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Abstract

We present ScaffCC, a scalable compilation and analysis framework based on

LLVM [1], which can be used for compiling quantum computing applications at

the logical level. Drawing upon mature compiler technologies, we discuss simi-

larities and differences between compilation of classical and quantum programs,

and adapt our methods to optimizing the compilation time and output for the

quantum case. Our work also integrates a reversible-logic synthesis tool in the

compiler to facilitate coding of quantum circuits. Lastly, we present some useful

quantum program analysis scenarios and discuss their implications, specifically

with an elaborate discussion of timing analysis for critical path estimation. Our

work focuses on bridging the gap between high-level quantum algorithm specifi-

cations and low-level physical implementations, while providing good scalability

to larger and more interesting problems.

Keywords: Quantum Computation, Compilers, Reversible Logic

1. Introduction

Quantum computing offers the possibility of efficiently solving problems

which are computationally very difficult to solve using classical algorithms on

classical computers. Examples of such problems include factoring of large num-

bers into prime factors and simulating chemical atomic systems [2, 3]. There
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has been a significant increase in quantum computing research in recent years,

however the gap between quantum algorithms of practical interest and what can

be feasibly implemented still remains.

In this paper, we describe the requirements of quantum program compilation

and present ScaffCC, a compiler framework with an extensible quantum pro-

gram analysis toolbox. ScaffCC’s approaches are designed to scale effectively to

compile programs that contain trillions of operations (instructions). Most previ-

ous works have focused on designing, mapping, and scheduling hand-optimized

quantum circuits for implementing small-scale quantum algorithms. Although

quantum error correction is likely to dominate computation in any feasible im-

plementation of quantum algorithms, and there are indeed many efforts to op-

timize this stage of code translation (e.g. [4, 5]), we have designed ScaffCC for

the logical level of quantum computation (i.e. before error correction). This is

because any optimization at the logical level will have a mulitiplicative effect on

the required amount of error correction and the ultimate resource consumption.

Overall, this paper makes the following contributions:

1. We identify some key differences between classical and quantum compila-

tion. For example, quantum programs are a static description of quantum

circuits, and are therefore specialized to certain problem parameters. As a

result, they yield statically analyzable code, mitigating the need for opti-

mizations such as branch prediction and emphasizing other optimizations

such as parallelization of operations. Moreover, this creates opportuni-

ties for aggressive constant propagation and deep optimization, while si-

multaneously putting greater pressure on the scalability of the compiler

algorithms employed.

2. We present compiler algorithms and compiler output formats that can

accommodate the large scale and deep optimization found in our quan-

tum benchmarks. In particular, we find that output modularity and a

dynamic, instrumentation-driven compilation technique are important to

managing scale. This is in contrast to conventional compiler code gener-
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ation approaches which use multiple compile-time passes for optimizing

and emitting code.

3. Despite the differences inherent in quantum compilation as opposed to

the classical case, we show the applicability of known classical compiler

algorithms, such as loop unrolling and procedure cloning, to the domain of

quantum computing. Our compiler leverages mature compiler technologies

through the LLVM framework.

4. We present data-flow analysis as an example of classical techniques em-

ployed in the quantum domain. In particular, we propose the use of

data-flow analysis techniques, both for important program checks such

as “no-cloning” and “entanglements,” and also for obtaining circuit esti-

mates such as the critical circuit path or its usage of qubits and operations.

These metrics help focus further optimizations.

5. We demonstrate the trade-off between accuracy and speed in analyzing

the critical path length of large quantum programs. We propose three

methods of increasing complexity for critical path length analysis, and

discuss the scenarios in which they can help achieve better speed and

accuracy.

6. Finally, recognizing the difficulty of hand coding math library functions in

quantum programs, we observe the need for using classical reversible logic

to describe sub-circuits of a quantum circuit, and hence present a novel

technique for the compilation and simulation of such modules.

The rest of this paper is organized as follows: Sections 2 and 3 give back-

ground on quantum computation, and then an overview of the compiler we have

developed to translate from high-level quantum algorithms to lower-level quan-

tum assembly operations. Sections 4, 5, and 6 describe the research challenges

in different parts of the compiler toolflow, including techniques to manage large

scale and to synthesize from classical reversible logic. Section 7 discusses anal-

ysis passes enabled by the ScaffCC functionality. Finally, Section 8 presents

related work, and Section 9 offers conclusions.
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2. Quantum Computation

This section offers a brief background on basic concepts in quantum compu-

tation.

Quantum States and Superposition: While classical bits exist in only

one of the binary states at any given time, quantum bits, or qubits, can ex-

ist in a superposition state, which is a linear combination of the |0〉 and |1〉
states. This extends to multiple qubits, i.e. a quantum mechanical system with

2 qubits can be simultaneously representative of the four states |00〉, |01〉, |10〉
and |11〉. Quantum operations can modify such superposition states simultane-

ously, allowing some quantum algorithms to perform faster than their classical

counterparts. Quantum states also exhibit other properties such as entangle-

ment, which causes the state of two qubits to be dependent on each other, and

no-cloning, which restricts copying of one arbitrary quantum state into another.

Though a quantum algorithm uses quantum bits and operations during the

computation, it must, in the end, provide a classical answer to a classical inquiry.

This is achieved using measurement, which causes a qubit to lose its superpo-

sition and collapse into a deterministic state of |0〉 or |1〉. Since this process is

probabilistic in nature, quantum algorithms seek to manipulate quantum states

so as to increase the likelihood of measuring the desired answer in the end.

Quantum Operations and Reversibility: Any valid operation on quan-

tum states must be unitary. This implies that all operations, and in fact the

entire quantum circuit, must be reversible. Analogous to classical logic gates,

the quantum operations which form basic building blocks of quantum circuits

are known as quantum gates. Quantum algorithms typically describe a quantum

circuit defining the evolution of multiple qubits using basic quantum gates.

Compiler Implications: This theoretical background guides the design of

an effective quantum compiler. Some of the described quantum phenomena such

as entanglement between states of qubits or impossibility of copying states are

important in detecting possible logical flaws in a program. Section 7 shows how

entanglement relationships by the compiler in order to inform the programmer
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about possible coding errors.

The reversibility criterion is also important to compilers of quantum pro-

grams; non-reversible sub-circuits need to be detected, or made reversible, for

valid quantum circuit generation. In this, the compiler must be aware of the

cost of qubits as the most expensive resources.

