as ‘gold standard’. To quantify              
the similarity between the reference labels and the clusters obtained by SC3, we used              
the Adjusted Rand Index (ARI, see Methods) which ranges from 1, when the clusterings              
are identical, to 0 when the similarity is what one would expect by chance. For the gold                 
standard datasets, we found that the quality of the outcome as measured by the ARI               
was sensitive to the number of eigenvectors, ​d ​, retained after the spectral            
transformation (Fig. S1, S2). For all six datasets we find that the best clusterings were               
achieved when ​d is between 4-7% of the number of cells, ​N (Fig. 1c, S3a, Methods).                
The robustness of the 4-7% region was supported by a simulation experiment where the              
reads from the six gold standard datasets were downsampled by a factor of ten              
(Methods and Fig. S3a). We further tested the SC3 pipeline on six other published              
datasets, where the cell labels can only be considered ‘silver standard’ since they were              
assigned using computational methods and the authors’ knowledge of the underlying           
biology. Again, we find that SC3 performs well when using ​d in the 4-7% of ​N ​interval                 
(Fig. S3b). The final step, consensus clustering, improves both the accuracy and the             
stability of the solution. k-means based methods will typically provide different outcomes            

1 Full references to the datasets can be found in the Supplementary Results 
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depending on the initial conditions. We find that this variability is significantly reduced             
with the consensus approach (Fig. 1d). 
 
To benchmark SC3, we considered five other methods: tSNE​6 followed by ​k ​-means            
clustering (a method similar to the one used by Grün et al ​1​), pcaReduce ​7​, SNN-Cliq ​8​,              
SINCERA ​9 and SEURAT​10​. As Fig. 2a shows, SC3 performs better than the five tested              
methods across all datasets (Wilcoxon signed-rank test p-value < 0.01), with only a few              
exceptions. In addition to considering accuracy, we also compared the stability of SC3             
with other stochastic methods (pcaReduce and tSNE+kmeans, but not SEURAT) by           
running them 100 times (Fig. 2b, Methods, black dots in Fig. 2a). In contrast to the other                 
methods that rely on different initializations, SC3 is highly stable. 
 
Although SC3’s consensus strategy provides a high accuracy, it comes at a moderate             
computational cost: the run time for N = 2,000 is ~20 mins (Fig. S4a). The main                
bottleneck is the k-means clustering and by reducing how many different runs are             
considered it is possible to cluster 5,000 cells in ~20 mins with only a slight reduction in                 
accuracy (Fig. S4b). To apply SC3 to even larger datasets, we have implemented a              
hybrid approach that combines unsupervised and supervised methodologies. SC3         
selects a subset of 5,000 cells uniformly at random, and obtains clusters from this              
subset as described above. Subsequently, the inferred labels are used to train a support              
vector machine (SVM, Methods), which is employed to assign labels to the remaining             
cells. Our result shows that the use of an SVM to predict cell labels works well (Fig. 2c,                  
S4c and Methods). Using the hybrid approach, we were able to analyse a large              
Drop-Seq dataset with ​N ​= 44,808 cells and ​k = 39 clusters ​10 and our results were                
again in good agreement with the original authors’ (Supplementary Results, ​Methods,           
Fig. S5, Table S1). ​The main drawback of the sampling strategy is that one may fail to                 
identify rare cell-types, and when N>>5,000 there is a substantial risk that the sampled              
distribution will differ significantly from the full distribution (Methods). If the user is trying              
to identify a rare subpopulation (e.g. cancer stem cells), then methods specifically            
designed to identify rare cell-types such as RaceID ​1 or GiniClust ​11 may be more             
appropriate.  
 
To help the user identify a good choice of ​k ​, we have implemented a method based on                 
Random Matrix Theory (RMT)​12,13 for determining the number of clusters (Methods).           
Overall, we find good agreement between these estimates, , and the numbers        k̂     
suggested by the original authors (Fig. 2b). Additionally, in the interactive SC3 session             
the user can explore different choices of ​k in real time, by either assessing the               
consensus matrix (Fig. 2d), the silhouette index ​14 (a measure of how tightly grouped the              
cells in the clusters are), or the expression matrix. 
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To help the user interpret the clustering result SC3 can identify differentially expressed             
genes, marker genes, and outlier cells (Fig. S6, Methods, Table S2). Marker genes are              
particularly useful since they can be used to uniquely identify a cluster. To illustrate              
these features, we analysed the Deng ​15 dataset tracing embryonic developmental          
stages. The most stable result for ​k ​= 10 is shown in Fig. 2d, and our clusters largely                  
agree with the known sampling timepoints. In total, we identified ~3000 marker genes             
(Table S3), many of which had been previously reported as specific to the different              
developmental stages ​16,17​. Furthermore, the analysis reveals several genes specific to          
each developmental stage which had previously not been reported (Table S3).           
Importantly, when using the reference labels reported by the authors ​15​, nine cells have             
high outlier scores (purple cells in Fig. S6c). As it turns out, these were prepared using                
the Smart-Seq2 protocol instead of the Smart-Seq protocol ​8,15​.  
 
Finally, we investigated the ability of SC3 to identify subclones based on            
transcriptomes. Myeloproliferative neoplasms, a group of diseases characterised by the          
overproduction of terminally differentiated cells of the myeloid lineage, reflect an early            
stage of tumorigenesis where multiple subclones are known to coexist in the same             
patient ​18​. From exome sequencing data, we previously identified TET2 and JAK2V61F           
as the only driver mutations in a large patient cohort ​19​. Haematopoietic stem cells             
(HSCs) are thought to be the cell of origin in myeloproliferative neoplasms. To gain              
further insight into the transcriptional landscape of patient derived HSCs, we obtained            
scRNA-seq data from the two patients (Figs. S7a-b, S8, Methods, Table S4). For             
patient 1 (​N ​= ​51), both the silhouette index of SC3 and our RMT method suggested that                 
k ​= 3, provides the best clustering, revealing three clusters of similar size (Fig. S9). For                
patient 2 (​N ​= 89) SC3 indicated ​k​=1 (Fig. S10), in agreement with the RMT algorithm,                
suggesting that one single cluster might best reflect the underlying transcriptional           
changes. 

