

SCAAT: Incremental Tracking with Incomplete Information

Greg Welch and Gary Bishop

University of North Carolina at Chapel Hill

†

Abstract

We present a promising new mathematical method for tracking a
user's pose (position and orientation) for interactive computer
graphics. The method, which is applicable to a wide variety of both
commercial and experimental systems, improves accuracy by
properly assimilating sequential observations, filtering sensor
measurements, and by concurrently autocalibrating source and
sensor devices. It facilitates user motion prediction, multisensor
data fusion, and higher report rates with lower latency than
previous methods.

Tracking systems determine the user's pose by measuring
signals from low-level hardware sensors. For reasons of physics
and economics, most systems make mult iple sequential
measurements which are then combined to produce a single tracker
report. For example, commercial magnetic trackers using the
SPASYN (

Space Synchro

) system sequentially measure three
magnetic vectors and then combine them mathematically to
produce a report of the sensor pose.

Our new approach produces tracker reports as each new low-
level sensor measurement is made rather than waiting to form a
complete collection of observations. Because single observations
under-constrain the mathematical solution, we refer to our
approach as single-constraint-at-a-time or SCAAT tracking. The
key is that the single observations provide some information about
the user's state, and thus can be used to incrementally improve a
previous estimate. We recursively apply this principle,
incorporating new sensor data as soon as it is measured. With this
approach we are able to generate estimates more frequently, with
less latency, and with improved accuracy. We present results from
both an actual implementation, and from extensive simulations.

CR Categories and Subject Descriptors

: I.3.7 [Computer
Graphics] Three-Dimensional Graphics and Realism—Virtual
reality; I.4.4 [Image Processing] Restoration—Kalman filtering;
I.4.8 [Image Processing] Scene Analysis—Sensor fusion; G.0
[Mathematics of Computing] General—Numerical Analysis,
Probability and Statistics, Mathematical Software.

Additional Key Words and Phrases

: virtual environments
tracking, feature tracking, calibration, autocalibration, delay,
latency, sensor fusion, Kalman filter.

1 INTRODUCTION

The method we present requires, we believe, a fundamental change
in the way people think about estimating a set of unknowns in
general, and tracking for virtual environments in particular. Most
of us have the preconceived notion that to estimate a set of
unknowns we need as many constraints as there are degrees of
freedom at any particular instant in time. What we present instead
is a method to constrain the unknowns

over time

, continually
refining an estimate for the solution, a

single constraint at a time

.
For applications in which the constraints are provided by real-

time observations of physical devices, e.g. through measurements
of sensors or visual sightings of landmarks, the SCAAT method
isolates the effects of error in individual measurements. This
isolation can provide improved filtering as well as the ability to
individually calibrate the respective devices or landmarks
concurrently and continually while tracking. The method
facilitates user motion prediction, multisensor or multiple modality
data fusion, and in systems where the constraints can only be
determined sequentially, it provides estimates at a higher rate and
with lower latency than multiple-constraint (batch) approaches.

With respect to tracking for virtual environments, we are
currently using the SCAAT method with a new version of the UNC
wide-area optoelectronic tracking system (section 4). The method
could also be used by developers of commercial tracking systems
to improve their existing systems or it could be employed by end-
users to improve custom multiple modality hybrid systems. With
respect to the more general problem of estimating a set of
unknowns that are related by some set of mathematical constraints,
one could use the method to trade estimate quality for computation
time. For example one could incorporate individual constraints,
one at a time, stopping when the uncertainty in the solution
reached an acceptable level.

1.1 Incomplete Information

The idea that one might build a tracking system that generates a
new estimate with each individual sensor measurement or

observation

 is a very interesting one. After all, individual
observations usually provide only partial information about a
user’s complete state (pose), i .e. they are “incomplete”
observations. For example, for a camera observing landmarks in a
scene, only limited information is obtained from observations of
any single landmark. In terms of control theory, a system designed
to operate with only such incomplete measurements is
characterized as

unobservable

 because the user state cannot be
observed (determined) from the measurements.

The notion of observability can also be described in terms of
constraints on the unknown parameters of the system being
estimated, e.g. constraints on the unknown elements of the system
state. Given a particular system, and the corresponding set of
unknowns that are to be estimated, let be defined as the minimal
number of independent simultaneous constraints necessary to
uniquely determine a solution, let be the number actually used
to generate a new estimate, and let be the number of

independent

 constraints that can be formed from the
constraints. For any constraints, if the
problem is

well constrained

, if it is

over constrained

,
and if it is

under-constrained

. (See Figure 1.)

C

N
Nind

N
N Nind≥ Nind C=

Nind C>
Nind C<

† CB 3175, Sitterson Hall, Chapel Hill, NC, 27599-3175
welch@cs.unc.edu, http://www.cs.unc.edu/~welch
gb@cs.unc.edu, http://www.cs.unc.edu/~gb

Greg Welch
Text Box
ACM, 1997. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 25th annual conference on Computer graphics and interactive techniques (August 3–8), http://doi.acm.org/10.1145/258734.258876.

1.2 Landmark Tracking

Consider for example a system in which a single camera is used to
observe known scene points to determine the camera position and
orientation. In this case, the constraints provided by the
observations are multi-dimensional: 2D image coordinates of 3D
scene points. Given the internal camera parameters, a set of four
known coplanar scene points, and the corresponding image
coordinates, the camera position and orientation can be uniquely
determined in closed-form [16]. In other words if
constraints (2D image points) are used to estimate the camera
position and orientation, the system is completely observable. On
the other hand, if then there are multiple solutions. For
example with only non-collinear points, there are up to 4
solutions. Even worse, with or points, there are
infinite combinations of position and orientation that could result
in the same camera images.

In general, for closed-form tracking approaches, a well or
over-constrained system with is observable, an under-
constrained system with is not. Therefore, if the individual
observat ions provide only part ia l information, i .e. the
measurements provide insufficient constraints, then multiple
devices or landmarks must be excited and (or) sensed prior to
estimating a solution. Sometimes the necessary observations can
be obtained simultaneously, and sometimes they can not. Magnetic
trackers such as those made by Polhemus and Ascension perform
three

sequential

 source excitations, each in conjunction with a
complete sensor unit observation. And while a camera can indeed
observe multiple landmarks simultaneously in a single image, the
image processing to identify and locate the individual landmarks
must be done sequentially for a single CPU system. If the
landmarks can move independently over time, for example if they
are artificial marks placed on the skin of an ultrasound patient for
the purpose of landmark-based tracking [41], batch processing of
the landmarks can reduce the effectiveness of the system. A
SCAAT implementation might grab an image, extract a

single

landmark, update the estimates of both the camera

and

 landmark
positions, and then throw-away the image. In this way estimates
are generated faster and with the most recent landmark
configurations.

1.3 Putting the Pieces Together

Given a tracker that uses multiple constraints that are each
individually incomplete, a

measurement model

 for any one of
incomplete constraints would be characterized as

locally
unobservable

. Such a system must incorporate a sufficient set of
these incomplete constraints so that the resulting overall system is
observable. The corresponding aggregate measurement model can
then be characterized as

globally observable

. Global observability
can be obtained over

space

 or over

time

. The SCAAT method
adopts the latter scheme, even in some cases where the former is
possible.

2 MOTIVATION

2.1 The Simultaneity Assumption

Several well-known virtual environment tracking systems collect
position and orientation constraints (sensor measurements)
sequentially. For example, tracking systems developed by
Polhemus and Ascension depend on sensing a sequence of
variously polarized electromagnetic waves or fields. A system that
facilitated simultaneous polarized excitations would be very
difficult if not impossible to implement. Similarly both the original
UNC optoelectronic tracking system and the newer HiBall version
are designed to observe only one ceiling-mounted LED at a time.
Based on the available literature [25,27,37] these systems currently
assume (mathematically) that their sequential observations were
collected simultaneously. We refer to this as the

simultaneity
assumption

. If the target remains motionless this assumption
introduces no error. However if the target is moving, the violation
of the assumption introduces error.