3. Overview of ScaffCC

ScaffCC compiles a program written in the Scaffold programming language,

and outputs a quantum assembly (QASM) representation. It targets logical

quantum computation, that is, compilation, analysis and optimizations before

synthesis into machine-dependent physical-level operations. This section gives a

broad overview of the input and output languages, and the design of the ScaffCC

compiler.

3.1. Scaffold Quantum Programming Language

Scaffold [6] is a high-level, imperative quantum programming language, de-

signed as an extension to C. Scaffold includes new data types, qbit and cbit, cor-

responding to quantum bits, and classical bits obtained as a result of measure-

ment, respectively. Furthermore, it includes basic quantum operations (gates)

such as Pauli X, Hadamard, Toffoli, Rotation, etc. as built-in entities. A Scaf-

fold program can be regarded as being composed of two parts: the quantum

part containing descriptions of quantum bits and operations, and the classical

part containing classical control around those operations, such as loops and

conditionals.

Similar to a C program or a Verilog classical circuit, almost every Scaf-

fold quantum code has a hierarchical structure and is organized into modules.

Each module represents a sub-circuit of the overall program circuit, and can

be instantiated within larger (parent) modules. Since quantum circuits must

be “reversible”, each module must either be specified using unitary quantum

operations, or be transformed as such by the compiler. Scaffold includes a class
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of modules novel among quantum compilers, called Classical-To-Quantum-Gate

(CTQG). These allow sub-circuits to be defined as classical logical circuits.

ScaffCC converts these into valid quantum codes, as discussed in Section 6.

3.2. QASM Assembly Language

The quantum assembly language of QASM, proposed in [7, 8], describes

quantum programs using a set of low level quantum gates. QASM specifies

logical qubits and the sequence of gate operations performed on them. Basic

data types in QASM are qbit and cbit, and the instruction set includes a uni-

versal set of gates (Controlled-NOT (CNOT), Hadamard (H), Phase (S), π/8

Rotation (T)), plus operations for measurement and preparation in the states

|0〉 and |1〉. QASM is independent of the underlying quantum technologies, and

assumes that the hardware can implement the described circuit using suitable

gate transformations and error correction in the next stages of synthesis.

QASM has been used to implement and study quantum circuits for small

problems using a flat circuit format [9, 10, 11]. However, realistic quantum

circuits that we examined contain between 107 and 1012 gates, rendering full

flattening infeasible. In Section 4, we introduce modifications to the original

flat format that retain scalability by enabling more manageable target QASM

sizes.

3.3. Internal Structure of the Compiler

Fig. 1 depicts a block diagram of ScaffCC’s internal structure. We have

implemented ScaffCC in LLVM [1], a rich, open-source library of compiler tech-

nologies, by adding intrinsic functions representative of quantum gates and a

datatype representative of qubits. Furthermore, we have extended Clang, a

C-family front-end to LLVM, to accommodate parsing of our language.

The first step of compilation is to separate the modules in the program which

are marked as CTQG. These modules have been defined by the programmer us-

ing classical gates, and are handled by the separate CTQG sub-compiler as

described in Section 6. CTQG’s output is translated directly to QASM without
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Figure 1: Internal structure of the ScaffCC compiler: The top, middle and bot-

tom parts respectively show translation of CTQG modules (Section 6), QASM

code generation (Section 5), and quantum program analysis (Section 7).

going to LLVM’s intermediate format, and is linked with the output of the quan-

tum modules after they have been converted to QASM. Although this approach

yields fast output code generation, it is not suitable for whole program analysis

since a part of the code will bypass the LLVM-IR representation. Thus, we

have implemented a QASM-to-IR translator which we use to convert the entire

program once it has been compiled. This provides correct input for quantum

program analysis.

A critical code generation issue lies in the degree to which output code can or

should be linearized (or flattened). We refer to this as “classical control resolu-

tion”. Our goal is to establish a judicious balance—we wish to flatten as much

as possible in order to support efficient synthesis of quantum circuits, while

also keeping enough abstraction to ensure circuit generation remains tractable.

During the compilation of non-CTQG modules, it becomes necessary to pro-

cess some of the classical instructions within them, in order to remove high-

level abstractions and obtain sub-circuits that clearly specify the sequence of

gate operations and qubits which are acted upon. This amounts to flattening

the program on a per-module basis, and is required for correct scheduling and

mapping during later stages of the toolchain. Unfortunately, performing code

linearization in a way that scales well and does not result in a time and space
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explosion is non-trivial. Section 5 has a detailed description of this step and

explores ways to make it execute faster.

The final phase of the compiler performs a decomposition of unitary oper-

ations into supported gates in QASM, which is a subset of those allowed in

Scaffold. This is a key step in the translation of a high-level program into a

standard assembly language, and is similar to instruction selection in classical

compilers. For some gates, this is a straight-forward process. For example, the

output of CTQG contains many “Toffoli” operations, which in order to be com-

patible with QASM, would each be substituted by a fixed 16-gate sub-circuit.

Other gates, such as rotations by arbitrary angles, may be more complex. We

employ a state-of-the-art method, as proposed in [12], to approximate these

gates.

Finally, as Section 7 discusses in detail, ScaffCC can perform a range of

useful analyses on its input programs, both for program correctness checks and

for circuit estimates. The LLVM toolkit represents computations as graphs,

which facilitates program analysis.

3.4. Scaffold Benchmarks

We perform a comprehensive study of the performance of our compilation

and analysis techniques using a set of eight quantum algorithms. The coding

of these benchmarks and our tools originally began in the IARPA quantum

computer science program. These benchmarks cover many common themes

in quantum algorithm design: Quantum Fourier Transform, Classical Oracles,

State Distillation, Random Walk, and Amplitude Amplification among others.

This constitutes one of the first studies in compiling quantum programs of this

large size and broad scope.

1) Grover’s Search Algorithm: Uses quantum amplitude amplification to

search a database of 2n entries. It is parameterized by n (log of the number of

entries) [13].

2) Binary Welded Tree (BWT): Uses quantum random walk to find a path

between an entry and exit node of a binary welded tree. The benchmark is
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parameterized by height of the tree (n) and a time parameter (s) [14].

3) Ground State Estimation (GSE): Uses quantum phase estimation to es-

timate the ground state energy of a molecule. The benchmark is parameterized

here by the molecular weight (M ), but could also be parameterized by preci-

sion [3].