    
Since known driver mutations in these patients are the ​TET2 and ​JAK2V617F loci ​20 we              
hypothesized that the different clusters correspond to different combinations of          
mutations within different clones. The genotype composition for each HSC clone was            
determined by growing individual haematopoietic stem cells into        
granulocyte/macrophage colonies, followed by Sanger sequencing of the TET2 and          
JAK2V617F loci (Fig. S7b-c). In agreement with the clustering defined by SC3, patient 1              
( ​k​=3) was found to harbor three different subclones: (i) cells with both TET2 and              
JAK2V617F mutations, (ii) cells with a TET2 mutation and (iii) wild-type cells (Fig. S7c).              
Strikingly, the SC3-clusters contain 22%, 29% and 49% of the cells, in excellent             
agreement with the proportions of each genotype found in the patient, namely 20%,             
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30% and 50% (Fig. S7c). Thus, we hypothesize that cluster 1 corresponds to the double               
mutant, cluster 2 corresponds to cells with only a TET2 mutation, and cluster 3              
corresponds to wild-type cells. The HSC compartment of patient 2 was 100% mutant for              
TET2 and JAK2V617F (Fig. S7c), which again was consistent with clustering of ​k​=1             
suggested by SC3 (Fig. S10). We then analysed the pooled cells from patient 1 and 2.                
SC3 clustering again suggested ​k ​=3 (Figs. 3, S11), in agreement with the RMT             
algorithm. Most importantly, all of the putative double mutant cells from patient 1 were              
grouped with the double mutant cells from patient 2. SC3 reported 33 marker genes for               
the putative ​TET2 mutant and 202 marker genes for the putative double mutant clone              
(Fig. 3, Table S5). Together with additional evidence (Supplementary Results), we           
conclude that SC3 is able to identify subclones across patients.  
 

 
  

 



 

Data Availability 
 
All datasets (in Fig. 1b and Macosko dataset) were acquired from the accessions             
provided in the original publications. According to the authors, the Pollen dataset            
contains two distinct hierarchies and the cells can be grouped either into 4 or 11               
clusters, and the Usoskin dataset contains three hierarchies and the cells can be             
grouped either into 4, 8 or 11 clusters. scRNA-seq data for patient 1 and 2 is available                 
from GEO accession ​GSE79102 ​. 
 
Software availability 
 
SC3 is available as a R package at ​http://bioconductor.org/packages/SC3/ ​.  
 
Scripts for figures generation are available at 
http://github.com/hemberg-lab/SC3-paper-figures  
 
At the time of writing the manuscript the following old versions of some of the tools were                 
used (these tools have been updated/upgraded since then): 
 

1. SC3 (1.1.2 <= Version < 1.1.5). These versions of SC3 can be installed from              
source/binary files from Bioconductor    
( ​http://bioconductor.org/packages/3.3/bioc/html/SC3.html ​) or directly from Github     
using commands: 
 
install.packages("devtools") 
devtools::install_github("hemberg-lab/SC3", ref = "8a86b60463") 
 
In the newer versions the main SC3 pipeline has not been changed. 

 
2. SEURAT (version 1.3) - can be installed from GitHub:  

 
install.packages("devtools") 
devtools::install_github('satijalab/seurat', ref = 'da6cd08') 
 
In the newer versions of SEURAT a different algorithm is used for clustering. 

 
 
 

http://bioconductor.org/packages/3.3/bioc/html/SC3.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE79102
https://github.com/hemberg-lab/SC3-paper-figures
http://bioconductor.org/packages/SC3/


 

  

 



 

Acknowledgements 
 
We would like to thank B. Vangelov, J.-C. Delvenne and R. Lambiotte for fruitful              
discussions and their help with computational methods. We would also like to thank D.              
Flores Santa Cruz, D. Dimitropolou and J. Grinfeld for technical assistance with            
experiments. We thank I. Vasquez-Garcia, D. Harmin, M. Kosicki, D. Ramsköld and M.             
Huch for helpful comments on the manuscript. 
 
Contributions 
 
M.H. conceived the study; V.Y.K., M.H., M.T.S., M.B., T.A. and A.Y. contributed to the              
computational framework; K.K. and T.C. performed the experiments for the patient data;            
K.N.N. helped with the analysis of embryonic mouse data; M.B., W.R., A.R.G. and M.H.              
supervised the research; V.Y.K. and M.H. led the writing of the manuscript with input              
from the other authors. 
 
  

 



 

References 
1. Grün, D. ​et al.​ Single-cell messenger RNA sequencing reveals rare intestinal cell 

types. ​Nature ​ ​525, ​ 251–255 (2015). 

2. Jaitin, D. A. ​et al.​ Massively parallel single-cell RNA-seq for marker-free 

decomposition of tissues into cell types. ​Science ​ ​343, ​ 776–779 (2014). 

3. Mahata, B. ​et al.​ Single-cell RNA sequencing reveals T helper cells synthesizing 

steroids de novo to contribute to immune homeostasis. ​Cell Rep. ​ ​7,​ 1130–1142 

(2014). 

4. Gentleman, R. C. ​et al.​ Bioconductor: open software development for 

computational biology and bioinformatics. ​Genome Biol. ​ ​5, ​ R80 (2004). 

5. McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: 

pre-processing, quality control, normalization and visualization of single-cell 

RNA-seq data in R. ​Bioinformatics ​ (2017). doi: ​10.1093/bioinformatics/btw777 

6. van der Maaten, L. & Hinton, G. Visualizing Data using t-SNE. ​J. Mach. Learn. Res. 

9,​ 2579–2605 (2008). 

7. Zurauskiene, J. & Yau, C. pcaReduce: Hierarchical Clustering of Single Cell 

Transcriptional Profiles. ​bioRxiv ​ 026385 (2015). doi: ​10.1101/026385 

8. Xu, C. & Su, Z. Identification of cell types from single-cell transcriptomes using a 

novel clustering method. ​Bioinformatics ​ (2015). doi: ​10.1093/bioinformatics/btv088 

9. Guo, M., Wang, H., Potter, S. S., Whitsett, J. A. & Xu, Y. SINCERA: A Pipeline for 

Single-Cell RNA-Seq Profiling Analysis. ​PLoS Comput. Biol. ​ ​11, ​ e1004575 (2015). 

