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As life expectancy increases, malfunction or loss of tissue caused by injury or disease leads to reduced quality of
life in many patients at significant socioeconomic cost. Even though major progress has been made in the field of
bone tissue engineering, present therapies, such as bone grafts, still have limitations. Current research on
biodegradable polymers is emerging, combining these structures with osteogenic cells, as an alternative to
autologous bone grafts. Different types of biodegradable materials have been proposed for the preparation of
three-dimensional porous scaffolds for bone tissue engineering. Among them, natural polymers are one of the
most attractive options, mainly due to their similarities with extracellular matrix, chemical versatility, good
biological performance, and inherent cellular interactions. In this review, special attention is given to chitosan as
a biomaterial for bone tissue engineering applications. An extensive literature survey was performed on the
preparation of chitosan scaffolds and their in vitro biological performance as well as their potential to facilitate
in vivo bone regeneration. The present review also aims to offer the reader a general overview of all components
needed to engineer new bone tissue. It gives a brief background on bone biology, followed by an explanation of
all components in bone tissue engineering, as well as describing different tissue engineering strategies. More-
over, also discussed are the typical models used to evaluate in vitro functionality of a tissue-engineered construct
and in vivo models to assess the potential to regenerate bone tissue are discussed.

Introduction

Bone tissue, when injured, leads to dramatic changes in
the quality of life of patients. It can limit the ability to

perform basic tasks, such as walking and frequently causes
social and psychological problems. The current clinically
available solutions for these problems rely on bone graft
transplants (autologous, allogeneic, and xenogenic), bone
transport methods (Ilizarov technique), and implants based
on different types of materials. More than 2.2 million bone
graft procedures (autologous bone graft and banked bone)
take place annually worldwide.1,2 Those procedures ensure
adequate bone healing of many skeletal problems, such as
nonunion fractures, cervical and lumbar spine fusion, joint
arthrodesis, or revision arthroplasty. Bone grafting is a
strong and mature business generating sales of more than
$2.5 billion a year.3 Autografts are considered the gold
standard for bone repair. However, some complications may
occur, such as bone nonunions and blood loss, which in-
creases the need for blood transfusions.4–6 Moreover, besides
being an expensive procedure, there is a limited supply of
tissue and it causes significant donor-site morbidity.7,8 Al-
lografts are typically nonvital (dead) bone harvested from a

cadaver and then processed using a freeze-drying method
that extracts all the water via a vacuum drying. These types
of grafts avoid donor-site morbidity but present a potential
risk for disease transmission and severe immune response by
the patient.9 Similar to allogeneic bone, xenogenic bone is
nonvital bone derived from other species, mainly from bo-
vine origin. Because the potential for immune rejection and
contamination by viral proteins is higher in bovine bone than
in human cadaver bone, xenograft material is processed at
very high temperatures. The Ilizarov methodology consists
of an osteotomy followed by bone distraction by extendable
fixation devices. This technique avoids problems related with
the osseointegration of bone grafts, but requires longer pe-
riods of treatment (12–18 months) and can be quite painful
for the patient.10 The aforementioned limitations justify the
development of new therapies using alternative concepts
that are currently the focus of intense research efforts.

Bone has a notable regenerative ability but a considerable
amount of bone loss or the development of an adverse mi-
croenvironment can hinder this capacity, such as in cases of
severe trauma, developmental deformities, revision surger-
ies, and tumor resection.11,12 In these cases, bone tissue en-
gineering holds the promise of great therapeutic potential.13
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TISSUE ENGINEERING: Part B
Volume 17, Number 5, 2011
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ten.teb.2010.0704

1



Bone tissue engineering may constitute the needed break-
through technology to solve the problem of bone shortage in
various destructive clinical conditions and deformities by
providing functional tissue-engineered biological substi-
tutes.14 The most promising strategy used in this field is
based on the seeding and in vitro culture of primary osteo-
blasts or adult stem cells (ASCs) differentiated into the os-
teogenic phenotype on three-dimensional (3D) scaffolds
(synthetic, natural, or ceramic). These constructs would be
subsequently implanted into a bone defect. The cells would
synthesize the extracellular matrix (ECM) of new bone tissue,
whereas the scaffold would provide an adequate 3D envi-
ronment for the cells to adhere, proliferate, and differentiate.
The scaffolds will not only be temporary 3D support for cells
to create new bone, but also space filling and controlled local
release device of signaling molecules. To accomplish all of
these goals, scaffolds should meet stringent requirements,
such as biodegradability at a rate that is compatible with the
rate of new tissue formation. Other important properties
include biocompatibility with host tissues, nontoxicity and
nonimmunogenicity, appropriate mechanical properties,
adequate porosity, and morphology.15–17 All of these prop-
erties are essential to facilitate and guide cell ingrowth and
transport of gases, metabolites, nutrients, and signaling
molecules, both within the scaffold and between the scaffold
and the native local environment.

The selection of the most suitable material to produce a
scaffold to be used in bone tissue engineering applications is
a determinant step, since its properties will determine its
final characteristics. Biodegradable polymers, either syn-
thetic or natural, are the most appropriate substrates for
cells to attach, grow on, and maintain a differentiated phe-
notype. In recent years, naturally derived polymers have
been increasingly proposed for the referred application. In
our group, we have been working with natural polymers,
such as in starch,18–22 chitosan,23–27 gellan gum,28–31 soy,32

and silk.33,34 Our strategy is to mimic nature and for that
we have been using these polymers to design functional
microenvironments stimulating tissue morphogenesis. In
particular, chitosan has shown an excellent combination of
properties and it has been demonstrated that it is a suitable
biomaterial for the development of scaffolds for bone tissue
engineering. Chitosan can be used either alone23,35–41 or in
combination with other biodegradable polymers, such as
aliphatic polyesters,25,27,42–45 other natural polymers such as
starch26,46,47 or silk,48,49 or with ceramics such as hydroxy-
apatite (HA).24,50–58

This article aims to provide an overview of the most im-
portant concepts in bone tissue engineering and a review of
chitosan-based scaffolds proposed to use in bone regenera-
tion. The potential of this biomaterial as a suitable substrate
to support osteogenic differentiation of mesenchymal stem
cells (MSCs) will also be explored.

