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ABSTRACT

EÆieny and salability have always been important on-

erns in the �eld of data mining, and are even more so in the

multi-relational ontext, whih is inherently more omplex.

The issue has been reeiving an inreasing amount of atten-

tion during the last few years, and quite a number of the-

oretial results, algorithms and implementations have been

presented that expliitly aim at improving the eÆieny and

salability of multi-relational data mining approahes. With

this artile we attempt to present a strutured overview.

1. INTRODUCTION
EÆieny and salability have always been important on-

erns in the �eld of data mining. They are even more so

when we fous on multi-relational data mining. The in-

reased omplexity of the task alls for algorithms that are

inherently more expensive, omputation-wise: larger hypo-

thesis spaes are searhed and evaluation of a single hypo-

thesis beomes more omplex. For instane, in database

terminology, evaluation of a single hypothesis might involve

one or more joins between tables, whih is not the ase for

lassial data mining methods.

In this artile, we attempt to give an overview of reent

evolutions in multi-relational data mining that have inu-

ened the eÆieny and salability of ertain approahes.

We do not aim at giving an exhaustive survey of existing

tehniques, but rather try to reate a strutured ontext

in whih they an be plaed. Many of the tehniques and

ideas we disuss here originate in indutive logi program-

ming (ILP), but most of them arry over to the general

ontext of relational databases, as we will repeatedly point

out.

Typially, ILP tehniques perform a searh through some

large hypothesis spae, during whih many hypotheses are

generated and evaluated. There are two obvious ways in

whih this proess an be made more eÆient: by reduing

the number of hypotheses evaluated, and by making the

evaluation proess itself more eÆient. This is a �rst las-

si�ation suitable for many (though not all) optimization

tehniques.

We an further distinguish tehniques that inrease eÆieny

at the ost of orretness, and tehniques that preserve or-

retness. Corretness in this ontext should be understood

as: yielding the same results as some referene algorithm

that does not employ the tehnique. An algorithm that

does not preserve orretness, should still give results that

are with suÆiently high probability suÆiently similar to

the referene results. Ideally this probability and similarity

are formally de�ned, and are parameters of the algorithm.

Some eÆieny gain an be obtained by hanging the rep-

resentation of the data. While the original work on ILP on-

siders the given knowledge base to be monolithi, more re-

ent approahes exploit a ertain kind of loality of relevant

knowledge. This inuenes both the eÆieny with whih

hypotheses an be evaluated, and the ability to proess data

sets without loading them entirely into main memory. Other

optimizations related to hanges of knowledge representa-

tion are those that pre-ompute and materialize ertain in-

formation that will often be needed; these inlude so-alled

propositionalization approahes, where the multi-relational

problem is ast into a single-relational form.

The above onsiderations are reeted in the struture of

this artile. We start (Setion 2) with looking at aspets of

representation: the way in whih data and knowledge are

represented inuenes the eÆieny with whih they an be

proessed. We ontinue by disussing methods for redu-

ing the number of hypotheses that need to be evaluated,

in Setion 3, and disuss the omputational omplexity of

hypothesis evaluation (and how to improve it) in Setion 4.

In Setion 5 we disuss a lass of methods that are more or

less in the intersetion of the former ategories: these are

methods that exploit similarities in data and hypotheses by

proessing data and hypotheses in suh a way that ompu-

tations an be shared. Salability with respet to memory is

disussed in Setion 6. In Setion 7 we present some related

work that does not really belong to any of the previous at-

egories. Finally, we illustrate the salability of urrent state-

of-the-art relational data mining systems with a number of

onrete ases (Setion 8), and onlude in Setion 9.

2. REPRESENTATIONAL ASPECTS
A distintion is sometimes made between two paradigms in

ILP: learning from entailment, and learning from interpreta-

tions [19℄. Whih one is used, has an e�et on eÆieny and

salability. This is mainly beause they di�er with respet

to assumptions of loality of relevant information.

We do not go into tehnial details here, but illustrate the

issues on an example. Consider a relational database that

has information on students and the ourses they follow.

There are three relations: Student, Course, and Follows; the

latter represents an M-to-N relationship between students

and ourses.

Several tasks an be de�ned on this database. We might
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SName CredProfCNameMinMaj

CourseStudent Follows NM

Student

SName Maj Min

joe phil. math

jane math phil.