10. Macosko, E. Z. ​et al.​ Highly Parallel Genome-wide Expression Profiling of 

 

http://paperpile.com/b/DWyiaG/TtlHV
http://paperpile.com/b/DWyiaG/TtlHV
http://paperpile.com/b/DWyiaG/eSExV
http://paperpile.com/b/DWyiaG/pSNu1
http://paperpile.com/b/DWyiaG/94cmm
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/iF6TN
http://paperpile.com/b/DWyiaG/MzZwp
http://paperpile.com/b/DWyiaG/q9vs
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/TtlHV
http://paperpile.com/b/DWyiaG/STWV
http://paperpile.com/b/DWyiaG/q9vs
http://paperpile.com/b/DWyiaG/eSExV
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/q9vs
http://paperpile.com/b/DWyiaG/q9vs
http://paperpile.com/b/DWyiaG/eSExV
http://paperpile.com/b/DWyiaG/BZR7
http://paperpile.com/b/DWyiaG/MzZwp
http://paperpile.com/b/DWyiaG/TtlHV
http://paperpile.com/b/DWyiaG/BZR7
http://paperpile.com/b/DWyiaG/BZR7
http://paperpile.com/b/DWyiaG/BZR7
http://paperpile.com/b/DWyiaG/iF6TN
http://paperpile.com/b/DWyiaG/iF6TN
http://paperpile.com/b/DWyiaG/94cmm
http://dx.doi.org/10.1093/bioinformatics/btw777
http://paperpile.com/b/DWyiaG/pSNu1
http://dx.doi.org/10.1093/bioinformatics/btv088
http://paperpile.com/b/DWyiaG/BZR7
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/pSNu1
http://paperpile.com/b/DWyiaG/TtlHV
http://paperpile.com/b/DWyiaG/MzZwp
http://paperpile.com/b/DWyiaG/BZR7
http://dx.doi.org/10.1101/026385
http://paperpile.com/b/DWyiaG/94cmm
http://paperpile.com/b/DWyiaG/q9vs
http://paperpile.com/b/DWyiaG/q9vs
http://paperpile.com/b/DWyiaG/pSNu1
http://paperpile.com/b/DWyiaG/pSNu1
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/eSExV
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/iF6TN
http://paperpile.com/b/DWyiaG/STWV
http://paperpile.com/b/DWyiaG/q9vs
http://paperpile.com/b/DWyiaG/BZR7
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/94cmm
http://paperpile.com/b/DWyiaG/STWV
http://paperpile.com/b/DWyiaG/STWV
http://paperpile.com/b/DWyiaG/iF6TN
http://paperpile.com/b/DWyiaG/q9vs
http://paperpile.com/b/DWyiaG/iF6TN
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/w0MqX
http://paperpile.com/b/DWyiaG/TtlHV
http://paperpile.com/b/DWyiaG/TtlHV
http://paperpile.com/b/DWyiaG/STWV
http://paperpile.com/b/DWyiaG/BZR7
http://paperpile.com/b/DWyiaG/TtlHV


 

Individual Cells Using Nanoliter Droplets. ​Cell ​ ​161, ​ 1202–1214 (2015). 

11. Jiang, L., Chen, H., Pinello, L. & Yuan, G.-C. GiniClust: detecting rare cell types 

from single-cell gene expression data with Gini index. ​Genome Biol. ​ ​17, ​ 144 

(2016). 

12. Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. 

PLoS Genet. ​ ​2, ​ e190 (2006). 

13. Tracy, C. A. & Widom, H. Level-spacing distributions and the Airy kernel. ​Commun. 

Math. Phys.​ ​159, ​ 151–174 (1994). 

14. Rousseeuw, P. J. Silhouettes: A graphical aid to the interpretation and validation of 

cluster analysis. ​J. Comput. Appl. Math.​ ​20, ​ 53–65 (1987). 

15. Deng, Q., Ramsköld, D., Reinius, B. & Sandberg, R. Single-cell RNA-seq reveals 

dynamic, random monoallelic gene expression in mammalian cells. ​Science ​ ​343, 

193–196 (2014). 

16. Guo, G. ​et al.​ Resolution of cell fate decisions revealed by single-cell gene 

expression analysis from zygote to blastocyst. ​Dev. Cell ​ ​18, ​ 675–685 (2010). 

17. Boroviak, T. ​et al.​ Lineage-Specific Profiling Delineates the Emergence and 

Progression of Naive Pluripotency in Mammalian Embryogenesis. ​Dev. Cell ​ ​35, 

366–382 (2015). 

18. Chen, E., Staudt, L. M. & Green, A. R. Janus kinase deregulation in leukemia and 

lymphoma. ​Immunity ​ ​36, ​ 529–541 (2012). 

19. Ortmann, C. A. ​et al.​ Effect of mutation order on myeloproliferative neoplasms. ​N. 

Engl. J. Med.​ ​372, ​ 601–612 (2015). 

 