Brief Overview of Bone Biology

Bone is a dynamic and complex tissue evolving and
adapting to various stimuli throughout one’s lifetime.59 It
plays crucial roles in both mechanical support and mineral
homeostasis.60 Within a skeletal element, there are different
morphologies of bone, such as cortical and trabecular bone.
Cortical bone is a compact structural tissue, with only 10%

porosity, being 80% of the mass of an adult human skeleton.
Trabecular bone is a spongy structure with 50%–90% po-
rosity, filled with bone marrow. The majority of bones are
covered by a highly vascularized fibrous connective tissue,
the periosteum.61 Five different cell types are involved in
bone maintenance and remodeling: MSCs, bone-lining cells,
osteoblasts, osteocytes, and osteoclasts. Within the bone
structure, MSCs are found in the bone marrow62–65 and also
in the periosteum.66 Bone marrow is composed of hemato-
poietic tissue and the supporting stroma.67 Marrow stromal
cells, originally thought to only contribute to the hemato-
poietic microenvironment, later came to the center stage with
the recognition of being the stem/progenitor cells of skeletal
tissues.63 Human autologous bone marrow associated with
macroporous HA scaffolds was implanted in large bone
segmental defects and shown to promote bone regenera-
tion.68 After a 7-year follow-up,69 patients presented a com-
plete healing of their defects. Bone-lining cells are flat cells
that cover all bone surfaces and are believed to arise from
osteoblasts that become inactive.70,71 These cells form an
important cellular barrier that divides the canalicular net-
work (where osteocytes are present) from other fluids.61

Osteoblasts can be derived from MSCs that synthesize the
osteoid (nonmineralized organic matrix of the bone, that is,
type I collagen, osteocalcin, osteopontin, bone sialoproteins,
and bone morphogenetic proteins).72 Osteoblasts also have
an active role in the vascularization process by secreting
morphogens that activate angiogenesis by signaling endo-
thelial cells.73–75 Osteocytes are terminally differentiated os-
teoblasts entrapped within the bone ECM that are involved
in the maintenance of ECM and calcium homeostasis.61 Os-
teocytes also sense mechanical stress and communicate sig-
nals for bone remodeling and tissue maintenance.76 The fifth
cell type is the osteoclast, responsible for bone resorption,
which is the first stage of the bone remodeling process, fol-
lowed by bone homeostasis. These cells are large multinu-
cleated cells differentiated from a fraction of monocytes
found in peripheral blood.61

As with many other connective tissues, one of the main
components of bone is its ECM, which in this case is min-
eralized. Bone ECM is composed of 35% organic matrix and
65% mineral matrix. The most abundant mineral in bone
ECM is HA, a calcium phosphate crystallized at the surface
of collagen fibrils, required to resist bending and compres-
sion stresses.59 The organic matrix is mainly protein com-
posed of type I collagen (90%) and the remaining fraction
includes up to 200 other noncollagenous proteins, such as
glycoproteins, proteoglycans, integrin-binding proteins, and
growth factors.59

Bones are developed by two main processes: in-
tramembranous and endochondral ossification.77,78 In-
tramembranous ossification is a process that generates flat
bones and the skull structure. In this pathway, the embryonic
mesenchyme condenses and develops in primary ossification
centers, which will eventually fuse to form a network of
anastomosing interconnected trabeculae made of woven
bone.77 After that, periosteum is formed at the surface of tra-
beculae, further mineralized and part of the intertrabecular
connective tissue is transformed in hematopoietic tissue.78

Finally, the woven bone is remodeled into a lamellar type of
bone.79 Endochondral ossification is an osteogenic process
through which long bones, vertebrae and the pelvis are
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generated from precursor cartilaginous tissue.80 This process
starts in the fetus where MSCs differentiate into chondrocytes,
converting the condensed mesenchyme into a cartilaginous
model of bone that will expand in its extremities, while be-
coming hypertrophic in the center. These hypertrophic chon-
drocytes will promote primary ossification by secreting
molecules (such as alkaline phosphatase [ALP], type X colla-
gen, or vascular endothelial growth factor) that will induce
calcification of cartilage. This tissue will be resorbed, becom-
ing a structure onto which progenitor cells differentiate into
osteoblasts that start to deposit osteoid. After birth, secondary
ossification centers develop at the extremity of long bones,
allowing the development and growth of bone structure.79

Bone Tissue Engineering Strategies

Bone has an intrinsic self-ability to regenerate, but over a
large defect, inherent osseous processes are not able to repair
the defect during the patient’s lifetime.81 Further, diseased
bones do not heal properly and, under certain pathological
conditions, start damaging themselves.81–83 Tissue engi-
neering has emerged as a possible solution for these clinical
conditions. Several strategies can be employed to develop
new bone tissue. Those strategies may involve the use of an
ECM-like structure (scaffold), cells, and/or growth factors.
These three basic components need to be well synchronized
to achieve a successful tissue engineering therapy. The
strategy used for a specific bone defect must be adapted to
the clinical state of the patient. Overall, there are primarily
three approaches that have been described for tissue engi-
neering strategies: (1) to use engineered on matrices alone, to
guide tissue regeneration; (2) to inject autologous, allogeneic,
or xenogeneic cells alone; (3) to develop constructs of cells
seeded on these matrices.14 The first method involves im-
planting the scaffold at the site of interest, allowing host cells
to migrate from the surrounding tissues to colonize the
scaffold. The second strategy has the advantage of involving
minimal surgical invasion and cells can be manipulated by
recombinant gene technology or clonal expansion before in-
jection or infusion. However, this methodology has limita-
tions for bone critical-sized defects, due to the absence of the
supporting matrix to keep cells at the defect site. In the last
approach, cells are seeded onto the scaffold (construct) and
later implanted into the bone defect. Usually, constructs are
produced ex vivo before transplantation to a bone defect and
over time seeded and/or host cells will synthesize a new
ECM, as the scaffold degrades, creating a new functional
tissue. This review will focus on the third tissue engineering
strategy, exploring the potential use of autologous stem cells
cultured in biodegradable scaffolds that will act as ECMs,
supporting cell growth and tissue development.