4) Triangle Finding Problem (TFP): A quantum algorithm to find a triangle

within a dense, undirected graph using quantum random walk. The program is

parameterized by the number of nodes n in the graph [15].

5) Boolean Formula (BF): Computes a winning strategy for the game of

Hex with quantum random walk. The benchmark is parameterized by size of

the Hex board (x, y) [16].

6) Class Number (CN): A problem from computational algebraic number

theory that uses Quantum Fourier Transform to compute the class group of a

real quadratic number field. The program is parameterized by p, the number of

digits after the radix point for floating point numbers used in computation [17].

7) Shor’s Factoring Algorithm: Performs factorization using the Quantum

Fourier Transform [2]. The benchmark is parameterized by n, the size in bits of

the number to factor.

8) Secure Hash Algorithm-1 (SHA-1): A quantum implementation of the

classical algorithm [18]. The benchmark is parameterized by the size of the

message in bits (n).

4. Managing Scalability Through Choice of QASM Format

As stated before, an important research issue concerns managing the scale of

generated QASM code in large-scale benchmarks. Therefore, here we consider

QASM format adjustments over previous flat-code proposals, and study their

impact on code generation feasibility.

Hierarchical QASM format (QASM-H): Similar to hardware descrip-

tion language formats, QASM programs can be represented by a space-consuming

flat description, or by a denser hierarchical description which takes advantage
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#define n 1000

module foo(qbit q[n])

{

for(int i=0;i<n;i++)

H(q[i]);

CNOT(q[n-1],q[0]);

}

module main()

{

qbit b[n];

foo(b);

}

(a) Scaffold

qbit b[1000];

H ( b[0] );

H ( b[1] );

.

.

H ( b[999] );

CNOT ( b[999] , b[0] );

(b) QASM-F format

module foo ( qbit* q )

{

H ( q[0] );

H ( q[1] );

.

.

H ( q[999] );

CNOT ( q[999] , q[0] );

}

module main ( )

{

qbit b[1000];

foo ( b );

}

(c) QASM-H format

module foo ( qbit* q )

{

H ( q[0:999] );

CNOT ( q[999] , q[0] );

}

module main ( )

{

qbit b[1000];

foo ( b );

}

(d) QASM-HL format

Figure 2: Code Snippets for QASM-F, QASM-H and QASM-HL: Progressively

more classical control is retained. Note that Scaffold does not contain pointers

or allow their manipulation, but QASM address representation for accessing

memory resembles C syntax for ease of use with LLVM.
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of sub-circuit duplications to reduce the output code size. Some modularity is

also desirable for program analysis of large codes. Analysis techniques when

applied hierarchically reduce analysis time and memory usage, thus scaling bet-

ter to large program sizes. We demonstrate this through the example of timing

analysis in Section 7.3.

Hierarchical QASM with Loops (QASM-HL): Further information

about repeating quantum operations can be retained within the QASM format,

in the form of loops. Quantum circuits show two prominent types of quantum

operations: The first type are operations that are applied to a large set of qubits.

These are used, for example, when transforming qubits prepared in the ground

state into initial superposition states. Due to the absence of qubit dependencies,

these operations are highly parallel and are implemented simultaneously when

the hardware technology allows it. (For example one can use control technologies

such as microwave traps that affect a large number of qubits at the same time.)

We denote these as forall loops.

The second type of operations are serially repeated transformations, typically

used in quantum algorithms to converge to a more precise solution. For example,

Grover’s Search Algorithm makes use of a repeated invert-and-reflect operation

that gradually increases the likelihood of measuring the correct answer. In the

physical implementation, the control exercised for the sequence of operations

within the loop body can be synthesized once, and then reused. We denote

these as repeat loops.

In order to identify quantum forall and repeat loops in high-level programs,

we define a pure quantum block as a basic block that conforms to the follow-

ing criteria: 1. A pure quantum block does not contain classical computation

instructions such as arithmetic or compare instructions; 2. It does not contain

function calls which have non-quantum data types as arguments; 3. In a pure

quantum block the qubit array variables depend directly on the loop induc-

tion variable. Through static analysis of the loops around the purely quantum

blocks, we can obtain trip counts to provide the number of repetitions for the

repeat loops, and loop values to provide the range of qubits that are simultane-
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ously operated upon in the forall loops. This allows for efficient optimizations

and analyses.

QASM Code Size Comparison: Fig. 3 shows the reduction in code

size when using QASM-HL over QASM-H. A great advantage in code size

(∼200,000X on average) is already obtained across all benchmarks when us-

ing QASM-H as opposed to flat QASM.

Referring to this figure, QASM-HL output format particularly improves code

size for the Grovers and BWT algorithms, making an exponential growth with

problem parameters into a linear one. The reason is that these algorithms make

use of repeat blocks with high iteration count, in a manner that converges the

quantum states to the correct results. As programs scale, the increased number

of quantum operations is captured within the repeat loop of QASM, keeping

the resulting QASM sizes small. On the other hand, the TFP algorithm has

numerous forall blocks, but a relatively low number of repeat blocks. As the

problem size for this algorithm scales, the trip counts of forall loops capture

the increased number of qubits being operated upon, resulting in some code

improvement. For three of the benchmarks, not much advantage is gained when

using QASM-HL over QASM-H. In the GSE and Shor’s programs, very few

pure quantum loops and with low trip counts exist, impeding the effectiveness

of loop retention. In addition, a major part of the BF, CN and SHA-1 circuits

are compiled using the CTQG sub-compiler, which outputs a flat circuit format.

Quantum loops constitute a very small percentage of the non-CTQG part, re-

sulting in only slight code size improvements. Overall, QASM-HL’s advantage

is in making compilation tractable for more programs.

5. Code Generation and Scaling

Another important goal of ScaffCC is to scale well with increasing circuit

sizes. As previously defined, QASM-HL supports this by allowing modularity

and repetitions in the output code, which mitigates the size explosion that re-

sults from flattening the whole circuit. However, with the exception of some
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Figure 3: Reduction in code size of QASM-HL compared to QASM-H output,

due to retention of quantum loops.

loops, QASM-HL still requires per-module flat code to enable effective circuit

synthesis. Therefore, many classical control constructs, such as if-then-else con-

ditionals, non-quantum loops, parameterized modules, etc. must be processed

in the compiler. Scaffold programs contain the description of a quantum circuit

and are thus specialized for a particular set of input parameters (or problem

sizes), yielding deeply analyzable programs. This fixed-trace nature of program

control-flow and its non-dependence on qubit states means that all classical

control-flow constructs can be resolved in the compiler.