http://paperpile.com/b/DWyiaG/1sCLl
http://paperpile.com/b/DWyiaG/1sCLl
http://paperpile.com/b/DWyiaG/5xgy
http://paperpile.com/b/DWyiaG/d0Nu7
http://paperpile.com/b/DWyiaG/VlECB
http://paperpile.com/b/DWyiaG/ydlrF
http://paperpile.com/b/DWyiaG/o260a
http://paperpile.com/b/DWyiaG/VlECB
http://paperpile.com/b/DWyiaG/rz4Do
http://paperpile.com/b/DWyiaG/o260a
http://paperpile.com/b/DWyiaG/5xgy
http://paperpile.com/b/DWyiaG/VlECB
http://paperpile.com/b/DWyiaG/1sCLl
http://paperpile.com/b/DWyiaG/d0Nu7
http://paperpile.com/b/DWyiaG/5xgy
http://paperpile.com/b/DWyiaG/Dvajm
http://paperpile.com/b/DWyiaG/1sCLl
http://paperpile.com/b/DWyiaG/1sCLl
http://paperpile.com/b/DWyiaG/o260a
http://paperpile.com/b/DWyiaG/2lAQ2
http://paperpile.com/b/DWyiaG/ydlrF
http://paperpile.com/b/DWyiaG/o260a
http://paperpile.com/b/DWyiaG/1sCLl
http://paperpile.com/b/DWyiaG/VlECB
http://paperpile.com/b/DWyiaG/Dvajm
http://paperpile.com/b/DWyiaG/2lAQ2
http://paperpile.com/b/DWyiaG/rz4Do
http://paperpile.com/b/DWyiaG/2lAQ2
http://paperpile.com/b/DWyiaG/MzZwp
http://paperpile.com/b/DWyiaG/2lAQ2
http://paperpile.com/b/DWyiaG/ydlrF
http://paperpile.com/b/DWyiaG/Dvajm
http://paperpile.com/b/DWyiaG/d0Nu7
http://paperpile.com/b/DWyiaG/5xgy
http://paperpile.com/b/DWyiaG/ydlrF
http://paperpile.com/b/DWyiaG/Dvajm
http://paperpile.com/b/DWyiaG/2lAQ2
http://paperpile.com/b/DWyiaG/o260a
http://paperpile.com/b/DWyiaG/5xgy
http://paperpile.com/b/DWyiaG/o260a
http://paperpile.com/b/DWyiaG/d0Nu7
http://paperpile.com/b/DWyiaG/d0Nu7
http://paperpile.com/b/DWyiaG/MzZwp
http://paperpile.com/b/DWyiaG/5xgy
http://paperpile.com/b/DWyiaG/d0Nu7
http://paperpile.com/b/DWyiaG/5xgy
http://paperpile.com/b/DWyiaG/ydlrF
http://paperpile.com/b/DWyiaG/Dvajm
http://paperpile.com/b/DWyiaG/MzZwp
http://paperpile.com/b/DWyiaG/VlECB
http://paperpile.com/b/DWyiaG/ydlrF
http://paperpile.com/b/DWyiaG/MzZwp
http://paperpile.com/b/DWyiaG/MzZwp
http://paperpile.com/b/DWyiaG/2lAQ2
http://paperpile.com/b/DWyiaG/rz4Do
http://paperpile.com/b/DWyiaG/rz4Do
http://paperpile.com/b/DWyiaG/ydlrF
http://paperpile.com/b/DWyiaG/d0Nu7
http://paperpile.com/b/DWyiaG/rz4Do
http://paperpile.com/b/DWyiaG/rz4Do
http://paperpile.com/b/DWyiaG/o260a
http://paperpile.com/b/DWyiaG/ydlrF
http://paperpile.com/b/DWyiaG/VlECB
http://paperpile.com/b/DWyiaG/d0Nu7
http://paperpile.com/b/DWyiaG/rz4Do
http://paperpile.com/b/DWyiaG/rz4Do
http://paperpile.com/b/DWyiaG/rz4Do


 

20. Nangalia, J. ​et al.​ Somatic CALR mutations in myeloproliferative neoplasms with 

nonmutated JAK2. ​N. Engl. J. Med.​ ​369, ​ 2391–2405 (2013). 

 
  

 

http://paperpile.com/b/DWyiaG/y2qk0
http://paperpile.com/b/DWyiaG/y2qk0
http://paperpile.com/b/DWyiaG/y2qk0
http://paperpile.com/b/DWyiaG/y2qk0
http://paperpile.com/b/DWyiaG/y2qk0
http://paperpile.com/b/DWyiaG/y2qk0
http://paperpile.com/b/DWyiaG/y2qk0
http://paperpile.com/b/DWyiaG/y2qk0


 

Figure Legends 
 
Figure 1. The SC3 framework for consensus clustering. (​a​) Overview of clustering with SC3               
framework (see Methods). The consensus step is exemplified using the Treutlein data. ( ​b​)             
Published datasets used to set SC3 parameters. ​N is the number of cells in a dataset; ​k is the                   
number of clusters originally identified by the authors; Units: RPKM is Reads Per Kilobase of               
transcript per Million mapped reads, RPM is Reads Per Million mapped reads, FPKM is              
Fragments Per Kilobase of transcript per Million mapped reads, TPM is Transcripts Per Million              
mapped reads. (​c​) Histogram of the ​d values where ARI>.95 is achieved for the gold standard                
datasets. The black vertical lines indicate the interval ​d = 4-7% of the total number of cells ​N,                  
showing high accuracy in the classification. ( ​d​) 100 realizations of the SC3 clustering of the               
datasets shown in (​b​). Dots represent individual clustering runs. Bars correspond to the median              
of the dots. Red and grey colours correspond to clustering with and without consensus step.               
The black line corresponds to ARI=0.8. The dashed black line separates gold and silver              
standard datasets. 
 
Figure 2. ​Benchmarking of SC3 against existing methods. ​(​a ​) ​SC3, tSNE+kmeans and            
pcaReduce were applied 100 times to each dataset. SNN-Cliq and SINCERA are deterministic             
and were run only once. SEURAT was also run once, however was optimised over different               
values of the density parameter ​G (Methods). Each panel shows the ARI (black dots, Methods)               
between the inferred clusterings and the reference labels. Bars correspond to the median of the               
dots. For the Pollen and Usoskin datasets all different hierarchies were considered (Data             
Avaialbility). The black line indicates ARI = 0.8. The dashed black line separates gold and silver                
standard datasets. ( ​b​) Number of clusters predicted by SC3, SINCERA and SNN-Cliq for all       k̂          
datasets. Ref is the reference clustering reported by the authors. ​(c) ​The performance of the               
hybrid SC3 (Methods). Dots represent outliers higher (lower) than the highest (lowest) value             
within 1.5 x IQR, where IQR is the interquartile range. The black line indicates ARI = 0.8. The                  
dashed black line in the legend separates gold and silver standard datasets. ( ​d​) The consensus               
matrix as generated by SC3 for the Deng dataset (Methods). The matrix indicates how often               
each pair of cells was assigned to the same cluster by the different parameter combinations as                
indicated by the colorbar (1 - always, 0 - never). SC3 finds a clustering with ​k ​= 10 clusters,                   
separated by the white lines as visual guides. The colors at the top represent the reference                
labels, corresponding to different stages of development (see colour guide).  
 