Use of Naturally Occurring Polymers in Scaffolds

Nature offers a remarkable set of materials with great
potential to be used in different fields. The study and use of
natural materials comes from ancient times, such as cellulose,
which is used to produce paper or silk to produce clothes. In
medicine, for example, chitosan is used as a wound-dressing
material and collagen as a substitute in reconstructive sur-
gery. Today, powerful tools are available and the micro- and
nanostructures of these materials have been described. This
new level of knowledge has opened new opportunities to

develop materials for other applications, such as scaffolds for
tissue engineering. Great efforts have been made to recapit-
ulate the key features of bone ECM by developing structures
that mimic this naturally occurring matrix. ECM plays an
important role in cell activities, modulating their behavior.84

One difficulty in developing such scaffolds is the complexity
of recreating microenvironments similar to that found in the
tissue of interest. A simple approach to mimic nature is to
use naturally occurring materials. Moreover, natural poly-
mers have different functions, such as the role of polysac-
charides in cell membranes, intracellular communication and
storage, or proteins that are structural materials and catalysts
(enzymes).85 Natural polymers such as starch18–20,22,86–88 or
chitosan89–92 have been described as biocompatible, biode-
gradable, and having tailorable degradation rates.86,90 Some
drawbacks of these biomaterials are the limited mechanical
properties and processability or variability between different
batches.15 Examples of natural polymers commonly used
to produce scaffolds are collagen,93–97 hyaluronan,98,99 algi-
nate,100 silk,48,101,102 and chitosan.23,37,41 These polymers can
be combined with other synthetic materials, to improve their
processability and mechanical properties. Combinations
with HA,103 aliphatic polyesters,25,27,104,105 or composites of
different natural polymers26,46 have also been described.
Herein a special focus will be given to the natural polysac-
charide chitosan, the deacetylated product of chitin obtained
from the exoskeleton of crustaceans.

Chitosan as a Natural Origin Biopolymer

The history of chitosan dates back from the 19th century
when Rouget discussed its deacetylated form.106 Chitosan is
a linear polysaccharide, obtained from the deacetylation of
chitin, the primary structural polymer of the exoskeleton of
crustaceans, cuticles of insects, and cell wall of fungi.107,108

Chitosan is composed of glucosamine and N-acetyl glucos-
amine with b (1–4) link.109 Chitosan is the common name for
the family of deacetylated chitins, with different degrees of
deacetylation. By definition, when the number of N-acetyl
glucosamine units is higher than 50%, the polymer is con-
sidered chitin. On the other hand, when the number of
N-glucosamine units is superior, its name is chitosan.110 The
molecular weight of chitosan may range from 300 to more
than 1000 kDa, depending on its origin and preparation
method.35 Chitosan is a semi-crystalline polymer and its
crystallinity is dependent of the degree of deacetylation.107

The solubility of chitosan depends on the free amino and
N-acetyl groups, which are soluble in acidic pH.35 The cat-
ionic nature of chitosan allows electrostatic interactions with
anionic glycosaminoglycans (GAGs) and proteoglycans.
Natural polymers are known to influence cell morphology,
modulation, and differentiation,111,112 as referred to previ-
ously. This property is of crucial importance in the tissue
engineering field, because GAG molecules modulate the ac-
tion of several cytokines and growth factors.113

Chitosan presents a wide range of properties that make it
appropriate for tissue engineering applications, namely, its
biodegradability,89,114,115 biocompatibility,91,92,116 antibacte-
rial activity,117–119 wound healing properties,120–123 and
bioadhesive character.124

Chitosan can be hydrolyzed by chitosanases,125 which
are absent in mammals. Lysozyme is responsible for the

CHITOSAN IN BONE TISSUE ENGINEERING 3



biodegradation of chitosan in vitro.89,126 The degradation rate
of chitosan is inversely related to the degree of deacetyla-
tion,127 which represents the proportion of N-acetyl-d-
glucosamine units to the total number of units.125 Lysozyme
is ubiquitous in the human body.128 It is found in the lacrimal
gland, middle ear, nose, bronchus, bronchiole, bone marrow,
and digestive tract.129 Lysozyme has an important role in
inflammatory response, being secreted by macrophages,
monocytes, and granulocytes.130,131 Monocytes and macro-
phages are the main contributors to the presence of lysozyme
in human serum in concentrations between 7 and 13 mg/L.128

Chitosan has intrinsic anti-microbial properties against
several microorganisms, namely, fungi and bacteria.132 The
mechanism that results in these properties is unknown, al-
though its cationic nature associates with anions in bacterial
cell walls, suppressing biosynthesis and also disrupting the
mass transport across the cell wall, leading to the death of
bacteria.132

Chitosan has been described as a potent wound-healing
accelerator,133 and to possess immunological activity, by
activating macrophages,134 to produce cytokines135 and to
inhibit infection.136

One of the most important characteristics of chitosan, for
tissue engineering applications, is its ability to be shaped into
various structures, such as microspheres,137 paste,138 mem-
branes,111 sponges,37,139–142 fibers,27,38,143 and porous scaf-
folds.25,27,54,144,145 Several processing methodologies have
been used to produce porous chitosan scaffolds and will be
discussed in detail in this article. Nevertheless, before de-
scribing scaffold processing techniques, it is important to
underline the properties that a scaffold must possess to be
successfully applied in bone tissue engineering applications.