To put things into perspective, consider that typical arm and
wrist motion can occur in as little as 1/2 second, with typical “fast”
wrist tangential motion occurring at 3 meters/second [1]. For the
current versions of the above systems such motion corresponds to
approximately 2 to 6 centimeters of translation

throughout

 the
sequence of measurements required for a single estimate. For
systems that attempt sub-millimeter accuracies, even slow motion
occurring during a sequence of sequential measurements impacts
the accuracy of the estimates.

N C 4= =

N C<
N 3=

N 2= N 1=

N C≥
N C<

observable

unobservable

well-constrained

under-constrained

over-constrained

SCAATSCAAT

Nind C>

Nind C=

Nind C<

Nind 1=

Figure 1: SCAAT and constraints on a system of simultaneous equations. is the minimal number of independent simultaneous
constraints necessary to uniquely determine a solution, is the number of given constraints, and is the number of independent
constraints that can be formed from the . (For most systems of interest). The conventional approach is to ensure and

, i.e. to use enough measurements to well-constrain or even over-constrain the estimate. The SCAAT approach is to employ the
smallest number of constraints available at any one time, generally constraint. From this viewpoint, each SCAAT
estimate is severely under-constrained.

C
N Nind

N C 1> N Nind≥
Nind C≥

N Nind 1= =

The error introduced by violation of the simultaneity
assumption is of greatest concern perhaps when attempting any
form of system

autocalibration

. Gottschalk and Hughes note that
motion during their autocalibration procedure must be severely
restricted in order to avoid such errors [19]. Consider that for a
multiple-measurement system with 30 mill iseconds total
measurement time, motion would have to be restricted to
approximately 1.5 centimeters/second to confine the translation
(throughout a measurement sequence) to 0.5 millimeters. For
complete autocalibration of a large (wide-area) tracking system,
this restriction results in lengthy specialized sessions.

2.2 Device Isolation & Autocalibration

Knowledge about source and sensor imperfections can be used to
improve the accuracy of tracking systems. While intrinsic sensor
parameters can often be determined off-l ine, e.g. by the
manufacturer, this is generally not the case for extrinsic
parameters. For example it can be difficult to determine the exact
geometric relationship between the various sensors of a hybrid
system. Consider that the coordinate system of a magnetic sensor
is located at some unknown location inside the sensor unit.
Similarly the precise geometric relationship between visible
landmarks used in a vision-based system is often difficult to
determine. Even worse, landmark positions can change over time
as, for example, a patient’s skin deforms with pressure from an
ultrasound probe. In general, goals such as flexibility, ease of use,
and lower cost , make the not ion of sel f -cal ibrat ion or

autocalibration

 attractive.
The general idea for autocalibration is not new. See for

example [19,45]. However, because the SCAAT method

isolates

the measurements provided by each sensor or modality, the
method provides a new and elegant means to autocalibrate
concurrently while tracking. Because the SCAAT method isolates
the individual measurements, or measurement dimensions,
individual source and sensor imperfections are more easily
identified and dealt with. Furthermore, because the simultaneity
assumption is avoided, the motion restrictions discussed in
section 2.1 would be removed, and autocalibration could be
performed

while concurrently tracking a target

.
The isolation enforced by the SCAAT approach can improve

results even if the constraints are obtained simultaneously through
multidimensional measurements. An intuitive explanation is that if
the elements (dimensions) are corrupted by independent noise,
then incorporating the elements independently can offer improved
filtering over a batch or ensemble estimation scheme.

2.3 Temporal Improvements

Per Shannon’s sampling theorem [24] the measurement

or

sampling

 frequency should be at least twice the true target motion
bandwidth, or an estimator may track an alias of the true motion.
Given that common arm and head motion bandwidth specifications
range from 2 to 20 Hz [13,14,36], the

sampling

 rate should ideally
be greater than 40 Hz. Furthermore, the

estimate

rate should be as
high as possible so that normally-distributed white estimate error
can be discriminated from any non-white error that might be
observed during times of significant target dynamics, and so
estimates will always reflect the most recent user motion.

In addition to increasing the estimate rate, we want to reduce
the latency associated with generating an improved estimate, thus
reducing the overall latency between target motion and visual
feedback in virtual environment systems [34]. If too high, such
latency can impair adaptation and the illusion of presence [22], and
can cause motion discomfort or sickness. Increased latency also
contributes to problems with head-mounted display registration
[23] and with motion prediction [4,15,29]. Finally, post-rendering

image deflection techniques are sometimes employed in an attempt
to address latency variability in the rendering pipeline [32,39].
Such methods are most effective when they have access to (or
generate) accurate motion predictions and low-latency tracker
updates. With accurate prediction the best possible position and
orientation information can be used to render a preliminary image.
With fast tracker updates there is higher probability that when the
preliminary image is ready for final deflection, recent user motion
has been detected and incorporated into the deflection.

With these requirements in mind, let us examine the effect of
the measurements on the estimate latency and rate. Let be the
time needed to determine one constraint, e.g. to measure a sensor
or extract a scene landmark, let be the number of (sequential)
constraints used to compute a complete estimate, and let be the
time needed to actually compute that estimate. Then the estimate
latency and rate are

(1)

As the number of constraints increases, equation (1) shows how
the estimate latency and rate increase and decrease respectively.
For example the Polhemus Fastrak, which uses the SPASYN
(

Space Synchro

) method for determining relative position and
orientation, employs sequential electromagnetic
excitations and measurements per estimate [25,27,37], the original
University of North Carolina (UNC) optoelectronic tracking
system sequentially observed beacons per estimate
[3,44], and the current UNC hybrid landmark-magnetic tracking
system extracts (from a camera image) and then incorporates

 landmarks per update. The SCAAT method seeks to
improve the latencies and data rates of such systems by updating
the current estimate with each new (individual) constraint, i.e. by
fixing

at 1. In other words, it increases the estimate rate to
approximately the rate that individual constraints can be obtained
and likewise decreases the estimate latency to approximately the
time required to obtain a single constraint, e.g. to perform a single
measurement of a single sensor, or to extract a single landmark.

Figure 2 illustrates the increased data rate with a timing
diagram that compares the SPASYN (Polhemus Navigation
Systems) magnetic position and orientation tracking system with a
hypothetical SCAAT implementation. In contrast to the SPASYN
system, a SCAAT implementation would generate a new estimate
after sensing each

individual

 excitation vector rather than waiting
for a complete pattern.

tm

N
tc

te re

te Ntm tc+= ,

re
1
te

1
Ntm tc+
-------------------- . = =

N

N 3=

10 N 20≤ ≤

N 4=

N

Source Excitation

SPASYN Estimate

time

Sensor Measurement

x y z

Figure 2: A timing diagram comparing the SPASYN
(Polhemus Navigation Systems) magnetic position and
orientation tracking system with a hypothetical SCAAT
implementation.

SCAAT Estimate

x y z x y z

2.4 Data Fusion & Hybrid Systems

The Kalman filter [26] has been widely used for data fusion. For
example in navigation systems [17,30], virtual environment
tracking systems [5,12,14], and in 3D scene modeling [20,42].
However the SCAAT method represents a new approach to
Kalman filter based

multi-sensor data fusion

. Because constraints
are intentionally

incorporated one at a time, one can pick and
choose which ones to add, and when to add them. This means that
information from different sensors or modalities can be woven
together in a common, flexible, and expeditious fashion.
Furthermore, one can use the approach to ensure that each estimate
is computed from the most recently obtained constraint.