Figure 3. ​Using SC3 to define subclones from two patients with myeloproliferative            
neoplasm. ​Marker gene expression matrix (after Gene Filter and Log-transformation, Methods)           
of the combined dataset (patient 1 + patient 2). Clusters (separated by white vertical lines)               
correspond to ​k​ = 3 (Methods). Only the top 10 marker genes are shown for each cluster. 
 
 
 

 



 
Figure 1. The SC3 framework for consensus clustering. (​a​) Overview of clustering with SC3 framework (see Methods).                  
A total of 6​D​ clusterings are obtained, where D is the total number of dimensions ​d​ 1​ , …, ​d​ D considered. These clusterings                     
are then combined through a consensus step to increase accuracy and robustness. Here, the consensus step is                 
exemplified using the Treutlein data: the binary matrices (Methods) corresponding to each clustering are averaged, and                
the resulting matrix is segmented using hierarchical clustering up to the ​k-th hierarchical level (​k = 5 in this example). (​b​)                      
Published datasets used to set SC3 parameters. ​N is the number of cells in a dataset; ​k is the number of clusters originally                       
identified by the authors ​(Biase et al. 2014; Yan et al. 2013; Goolam et al. 2016; Deng et al. 2014; Pollen et al. 2014;                        
Kolodziejczyk et al. 2015; Treutlein et al. 2014; Ting et al. 2014; Patel et al. 2014; Usoskin et al. 2015; Klein et al. 2015;                        
Zeisel et al. 2015)​; Units: RPKM is Reads Per Kilobase of transcript per Million mapped reads, RPM is Reads Per Million                     
mapped reads, FPKM is Fragments Per Kilobase of transcript per Million mapped reads, TPM is Transcripts Per Million                  
mapped reads. (​c​) Histogram of the ​d values where ARI>.95 is achieved for the gold standard datasets. The black vertical                    
lines indicate the interval ​d = 4-7% of the total number of cells ​N,​ showing high accuracy in the classification. (​d​) 100                      
realizations of the SC3 clustering of the datasets shown in (​b​). Bars correspond to the median of the dots. Grey bars                     
corresponds to clustering without consensus step. Red bars correspond to the consensus clustering. The black line                
corresponds to ARI=0.8. Dots represent individual clustering runs. The dashed black line separates gold and silver                
standard datasets.  
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Figure 2. ​Benchmarking of SC3 against existing methods. ​(​a​) ​SC3, tSNE+kmeans and pcaReduce were applied 100                
times to each dataset to evaluate accuracy and stability. SNN-Cliq and SINCERA are deterministic and were thus run only                   
once. SEURAT was also run once, however was optimised over different values of the density parameter ​G (Methods).                  
Each panel shows the similarity between the inferred clusterings and the reference labels. The similarity is quantified by                  
the Adjusted Rand Index (ARI, see Methods) which ranges from 1, when the clusterings are identical, to 0 when the                    
similarity is what one would expect by chance. The ARI was calculated for each run of the respective method (black dots).                     
The top of each bar corresponds to the median of the distribution of the black dots. For the Pollen and Usoskin datasets                      
we considered all the different hierarchies reported in the original papers (Pollen1 ​k = 4, Pollen2 ​k = 11, Usoskin1 ​k = 4,                       
Usoskin2 ​k = 8, Usoskin3 ​k = 11). The black line indicates ARI = 0.8. The dashed black line separates gold and silver                       
standard datasets. (​b​) Number of clusters predicted by SC3, SINCERA and SNN-Cliq for all datasets. Ref is the      k̂              
reference clustering reported by the authors. ​(c) ​The performance of the hybrid SC3, as measured by the ARI, improves as                    
the % of subsampled cells increases. The results indicate that accurate clustering can be achieved with only a small                   
percentage of all cells used to obtain SC3 labels, which are then used as inputs by a linear kernel support vector machine                      
(SVM). Dots represent outliers higher (lower) than the highest (lowest) value within 1.5 x IQR, where IQR is the                   
interquartile range. The black line indicates ARI = 0.8. The dashed black line in the legend separates gold and silver                    
standard datasets. (​d​) The consensus matrix panel as generated by SC3. The matrix indicates how often each pair of cells                    
was assigned to the same cluster by the different parameter combinations as indicated by the colorbar. Dark red (1)                   
indicates that the cells were always assigned to the same cluster whereas dark blue (0) indicates that they were never                    
assigned to the same cluster. In this case, SC3 finds a clustering with ​k​ = 10 clusters, separated by the white lines as                       
visual guides. The colors at the top represent the reference labels, corresponding to different stages of development (see                  
colour guide).  



 
Figure 3. ​Using SC3 to define subclones from two patients with myeloproliferative neoplasm. ​Marker gene               
expression (after Gene Filter and Log-transformation, Methods) of the combined dataset (patient 1 + patient 2). Clusters                 
(separated by white vertical lines) correspond to ​k = 3 (Methods). Only the top 10 marker genes are shown for each                     
cluster. 



Methods 
 
SC3 clustering 
 
SC3 takes as input an expression matrix ​M where columns correspond to cells and rows               
correspond to genes/transcripts. Each element of ​M corresponds to the expression of a             
gene/transcript in a given cell. By default SC3 does not carry out any form of normalization or                 
correction for batch effects. SC3 is based on five elementary steps. The parameters in each of                
these steps can be easily adjusted by the user, but are set to sensible default values, determined                 
via the gold standard datasets (see text).  
 
1. Gene filter 
The gene filter removes genes/transcripts that are either expressed (expression value is more             
than 2) in less than X% of cells (rare genes/transcripts) or expressed (expression value is more                
than 0) in at least (100-X)% of cells (ubiquitous genes/transcripts). By default X is 6. The                
motivation for the gene filter is that ubiquitous and rare genes are most often not informative for                 
the clustering. We also explored all three parameters defined in the gene filter (expression              
thresholds of rare and ubiquitous genes/transcripts and the percentage X) and found that in              
general the gene filter did not affect the accuracy of clustering (Fig. S3c). However, the gene filter                 
significantly reduced the dimensionality of the data, thereby speeding up the method. 
 