Scaffold Requirements for Bone Tissue Engineering

Bone is a 3D tissue and cells alone do not grow in a 3D
manner in vitro. For that reason, a tridimensional structure is
required to support the formation of new functional bone
tissue. This structure should provide a suitable environment
for cell attachment, proliferation, differentiation, and ECM
deposition. The in vitro cultured constructs, when implanted
into the defect, must be vascularized and osteointegrated
into the host bone.146 The 3D structures should be biocom-
patible, that is, not evoking an immune response when im-
planted in the host tissue. When a scaffold is implanted into
the defect to restore bone functionality, it should activate the
healing mechanisms (inflammatory response). The time
course of healing is influenced by interactions between
blood, scaffold surface, and degradation products, which are
released from the scaffold and therefore, influencing bio-
compatibility. The ideal scaffold should degrade at a rate
compatible with the rate of bone growth, physically creating
open space for new bone formation, until full regeneration is
achieved. The process of polymer degradation follows
the mechanisms through which polymer chains are cleaved
into oligomers and finally to monomers, which can be me-
tabolized by natural mechanisms.147 If a biological process
mediates the degradation process, it is designated as bio-
degradation.147 Several factors influence the kinetics of deg-
radation: type of chemical bonds, pH, polymer composition,
crystallinity, molecular weight, porosity, water uptake, and
anatomical location of the implant.147 Ideally, natural path-

ways of the animal body should eliminate the degradation
products.

As previously discussed, bone is a highly vascularized
tissue relying on the interactions between bone cells and
blood vessels. In this way, angiogenesis and neovascular-
ization play a crucial role in bone repair, and should be taken
into account when designing a scaffold. Angiogenesis is
mainly characterized by the protrusion and outgrowth of
capillary buds and sprouts from pre-existing blood vessels,
whereas neovascularization comprises the formation of
functional microvascular networks with red blood cell per-
fusion.148 Both processes are required to ensure successful
engraftment of the construct into the surrounding host tis-
sue. A vascular network can be included in a biodegradable
and biocompatible scaffold by microfabrication tech-
niques.149 The main property of the scaffold that is directly
related to vascularization is its porosity.150 Scaffolds should
have highly interconnected pores to promote cell ingrowth
and distribution throughout the matrix, as well as facilitating
the development of neovascularization. The minimum pore
size is considered to be approximately 100–150 mm,151 due to
cell size, migration requirements, and fluid transport. How-
ever, due to vascularization requirement, pore sizes were
shown to affect the course of osteogenesis.150 Large pores
rapidly become well-vascularized, leading to direct osteo-
genesis.152,153 In contrast, small pores lead to hypoxic con-
ditions, which tend to induce the development of an
osteochondral process, before osteogenesis occurs. The po-
rosity strongly influences scaffold mechanical properties.
High porosity and pore size facilitates tissue ingrowth, but
the consequence is a drastic reduction of mechanical prop-
erties, compromising the structural integrity of the scaf-
fold.154 The mechanical properties of a scaffold should be
compatible with those of the native tissue, maintaining its
structural integrity after implantation.155 In general, the
scaffold should be strong enough to not only resist stresses
caused by the surrounding environment that may cause
important dimensional changes. Scaffold integrity is critical,
since cells and tissue remodeling are important to achieve a
stable biomechanical environment and vascularization at the
host site. The topography and surface chemistry of the
scaffold play a crucial role in its performance, since those are
the first elements that cells recognize when in contact with
the scaffold surface. The hydrophilicity and hydrophobicity
of the scaffold surface will modulate protein adsorption,
which will in turn influence cell seeding.156

The methodology used to produce scaffolds for bone tis-
sue engineering must not adversely affect biocompatibility
or physical and chemical properties of the biomaterials used.
Different scaffold batches may exhibit minor variations in
their properties when prepared using the same parameters
and conditions.157 Different processing methodologies for
chitosan-based scaffolds have been already reported and will
be further discussed in detail.

Chitosan Scaffold Production Methods

The most common methodology for producing chitosan
scaffolds utilizes freeze-drying. This process consists of the
lyophilization of a frozen chitosan solution, where the chit-
osan acetate salt is induced by the freezing conditions to
phase-separate from the ice crystal phase. The ice phase is
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further sublimated, producing a porous struc-
ture.24,35,37,49,54,142,145,154,158–169 In most cases, the scaffolds
can still have chitosan acetate that will cause fast swelling
and subsequently dissolution in a neutral aqueous medium.
This can be overcome by cross-linking upon immersion in
sodium hydroxide,35,163 sodium sulfate,38 tripolypho-
sphate,37,142 ethanol series,35 or with a combination of cross-
linking with rehydration.158 The freeze-drying technique
requires very tight control of the temperature. If the tem-
perature is not sufficiently low, the matrix will not become
rigid enough to support the interfacial tension caused by the
evaporation of the solvent without collapsing, creating a
surface skin. Another limitation of the structures produced
by this technique is that pore size is not very large. Also, the
mechanical properties of the porous structures are very
limited, even after cross-linking. Due to these limitations of
freeze-drying, solvent-exchange/phase-separation has been
proposed based on the gelation of a solution of chitosan
using an alkaline solution below its gelation point.26,36,51,170

In a freeze-drying process the choice of the solvent is limited,
since the solvent vapor pressure at the drying temperature
(usually low) must be high enough to allow its removal.36

With this alternative method, which is also less time con-
suming and more economic, the choice of the solvent is
wider.36