Course

CName Prof Cred

alulus Jones 4

algebra Smith 3

history Miller 4

Follows

SName CName

joe alulus

jane algebra

jane alulus

student(joe, phil, math).

student(jane, math, phil).

ourse(alulus, jones, 4).

ourse(algebra, smith, 3).

ourse(history, miller, 4).

follows(joe, alulus).

follows(jane, algebra).

follows(jane, alulus).

Figure 1: A toy database with information on students and

ourses.

want to lassify students into spei� lasses, or luster them.

Similarly, we might want to lassify or luster ourses (for

instane, popular and non-popular ourses), or tuples of the

Follows relation (e.g., the target onept to haraterize is

whih students follow whih ourses). Note that a natural

join between the three relations leads to a universal rela-

tion for whih the tuples an be mapped one-to-one with

the Follows tuples, but many-to-one with Student or Course

tuples. This implies that data mining tasks on the Follows

relation are inherently propositional, while tasks on Student

or Course are inherently relational.

Let us fous on the setting of lassifying students. \Multi-

relational" in this ontext refers to the fat that for a given

student, information in di�erent tuples in di�erent relations

is relevant. This information is typially linked to from a

single tuple in the Student relation, via foreign keys. Thus,

the lassi�ation of a student is based on information in a

subdatabase of the original database, that is, a database with

the same database shema as the original one but a subset

of its tuples. We illustrate this with the following example.

1

Example 1. Consider the toy database shown in Figure 1.

The �gure shows an entity-relationship diagram desribing

the database struture, and a possible instane of the data-

base. The instane is shown in a relational as well as a

�rst order logi format; ILP systems would typially use the

latter format. Given a spei� student, say, Jane, we an

identify that part of the database that is somehow onneted

to Jane and therefore possibly relevant for her lassi�ation.

We all this the subdatabase desribing Jane. It is shown

1

More explanations and illustrations are given by De Raedt

et al. [20℄ and a onstrutive de�nition of this subdatabase

is given by Blokeel [11℄, p. 77{79.

Student

SName Maj Min

jane math phil.

Course

CName Prof Cred

alulus Jones 4

algebra Smith 3

Follows

SName CName

jane algebra

jane alulus

student(jane, math, phil).

ourse(alulus, jones, 4).

ourse(algebra, smith, 3).

follows(jane, algebra).

follows(jane, alulus).

Figure 2: A partial database, ontaining the information

relevant for lassifying a single tuple of the Student relation.

in Figure 2, again in both relational and �rst order logi

format.

While lassially a distintion is made between propositional

data mining (�nd patterns within the tuples of a single re-

lation) and multi-relational data mining (�nd patterns that

extend over di�erent tuples of di�erent relations), by intro-

duing the notion of \individuals" we an make an other

lassi�ation: methods that �nd patterns within the de-

sription of an individual, and those that �nd patterns that

extend over individuals.

We an then distinguish three settings for data mining:

1. �nding patterns within individuals that are represen-

ted as tuples

2. �nding patterns within individuals represented as sets

of tuples (that is, eah individual is a sub-database of

the original one)

3. �nding patterns within the whole database

For instane, we ould look for patterns that indiate whih

minors are often hosen with whih majors. Suh patterns

an be found by looking only at Student tuples; hene this

is setting 1. We ould be interested in patterns regarding

the behavior of students, e.g., whih ombinations of ourses

student tend to hoose (\a student who takes ourse A will

probably also take ourse B"). Note that information on

the ourses followed by a partiular student is spread over

several tuples, but the number of suh tuples is limited (as

a partiular student follows a limited number of ourses).

Therefore, this task belongs to setting 2. Finally, �nding

patterns onerning multiple students (\ourses followed by

student A are often also followed by student B") belongs to

setting 3, beause the information relevant for suh a pattern

may be spread throughout the whole database.

Settings 2 and 3 are multi-relational. Setting 2 degenerates

into Setting 3 if the subdatabases that are onstruted turn

out to be the whole database. In many ases, however, there

is a natural notion of \individual" whih auses the sub-

databases to be muh smaller than the original database.

For instane, when mining moleular databases, patterns

are sought within single moleules. The subdatabase then
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orresponds to the desription of a single moleule, whih is

muh smaller than the whole database.

Assuming that there is indeed a lear notion of \individual",

there are two options: one is to mine the database in its ori-

ginal format, the other is to reformat the database, expliat-

ing the subdatabases. The latter option is used by some ILP

systems that learn from interpretations, suh as ACE [15℄, or

those that use a term-based representation [26℄. Following

Flah and Lahihe's terminology [26℄, we all these repres-

entations \individual-entered", as opposed to the original

\prediate-entered" representation.