For further analysis the filtered expression matrix ​M is log-transformed after adding a             
pseudo-count of 1: ​M​ ’​ = log2( ​M​  + 1). 
 
2. Distance calculations 
Distance between the cells, i.e. columns, in ​M​ ’ are calculated using the Euclidean, Pearson and               
Spearman metrics to construct distance matrices.  
 
We investigated the impact of dropouts on distance calculations by considering a modified             
distance metric that ignores dropouts. This was done by excluding genes that were not expressed               
in at least one cell from the distance calculation. We found that this did not improve the                 
performance (Fig. S3d). 
 
3. Transformations 
All distance matrices are then transformed using either principal component analysis (PCA) or by              
calculating the eigenvectors of the associated graph Laplacian (​L =​ I -​ D​ -1/2​AD​ -1/2​, where ​I is the                 
identity matrix, ​A is a similarity matrix ( ​A = exp(- ​A’​ /max( ​A’​ ))), where ​A’ is a distance matrix) and ​D                  
is the degree matrix of ​A​ , a diagonal matrix which contains the row-sums of ​A on the diagonal (​D​ ii                   

= ∑​ j A​ ij​ ). The columns of the resulting matrices are then sorted in ascending order by their                 
corresponding eigenvalues.  
 
4. k-means 
k​ -means clustering is performed on the first ​d eigenvectors of the transformed distance matrices              
(Fig. 1a) by using the default kmeans() R function with the Hartigan and Wong algorithm ​1​. By                
default, the maximum number of iterations is set to 10 ​9​ and the number of starts is set to 1,000. 
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5. Consensus clustering 
SC3 computes a consensus matrix using the Cluster-based Similarity Partitioning Algorithm           
(CSPA) ​2​. For each individual clustering result a binary similarity matrix is constructed from the              
corresponding cell labels: if two cells belong to the same cluster, their similarity is 1, otherwise the                 
similarity is 0 (Fig. 1a). A consensus matrix is calculated by averaging all similarity matrices of                
individual clusterings. To reduce computational time, if the length of the ​d range (​D on Fig. 1a) is                  
more than 15, a random subset of 15 values selected uniformly from the ​d​  range is used. 
 
The resulting consensus matrix is clustered using hierarchical clustering with complete           
agglomeration and the clusters are inferred at the ​k level of hierarchy, where ​k is defined by a user                   
(Fig. 1a). In principle, the ​k used for the hierarchical clustering need not be the same as the ​k used                    
in step 5. However, for simplicity in SC3 the two parameters are constrained to have the same                 
value. 
 
Fig. 1d shows how the quality and the stability of clustering improves after ​consensus clustering​ . 
 
Adjusted Rand Index 
 
If cell-labels are available (e.g. from a published dataset) the Adjusted Rand Index (ARI)​3 can be                
used to calculate similarity between the SC3 clustering and the published clustering. ARI is              
defined as follows. Given a set of ​n elements, and two clusterings of these elements the overlap                 
between the two clusterings can be summarised in a contingency table, where each entry denotes               
the number of objects in common between the two clusterings. The ARI can then be calculated as: 
 

 
 
where ​n​ ij are values from the contingency table, ​α​ i is the sum of the ​i​ th row of the contingency table,                    
b​ j ​ is the sum of the ​j​ th​ column of the contingency table and () denotes a binomial coefficient. 
 
Since the reference labels are known for all published datasets, ARI is used for all comparisons                
throughout the paper.  
 
Downsampling of the gold standard datasets 
 
For each gene ​i​ and each cell ​j​ , the downsampled expression value was generated by drawing                
from a binomial distribution with parameters ​p ​ = .1 and ​n​  = round( ​M​ ij​ ). 
 
Additional validation of SC3 pipeline 
 
Additionally, we investigated the impact of dropouts by considering a modified distance metric that              
ignores dropouts, but we found that this did not improve the performance (Fig. S3d, Methods). 
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Identification of a suitable number of groups k̂  
 
Matrix ​Z is obtained from ​M’ by subtracting the mean and dividing by the standard deviation for                 
each column (z-score). Next, the eigenvalues of ​X​ =​ Z​ T​ *​ Z are calculated. The number of clusters               k̂  
is determined by the number of eigenvalues that are significantly different with a p-value <.001               
from the Tracy-Widom distribution ​4,5 with mean and standard deviation     ) (√n − 1 + √p

2     
, where ​n​  is the number of genes/transcripts and ​p​  is the number of cells.) ) (√n − 1 + √p · ( 1

√n−1 + 1
√p

3
1

 
 
Benchmarking 
 
For each dataset we used the expression units provided by the authors (Fig. 1b). The gene filter                 
was applied to all the datasets. For tSNE+k-means, SNN-Cliq and pcaReduce the same             
log-transformation as in SC3 (​M​ ’ = log2( ​M + 1)) was applied. For SINCERA we used the original                 
z-score normalisation ​6 instead of the log-transformation. For tSNE the Rtsne R package was used              
with the default parameters. For SEURAT we used the original Seurat R package (version 1.3): we                
performed tSNE embedding with the default parameters once (following the authors’ tutorial at             
http://www.satijalab.org/clustertutorial1.html ​) and then clustered the data using DBSCAN algorithm         
multiple times, where we varied the density parameter ​G in the range 10 ​-3​-10 ​3 to find a maximal                 
ARI (this ARI is presented in Fig. 2a). SEURAT was not able to find more than one cluster for the                    
smallest datasets (Biase, Yan, Goolam, Treutlein and Ting) leading to very small ARI scores. For               
all methods we supplied the ​k​  used by the original authors. 
 
Cluster stability 
 
We calculated stability of clustering solutions by running each method 100 times and finding the               
most frequent solution and the number of times (​N​ c​ ) it appeared. The stability measure shown in                
Fig. 2b is then calculated as ​N​ c​ /100. 
 