Another processing methodology for chitosan is wet
spinning, which allows the production of fibers. Due to the
strong inter-chain forces derived from the hydroxyl and
amino groups, chitosan tends to degrade at temperatures
below its melting temperature, limiting its processability by
melt or dry spinning methods.38,41,143,171–173 Basically, chit-
osan is dissolved in a solution of diluted acetic acid. This
solution is spun through a spinneret into a coagulation bath,
in this way producing fibers. Chitosan can also be processed
by electrospinning into a nanofiber mesh scaffold. This
method uses an electrical field created between a collector
and a capillary connected to a reservoir with the polymer
solution. The elongation of the drop of solution caused by
the electrical field leads to the formation of very thin fibers
with nanometer scale diameters. Electrospinning of pure
chitosan39,116,174–176 is considered to be quite difficult, since
the resulting chitosan salt is soluble in water. Its stability in
solution requires neutralization or cross-linking in a post-
processing stage that frequently has an impact on the mor-
phology of the mesh. Several studies report the blending of
chitosan with other polymers, being easier to process by

electrospinning, namely silk fibroin,177 poly(ethylene ox-
ide),178,179 poly(vinyl alcohol),180 collagen,181 or poly-
caprolactone.182

Less conventional is the particle aggregation method (Fig.
1) proposed by Malafaya et al.23 This process relies on the
bioadhesive character of chitosan that confers a strong
bonding between individual particles. The scaffolds pro-
duced by this method have shown very interesting
mechanical properties. In another study, chitosan-poly(lactic-
co-glycolic acid; PLAGA) microspheres were molded by mix-
ing them with acetic acid solution in a stainless steel mold.183

Rapid prototyping may be another processing route en-
abling the manufacture of porous chitosan scaffolds. This
methodology is based on the production of a 3D physical
model from computer-aided design data (CAD software),
which is generated in a layer-by-layer deposition pro-
cess.144,184 Theoretically, a great variety of morphologies
and shapes can be created by different variants of this
technique resulting in reproducible geometry and mechani-
cal properties.

Our group developed different chitosan-based scaffolds
by melt-based routes.43,45 The vast majority of the processing
methods used to produce chitosan scaffolds involve the use
of solvents. Resident solvents are frequently toxic if they are
entrapped be entrapped in a scaffold. We have developed
various blends of chitosan with different aliphatic polyesters.
Those blends can be processed by compression molding
followed by salt leaching,43 melt spinning, and fiber bond-
ing27,45 into porous scaffolds with different morphologies
and mechanical properties (Fig. 2).

A systematic list of various porous scaffold compositions
using chitosan, the processing methods used to obtain scaf-
folds, and the in vitro evaluation with different cell types is
provided in Table 1. It is clear from this table that the most
used processing method to obtain chitosan-based porous
scaffolds is freeze-drying or another freeze-related process.
The main reason for this observation may be the simplicity of
the process.

In Vitro Cellular Approach
in Bone Tissue Engineering

The development of new scaffolds follows a typical eval-
uation routine. The first step is the assessment of potential
cytotoxicity. This initial screening is based on the use of ex-
tracted leachables from the scaffold, that is, substances that

FIG. 1. Microcomputed to-
mography image of a cross
section of chitosan scaffolds
obtained by the particle ag-
gregation method (A) and
interface between the chit-
osan particles stained with
eosin (B). Color images
available online at www
.liebertonline.com/teb
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leach out of the biomaterials. These leachables are added in
defined concentrations to standard culture medium and
placed in contact with a cell line for a determined period.
After this, cell viability and cell morphology are evaluated to
determine the eventual toxicity to the cells. The use of cell
lines is recommended in first stage testing, given that these
cells are reproducible and can be expanded to large numbers.
Cell lines, such as mouse fibroblast cells (L929) or human
osteosarcoma cells (SAOS-2), are frequently used. If the
scaffolds show no signs of cell cytotoxicity or morphology
changes, the next step involves direct contact assays with an
appropriate cell type to evaluate the cytocompatibility and
phenotype functionality. A valid 3D construct for bone tissue
engineering applications should have a positive outcome
from this sequence of initial in vitro tests.

Selection of cells

Ideally, the cell source for scaffolds seeding should be
nonimmunogenic, easily available, nontumorogenic, and
with other defined and adequate characteristics. It should be
expandable into large numbers and have demonstrated os-
teogenic potential. Autologous cells, from each patient, are
preferred.185–189 These cells may be isolated from the biopsy
of a patient’s tissue (e.g., cartilage, bone, and skin) from the
patient. The tissue obtained is dissociated and the isolated
cells are expanded in culture for later implantation into the
same patient.29,68,185 The use of autologous cells eliminates
the risk of immune rejection and the need to use immuno-
suppressive drugs. For bone tissue engineering applications,
osteoblasts are the most obvious selection, since those cells
are responsible for the bone formation.72 However, these
cells may have limited availability since the number of cells
that are obtained after the isolation procedure is low and the
expansion rate may be slow.190 In recent years stem cells
have been studied as a viable alternative to isolated autolo-
gous cells.190 The term ‘‘stem cell’’ is used to describe un-
differentiated cells with an ability to self-renew while
maintaining the capacity for multi-lineage differentiation.63

There are primarily two types of stem cells that have been
studied for tissue engineering applications, embryonic or
adult. Embryonic stem cells (ESCs) are pluripotent cells de-
rived from the inner cell mass of a blastocyst stage em-
bryo.191 These cells possess long-term proliferation potential
and are able to differentiate into all of the types of somatic
cells in the organism. Ethical issues have been raised re-
garding the source of ESCs, which may limit their use in

regenerative medicine. ASCs may be a valid alternative to
ESCs in many applications. These cells can be isolated from
different adult tissue sources such as bone marrow,63 pe-
ripheral blood,192 adipose tissue,193 or fetal tissues such as
umbilical cord,194 amniotic fluid,195 or placenta.196 ASCs are
multipotential cells capable of differentiating into several cell
lineages such as osteoblasts, chondrocytes, and adipo-
cytes.197 Recent reports sustain even a plasticity of ASCs, that
is, their ability to be differentiated into other types of cells.198