The use of individual-entered representations has a number

of advantages. First, it has a positive e�et on the theor-

etial learnability of onepts. De Raedt and D�zeroski [21℄

have obtained positive PAC-learnability results for this set-

ting, and this is mainly due to the assumption that patterns

are searhed within individuals and that the desription of

individuals in the database is omplete (that is, all relevant

information on an individual is given).

Seond, the individual-entered approah is more similar to

the propositional mining setting, in that there is a lear

notion of individual examples. Beause of this, tehniques

from propositional learning an more easily be opied. For

instane, sampling beomes easier (taking a subsample of

individuals is diÆult if it is not obvious whih information

in the database is relevant for whih individuals), and so

do tehniques for proessing data one example at a time

(thus avoiding the need to have all data in main memory

simultaneously; we will return to this in Setion 6).

An obvious disadvantage of the individual-entered repres-

entation is that its format depends on the notion of \in-

dividual". In those ases where there are several natural

individuals, a separate representation has to be formed for

eah of them. In the students and ourses example, both

students and ourses may be natural individuals, and when

we want to lassify students we would need to use a di�erent

representation than when we want to lassify ourses.

A more extensive omparison of representations in the re-

lational setting is made by Lahihe and Flah [48℄. We

onlude here by remarking that the di�erene between the

individual-entered and the prediate-entered representa-

tions is to some extent similar to the di�erene between

objet-oriented and relational databases. In objet-oriented

databases, information on an individual is diretly linked

to the objet representing the individual, whereas in a rela-

tional database, the information is spread throughout sev-

eral tables and has to be looked up via indexes. It may well

be that for multi-relational data mining, the objet-oriented

paradigm will turn out to be more suitable than the rela-

tional database paradigm.

3. MULTIRELATIONAL DATA MINING AS

SEARCH
Multi-relational data mining an be formalized either as a

onstraint satisfation problem (e.g., �nd all lauses ov-

ering more than " students) or as an optimization problem

(�nd the most disriminant lauses, e.g., disriminating East

Coast from West Coast students). In both ases, the task

an be formulated as a searh proess. Given a hypothesis

spae H and some real-valued (respetively boolean) ri-

terion , �nd the lauses h in H suh that they maximize 

(resp. suh that (h) holds).

Clearly, these goals an be formalized along Mannila and

Toivonen's framework [52℄.

Definition 1. Multi-relational Data Mining is the pro-

ess of �nding all lauses h, aka hypotheses, in a language

H, that satisfy a prediate  with respet to a database, or

set of examples E.

Find TH(h;H; r) = fhj h 2 H;h satis�es (h; E)g

Prediate  is most often related to the overage of lause

h, or a numerial expression thereof, whih must either be

greater than a user-�xed threshold, or reah an optimum

value.

As exhaustive searh is usually intratable beause of the

size of H, several approahes have been proposed to enfore

an eÆient searh proedure. These approahes are based on

di�erent kinds of indutive biases: syntatial biases, searh

biases, and validation biases. In partiular, one an:

� Identify a subspae H

0

of H in whih the solution is;

here, one uses prior knowledge or user's requirements

to de�ne syntatial biases (ILP) or pattern languages

(MRDM).

� Identify rules for pruning the searh spae; this in a

sense orresponds to dynamially adapting the hypo-

thesis spae during the searh, utting away parts of

H for whih it has beome lear during the searh that

they annot ontain a solution. For instane, mono-

toni onstraints naturally indue pruning rules [53℄: if

a lause overs less than " students, any speialization

of this lause will over even fewer students.

� Weaken the task into �nding T instead of the true

solution set TH, where T ontains all h suh that (h)

holds with a ertain probability, or (h) is lose to the

optimum. This relaxation an be ahieved by sampling

the hypothesis spae H (stohasti searh biases), or

by reonsidering the assessment of hypotheses (valida-

tion biases will be onsidered in more detail in Setion

4.2).

3.1 Syntactical biases and typed logic
We distinguish the hypothesis spae H and the searh spae,

whih is the subset ofH atually evaluated during the searh

proess.

ILP methods typially redue the size of H by speifying as

spei�ally as possible the form of potentially interesting hy-

potheses. This is done through a \language bias", or pattern

language, whih typially imposes syntatial onstraints on

the format of a hypothesis.

Types and input/output modes are often used in ILP [59℄.