Support Vector Machines (SVM) 
 
When using SVM a specific fraction of the cells is selected at random with uniform probability.                
Next, a support vector machine ​7 model with a linear kernel is constructed based on the obtained                
clustering. We used the ​svm function of the ​e1071 R-package with default parameters. The cluster               
IDs for the remaining cells are then predicted by the SVM model. 
 
Identification of rare cell-types 
 
To specifically evaluate the sensitivity of SC3 for identifying rare cell-types, we carried out a               
synthetic experiment, whereby cells from one cell-type were removed iteratively from the            
Kolodziejczyk and Pollen datasets. For the Pollen dataset, all but 1-7 of the cells in one of the 11                   
clusters were removed. The limit of 7 cells corresponds to the size of the smallest cluster in the                  
original data. Subsequently, SC3 was run using ​k​ =11, and we asked whether or not the cells of                 
the rare cell-type were located in a separate cluster. This was repeated 100 times for each                
cell-type and Fig. S4d reports the percentage of runs when the rare cells were found together in a                  
cluster with no other cells. Note that the ARI is a poor indicator of the ability to identify rare cells                    
since this measure is relatively insensitive to the behavior of a small fraction of the cells. For the                  
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Kolodziejczyk dataset, we used a similar strategy, but we allowed for 1-101 cells in the rare group.                 
For the Pollen dataset, SC3 can detect clusters containing ~1% of the cells, whereas for the                
Kolodziejczyk dataset ~10% of the cells are required (Fig. S4d). We hypothesize that the ability to                
identify rare cells reflects the origins of the two datasets; the Pollen data is more diverse as it                  
represents 11 different cell lines while the Kolodziejczyk data comes from one cell-type grown in               
three different conditions. 
 
For the hybrid SC3 approach with 30% of cells used to train the SVM we were able to calculate                   
the probability of including the rare cell-types in the training set analytically by multiplying the data                
from Fig. S4d by the probability of all rare cells to be included in the drawn sample (30% of all                    
cells). This probability was calculated using the hypergeometric distribution R function:           
phyper(n.rare.cells - 1, n.rare.cells, n.other.cells, 0.3*(n.other.cells + n.rare.cells), lower.tail=F)​ ,         
where ​n.rare.cells is the number of rare cells and ​n.other.cells is the number of other cells in the                  
dataset (Fig. S4e). 
 
Analysis of the Macosko dataset 
 
To analyze the Drop-Seq dataset we followed the procedure used by Macosko et al and selected                
the 11,040 cells where more than 900 genes were expressed. Moreover, due to the low read                
depth, the gene filter was removed. We then sampled 5,000 cells and clustered using SC3,               
including the SVM step, 100 times. All 100 solutions were consistent between each other resulting               
in an average ARI of 0.58 and they were sufficiently accurate compared to the reference authors’                
clustering yielding an average ARI of 0.54 (Fig. S5a). Since each of the 100 solutions were                
different, we added an additional consensus clustering step using the “best of k” consensus              
algorithm ​8​. This approach provided a single solution based on the 100 different solutions and it               
was as accurate as the individual solutions with an ARI of 0.52 (the actual labels are presented in                  
Table S1). The SC3 consensus solution splits the large original cluster (cluster 24 with 29,400               
cells) hierarchically into 2 clusters of smaller sizes (18105 + 10558 = 28663 cells, clusters 4 and 8                  
in Fig. S5b). Additional gene and pathway enrichment analysis for the differentially expressed             
genes between the two clusters is presented in Table S1. If more than 75% of the cells from the                   
reference cluster are shared with the SC3 cluster we defined these two clusters as matched. In                
total 31 reference clusters were matched to the SC3 clusters. 
 
Biological insights 
 
SC3 can identify differentially expressed genes as genes that vary between two or more clusters.               
Accordingly, marker genes are identified as genes that are highly expressed in only one of the                
clusters and are able to distinguish one cluster from all the remaining ones (Fig. S6a). Cell outliers                 
are identified through the calculation of a score for each cell using the Minimum Covariance               
Determinant ​9​. Cells that fit well into their clusters receive an outlier score of 0, whereas high                
values indicate that the cell should be considered an outlier. 
 
Identification of differential expression 
Differential expression is calculated using the non-parametric Kruskal-Wallis test, an extension of            
the Mann-Whitney test for the scenario when there are more than two groups. The Kruskal-Wallis               
test has the advantage of being non-parametric, but as a consequence, it is not well suited for                 
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situations where many genes have the same expression value. A significant ​p​ -value indicates that              
gene expression in at least one cluster stochastically dominates one other cluster. SC3 provides a               
list of all differentially expressed genes with ​p​ -values<0.01, corrected for multiple testing (using the              
default “holm” method of p.adjust() R function) and plots gene expression profiles of the 50 most                
significant differentially expressed genes. Note that the calculation of differential expression after            
clustering can introduce a bias in the distribution of ​p​ -values, and thus we advise to use the                 
p​ -values for ranking the genes only. 
 
Identification of marker genes 
For each gene a binary classifier is constructed based on the mean cluster expression values. The                
area under the receiver operating characteristic (ROC) curve is used to quantify the accuracy of               
the prediction. A ​p​ -value is assigned to each gene by using the Wilcoxon signed rank test                
comparing gene ranks in the cluster with the highest mean expression with all others (​p​ -values are                
adjusted by using the default “holm” method of p.adjust() R function). The genes with the area                
under the ROC curve (AUROC) >0.85 and with the ​p​ -value<0.01 are defined as marker genes.               
The AUROC threshold corresponds to the 99% quantile of the AUROC distributions obtained from              
100 random permutations of cluster labels for all datasets (Table S2 and Fig. S6b). SC3 provides                
a visualization of the gene expression profiles for the top 10 marker genes of each obtained                
cluster. 
 