This section begins with a motivating example regarding the need for classi-

cal control resolution, and then describes methods for compiler implementations

of it. The speed and tractability advantages of our second method over the first

are discussed at the end.

Consider Fig. 4 which shows a segment of a Scaffold program where the

module main contains calls to module Oracle located inside two nested loops.

For each different value of j, a different version of Oracle is called, since the

rotation angle in the Rz rotation gate changes. In order to correctly decompose
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this gate, the compiler needs to disambiguate these different module versions,

and obtain the correct rotation angle for each one to arrive at its equivalent set

of gates. This is why, for example, QASM-HL does not contain parameterized

modules. We investigate how the compiler can automate this resolution of

classical control.

#define s_ 3000 // iteration count

module Oracle (qbit a[1], qbit b[1], int j) {

double theta = (-1)*pow(2.0, j)/100;

X(a[0]);

Rz(b[0], theta);

}

module main () {

qbit a[1], b[1];

int i, j;

for (i=1; i<=s_; i++) {

for (j=0; j<=3; j++) {

Oracle(a, b, j);

}

}

}

Figure 4: Example Scaffold program showing the need for classical control res-

olution. Different versions of the same module with different gate sets are cre-

ated, but can be discovered either statically using compiler passes such as loop

unrolling and procedure cloning, or dynamically using instrumentation and ex-

ecution.

5.1. Pass-Driven Approach

Our first approach, pass-driven, relies on static usage of transformation and

analysis passes such as heavy constant propagation and constant folding. It pro-

cesses the modules in the call graph of the program in depth-first, pre-order and

unrolls all loops that have not been marked as quantum loops. It further clones

those modules that are called with different parameters in multiple call-sites, and
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uses inter-procedural constant propagation to specialize those modules. These

steps are repeated until there is no further action to be taken. Since ScaffCC

uses the LLVM infrastructure, several pre-written passes are available for these

transformations; we adopt these and expand on them.

Referring back to Fig. 4, we begin by unrolling the inner loop in module

main by a factor of 4, which causes all call sites to module Oracle to have

constant call parameters. We then use procedure cloning to create a module

clone from each call site that has a unique set of input parameters. We then use

inter-procedural constant propagation to propagate the input parameter con-

stants of the call sites into each corresponding module. Repetitive application

of these transformation passes (loop unrolling, function cloning and constant

propagation) yields a program that preserves modularity but is flattened on a

per-module basis. This process is equivalent to a partial execution of the code.

This example also illustrates a further optimization: simple loops, as discussed

in Section 4, may be kept since their loop bodies are all quantum and their

resource usage can be multiplied by the loop trip count. The outer loop in

module main is an example of this kind of loop, where the input parameter “s”

is a timestep variable that indicates the number of required iterations over a

circuit segment in order to converge to the answer. This is the major source of

computation in this benchmark; avoiding unrolling the loop offers a great gain

in space complexity.

5.2. Instrumentation-Driven Approach

The pass-driven approach can quickly become cumbersome for algorithms

that have many large modules. The transformation passes create large interme-

diate code sizes, with unacceptable space and time costs. To address this, the

instrumentation-driven approach shifts from static code transformation to an

execution-based transformation. This shifts the job of resolving classical depen-

dencies to the classical processor, recognizing that fast classical processors can

be used to execute through classical portions of the code and collect information

regarding the quantum part.
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For such source-to-source rewriting, a naive instrumentation approach would

be to instrument the quantum instructions to print themselves textually as

the classical component executes. However this will result in a flat output.

For QASM-HL output, the instrumentation approach must preserve modularity

during execution. For this purpose, the program is modified to execute in two

modes, the quantum mode and the classical mode. In the quantum mode, the

instructions in a module are rewritten into the quantum assembly format, while

in the classical mode, the call paths are followed to determine the next set of

modules to be translated. In particular, we use “procedure cloning” to create

the quantum version of the module from the original version (denoted as the

classical version).

In the quantum mode, each module resolves the sequence of its quantum

operations and quantum data references, by executing the classical control in-

structions within it. Once the quantum operations and their operands are ex-

tracted, they are converted into QASM-HL format and written to the output file.

To achieve this, each quantum operation is instrumented with a print function

that prints the operation type and the resolved data operand references in the

QASM-HL syntax. The function calls to other modules are also instrumented,

but removed in order to prevent them from executing. Once the instrumenta-

tion pass is performed, a dead code elimination pass is used to remove the dead

instructions in the quantum version.

The classical version of a module is instrumented to invoke the quantum

version of the module, before executing the function calls contained within it.

In this module, the quantum instructions are removed, leaving only the function

calls intact. To prevent repeated execution of the module, runtime decision

instructions are added at the beginning of the classical version. We use the

technique of memoization to determine if the module was executed previously,

by inserting it into a look-up table. As further optimization, loop iterations

that have exactly identical call sequences, including their call parameters, are

removed so that the call sequence is executed only once.
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5.3. Compilation Speed Comparison

Fig. 5 shows the improvements of the instrumentation-driven approach over

the pass-driven approach in overall compilation time across the range of all quan-

tum benchmarks. Results were collected using a 2.27 GHz, Intel Xeon CPU with

24 MB of shared cache and 126 GB of RAM. For each benchmark, the compi-

lation time is normalized to the pass-driven time of the smallest problem size.

As problem sizes increase, the instrumentation-driven approach scales better

than the pass-driven approach. This amounts to significant improvements in

compilation time for large benchmarks. For example, for the Triangle Finding

Problem with problem size n = 15, the instrumentation-driven approach gener-

ates QASM-HL code within ∼ 20 hours, while compilation using the pass-driven

approach takes several days.

6. CTQG: Classical-To-Quantum-Gate Conversion

In many important quantum algorithms a large portion of modules use only

classical reversible logic operations—operations which can be decomposed into

the universal set of NOT, CNOT and Toffoli gates. These are often called

“classical oracles.” Also, unlike general quantum circuits, classical oracles can

be simulated on a conventional computer allowing a continuous development

cycle: 1. write code, 2. test by simulation, 3. correct bugs (if any). Compiling

classical oracles separately gives an advantage of being able to verify a significant

part of the quantum circuit by simulation.