The process of osteogenic differentiation of stem cells may
be achieved by expanding the cells in standard culture me-
dium, supplemented with b-glycerophosphate,199 ascorbic
acid,200 and dexamethasone.65,200 These agents activate the
osteogenic commitment of ASCs. Culture of osteogenic cells
depends on the adequate supplementation of their growth
medium with a source of inorganic phosphate,201 b-glycer-
ophosphate, a nonphysiological organic substrate of ALP,202

to produce mineralized ECM. Ascorbic acid is essential for
the survival of human osteoblasts in vitro.203 This osteogenic
inducing agent is required for collagen synthesis and ALP
activity.200 Dexamethasone is a glucocorticoid that increases
the expression of several genes associated with osteogenic
differentiation.204 Moreover, the timing, size, and number of
bone-like nodules is affected by the dose of dexamethasone
used.205 Osteogenic medium can also be supplemented with
growth factors that naturally occur in bone, such as bone
morphogenic proteins (BMPs), fibroblast growth factors,
platelet-derived growth factor (PDGF), transforming growth
factor beta, and insulin growth factors.206–213 The process of
osteogenic differentiation is coordinated and involves three
main stages: (i) cell proliferation; (ii) ECM deposition and
maturation; and (iii) mineralization.214 During cell prolifer-
ation, growth genes are expressed.215 Immediately after the
downregulation of proliferation, the expression of ALP in-
creases.214 During this period, the ECM undergoes a series of
events that renders it competent for mineralization (ECM
maturation and HA formation).215 After this stage, ECM
becomes mineralized.214,215 With the onset of mineralization,
the ECM protein genes become upregulated; for example,
osteopontin and osteocalcin are increasingly expressed with
the accumulation of mineralization.214 ALP activity before
the onset of the mineralization suggests that this enzyme is
involved in the preparation of ECM for mineral deposi-
tion.214 This enzyme is considered to be an early marker of
osteogenic differentiation20,216,217 and used as an in vitro as-
sessment of osteogenic differentiation. The mineral content
of the bone ECM can be qualitatively assessed by alizarin red

FIG. 2. Chitosan-based
scaffolds produced by com-
pression molding followed by
particle leaching (A) and fiber
bonding (B) methodologies.
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or von Kossa staining, and the calcium content can be
quantitatively assessed. This information can be com-
plemented by the analysis of the mineral fraction by energy
dispersive spectroscopy, which detects the presence of cal-
cium and phosphorous elements. Thin-film X-ray diffraction
may be used to analyze the crystallinity of the ECM. Fourier-
transformed spectroscopy may be used to detect carbonate
and phosphate groups.27,218

In vitro studies with chitosan as a biomaterial

It is well accepted that cells strongly interact with their en-
vironment, namely, with neighboring cells, ECM, and the
surface to which they adhere.219 Chitosan as a biomaterial as

previously mentioned has an analogous structure to the GAGs
present in connective tissue ECM. Several studies describe the
positive influence of chitosan on cell attachment, proliferation,
and the osteogenic differentiation of MSCs (Table 1). Mouse
MSCs in contact with a chitosan suspension were shown to
improve osteogenic differentiation, when compared to cells
seeded onto polystyrene culture wells.220 Lahiji et al. reported
that chitosan-coated coverslips are an appropriate substrate for
the growth of human osteoblasts and chondrocytes.108

Poly(d,l-lactic acid) films modified with chitosan solution im-
proved cell adhesion, proliferation, and biosynthetic activity,
using human osteoblasts.221 Moreover, neonatal rat calvaria
osteoblasts proliferate at superior rates on titanium surfaces
coated with chitosan compared with titanium alone.222 In fact,

Table 1. Survey of In Vitro Studies with Chitosan-Based Scaffolds Proposed in the Literature

for Bone Tissue Engineering Applications

Scaffold structure Processing method Cell type (source) References

Chitosan scaffolds Freeze-drying — 35
Chitosan-TCP sponges Freeze-drying Fetal rat calvaria cells 141
Chitosan-gelatin scaffolds Freeze-drying — 157
Chitosan-TCP sponges Freeze-drying MG63 human cell line 184
Chitosan-HA scaffolds RP and freeze-drying — 143
Chitosan-calcium phosphate scaffolds Freeze-drying MG63 human cell line 54
Chitosan scaffolds Freeze gelation ROS 17/2.8 cells 36
Chitosan sponges Freeze-drying Rat calvaria cells 37
Chitosan fiber mesh scaffolds Wet spinning Human SAOS-2 cell line 38
Chitosan scaffolds Freeze-drying MG63 human cell line 158
Chitosan-silk scaffold Freeze-drying — 49
Chitosan scaffolds RP Porcine BMSCs 183
Chitosan scaffolds Electrospinning — 39
Chitosan-gelatin scaffolds Freeze-drying HUVECs 185
Chitosan scaffolds Precipitation/Particle aggregation ADAS 23
Chitosan sponges Freeze-drying MG63 human cell line 160
CPC-Chitosan scaffold Cement/Particle leaching MG63 human cell line 186
Chitosan-starch scaffolds Solvent-exchange phase separation — 46
Chitosan scaffolds with HA formation Freeze-drying Human SAOS-2 cell line 162
Chitosan-nanoHA scaffolds Freeze-drying MC3T3-E1 cell line 161
Chitosan-coralline scaffolds Freeze-drying CRL-12424 cell line 163
HA-chitosan scaffold Freeze-drying Goat bone marrow cells 24
Chitosan-gelatin scaffolds Freeze gelation Human BMSCs 51
BCP-chitosan scaffolds Freeze-drying MC3T3-E1 cell line 164
Chitosan-PLAGA scaffolds Particle aggregation MC3T3-E1 cell line 42
Chitosan gelatin/montmorillonite