Consider for a moment the UNC hybrid landmark-magnetic
presented at SIGGRAPH 96 [41]. This system uses an off-the-shelf
Ascension magnetic tracking system along with a vision-based
landmark recognition system to achieve superior synthetic and real
image registration for augmented reality assisted medical
procedures. The vision-based component attempts to identify and
locate multiple known landmarks in a single image before
applying a correction to the magnetic readings. A SCAAT
implementation would instead identify and locate only one
landmark per update, using a new image (frame) each time. Not
only would this approach increase the frequency of landmark-
based correction (given the necessary image processing) but it
would offer the added benefit that unlike the implementation
presented in [41], no special processing would be needed for the
cases where the number of visible landmarks falls below the
number necessary to determine a complete position and
orientation solution. The SCAAT implementation would simply
cycle through any available landmarks, one at a time. Even with
only one visible landmark the method would continue to operate as
usual, using the information provided by the landmark sighting to
refine the estimate where possible, while increasing the uncertainty
where not.

3 METHOD

The SCAAT method employs a

Kalman filter

 (KF) in an unusual
fashion. The Kalman filter is a mathematical procedure that
provides an efficient computational (recursive) method for the
least-squares estimation of a linear system. It does so in a

predictor-corrector

 fashion, predicting short-term (since the last
estimate) changes in the state using a

dynamic model

, and then
correcting them with a measurement and a corresponding

measurement model

. The

extended

Kalman filter (EKF) is a
variation of the Kalman filter that supports estimation of

nonlinear

systems, e.g. 3D position and orientation tracking systems. A basic
introduction to the Kalman filter can be found in Chapter 1 of [31],
while a more complete introductory discussion can be found in
[40], which also contains some interesting historical narrative.
More extensive references can be found in [7,18,24,28,31,46].

The Kalman filter has been employed previously for virtual
environment tracking estimation and prediction. For example see
[2,5,12,14,42], and most recently [32]. In each of these cases
however the filter was applied directly and only to the 6D pose
estimates delivered by the off-the-shelf tracker. The SCAAT
approach could be applied to either a hybrid system using off-the-
shelf and/or custom trackers, or it could be employed by tracker
developers to improve the existing systems for the end-user
graphics community.

In this section we describe the method in a manner that does
not imply a specific tracking system. (In section 3.4 we present
experimental results of a specific implementation, a SCAAT wide-
area optoelectronic tracking system.) In section 3.1 we describe
the method for tracking, and in section 3.2 we describe one
possible method for concurrent autocalibration.

Throughout we use the following conventions.

3.1 Tracking

3.1.1 Main Tracker Filter

The use of a Kalman filter requires a mathematical (state-space)
model for the dynamics of the process to be estimated, the target
motion in this case. While several possible dynamic models and
associated state configurations are possible, we have found a
simple

position-velocity

 model to suffice for the dynamics of our
applications. In fact we use this same form of model, with different
parameters, for all six of the position and orientation components

. Discussion of some other potential models and
the associated trade-offs can be found in [7] pp. 415-420. Because
our implementation is discrete with inter sample time we
model the target’s dynamic motion with the following linear
difference equation:

. (2)

In the standard model corresponding to equation (2), the

dimensional Kalman filter

state vector

 would completely
describe the target position and orientation at any time . In
practice we use a method similar to [2,6] and maintain the
complete target orientation externally to the Kalman filter in order
to avoid the nonl ineari t ies associated with or ientat ion
computations. In the internal state vector we maintain the
target position as the Cartesian coordinates , and the

incremental

orientation as small rotations about the
 axis. Externally we maintain the target orientation as the

external quaternion

. (See [9] for
discussion of quaternions.) At each filter update step, the
incremental orientations are factored into the external
quaternion , and then zeroed as shown below. Thus the
incremental orientations are linearized for the EKF, centered about
zero. We maintain the derivatives of the target position and
orientation internally, in the state vector . We maintain the
angular velocities internally because the angular velocities behave
like orthogonal vectors and do not exhibit the nonlinearities of the
angles themselves. The target state is then represented by the

 element internal state vector

(3)

and the four-element external orientation quaternion

, (4)

where the time designations have been omitted for clarity.

C

x scalar (lower case)=

x general vector (lower case, arrow) indexed as x r[]=

x̂ filter estimate vector (lower case, hat)=

A matrix (capital letters) indexed as A r c,[]=

A 1– matrix inverse=

I the identity matrix=

β- matrix/vector prediction (super minus)=

βT matrix/vector transpose (super T) =

α i matrix/vector/scalar identifier (subscript)=

E •{ } mathematical expectation =

x y z φ θ ψ, , , , ,()

δt

x t δt+() A δt()x t() w δt()+=

n
x t()

t

x t()
x y z, ,()

φ θ ψ, ,()
x y z, ,()

α α w αx αy αz, ,(),()=

φ θ ψ, ,()
α

x t()

n 12=

x x y z ẋ ẏ ż φ θ ψ φ̇θ̇ ψ̇
T

=

α α w αx αy αz, ,(),()=

The state transition matrix in (2) projects the
state forward from time to time . For our linear model, the
matrix implements the relationships

(5)

and likewise for the remaining elements of (3).
The process noise vector in (2) is a normally-

distributed zero-mean sequence that represents the uncertainty in
the target state over any time interval . The corresponding
process noise covariance matrix is given by

. (6)

Because our implementation is discrete with inter sample time ,
we can use the transfer function method illustrated by [7] pp. 221-
222 to compute a sampled process noise covariance matrix.
(Because the associated random processes are presumed to be time
stationary, we present the process noise covariance matrix as a
function of the inter-sample duration only.) The non-zero
elements of are given by

(7)

for each pair

.

The in (7) are the correlation kernels of the (assumed
constant) noise sources presumed to be driving the dynamic
model. We determined a set of values using Powell’s method, and
then used these in both simulation and our real implementation.
The values can be “tuned” for different dynamics, though we have
found that the tracker works well over a broad range of values.

The use of a Kalman filter requires not only a dynamic model
as described above, but also a measurement model for each
available type of measurement. The measurement model is used to
predict the ideal noise-free response of each sensor and source
pair, given the filter’s current estimate of the target state as in
equations (3) and (4).

It is the nature of the measurement models and indeed
the actual sensor measurements that distinguishes a
SCAAT Kalman filter from a well-constrained one.

For each sensor type σ we define the measurement
vector and corresponding measurement function such
that

. (8)

Note that in the “purest” SCAAT implementation and the
measurements are incorporated as single scalar values. However if
it is not possible or necessary to isolate the measurements, e.g. to
perform autocalibration, then multi-dimensional measurements
can be incorporated also. Guidelines presented in [47] lead to the
following heuristic for choosing the SCAAT Kalman filter
measurement elements (constraints):

During each SCAAT Kalman filter measurement update
one should observe a single sensor and source pair only.

For example, to incorporate magnetic tracker data as an end-user,
 for the three position and four orientation (quaternion)

elements, while if the manufacturer were to use the SCAAT
implementation, for each 3-axis electromagnetic
response to a single excitation. For an image-based landmark
tracker such as [41] the measurement function would, given
estimates of the camera pose and a single landmark location,
transform the landmark into camera space and then project it onto
the camera image plane. In this case for the 2D image
coordinates of the landmark.