Cell outlier detection 
Outlier cells are detected by first taking an expression matrix of each individual cluster (all cells                
with the same labels) and reducing its dimensionality using the robust method for PCA              
(ROBPCA) ​10​. This method outputs a matrix with ​N rows (number of cells in the cluster) and ​P                 
columns (retained number of principal components after running ROBPCA). SC3 then uses            
p=​ min( ​P​ , 3) first principal components for further analysis. If ROBPCA fails to perform or ​P​ =0, SC3                
shows a warning message. We found (results not shown) that this usually happens when the               
distribution of gene expression in cells is too skewed towards 0. Second, robust distances              
(Mahalanobis) between the cells in each cluster are calculated from the reduced expression matrix              
using the minimum covariance determinant (MCD) ​9​. We then used a threshold based on the ​Q​ %               
quantile of the chi-squared distribution (with ​p degrees of freedom) to define outliers. By default               
Q​ =99.99, but it can be manually adjusted by a user. Finally, we define an outlier score as the                  
difference between the square root of the robust distance and the square root of the ​Q​ % quantile                 
of the chi-squared distribution (with ​p degrees of freedom). The outlier score is plotted as a barplot                 
(Fig. S6c). 
 
Patients 
 
Both patients provided written informed consent. Diagnoses were made in accordance with the             
guidelines of the British Committee for Standards in Haematology. 
 
Isolation of haematopoietic stem and progenitor cells 
Cell populations were derived from peripheral blood enriched for haematopoietic stem and            
progenitor cells (CD34+, CD38-, CD45RA-, CD90+), hereafter referred to as HSCs. For single cell              
cultures, individual HSCs were sorted into 96-well plates (Fig. S7a-b) and grown in a cytokine               
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cocktail designed to promote progenitor expansion as previously described ​11​. For scRNA-seq           
studies, single HSCs were directly sorted into lysis buffer as described in Picelli et al ​12​.  
 
Determination of mutation load 
Colonies of granulocyte/macrophage composition were picked and DNA isolated for Sanger           
sequencing for JAK2V617F and TET2 mutations as previously described by Ortmann ​et al​ 13​ .  
 
Single cell RNA-Sequencing 
Single HSCs were sorted into 96-well plates and cDNA generated as described previously ​12​. The              
Nextera XT library making kit was used for library generation as described by Picelli ​et al​ 12​ .  
 
Processing of scRNA-seq data from HSCs 
96 single cell samples per patient with 2 sequencing lanes per sample were sequenced yielding a                
variable number of reads (​mean​ = 2,180,357, ​std dev​ = 1,342,541). FastQC​14 was used to assess                
the sequence quality. Foreign sequences from the Nextera Transposase agent were discovered            
and subsequently removed with Trimmomatic ​15 using the parameters HEADCROP:19         
ILLUMINACLIP:NexteraPE-PE.fa:2:30:10 TRAILING:28 CROP:90 MINLEN:60 to trim the reads to         
90 bases before being mapped with TopHat ​16 to the Ensembl reference genome version             
GRCh38.77 augmented with the spike-in controls downloaded from the ERCC consortium. Counts            
of uniquely mapped reads in each protein coding gene and each ERCC spike-in were calculated               
using SeqMonk (​http://www.bioinformatics.bbsrc.ac.uk/projects/seqmonk ​) and were used for       
further downstream analysis. Quality control of the cells contained two steps: 1. filtering of cells               
based on the number of expressed genes; 2. filtering of cells based on the ratio of the total                  
number of ERCC spike-in reads to the total number of reads in protein coding genes. Filtering                
threshold were manually chosen by visual exploration of the quality control features (Fig. S8). After               
filtering, 51 and 89 cells were retained from patient 1 and patient 2, correspondingly. The               
expression values in each dataset were then normalised by first using a size-factor normalisation              
(from DESeq2 package ​17​) to account for sequencing depth variability. Secondly, to account for             
technical variability, a normalisation based on ERCC spike-ins was performed using the RUVSeq             
package ​18 (RUVg() function with parameter k=1). For combined patient data, normalisation steps            
were performed after pooling the cells. The resulting filtered and normalised datasets were             
clustered by SC3. Potential biases of cell filtering on the proportions of cells in the clusters of                 
patient 1 are considered in the Supplementary Data 1. It shows that the cluster of lower cell quality                  
is separated from the other biologically meaningful clusters of patient 1 and it does not change the                 
total proportion of the biologically meaningful clusters. Supplementary Data 2 shows that SC3             
results of clustering of patient 1 do not depend on the normalization procedure. 
 
Clustering of patient scRNA-seq data by SC3 
We clustered scRNA-seq data from patient 1 and patient 2 separately as well as a combined                
dataset containing data from patient 1 + patient 2. For patient 1, in agreement with the RMT                 
algorithm, the best clustering was achieved for ​k​ =3 (Fig. S9). Data from patient 2 was               
homogeneous and SC3 was unable to identify more than one meaningful cluster (Fig. S10), again               
in agreement with the RMT algorithm. For the combined dataset for patient 1 + patient 2 the best                  
values of the silhouette index were obtained when ​k was 2 or 3 (Fig. S11). In both cases all of the                     
cells from cluster 1 in patient 1 were grouped with the cells from patient 2. For ​k​ =3 clusters 1 and 3                     
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of patient 1 were also resolved. The RMT algorithm also provided ​k​ =3 for the merged patient 1 +                  
patient 2 dataset.  
 
Comparison of clustering of patient 1 scRNA-seq data 
Results of the clustering of the patient 1 data by other methods and their comparison to SC3 is                  
presented in the Supplementary Data 3 and 4. 
 
Identification of differentially expressed genes from microarray data 
The microarray data of patient 1 was obtained from Array Express accession number             
E-MTAB-3086 ​13​. One replicate (2B) was identified as an outlier and removed. The limma R              
package ​19 was used to identify 932 differentially expressed genes between WT and            
TET2/JAK2V617F double mutant using an adjusted (by false discovery rate) p-value threshold of             
0.1. 
 
Marker genes analysis for patients 
For both patients, to increase the number of marker genes, the AUROC threshold was set to 0.7                 
instead of the default value of 0.85 and the 0.1 ​p​ -value threshold was chosen. 
 
Pathway enrichment analysis 
We utilized g:Profiler web tool ​20 to perform gene and pathway enrichment analysis in obtained set               
of marker genes. The results are presented in Table S5. 
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