At the first step of compilation ScaffCC detects all purely classical reversible

logic modules and compiles them using CTQG, a sub-compiler converting to flat

QASM format. Later during compilation, these precompiled classical oracles are

inserted verbatim into the final code every time a call to an oracle is encountered.

Also CTQG allows code developers to simulate any oracle on any set of input

signals for verification and debugging purposes.

Many important basic operations such as integer arithmetic, fixed-point

arithmetic, manipulations with bit strings, allocation of ancilla signals, if-then-

17



Figure 5: Improvement in compilation time with the instrumentation-driven

technique over the pass-driven, for different problem sizes. Figure is scaled to

the pass-driven time for the smallest problem size. Pass-driven compilation

can be faster for small benchmarks, while instrumentation-driven compilation

supports larger benchmarks (scales better). On average, instrumentation-driven

technique is 3X faster.
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else statements and loops with non-quantum bodies can be expressed solely by

means of classical reversible logic. CTQG uses state-of-the-art built-in algo-

rithms to compile these operations and pass them as QASM code to ScaffCC.

The basic integer arithmetic operations in reversible logic are a = a+ const,

a = a + b, a = a − b and a = a + bc where the variables are integer num-

bers in standard binary n-bit representation. For reversible adder and sub-

tracter, CTQG uses a recently developed algorithm by Cuccaro et al [19] which

uses 6n − 3 CNOT gates, 2n − 2 Toffoli gates and does not require any an-

cilla signals at all. That is, CTQG adder and subtracter have size linear in

the bit width of the arguments. The CTQG integer multiplier uses similar

ideas (see [19]); it has size O(n2) and uses no ancilla signals either. Us-

ing a constant integer expression inevitably requires ancilla signals because

reversible logic does not allow constant ‘0’ or ‘1’ gates. However CTQG au-

tomatically recycles ancillas used for representation of constants that are no

longer needed. For example only 8 ancilla signals (not 24 as with a brute

force approach) will be allocated by CTQG for the module that computes

{a = a+ 231[11100111]; b = b+ 219[11011011]; c = c+ 189[10111101]; }.
Fixed-point arithmetic analytic functions such as 1/x, ex, sinx, cosx and lnx

are much harder to implement in reversible logic. To the best of our knowledge,

there exist no purely reversible circuits for these functions. CTQG has a built-

in implementation of these functions which uses much fewer ancillas than a

brute force Taylor series approach. For example for 1/x we use infinite product

representation:

1/x = (2− x) ·
(

1 + (1− x)2
)

·
(

1 + (1− x)4
)

·
(

1 + (1− x)8
)

· . . .

which has doubly exponential convergence ∀x ∈ [1/2, 1], and producesO(n2 lnn)

gates and O(n lnn) ancillas. For ex, sinx, cosx and lnx our built-in functions

produce O(n3 lnn) gates and O(n2 lnn) ancillas.

In order to produce if (bit) {body} circuits, we add bit as an ex-

tra control signal to every gate of {body}. This transforms NOTs to CNOTs,

CNOTs to Toffolis, Toffolis to 3-control Toffolis, etc. Any n-control Toffoli then
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decomposes into a number of regular Toffolis. Arbitrary depth embedded if-

then-else decomposes into elementary reversible gates by applying the above

procedure several times.

Generally neither conventional nor reversible circuits can have loops. How-

ever if the maximum number of loop iterations can be predetermined, then the

loop can be “unrolled” producing an amount of gates approximately equal to this

maximum iteration count multiplied by the number of gates in the loop body.

Fig. 6 is an example of a circuit written in CTQG that computes 1+2+3+. . .+n

for a given iteration count in a brute force fashion.

#define M 100

module main_ctqg(qint[16] sum, qint[16] i, qint[16] n){

int control_i;

$ i := 1;

$ sum := 0;

for (control_i = 1; control_i <= M; control_i++) {

$if (i <= n)

$ sum += i;

$endif

$ i += 1;

}

}

Figure 6: Sample CTQG code, showing the usage of loops.

Although CTQG has a large variety of highly optimized built-in reversible

logic functions and methods for generating new reversible functions from the

existing ones, they are not sufficient to generate all reversible functions just

by their conventional (non-reversible) description optimally with respect to the

usage of ancilla signals. As shown in [20], the set of gates {NOT, CNOT,

TOFFOLI} is universal for all reversible boolean functions which represent even

permutations on the set of all possible input bit strings. Only one reusable

ancilla signal is required to remove the “even permutations” constraint. [20]

gives an explicit algorithm for representing any reversible boolean function given
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by a table of values as a sequence of {NOT, CNOT, TOFFOLI} with only one

extra ancilla signal. Providing that its table of values fits in memory, any small

reversible circuit can be generated this way optimally and then be programmed

in CTQG by directly listing the sequence of {NOT, CNOT, TOFFOLI} gates.

CTQG is a one-pass compiler and is able to produce QASM output gate by

gate “on the fly” without remembering any of the previously produced gates.

Thus, it can work on circuits as large as 1012 - 1013 gates, with the limiting

factor being only the runtime but not the memory size.

7. Quantum Program Analysis

One of the most important uses of a quantum compilation framework is

to obtain information about quantum algorithms and their implementation.

Programming for quantum devices can be error-prone—one must have good

reason to believe that the intent of the algorithm is reflected correctly, and

that the implementation does not violate the laws of quantum mechanics. An

example is the no-cloning theorem, which requires that the state of one qubit

cannot be copied into the state of another while maintaining the first state

[7]. This is a necessary, albeit not sufficient, condition on the soundness of

code. As a result, ScaffCC uses aliasing analysis to emit error messages when

a programmer tries to use a multi-qubit gate on the same qubit, since that

quantum state cannot be mapped onto two distinct qubits.

The next sections describe ScaffCC analyses that not only help in program

validity checks, but also give timing or resource estimates for the algorithm’s

circuit.