The measurement noise vector in (8) is a
normally-distributed zero-mean sequence that represents any
random error (e.g. electrical noise) in the measurement. This
parameter can be determined f rom component design
specifications, and (or) confirmed by off-line measurement. For
our simulations we did both. The corresponding
measurement noise covariance matrix is given by

. (9)

For each measurement function we determine the
corresponding Jacobian function

, (10)

where and . Finally, we note the use of the
standard (Kalman filter) error covariance matrix
which maintains the covariance of the error in the estimated state.

3.1.2 Tracking Algorithm
Given an initial state estimate and error covariance estimate

, the SCAAT algorithm proceeds similarly to a conventional
EKF, cycling through the following steps whenever a discrete
measurement from some sensor (type σ) and source becomes
available at time :

a. Compute the time since the previous estimate.

b. Predict the state and error covariance.

(11)

c. Predict the measurement and compute the corresponding Jaco-
bian.

(12)

d. Compute the Kalman gain.

(13)

e. Compute the residual between the actual sensor measurement
 and the predicted measurement from (12).

(14)

f. Correct the predicted tracker state estimate and error covariance
from (11).

(15)

n n× A δt()
t t δt+

x t δt+() x t() ẋ t()δt+=

ẋ t δt+() ẋ t()=

n 1× w δt()

δt n n×

E w δt()wT δt ε+(){ }
Q δt(), ε 0=

0, ε 0≠

=

δt

δt
Q δt()

Q δt() i i,[] η i[] δt()3

3
------------=

Q δt() i j,[] Q δt() j i,[] η i[] δt()2

2
------------= =

Q δt() j j,[] η i[] δ t() =

i j,() x ẋ,() y ẏ,() z ż,() φ φ̇,() θ θ̇,() ψ ψ̇,(), , , , ,{ }∈

η i[]

mσ 1×
zσ t() hσ •()

zσ t, hσ x t() bt ct, ,() vσ t()+=

mσ 1=

mσ 7=

mσ 3=

mσ 2=

mσ 1× vσ t()

mσ mσ×

E vσ t()vσ
T t ε+(){ }

Rσ t(), ε 0=

0, ε 0≠

=

hσ •()

Hσ x t() bt ct, ,() i j,[]
x j[]∂
∂

hσ x t() bt ct, ,() i[]≡

1 i mσ≤ ≤ 1 j n≤ ≤
n n× P t()

x̂ 0()
P 0()

zσ t,
t

δt

x̂- A δt() x̂ t δt–()=

P- A δt()P t δt–()AT δt() Q δt()+=

ẑ hσ x̂- bt ct, ,()=

H Hσ x̂- bt ct, ,()=

K P-HT HP-HT Rσ t()+() 1–=

zσ t,

∆z zσ t, ẑ–=

x̂ t() x̂- K∆z+=

P t() I KH–()P-=

g. Update the external orientation of equation (4) per the change
indicated by the elements of the state.*

(16)

h. Zero the orientation elements of the state vector.

(17)

The equations (11)-(17) may seem computationally complex,
however they can be performed quite efficiently. The computations
can be optimized to eliminate operations on matrix and vector
elements that are known to be zero. For example, the elements of
the Jacobian in (12) that correspond to the velocities in the state

 will always be zero. In addition, the matrix inverted in the
computation of in (13) is of rank (for our example in
section 3.4) which is smaller for a SCAAT filter than for a
corresponding conventional EKF implementation. Finally, the
increased data rate a l lows the use of the smal l angle
approximations and in and

. The total per estimate computation time can therefore
actually be less than that of a corresponding conventional
implementation. (We are able to execute the SCAAT filter
computations, with the autocalibration computations discussed in
the next section, in approximately on a 200 MHz PC-
compatible computer.)

3.1.3 Discussion
The key to the SCAAT method is the number of constraints
provided by the measurement vector and measurement function in
equation (8). For the 3D-tracking problem being solved, a unique
solution requires non-degenerate constraints to resolve six
degrees of freedom. Because individual sensor measurements
typically provide less than six constraints, conventional
implementations usually construct a complete measurement vector

from some group of individual sensor measurements over
time , and then proceed to compute an estimate. Or a
particular implementation may operate in a moving-window
fashion, combining the most recent measurement with the
previous measurements, possibly implementing a form of a finite-
impulse-response filter. In any case, for such well-constrained
systems complete observability is obtained at each step of the
filter. Systems that collect measurements sequentially in this way
inherently violate the simultaneity assumption, as well as increase
the time between estimates.

In contrast , the SCAAT method blends indiv idual
measurements that each provide incomplete constraints into a
complete state estimate. The EKF inherently provides the means
for this blending, no matter how complete the information content
of each individual measurement . The EKF accomplishes this
through the Kalman gain which is computed in (13). The
Kalman gain, which is used to adjust the state and the error
covariance in (15), is optimal in the sense that it minimizes the
error covariance if certain conditions are met. Note that the
inversion in (13) forms a ratio that reflects the relative uncertainties
of the state and the measurement. Note too that the ratio is affected
by the use of the measurement function Jacobian . Because the
Jacobian reflects the rate of change of each measurement with
respect to the current state, it indicates a direction in state space
along which a measurement could possibly affect the state.
Because the gain is recomputed at each step with the appropriate

* The operation is used to indicate a quaternion multiply [9].

measurement function and associated Jacobian, it inherently
reflects the amount and direction of information provided by the
individual constraint.

3.2 Autocalibration
The method we use for autocalibration involves augmenting the
main tracker filter presented in section 3.1 to effectively
implement a distinct device filter, a Kalman filter, for each source
or sensor to be calibrated. (We use the word “device” here to
include for example scene landmarks which can be thought of as
passive sources, and cameras which are indeed sensors.) In
general, any constant device-related parameters used by a
measurement function from (8) are candidates for this
autocalibration method. We assume that the parameters to be
estimated are contained in the device parameter vectors and ,
and we also present the case where both the source and sensor are
to be calibrated since omission of one or the other is trivial. We
note the following new convention.

3.2.1 Device Filters
For each device (source, sensor, landmark, etc.) we create a
distinct device filter as follows. Let represent the corresponding
device parameter vector and .

a. Allocate an state vector for the device, initialize
with the best a priori device parameter estimates, e.g. from design.

b. Allocate an noise covariance matrix , initialize
with the expected parameter variances.

c. Allocate an error covariance matrix , initialize to
indicate the level of confidence in the a priori device parameter
estimates from (a) above.

3.2.2 Revised Tracking Algorithm
The algorithm for tracking with concurrent autocalibration is the
same as that presented in section 3.1, with the following
exceptions. After step (a) in the original algorithm, we form
augmented versions of the state vector

, (18)

the error covariance matrix

, (19)

the state transition matrix

, (20)

and the process noise matrix

. (21)

φ θ ψ, ,()

α ∆α⊗

∆α̂ quaternionx̂ φ[] x̂ θ[] x̂ ψ[], ,()=

α̂ α̂ ∆α̂⊗=

x̂ φ[] x̂ θ[] x̂ ψ[] 0= = =

H
x̂ t()

K mσ 2 2×

θ()sin θ= θ()cos 1= hσ •()
Hσ •()

100µs

C 6=

zt zσ1 t1,
T … zσN tN,

T
T

=

N C≥
t1…tN

N 1–

δt

zσ t,
K

H

hσ •()

bt ct

α augmented matrix/vector (wide hat)=)

π
nπ length π()=

nπ 1× x̂π

nπ nπ× Qπ δt()

nπ nπ× Pπ t()

x t δt–() x̂T t δt–() x̂b t,
T t δt–() x̂c t,

T t δt–()
T

=)

P t δt–()
P t δt–() 0 0

0 Pb t, t δt–() 0

0 0 Pc t, t δt–()

=

)

A δt()
A δt() 0 0

0 I 0

0 0 I

=

)

Q δt()
Q δt() 0 0

0 Qb t, δt() 0

0 0 Qc t, δt()

=

)

We then follow steps (b)-(h) from the original algorithm, making
the appropriate substitutions of (18)-(21), and noting that the
measurement and Jacobian functions used in step (c) have become

 and because the estimates of parameters
and (and) are now contained in the augmented state
vector per (18). After step (h) we finish by extracting and
saving the device filter portions of the augmented state vector and
error covariance matrix

(22)

where

and , , and are the dimensions of the state vectors for the
main tracker filter, the source filter, and the sensor filter
(respectively). We leave the main tracker filter state vector and
error covariance matrix in their augmented counterparts, while we
swap the device filter components in and out with each estimate.
The result is that individual device filters are updated less
frequently than the main tracker filter. The more a device is used,
the more it is calibrated. If a device is never used, it is never
calibrated.