scaffolds
Freeze-drying Rat stromal cells TC1 165

Chitosan scaffolds Freeze gelation — 40
Chitosan and chitosan-starch scaffolds Freeze gelation Human SAOS-2 cell line 26
Chitosan-collagen sponges Freeze-drying Rat BMSCs 166
Chitosan-PBS/PBTA/PCL Compression molding/salt leaching Mouse BMC-9 cell line 25
Chitosan scaffolds Wet spinning Mouse osteoblast 7F2 cell line 41
Chitosan-PBS scaffolds Melt spinning/fiber bonding Human BMSCs 27
Chitosan-PBS/PCL/PBTA/PBSA Compression molding/salt leaching — 43
Chitosan-PCL scaffolds Electrospinning MC3T3-E1 cell line 181
Chitosan scaffolds Freeze-drying MC3T3-E1 cell line 168
PLGA-chitosan scaffolds Freeze-drying Human BMSCs 167
Chitosan sponges Freeze-drying Chicken embryo chondrocytes 187
Chitosan and chitosan-starch + lysozyme

scaffolds
Freeze gelation Rat BMSCs 188

PCL-chitosan Solvent casting/salt leaching/
freeze drying

Rat osteoblasts 44

HA, hydroxyapatite; TCP, tricalcium phosphate; RP, rapid prototyping; PLLA, poly(l-lactic acid); ROS, rat ostosarcoma cells; HUVECs,
human umbilical vein endothelial cells; ADAS, adipose-derived stem cells; CPC, calcium phosphate cement; BCP, biphasic calcium
phosphate; PLAGA, poly(lactic-co-acid-glycolic acid); PBS, poly(butylene succinate); PCL, polycaprolactone; PBTA, poly (butylene
terephtalate adipate); PBSA, poly(butylene succinate adipate); PLGA, poly(l-glycolic acid); BMSCs, bone marrow mesenchymal stem cells.
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coating of titanium pins with chitosan induced minimal in-
flammatory response and a positive healing of a rabbit tibial
defect.223 MC3T3-E1 osteoblast-like cells proliferated and in-
creased ALP activity, as well as upregulation of osteogenic
gene expression, in composite chitosan/PLAGA scaffolds as
compared to PLAGA scaffolds.183 Chitosan–collagen sponges
with higher concentration of chitosan positively promoted os-
teoblastic differentiation of bone marrow mesenchymal stem
cells (BMSCs) and improved the mechanical and physical
properties of the matrices.167 Previous studies from our group,
using flat discs obtained by injection molding composed of
chitosan-poly(butylene succinate) (PBS) and PBS blends,
showed that chitosan had a positive effect on osteoblast-like
cells.224 Further, two groups reported that PCL nanofibrous
scaffolds containing chitosan revealed that stem cells adhered,
proliferated, and expressed phenotypic markers of osteogenic
differentiation in a superior way compared to nanofibrous
scaffolds alone.182,225 The ability of chitosan to support cell
adhesion and influence osteogenic differentiation of cells can
be attributed to its chemical properties.

In vitro testing systems are inevitably limited in their ca-
pacity to recreate the complex in vivo environment. There-
fore, these tests may be unable to accurately predict in vivo
performance, particularly in the context of tissue engineering
and regeneration of functional tissues. Thus, in later stages of
the development of a tissue engineering strategy, it may be
critical to include in vivo experiments.

In Vivo Animal Models

The general trend in bone tissue engineering after suc-
cessful in vitro testing of the constructs is to implant the
in vitro tissue-engineered construct in a relevant animal
model. Often, an ectopic small animal model (e.g., mouse or
rat) is first. Constructs are implanted into a nonbone ana-
tomic location of the animal’s body.88,226–228 Those areas can
be intraperitoneal, intramuscular, mesenteric, or subcutane-
ous. These models are also useful in determining whether a
scaffold has adequate properties, for example, sufficient po-
rosity and pore interconnectivity to allow tissue ingrowth
and neovascularization. It is important to determine the
biodegradation of implant materials, in terms of both deg-
radation products and the host immune response. If the aim
is to use human cells, nude mouse/rat models are commonly
used. These models can be used to screen tissue-engineered
constructs for osteoconductivity (i.e., the ability of the scaf-
fold to induce proliferation of undifferentiated stem cells),
the differentiation of seeded cells to an osteogenic lineage,
and the formation of ectopic bone.229–232

An in vivo approach should mimic the clinical situation
closely as possible. Some models use an intraosseous wound
that will not heal spontaneously (i.e., critical-sized defect).81

The minimum size of a critical-sized defect is not absolutely
clear. This is a complex situation as a defect cannot be de-
fined only by size; it is dependent on other variables (e.g.,
other species and anatomic location).233 Guidelines are
available for the dimensions of implants based on the size of
the animal, bone chosen, and an implant design that avoids
pathological fracture.234 It is important to include controls in
the experimental design. These controls should be of a ma-
terial already in clinical use and also a control consisting of
an empty defect, to prove that the bone defect is not able to

regenerate itself.234 There are several types of bone defects
that can be used, such as cranial, segmental, partially cortical,
and cancellous bone. These locations can be subjected to load
or nonload bearing (e.g., femur or calvarial, respectively).
The type of animal can be small (mouse or rat)88,102,213,235,236

or large (rabbit, sheep, goat, dog, or nonhuman prima-
tes).140,185,237–242 Typically, researchers start with a smaller
model that is less costly and where the experimental results
may be easy to compare with many other experiments re-
ported in the literature. One of the most accepted nonloading
bearing models is the calvaria bone defect. This flat bone
allows the creation of a uniform circular defect, and has
sufficient size to make easy surgical procedure and handling
in small animals. In those models, the dura mater and the
overlying skin provide fixation of the scaffold. The model
has been systematically studied and is very well estab-
lished.81,82,243,244 This model can be performed in small ani-
mals using rat245,246 or mouse.213,235 It can be also applied to
large animals, like rabbit247–249 or sheep.189