7.1. Entanglement Analysis

Entanglement is a fundamental phenomenon in quantum mechanics, denot-

ing a logical relation between measured states of qubits. An example wave

function of two entangled qubits is |ψ+〉 = (1/
√
2)|00〉 + (1/

√
2)|11〉. It shows

that the measurement states of the two qubits are logically related to each
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other. For example if one qubit is measured and collapsed to state |0〉, the

other qubit will also collapse to the same state. This phenomenon is extensively

used for logical transformations of quantum states and for fast communication

using quantum teleportation. Further, it is the key reason behind exponential

speed-up possible with certain forms of quantum computation [21].

Since entanglements affect the final outcome of qubit states, a view of entan-

glements occurring within a quantum program is useful to the programmer for

both designing algorithms and debugging. To analyze the large number of qubits

in a quantum program, we use data-flow analysis techniques to automate the

process of tracking entanglements. The entanglement analysis pass in ScaffCC

performs a conservative analysis, adding annotations in the output QASM-HL

program to denote possibly entangled qubits. Fig. 7 shows an example of a

module annotated with its entanglements.

Two qubits are entangled when their individual wave functions are insepara-

ble. In reality, determination of entanglement would require precise tracking of

quantum states and transformations of qubits. On the other hand, a conserva-

tive analysis without knowledge of actual states is possible by tracking simply

the interactions with other qubits. It is based on the observation that if two

qubits interact, they are likely to have become entangled with each other. Such

interactions occur when multi-qubit operations are performed. In particular, of

the primitive gates allowed by Scaffold, the CNOT and Toffoli operations poten-

tially create entanglement among their operand qubits. ScaffCC performs this

analysis for qubits in every module: control and target qubits from multi-qubit

operations are stored in a table as they are encountered within each module,

and the instructions are annotated with these pairs. Since the entanglement

property is symmetric, reflexive and transitive, the previous entanglements of

the control and target qubits are also added to the annotations.

In addition to compute instructions, quantum programs also contain un-

compute instructions to reverse state changes of ancilla qubits. The CNOT

and Toffoli operations are inverse functions of themselves; therefore they create

disentanglements when reapplied to the same set of control and target qubits.
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module EQxMark_1_1 ( qbit* b , qbit* t ) {

...

Toffoli ( x[0] , b[1] , b[0] );

// x0, b1, b0

Toffoli ( x[1] , x[0] , b[2] );

// x1, x0, b2, b1, b0

Toffoli ( x[2] , x[1] , b[3] );

// x2, x1, b3, x0, b2, b1, b0

Toffoli ( x[3] , x[2] , b[4] );

// x3, x2, b4, x1, b3, x0, b2, b1, b0

CNOT ( t[0] , x[3] );

// t0, x3, x2, b4, x1, b3, x0, b2, b1, b0

Toffoli ( x[3] , x[2] , b[4] ); // x3

Toffoli ( x[2] , x[1] , b[3] ); // x2

Toffoli ( x[1] , x[0] , b[2] ); // x1

Toffoli ( x[0] , b[1] , b[0] ); // x0

...

}

// Final entanglements:

// (t0, b4, b3, b2, b1, b0);

Figure 7: Entanglement annotations in the EQxMark module of Grover’s Search

benchmark. Entanglements are added as a comment to every instruction that

creates them.

Thus, entanglement analysis also involves tracking of uncompute portions in a

module.

To be able to identify disentanglements, sets of control and target qubits

are stored along with a timestamp for each gate. When the same gate with

the same set of (target, control) qubits is re-encountered, the control qubits

are examined for state changes since the timestamp of the original instruction.

Changes are determined by whether the qubits served as target qubits in other

instructions. If any changes were determined since the entangled instruction,

the (target, control) pair is retained in the table, along with the new pair and

timestamp. Otherwise, the instruction is marked as a reverse operation, and a

disentanglement is recorded. This removes the (target, control) entries from the

table. As a consequence, if the set of control qubits for a target qubit becomes
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empty, it is assumed to have been restored to its original state, and is removed

from the set of entangled qubits. Fig. 8 illustrates this process to determine the

entanglements and disentanglements for a small example circuit with two data

qubits and two ancilla qubits.

Figure 8: Example entanglement analysis of a quantum circuit that operates on

two data qubits d1 and d2, using two ancilla qubits a1 and a2. The final set of

entanglements realized by the circuit is (d1, d2).

Disentangled qubit check: Entanglement analysis enables the addition

of an important quantum program check, which we call the disentangled qubit

check, to track abandoned qubits in a program. When ancilla qubits are not

uncomputed, their wave functions stay entangled with the wave functions of

data qubits. This interferes with the probabilities of measured states of data

qubits, which may eventually result in incorrect outputs. To avoid these side-

effects, for every module in a quantum program, each newly instantiated qubit

must have been either uncomputed or measured at the end of the operation. At

the end of entanglement analysis over each module, ScaffCC examines the final
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entanglements. On encountering a module that has remnant ancillas in the list

of final entanglements, a non-uncomputed qubit warning is generated.

7.2. Resource Analysis

The high implementation cost of qubits and operations underscores the im-

portance of program analysis that can quickly calculate the amount of resources

consumed by that program. This number can serve as an early comparison of

the resource requirements of different algorithms before implementation on a

physical device, as well as a form of feedback to other parts of the compiler (e.g

as discussed in 7.3). Qubits remain the most expensive resources in quantum

computing, but the number of gates also matters – more gates increase the like-

lihood of error, thus requiring more error correction which in turn requires more

qubits.

Resource analysis as a form of whole-program analysis can also be carried

out using pass-driven and instrumentation-driven approaches, similar to what

was discussed in Section 5. In this case, either an additional compiler pass

would count the number of qubits and operations on the LLVM-IR code, or

instrumentation would yield a program which upon execution collects its own

resources. The instrumentation-driven approach again performs better for larger

problems.

Our instrumentation-driven approach is slightly different in the case of re-

source estimation — quantum operations are converted into increment operators

that count the occurrences of each gate on a per-module basis and add them re-

cursively to their parent modules. However, since quantum algorithms can con-

tain on the order of trillions of operations, it would be inefficient to traverse all

operations individually. Memoization can be used here too to exploit program

modularity, but with the goal of preventing repeated same-module calls; this

speeds resource analysis. This memoization requires the previously-mentioned

look-up table to be expanded into a hash table that also records the counts of

different resources. All hash table entries are populated on the first execution

of each unique version of a quantum circuit module. For all subsequent calls, if
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the module and its call parameters match an entry in the table, the previously

calculated results are used, without recalculation. This is possible because pro-

cedure calls in the Scaffold language do not have side-effects on the number of

resources within each procedure. Table 1 depicts an instance of this table for

the example in Fig. 4.