With respect to added time complexity, the computations can
again be optimized to eliminate operations on matrix and vector
elements that are known to be zero: those places mentioned in
section 3.1, and see (19)-(21). Also note that the size of and thus
time for the matrix inversion in (13) has not changed. With respect
to added space complexity, the autocalibration method requires
storing a separate state vector and covariance matrix for each
device—a fixed amount of (generally small) space per device. For
example, consider autocalibrating the beacon (LED) positions for
an optical tracking system with 3,000 beacons. For each beacon
one would need 3 words for the beacon state (its 3D position),

 words for the noise covariance matrix, and
words for the error covariance matrix. Assuming 8 bytes per word,
this is only bytes.

3.2.3 Discussion
The ability to simultaneously estimate two dependent sets of
unknowns (the target and device states) is made possible by several
factors. First, the dynamics of the two sets are very different as
would be reflected in the process noise matrices. We assume the
target is undergoing some random (constant) acceleration,
reflected in the noise parameter of in (6). Conversely, we
assume the device parameters are constant, and so the elements of

 for a source or sensor simply reflect any allowed variances
in the corresponding parameters: usually zero or extremely small.
In addition, while the target is expected to be moving, the filter
expects the motion between any two estimations to closely
correspond to the velocity estimates in the state (3). If the tracker
estimate rate is high enough, poorly estimated device parameters
will result in what appears to be almost instantaneous target
motion. The increased rate of the SCAAT method allows such
motion to be recognized as unlikely, and attributed to poorly
estimated device parameters.

3.3 Stability
Because the SCAAT method uses individual measurements with
insufficient information, one might be concerned about the
potential for instability or divergence. A linear system is said to be
stable if its response to any input tends to a finite steady value after
the input is removed [24]. For the Kalman filter in general this is
certainly not a new concern, and there are standard requirements
and corresponding tests that ensure or detect stability (see [18],
p. 132):

a. The filter must be uniformly completely observable,

b. the dynamic and measurement noise matrices in equations (6)
and (9) must be bounded from above and below, and

c. the dynamic behavior represented by in equation (2)
must be bounded from above.

As it turns out, these conditions and their standard tests are equally
applicable to a SCAAT implementation. For the SCAAT method
the conditions mean that the user dynamics between estimates
must be bounded, the measurement noise must be bounded, one
must incorporate a sufficient set of non-degenerate constraints over
time. In particular, the constraints must be incorporated in less than
1/2 the time of the user motion time-constant in order to avoid
tracking an alias of the true motion. In general these conditions are
easily met for systems and circumstances that would otherwise be
stable with a multiple-constraint implementation. A complete
stability analysis is beyond the scope of this paper, and is presented
in [47].

3.4 Measurement Ordering
Beyond a simple round-robin approach, one might envision a
measurement scheduling algorithm that makes better use of the
available resources. In doing so one would like to be able to
monitor and control uncertainty in the state vector. By periodically
observing the eigenvalues and eigenvectors of the error covariance
matrix , one can determine the directions in state-space along
which more or less information is needed [21]. This approach can
be used to monitor the stability of the tracker, and to guide the
source/sensor ordering.

4 EXPERIMENTS
We are using the SCAAT approach in the current version of the
UNC wide-area optoelectronic tracking system known as the
HiBall tracker. The HiBall, shown below in Figure 3, incorporates
six optical sensors and six lenses with infrared filters into one golf
ball sized sensing unit that can be worn on a user’s head or hand.
The principal mechanical component of the HiBall, the senor
housing unit, was fabricated by researchers at the University of
Utah using their modeling environment.

Because the HiBall sensors and lenses share a common
transparent space in the center of the housing, a single sensor can
actually sense light through more than one lens. By making use of
all of these views we end up with effectively 26 “cameras”. These
cameras are then used to observe ceiling-mounted light-emitting
diodes (LEDs) to track the position and orientation of the HiBall.
This inside-looking-out approach was first used with the previous
UNC optoelectronic tracking system [44] which spanned most of
the user’s head and weighed approximately ten pounds, not
including a backpack containing some electronics. In contrast, the
HiBall sensing unit is the size of a golf ball and weighs only five
ounces, including the electronics. The combination of reduced
weight, smaller packaging, and the new SCAAT algorithm results
in a very ergonomic, fast, and accurate system.

In this section we present results from both simulations
performed during the design and development of the HiBall, and

hσ x t()()) Hσ x t()()) bt
ct x̂b t, x̂c t,

x)

x̂b t, t() x t() i…j[]=

Pb t, t() P t() i…j i …j,[]=

x̂c t, t() x t() k…l[]=

Pc t, t() P t() k…l k…l,[]=

)
)

)
)

i n 1+=

j n nb+=

k n nb 1+ +=

l n nb nc+ +=

n nb nc

3 3× 9= 3 3× 9=

3,000 8 3 9 9+ +()×× 504,000=

η Q δt()

Qπ δt()

A δt()

P t()

α1

preliminary results from the actual implementation. The
simulations are useful because we have control over the “truth”
and can perform controlled experiments. The results from the
actual implementation serve to demonstrate actual operation and to
provide some support for our accuracy and stability claims.

With respect to the SCAAT implementation, the tracker
sensors are the HiBall cameras and the tracker sources are the
ceiling-mounted 2D array of approximately 3000 electronic
beacons (LEDs). The cameras provide a single 2D measurement
vector, i.e. a 2D constraint, which is the image coordinates
of the beacon as seen by the camera. So for this example,
and . The measurement function transforms
the beacon into camera coordinates and then projects it onto the
camera’s image plane in order to predict the camera response.

For the simulations we generated individual measurement
events (a single beacon activation followed by a single camera
reading) at a rate of 1000 Hz, and corrupted the measurements
using the noise models detailed in [8]. We tested components of
our real system in a laboratory and found the noise models in [8] to
be reasonably accurate, if not pessimistic. We also perturbed the
3D beacon positions prior to simulations with a normally-
distributed noise source with approximately 1.7 millimeters
standard deviation. We controlled all random number generators to
facilitate method comparisons with common random sequences.

To evaluate the filter performance we needed some reference
data. Our solution was to collect motion data from real-user
sessions with a conventional tracking system, and then to filter the
data to remove high frequency noise. We then defined this data to
be the “truth”. We did this for seven such sessions.

The simulator operated by sampling the truth data, choosing
one beacon and camera (round-robin from within the set of valid
combinations), computing the corresponding camera measurement
vector , and then adding some measurement noise. The (noisy)
measurement vector, the camera parameter vector (position and
orientation in user coordinates), and the beacon parameter vector

 (position in world coordinates) were then sent to the tracker.