The last stage of preclinical trials of a bone tissue engi-
neering strategy should be performed in animals that are
believed to be more similar to humans, in terms of metabo-
lism, physiology, anatomy, etc. Bones of small animals are
more reactive to specific stimuli and are not subjected
to comparable stresses. For example, a femur defect in
rats250–252 is believed to heal faster that in larger animals.243

However, in a study where the authors compared the bone
ingrowth using the same chamber, in rats and in goats, no
significant differences were observed between the two ani-
mals.253 In vivo experimental design is therefore not an easy
task. It is necessary to balance all the variables and decide
which animal model suits better the specific goals of the
experiment. Surgeries involving load-bearing conditions and
perhaps requiring stabilization with internal or external fix-
ation devices command a high level of surgical expertise. The
maintenance of large mammals can be expensive. It is often
useful to limit the number of experimental variables to re-
duce random effects and to ensure as much statistical sig-
nificance as possible. Variables such as physical condition of
the animal (nutritional status, diet, age, and sex); adminis-
tration of anesthesics and/or analgesics; type of bone defect
(anatomic location or use of fixation devices); and method-
ologies used to assess sample collection and characterization
may influence the final outcome. Despite these issues, pre-
clinical tests should be performed in large animals. Sheep
or goat, for example, has a metabolism, weight, and a bone
remodeling rate similar to humans.12,18,186,189,239

In vivo bone regeneration studies
with chitosan material

As described above, chitosan is already used in medicine
as a biomaterial for wound dressings. However, there are
several reports in the literature showing the ability of chit-
osan to be used as material to regenerate bone (Table 2). The
first report describing an attempt to regenerate bone in vivo
using chitosan dates to 1988,111 when Muzzarelli and col-
leagues implanted chitosan membranes and chitosan ascorbate
gel into cranial defects in cats. Their findings suggested that
chitosan seems to induce a stimulatory and/or attractive effect
on stromal cells of surrounding tissues. Subsequent studies
from the same authors describe the use of methylpirrolidone
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chitosan in defects created in the rabbit tibia140 and in the sheep
femoral head.141 These studies confirmed previous observa-
tions111 of the possible stimulatory and/or attractive effect of
chitosan on adjacent cells. Chitosan has also been used as
carrier for growth factors, such as PDGF-BB, to promote bone
formation in a critical-sized calvaria defect in rats.208,254 Os-
teoconductive chitosan/tricalcium phosphate (TCP) sponges
were observed to promote osseous healing of rat calvarial
defects versus controls (without scaffolds). The addition of
PDGF-BB to a carrier further enhanced bone regeneration.254

These authors observed that chitosan/TCP sponges without
bioactive PDGF-BB resulted in more bone formation in these
versus chitosan-TCP without the bioactive agents.208 PDGF
growth factor is produced by platelets, osteoblasts, and
monocytes/macrophages and it is believed to have a role in
the migration of MSCs to wound sites.255 The combination of
chitosan-PBS scaffolds with human BMSCs implanted into
critical-sized cranial defects in nude mice resulted in enhanced
integration with the surrounding tissue and significant bone
formation. This was more evident for the scaffolds cultured
with human cells.232 Electrospun chitosan nanofiber mem-
branes evidenced new bone formation at 4 weeks in rabbit
cranial defects compared to the controls (empty bone defects),
where only soft tissue formation was observed.116 Chitosan
combined with nanoHA, in the form of microspheres, im-
planted in rat calvaria defects for 12 weeks were observed to
promote bone regeneration.52 Moreover, chitosan-PLAGA
microspheres conjugated in a scaffold by particle aggregation,
with or without heparin and recombinant human bone mor-
phogenetic protein 2 (rhBMP-2), promoted bone regeneration
in vivo, with more pronounced results for the scaffolds with the
incorporated growth factor.256 A study by Rı́os and co-
workers48 used a model mimicking the clinical bone free flaps,
by using a cranial flap that involves the design of the desired
tissue at an ectopic site in the patient’s own body. This study
used chambers containing silk fibroin-chitosan scaffolds im-
planted on top of the grafted periosteum over the latissimus
dorsi muscle of sheep.48 Bone grafts were used as positive
controls and empty defects as negative controls. The authors
found that the same amount of bone was regenerated in the
defects with the tested scaffolds, as for the defects with bone
grafts.48

Conclusions and Final Remarks

Recent developments in bone tissue engineering have
been considerable, but as yet there are no bone tissue-
engineered products in widespread clinical use. Both cells
and biomaterial components need to be optimized to pro-
duce a functional bone tissue-engineered therapy.

New stem cell sources are being explored, such as extra-
embryonic tissues, placenta, amniotic fluid, and umbilical
cord. These stem cells have been shown to express pluripo-
tent markers and low immunogenicity, evidencing a more
primitive state. These cells are often discarded, which makes
these sources attractive candidates for tissue engineering
applications. Moreover, their low immunogenic potential
could enable the use of these cells as an allogenic cell source
for successful bone repair.

A new generation of biodegradable natural biomaterials is
emerging, with chitosan being one of the most interesting.
Chitosan has been extensively studied as a biomaterial for
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bone tissue engineering scaffolds, but in practice it is still and
only used as a wound dressing and hemostatic agent in
medicine. Several morphologies can be successfully obtained
by different processing techniques, which make this material
attractive for producing scaffolds. Several studies report the
biological enhancement of scaffolds with the addition of
chitosan and its influence over osteogenic differentiation and
bone regeneration; however, the mechanism of action re-
mains unclear. It is worthwhile to continue to pursue re-
search with this interesting natural polymer to clarify its
function over cell performance, as well as, to improve scaf-
fold manufacturing methodologies that could lead to its
clinical use in the bone regeneration field.
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