Table 1: Memoization hash-table for speeding up resource analysis for the ex-

ample in Fig. 4.

Resources
Module IntegerParam DoubleParam

Qubit X Z H T

main 0 0 2 400 27800 54300 55100

Oracle 0 0 0 1 76 137 140

Oracle 1 0 0 1 65 130 132

Oracle 2 0 0 1 64 142 142

Oracle 3 0 0 1 73 134 137

7.3. Timing Analysis

For large quantum problems, simulation on a classical computer is essen-

tially impossible. However, it is useful to have an estimate of the amount of

time the algorithm is likely going to take if it were to be scheduled on a quan-

tum computer. Even if the compiler has no knowledge about a hardware im-

plementation’s resource constraints, high-level timing analysis can estimate the

circuit’s critical path length by reordering instructions in order to optimize the

logical circuit’s length. For a given sequence of quantum instructions, ScaffCC

performs a hierarchical critical path estimation, which involves the scheduling

of instructions with the assumption of unbounded quantum resources. The

no-cloning theorem enforces a data dependency between quantum instructions

when they share one or more operands (there is no difference between reads or

writes, contrary to classical computing.) Adhering to these dependencies, the

critical path timing analysis schedules operations by reordering instructions in

as-soon-as-possible (ASAP) order.
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Since the quantum program traces can be exceedingly large, we take advan-

tage of modularity to arrive at a critical time estimate. The algorithm proceeds

in postorder of the call graph of the program, processing leaf modules before

the non-leaf ones. The algorithms of Fig. 11 describe the analysis. It uses a

last timestep table to keep track of the latest timestep in which a qubit was

scheduled in an operation. Traversing instructions of a leaf module in program

order, a last timestep table lookup is performed for all operands of an instruc-

tion, since each operand may represent a data dependency. This instruction is

then scheduled in the earliest timestep possible, resulting in an update in the

last timestep data for its operands. Once all instructions in a module are pro-

cessed, its last timestep data is stored, referencing each operand by its argument

number for modular analysis.

For a non-leaf module, the algorithm proceeds in a similar manner, except

that when it encounters a module invocation instruction parameterized with

qubit arguments, the arguments are treated as its operands. The last timestep

table is examined to determine the earliest timestep the module can be sched-

uled to start. The values from the last timestep table of invoked module are

added to that of the invoking module, increasing the critical path length for

the instruction’s operands by the pre-computed value. Once all modules are

processed, the highest timestep among all operands is recorded as the critical

path of the module

Remodularization: In the analysis of large benchmarks, we use the mod-

ularity of a program to avoid repetitive analysis and thereby improve analysis

time. However, this comes at the cost of decreased schedule quality. For exam-

ple, parallelism between module boundaries can be overlooked in non-flattened

sequences of instructions. Fig. 9a depicts this loss of parallelism with an ex-

ample. To strike a balance between modularity and optimizability, we perform

remodularization of the input quantum program. The process involves inlin-

ing modules that are too small for optimization, into their respective call sites,

and obtaining larger flattened modules. We define a threshold for module size

in terms of the number of quantum gates it contains. Informed about module
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sizes from resource estimation analysis, a remodularization pass in ScaffCC flat-

tens the modules that are smaller than the threshold. Fig. 9b shows how the

estimated critical path gets better with more flattening as more inter-modular

parallelism gets discovered.

Slack-Aware Critical Path Scheduling: To improve the accuracy of the

modular technique, we add the complexity of a small degree of boundary analy-

sis before using pre-determined information from a module. An ASAP schedule,

as we have been discussing, is naturally aligned at its top boundary. However,

the critical path lengths of all operands in a flat module’s schedule may not be

equal, creating slacks for some operands at the bottom boundaries. Subsequent

operations on these operands may be scheduled in the timesteps that consti-

tute this slack, thereby enabling a shorter schedule. We call such a schedule a

Bottom-Slack Aware schedule. To allow the scheduler to account for such slacks,

information about the critical path length of each operand in a module must be

available. That is, the last timestep information collected during the scheduling

of a module must be provided to the scheduler when scheduling a module com-

posed from it. While this increases the memory requirement of the algorithm

slightly, it greatly improves the accuracy of the critical path estimation.

Further improvement is possible if we analyze both the top and the bottom

boundaries of a schedule. In this technique, we first create slacks at the top

and bottom boundaries by generating a Center-Aligned schedule that is densely

scheduled at the center than at the boundaries. This allows the scheduler to

exploit the boundary slacks to fit modular schedules more tightly into each other.

In order to achieve this, our technique relies on a schedule adjustment step on

each flat module once its critical path is determined. This step reschedules

instructions in the top half of the schedule as-late-as-possible(ALAP), while

retaining the instructions in the second half in their ASAP schedule.

Figure 12 shows the effect of these three different scheduling algorithms for

estimating the critical path. It can be seen that the new slack-aware estimation

methods, as well as flattening, can work hand-in-hand to discover the parallelism

of the code which may be lost in its modular design.
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(a) The effect of a modular algorithm for critical path analysis in a toy program

(left). Modular analysis improves the runtime of the overall analysis by boxing certain

parts of the code. However, the lost parallelism in module boundaries causes longer

reported critical paths (center). Remodularization removes box boundaries by inlining

some modules into their parent modules, and exposing more parallelism. This tends

to increase the code size and is therefore slower, albeit more accurate (right).

(b) The effect of modularity on circuits’ critical time estimate for the case of the

BWT(n=300, s=1000) benchmark. More circuit flattening (modular inlining) causes

shorter (closer to real) reported critical paths, at the cost of longer analysis time.

Figure 9: Accuracy-Speed Tradeoff in Critical Path Estimation
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Figure 10: Slack-Aware Timing Analysis: Top and bottom boundary slacks are

an opportunity for more fine-grained instruction reordering.

8. Related Work

This paper is an extension of previous work that introduced ScaffCC [22],

with a broader set of benchmarks and techniques as well as more in-depth

analysis.

Many previous works on high-level quantum programming have focused on

the design of programming languages rather than compiler design. Program-

ming languages based on C [23] and Haskell [24, 25] have been proposed for

quantum computing applications specifically to facilitate development of cor-

rect quantum algorithms. In contrast, ScaffCC is a compiler effort that studies

and develops compiler strategies for efficient quantum compilation and analysis.