For the tracking algorithm, we simulated both the SCAAT
method (section 3.1, modified per section 3.2 for autocalibration)
and several multiple-constraint methods, including the Collinearity
method [3] and several variations of moving window (finite
impulse response) methods. For each of the methods we varied the
measurement noise, the measurement frequency, and the beacon
position error. For the multiple constraint methods we also varied
the number of constraints (beacon observations) per estimate .
In each case the respective estimates were compared with the truth
data set for performance evaluation.

4.1 Tracker Filter
The 12 element state vector for the main tracker filter
contained the elements shown in (3). Each of the 3000 beacon
filters was allocated a 3 element state vector

where represents the beacon’s estimated position in
cartesian (world) coordinates. The state transition matrix
for the main tracker filter was formed as discussed section 3.1, and
for each beacon filter it was the identity matrix. The

 process noise matrix for the main tracker was computed
using (7), using elements of that were determined off-line using
Powell’s method and a variety of real motion data. For each beacon
filter we used an identical noise covariance matrix

for , with beacon position variance also determined
off-line. (See [47] for the complete details.) At each estimate step,
the augmented 15 element state vector, process noise
matrix, state transition matrix, and error
covariance matrix all resembled (18)-(21) (without the camera
parameter components). The measurement noise model was
distance dependent (beacon light falls-off with distance) so
from (9) was computed prior to step (d), by using a beacon
distance estimate (obtained from the user and beacon positions in
the predicted state) to project a distance-dependent electrical
variance onto the camera.

4.2 Initialization
The position and orientation elements of the main tracker state
were initialized with the true user position and orientation, and the
velocities were initialized to zero. The 3000 beacon filter state
vectors were initialized with (potentially erroneous) beacon
position estimates. The main tracker error covariance matrix was
initialized to the null matrix. All beacon filter error covariance
matrices were initialized to

for , to reflect 1 millimeter of uncertainty in the initial
beacon positions.

While for the presented simulations we initialized the filter
state with the true user pose information, we also performed (but
will not show here) simulations in which the state elements were
initialized to arbitrary values, e.g. all zeros. It is a testament to the
stability of the method that in most cases the filter completely
converged in under a tenth of a second, i.e. with fewer than 100
measurements. (In a few cases the camera was facing away from
the beacon, a condition not handled by our simulator.)

Figure 3: The HiBall is shown here with the internal circuitry
exposed and the lenses removed. The sensors, which can be seen
through the lens openings, are mounted on PC boards that fold-
up into the HiBall upon assembly. The mechanical pencil at the
bottom conveys an indication of the relative size of the unit.

u v,()
mσ 2=

zσ u v,[] T= hσ •()

zσ t,
ct

bt

N

x̂ t()

x̂b xb yb zb

T
=

xb yb zb, ,()
12 12×

3 3×
12 12×

η

Qb δt() i j,[]
ηb if i j=

0 otherwise

=

1 i j, 3≤ ≤ ηb

15 15×
15 15× 15 15×

Rσ t()

x -)

Pb 0() i j,[] 0.001()2 if i j=

0 otherwise

=

1 i j, 3≤ ≤

4.3 Simulation Results
We present here only comparisons of the SCAAT method with the
Collinearity method, the “conventional approach” mentioned in
the accompanying video. More extensive simulation results can be
found in [47], including tests for stability under “cold starts” and
periodic loss of data. All error measures reflect the RMS position
error for a set of three imaginary points located approximately at
arms length. This approach combines both position and orientation
error into a metric that is related to the error a user would
encounter in [HMD] screen space.

Figure 4 contains two related plots. The upper plot shows the
entire three minutes (180 seconds) of the x-axis position for the
first of seven data sets, data set ‘a’. The lower plot shows a close-
up of a particular segment of 300 milliseconds near the end. Notice
that the Collinearity estimates appear very jerky. This is partially a
result of the lower estimate rate, it is using beacon
observations to compute an estimate, and partially due to the
method’s inability to deal with the erroneous beacon position data.
In contrast, the SCAAT method hugs the actual motion track,
appearing both smooth and accurate. This is partly a result of the
higher update rate (10 times Collinearity here), and partly the
effects of Kalman filtering, but mostly the accuracy is a result of
the SCAAT autocalibration scheme. With the autocalibration
turned on, the initially erroneous beacon positions are being
refined at the same high rate that user pose estimates are generated.

Figure 5 shows progressively improving estimates as the
number of beacons is reduced from 15 (Collinearity) down to 1
(SCAAT), and a clear improvement in the accuracy when
autocalibration is on. Consider for a moment that the motion
prediction work of Azuma and Bishop [4] was based on jerky
Collinearity estimates similar to those in Figure 4. The smooth and
accurate SCAAT estimation should provide a much better basis for
motion prediction, which could in turn provide a more effective
means for addressing other system latencies such as those in the
rendering pipeline. The improved accuracy should also improve
post-rendering warping or image deflection [32,39].

0

10

20

30

40

50

60

179.3 179.4 179.5 179.6

po
si

ti
on

 (
m

il
li

m
et

er
s)

time (seconds)

Actual

SCAAT

Collinearity

Figure 4: The upper plot depicts the entire 3 minutes of x-axis
position data from user motion data set ‘a’ of sets ‘a’-’f’. The
lower plot shows a close-up of a short portion of the simulation.
Collinearity here used beacons per observation, hence
its lower estimate rate. On the other hand, notice that the SCAAT
estimates and the actual (truth) data are almost indistinguishable.

N 10=

1.5

2

2.5

3

3.5

4

0 60 120 180

po
si

ti
on

 (
m

et
er

s)

time (seconds)

region of the
figure below

N 10=

N

B

B

B

J

1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 3 5 7 9 11 13 15

R
M

S
er

ro
r

(m
m

)

number of beacons (N)

B Collinearity

J SCAAT

1 Autocalibration

Figure 5: As the number of beacons is reduced from 15 to 5,
the Collinearity results improve slightly. (The Collinearity
algorithm generally becomes unstable with .) The
SCAAT results, with beacons, are better, and
especially good once autocalibration is turned on.

N

N 4≤
N 1=

As further evidence of the smoothing offered by the SCAAT
approach, Figure 6 presents an error spectra comparison between a
Collinearity implementation with , and a SCAAT
implementation with and without autocalibration. Even without
autocalibration the SCAAT output has significantly less noise than
collinearity, and with autocalibration it is better by more than a
factor of 10. These reductions in noise are clearly visible to the
HMD user as a reduction in the amount of jitter in virtual-world
objects.

Figure 7 provides results for all seven of the real-user motion
data sets. Again the Collinearity implementations observe

 beacons per estimate, while the SCAAT implementations
observe only . Because the beacon positions were being
autocalibrated during the SCAAT run, we repeated each run, the
second time using the beacon position estimation results from the
first simulation. The more beacons are sighted during tracking, the
better they are located. The second-pass simulation results are
identified with the dagger (†) in Figure 7.

Figure 8 presents results that support the claim that the
beacon location estimates are actually improving during tracking
with autocalibration, as opposed to simply shifting to reduce
spectral noise. Note that in the case of data set ‘d’, the beacon error
was reduced nearly 60%.

Finally, we simulated using the SCAAT approach with
tracking hardware that allowed truly simultaneous observations of
beacons. For the Collinearity and other multiple-constraint
methods we simply used the methods as usual, except that we
passed them truly simultaneous measurements. For the SCAAT
method we took the simultaneous observations, and simply
processed them one at a time with . (See equation (2).) We
were, at first, surprised to see that even under these ideal
circumstances the SCAAT implementation could perform better,
even significantly better than a multiple-constraint method with
simultaneous constraints. The reason seems to be autocalibration.
Even though the multiple-constraint methods were “helped” by the
truly simultaneous observations, the SCAAT method still had the
advantage in that it could still autocalibrate the beacons more

effectively that any multiple-constraint method. This again arises
from the method’s inherent isolation of individual observations.

4.4 Real Results
We have demonstrated the SCAAT algorithm with the HiBall
tracker, a head-mounted display, and a real application. However,
at the time of the submission of this publication we have yet to
perform extensive optimization and analysis. As such we present
here only limited, albeit compelling results.

The SCAAT code runs on a 200 MHz PC-compatible
computer with a custom interface board. With unoptimized code,
the system generates new estimates at approximately 700 Hz. We
expect the optimized version to operate at over 1000 Hz. Out of the
approximately 1.4 millisecond period, the unoptimized SCAAT
code takes approximately 100 microseconds and sampling of the
sensors takes approximately 200 microseconds. The remaining

N 10=

0.001

0.01

0.1

1

10

0.001

0.01

0.1

1

10

1 10 100

m
ill

im
et

er
s

frequency (Hz)

Collinearity

SCAAT

Autocalibration

Figure 6: Here we show an error spectra comparison for the
Collinearity method with beacons, and the SCAAT
method with and without autocalibration.

N 10=

N 10=
N 1=

N
δt 0=

a b c d e f g

0.1

1

10

100

R
M

S
er

ro
r

(m
ill

im
et

er
s)

data set

Collinearity

SCAAT

SCAAT †

Figure 7: RMS error results for simulations of all seven real
user motion data sets. The † symbol indicates a second pass
through the motion data set, this time using the already
autocalibrated beacons.

a b c d e f g
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
R

M
S

er
ro

r
(m

ill
im

et
er

s)

data set

initial beacon error
1.73 mm RMS (measured)

Figure 8: Autocalibration in action. Here we show the final
beacon position error for runs through each of the seven user
motion data sets.

time is spent on overhead including a significant amount of
unoptimized code to choose an LED and to gather results.

In one experiment we set the HiBall on a flat surface under
the ceiling beacons and collected several minutes worth of data.
Given that the platform was relatively stable, we believe that the
deviation of the estimates provides an indication of the noise in the
system. Also, because the HiBall was not moving, we were able to
observe the progressive effects of the autocalibration. The standard
deviation of the position estimates for the first 15 seconds is shown
in Figure 9. With autocalibration off, the estimates deviate
approximately 6.0 millimeters in translation and 0.25 degrees in
orientation (not shown). With autocalibration on, notice in Figure 9
how the deviation decreases with time, settling at approximately
0.3 millimeters in translation and 0.01 degrees in orientation (again
not shown).

In another experiment we mounted the HiBall on a calibrated
translation rail of length one meter, and slid (by hand) the HiBall
from one end to the other and then back again. The disagreement
between the HiBall and the calibrated position on the rail was less
than 0.5 millimeters. The deviation of the measured track from co-
linearity was 0.9 millimeters. Because the tolerances of our simple
test fixture are of similar magnitude, we are unable to draw
conclusions about how much of this disagreement should be
attributed to error in the tracking system.

5 CONCLUSIONS
Stepping back from the details of the SCAAT method, we see an
interesting relationship: Because the method generates estimates
with individual measurements, it not only avoids the simultaneity
assumption but it operates faster; by operating faster, it decreases
the elapsed time since the previous state estimate; the more recent
the previous estimate, the better the prediction in (12); the better
the prediction, the more l ikely we can discriminate bad
measurements; if we can discriminate bad measurements, we can
autocalibrate the measurement devices; and if we can calibrate the
measurement dev ices, we can improve the ind iv idual
measurements, thus improving predictions, etc. In other words, the
faster, the better.

Looking more closely, it is amazing that such a tracker can
function at all. Consider for example the system presented in
section 4. Any single beacon sighting offers so few constraints—

the user could be theoretically anywhere. Similarly, knowledge
about where the user was a moment ago is only an indicator of
where the user might be now. But used together, these two sources
of information can offer more constraints than either alone. With a
Kalman filter we can extract the information from the previous
state and a new (individual) measurement, and blend them to form
a better estimate than would be possible using either alone.

The SCAAT method is accurate, stable, fast, and flexible, and
we believe it can be used to improve the performance of a wide
variety of commercial and custom tracking systems.

Acknowledgements
We would like to thank the tracker team at UNC, in particular
Vernon Chi, Steve Brumback, Kurtis Keller, Pawan Kumar, and
Phillip Winston. This work was supported by DARPA/ETO
contract no. DABT 63-93-C-0048, “Enabling Technologies and
Application Demonstrations for Synthetic Environments”,
Principle Investigators Frederick P. Brooks Jr. and Henry Fuchs
(University of North Carolina at Chapel Hill), and by the National
Science Foundation Cooperative Agreement no. ASC-8920219:
“Science and Technology Center for Computer Graphics and
Scientific Visualization”, Center Director Andy van Dam (Brown
University). Principle Investigators Andy van Dam, Al Barr
(California Institute of Technology), Don Greenberg (Cornell
University), Henry Fuchs (University of North Carolina at Chapel
Hill), Rich Riesenfeld (University of Utah).

References
[1] C.G. Atkeson and J.M. Hollerbach. 1985. “Kinematic features
of unrestrained vertical arm movements,” Journal of Neuroscience,
5:2318-2330.
[2] Ali Azarbayejani and Alex Pentland. June 1995. “Recursive Es-
timation of Motion, Structure, and Focal Length,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, June 1995, 17(6).
[3] Ronald Azuma and Mark Ward. 1991. “Space-Resection by
Collinearity: Mathematics Behind the Optical Ceiling Head-Track-
er,” UNC Chapel Hill Department of Computer Science technical
report TR 91-048 (November 1991).
[4] Ronald Azuma and Gary Bishop. 1994. “Improving Static and
Dynamic Registration in an Optical See-Through HMD,” SIG-
GRAPH 94 Conference Proceedings, Annual Conference Series,
pp. 197-204, ACM SIGGRAPH, Addison Wesley, July 1994. ISBN
0-201-60795-6
[5] Ronald Azuma. 1995. “Predictive Tracking for Augmented Re-
ality,” Ph.D. dissertation, University of North Carolina at Chapel
Hill, TR95-007.
[6] Ted J. Broida and Rama Chellappa. 1986. “Estimation of object
motion parameters from noisy images,” IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, January 1986, 8(1), pp. 90-99.
[7] R. G. Brown and P. Y. C. Hwang. 1992. Introduction to Random
Signals and Applied Kalman Filtering, 2nd Edition, John Wiley &
Sons, Inc.
[8] Vernon L. Chi. 1995. “Noise Model and Performance Analysis
of Outward-looking Optical Trackers Using Lateral Effect Photo
Diodes,” University of North Carolina, Department of Computer
Science, TR 95-012 (April 3, 1995)
[9] Jack C.K. Chou. 1992. “Quaternion Kinematic and Dynamic
Differential Equations,” IEEE Transactions on Robotics and Auto-
mation, Vol. 8, No. 1, pp. 53-64.
[10] J. L. Crowley and Y. Demazeau. 1993. “Principles and Tech-
niques for Sensor Data Fusion,” Signal Processing (EURASIP) Vol.
32. pp. 5-27.
[11] J. J. Deyst and C. F. Price. 1968. “Conditions for Asymptotic
Stability of the Discrete Minimum-Variance Linear Estimator,”
IEEE Transactions on Automatic Control, December, 1968.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14

de
vi

at
io

n
(m

ill
im

et
er

s)

time (seconds)

autocalib OFF

autocalib ON

Figure 9: SCAAT position (only) estimate deviation for a Hiball
sitting still on a flat surface, with and without autocalibration.