In particular ScaffCC differentiates itself through two objectives: generation

of tractable quantum assembly code that is also amenable to aggressive low-

level optimizations; and logical program analyses at full program scale. Similar

to Quipper as proposed by Green et. al. [25], the ScaffCC compiler handles

program scale by making heavy use of modularization. Additionally, ScaffCC

recognizes the implications of the degree of modularity on both efficiency and

quality of compilation, and presents scalable techniques to achieve both.

Moreover, this paper presents a first study in the trade-off between modular

inlining and critical-time estimation accuracy. Although other papers envision

the prospect of the QASM language being an extension of conventional classical

30



for each flat module M do

//Step1: ASAP schedule to determine

CriticalPathLength

//initialize table to hold information about

where previous dependencies were

//scheduled

last timestep[M][oi] = 0

for each instruction I in program order do

// Determine earliest timestep in

which

// the operation can be performed

for each operand oi do

get last timestep[M][oi]

end

lt = max(last timestep[M][oi])

Schedule I in timestep lt+1

//Update last timestep table

for each operand oi do

last timestep[M][oi] = lt+1

end

end

//Compute CriticalPathLength as length of

ASAP schedule

//Step2: ALAP schedule for top half of

critical path schedule

for ts = floor(CriticalPathLength/2)+1 to

CriticalPathLength

OR until each qubit qi in module has been

encountered do

for each instruction I scheduled in ts do

//find earliest cycle where

operand oi is used

next timestep[M][qi] = earliest

cycle ts where oi is used

end

end

for ts = floor(CriticalPathLength/2) to 1 do

for each instruction I scheduled in ts do

//find latest cycle to schedule

each operand oi

nt = min(next timestep[oi])

end

Schedule instruction in timestep nt-1

//Update next timestep for each operand

for each operand oi do

next timestep[M][oi] = nt-1

end

end

for each qubit qi in M do

save start timestep[M][qi]

end

end

(a) Center-Aligned scheduling of leaf mod-

ules.

for each non-flat module M in post-order of program’s

callgraph do

//initialize table to hold information about

where previous dependencies //were

scheduled

last timestep[M][oi] = 0

for each instruction I in program order do

// Determine earliest timestep in

which

// the operation can be performed

for each operand oi do

get last timestep[M][oi]

end

lt = max(last timestep[M][oi])

end

if I is a quantum gate then

Schedule I in timestep lt+1

//Update last timestep table

for each operand oi do

last timestep[M][oi] = lt+1

end

else

//I is a module invocation

//Compute slack for each operand for

each operand oi do

slack[oi] = lt+start timestep[I][oi] -

last timestep[M][oi]

end

least slack = min(slack[oi])

Schedule I to start executing from

timestep (lt + 1 - least slack)

//Update last timestep table

for each operand oi do

last timestep[M][oi] = lt + 1 -

leastslack + last timestep[I][oi]

end

end

end

(b) Composing overall schedule in ASAP

manner.

Figure 11: Fine-Grained (a) and Coarse-Grained (b) algorithms for scheduling

leaf and non-leaf modules respectively. The fine-grained schedule uses a center-

aligned approach to create the most slack at the top and bottom boundaries,

and the coarse-grained algorithm utilizes the remaining slots in the slacks to

compress the overall schedule as much as possible.
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(a) (b)

Figure 12: The effect of increasing thresholds and increasing timing analysis

complexity: More flattening and higher-complexity analysis result in higher

accuracies (a). In some instances the effect of higher-complexity analysis can

be masked with mere flattening (b - left), but flattening can only be done up to

a certain threshold without causing huge increase in code size. In these cases,

which occur in larger problems, we can rely on the center-aligned scheduling

method for recovering some of the lost parallelism (b-right).

assembly languages extended with a quantum instruction set [9, 26], to the best

of our knowledge none have implemented large circuits using this format and

studied the trade-offs between manageability and optimizability.

Our work in CTQG is a pioneering effort to create a C-language-like re-

versible logic compiler for quantum circuits. Although other tools exist which

work on small circuits and try to find optimal decompositions into reversible

gates [27], similar to [25] our compiler scales to arbitrary size problems but also

includes a state-of-the-art algorithm for synthesis of integer arithmetic which

generates no ancilla signals, a well-optimized library of fixed-point analytic func-

tions and an automatic ancilla manager which significantly reduces the use of

ancillas in comparison to a brute-force approach.

Previous work has enabled resource analysis as part of algorithm develop-

ment [25, 23]. ScaffCC expands its analysis toolbox with other useful analyses

such as entanglement and timing analysis. The analysis framework can be

easily extended further. For example, Metodi et al. [10] propose a useful reli-
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ability analysis in circuits, whose results can be compared with the reliability

goal of the hardware and used to determine circuit locations in need of error

correction. Techniques for exact entanglement analysis have been previously

proposed in [28, 29]. Perdrix [28] has developed typed language extensions for

abstract interpretation of entanglements in quantum data arrays, while Prost

and Zerrari [29] have proposed formal semantics for identifying entanglements

in higher order functions. ScaffCC performs a conservative and modular entan-

glement analysis at a purely logical level. This is intended to aid both design

and debugging of quantum algorithms, which benefit from an understanding of

where entanglements are potentially created and removed in a program. Fur-

thermore, Schuchman and Vijaykumar [30] identify a program transformation

which exploits parallelism between computation and uncomputation portions of

a program, albeit at the cost of increased qubits. This transformation can easily

be added to ScaffCC due to its tracking of uncompute regions.

9. Conclusion

This paper has examined the issues concerning the high-level compilation

of quantum circuits. We showed the possibility of compiling large-scale appli-

cations, with the applicability of some previous classical techniques and also

opportunities for exploiting the dual classical-quantum nature of programs for

keeping the compilation process tractable. Methods for program correctness

checking as well as a novel approach to reversible-logic synthesis were also pro-

posed. We also presented a detailed discussion of methods for estimating circuit

critical paths, and explained how they can be optimized in the face of increas-

ing code size. The trade-off between optimality and speed in this analysis was

evaluated. These discussions form a stepping stone towards efficient mapping

of quantum algorithms onto physical quantum computers in the future.

The ScaffCC software is available for download at: https://github.com/

ajavadia/ScaffCC.
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