[12] S. Emura and S. Tachi. 1994. “Sensor Fusion based Measure-
ment of Human Head Motion,” Proceedings 3rd IEEE Internation-
al Workshop on Robot and Human Communication, RO-MAN’94
NAGOYA (Nagoya University, Nagoya, Japan).
[13] P. Fischer, R. Daniel and K. Siva. 1990. “Specification and De-
sign of Input Devices for Teleoperation,” Proceedings of the IEEE
Conference on Robotics and Automation (Cincinnati, OH), pp. 540-
545.
[14] Eric Foxlin. 1993. “Inertial Head Tracking,” Master’s Thesis,
Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology.
[15] M. Friedman, T. Starner, and A. Pentland. 1992. “Synchroni-
zation in Virtual Realities,” Presence: Teleoperators and Virtual
Environments, 1:139-144.
[16] S. Ganapathy. November 1984. “Camera Location Determina-
tion Problem,” AT&T Bell Laboratories Technical Memorandum,
11358-841102-20-TM.
[17] G. J. Geier, P. V. W. Loomis and A. Cabak. 1987. “Guidance
Simulation and Test Support for Differential GPS (Global Position-
ing System) Flight Experiment,” National Aeronautics and Space
Administration (Washington, DC) NAS 1.26:177471.
[18] A. Gelb. 1974. Applied Optimal Estimation, MIT Press, Cam-
bridge, MA.
[19] Stefan Gottschalk and John F. Hughes. 1993. “Autocalibration
for Virtual Environments Tracking Hardware,” Proceedings of
ACM SIGGRAPH 93 (Anaheim, CA, 1993), Computer Graphics,
Annual Conference Series.
[20] A Robert De Saint Vincent Grandjean. 1989. “3-D Modeling of
Indoor Scenes by Fusion of Noisy Range and Stereo Data,” IEEE
International Conference on Robotics and Automation (Scottsdale,
AZ), 2:681-687.
[21] F. C. Ham and R. G. Brown. 1983. “Observability, Eigenval-
ues, and Kalman Filtering,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. AES-19, No. 2, pp. 269-273.
[22] R. Held and N. Durlach. 1987. Telepresence, Time Delay, and
Adaptation. NASA Conference Publication 10023.
[23] Richard L. Holloway. 1995. “Registration Errors in Augment-
ed Reality Systems,” Ph.D. dissertation, The University of North
Carolina at Chapel Hill, TR95-016.
[24] O. L. R. Jacobs. 1993. Introduction to Control Theory, 2nd
Edition. Oxford University Press.
[25] Roy S. Kalawsky. 1993. The Science of Virtual Reality and Vir-
tual Environments, Addison-Wesley Publishers.
[26] R. E. Kalman. 1960. “A New Approach to Linear Filtering and
Prediction Problems,” Transaction of the ASME—Journal of Basic
Engineering, pp. 35-45 (March 1960).
[27] J. B. Kuipers. 1980 “SPASYN—An Electromagnetic Relative
Position and Orientation Tracking System,” IEEE Transactions on
Instrumentation and Measurement, Vol. IM-29, No. 4, pp. 462-466.
[28] Richard Lewis. 1986. Optimal Estimation with an Introduction
to Stochastic Control Theory, John Wiley & Sons, Inc.
[29] J. Liang, C. Shaw and M. Green. 1991. “On Temporal-spatial
Realism in the Virtual Reality Environment,” Fourth Annual Sym-
posium on User Interface Software and Technology, pp. 19-25.
[30] R. Mahmoud, O. Loffeld and K. Hartmann. 1994. “Multisen-
sor Data Fusion for Automated Guided Vehicles,” Proceedings of
SPIE - The International Society for Optical Engineering, Vol.
2247, pp. 85-96.
[31] Peter S. Maybeck. 1979. Stochastic Models, Estimation, and
Control, Volume 1, Academic Press, Inc.
[32] Thomas Mazuryk and Michael Gervautz. 1995. “Two-Step
Prediction and Image Deflection for Exact Head Tracking in Virtual
Environments,” EUROGRAPHICS ‘95, Vol. 14, No. 3, pp. 30-41.
[33] K. Meyer, H. Applewhite and F. Biocca. 1992. A Survey of
Position Trackers. Presence, a publication of the Center for Re-
search in Journalism and Mass Communication, The University of
North Carolina at Chapel Hill.

[34] Mark Mine. 1993. “Characterization of End-to-End Delays in
Head-Mounted Display Systems,” The University of North Caroli-
na at Chapel Hill, TR93-001.
[35] National Research Council. 1994. “Virtual Reality, Scientific
and Technological Challenges,” National Academy Press (Wash-
ington, DC).
[36] P.D. Neilson. 1972. “Speed of Response or Bandwidth of Vol-
untary System Controlling Elbow Position in Intact Man,” Medical
and Biological Engineering, 10:450-459.
[37] F. H. Raab, E. B. Blood, T. O. Steiner, and H. R. Jones. 1979.
“Magnetic Position and Orientation Tracking System,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. AES-15,
709-718.
[38] Selspot Technical Specifications, Selcom Laser Measure-
ments, obtained from Innovision Systems, Inc. (Warren, MI).
[39] Richard H. Y. So and Michael J. Griffin. July-August 1992.
“Compensating Lags in Head-Coupled Displays Using Head Posi-
tion Prediction and Image Deflection,” AIAA Journal of Aircraft,
Vol. 29, No. 6, pp. 1064-1068
[40] H. W. Sorenson. 1970. “Least-Squares estimation: from Gauss
to Kalman,” IEEE Spectrum, Vol. 7, pp. 63-68, July 1970.
[41] Andrei State, Gentaro Hirota, David T. Chen, Bill Garrett,
Mark Livingston. 1996. “Superior Augmented Reality Registration
by Integrating Landmark Tracking and Magnetic Tracking,” SIG-
GRAPH 96 Conference Proceedings, Annual Conference Series,
ACM SIGGRAPH, Addison Wesley, August 1996.
[42] J. V. L. Van Pabst and Paul F. C. Krekel. “Multi Sensor Data
Fusion of Points, Line Segments and Surface Segments in 3D
Space,” TNO Physics and Electronics Laboratory, The Hague, The
Netherlands. [cited 19 November 1995]. Available from http://
www.bart.nl/~lawick/index.html.
[43] J. Wang, R. Azuma, G. Bishop, V. Chi, J. Eyles, and H. Fuchs.
1990. “Tracking a head-mounted display in a room-sized environ-
ment with head-mounted cameras,” Proceeding: SPIE'90 Technical
Symposium on Optical Engineering & Photonics in Aerospace
Sensing (Orlando, FL).
[44] Mark Ward, Ronald Azuma, Robert Bennett, Stefan
Gottschalk, and Henry Fuchs. 1992. “A Demonstrated Optical
Tracker With Scalable Work Area for Head-Mounted Display Sys-
tems,” Proceedings of 1992 Symposium on Interactive 3D Graphics
(Cambridge, MA, 29 March - 1 April 1992), pp. 43-52.
[45] Wefald, K.M., and McClary, C.R. “Autocalibration of a laser
gyro strapdown inertial reference/navigation system,” IEEE PLANS
'84. Position Location and Navigation Symposium Record.
[46] Greg Welch and Gary Bishop. 1995. “An Introduction to the
Kalman Filter,” University of North Carolina, Department of Com-
puter Science, TR 95-041.
[47] Greg Welch, 1996. “SCAAT: Incremental Tracking with In-
complete Information,” University of North Carolina at Chapel
Hill, doctoral dissertation, TR 96-051.
[48] H. J. Woltring. 1974. “New possibilities for human motion
studies by real-time light spot position measurement,” Bioteleme-
try, Vol. 1.