By using typed arguments of prediates, ertain nonsensial

hypotheses are avoided; for instane, it does not make sense

to say that X is the number of ourses followed by a student

and then test whether X attends ourse Y . Input/output

modes tell the system whih prediates generate ertain in-

formation, and whih onsume this information. For in-

stane, the age prediate returns for a ertain person the

age of that person, whereas the < prediate ompares two

variables but annot instantiate a variable to a spei� num-

ber. In this respet, modes an be viewed as onstraints on

hypotheses or queries, enforing their utility.

SIGKDD Explorations. Volume 4, Issue 2 - page 3



Also shemas are popular for de�ning hypothesis spaes.

These shemas provide a more strit syntatial format for

hypotheses, typially speifying whih prediates have to o-

ur in whih order, but making some of them optional or

leaving the variables that should our in ertain positions

unspei�ed. Examples are Dlab (Dehaspe and De Raedt,

1996) or the shemata used, for instane, by RDT (Kietz

and Wrobel, 1992). A more omplete overview of language

biases that have been used in ILP is given by Nedelle et al.

[61℄.

While muh work on delarative bias spei�ations uses logi

programming terminology, several spei�ation languages

have been proposed that are muh more in line with rela-

tional databases. For instane, Wrobel's Midos system [85℄

uses the notion of foreign links in its pattern language spe-

i�ation, and Knobbe et al. (2000) propose to use UML

models to de�ne a pattern language, where the patterns are

graphial query representations (\seletion graphs"). The

use of seletion graphs as patterns has sine then been ad-

opted by several other authors [6; 5℄.

Syntatial biases are often expliitly enfored through searh

operators (see below). An alternative is to inlude type on-

straints into the de�nition of H [49; 39℄, and make no re-

strition about the searh operators.

3.2 Search biases and pruning rules
As mentioned in the introdution, ILP systems perform a

searh through a hypothesis spae, generating and evaluat-

ing many andidate solutions and using the result of these

evaluations to generate new andidates. The searh usually

stops at the �rst andidate solution meeting the require-

ments (on overage, generality, et.) [66℄, or it might on-

tinue until no better solution an provably be found, for

instane using an A

�

algorithm [59℄.

In eah step, some andidate hypotheses are generated from

the urrent hypotheses using so-alled re�nement operators.

For instane, the onstrution of L

k+1

andidates from the

L

k

ones in Apriori [1℄, onstitutes a re�nement operator.

Along the same lines, many re�nement operators in ILP

proeed by adding or removing a literal from the urrent

hypothesis.

Besides limiting the hypothesis spae through syntatial

biases, the atually traversed searh spae an be redued

further by introduing rules, or searh biases, limiting the

generation of andidate hypotheses (e.g., guiding the hoie

of the literals to be added or removed from the hypothesis).

Some of these rules are related to the properties of re�ne-

ment operators per se; these properties have been studied

extensively in ILP. For instane, there is no point in gen-

erating a given andidate hypothesis more than one (non-

redundany property [4℄). Conversely, no potentially relev-

ant hypothesis should be skipped (ompleteness property).

Nienhuys-Cheng and De Wolf [62℄ provide theoretial found-

ations for ILP in whih re�nement operators play an import-

ant role.

Other pruning rules are related to the properties of re�ne-

ment operators in onnetion with the searh riterion. Typ-

ially, the Apriori algorithm uses the anti-monotoniity of

overage to prune the andidates in L

k+1

. Along the same

priniple, the systems Progol [59℄ or Aleph

2

typially per-

form an A

�

-searh whih soundly uts branhes of the searh

2

http://web.omlab.ox.a.uk/oul/researh/areas/mahlearn/Aleph/

tree without giving up the guarantee of �nding the optimal

hypothesis. Suh pruning rules are based on the monotoni

properties of the searh riteria: typially, omplexity an

only inrease as a hypothesis undergoes speialization; in

the meanwhile, its overage an only derease; et.

Ideally, the searh riteria and re�nement operators should

be designed together, in suh a way that i) any solution hy-

pothesis an be obtained by re�ning an admissible andidate

hypothesis; and ii) any re�nement of a non-admissible hy-

pothesis is non-admissible either.

When this is the ase, the searh spae is said to be on-

vex with respet to the riteria and the re�nement operat-

ors [80℄. Interestingly, monotoni and anti-monotoni on-

straints de�ne a onvex searh spae for level-wise algorithms

[52℄, whih explains their omputational eÆieny.

3.3 Search strategies and stochastic biases
Many data mining methods (suh as deision tree indution

or rule indution) use heuristis to guide their searh, and

multi-relational data mining methods are no exeption to

this rule. These methods attempt to �nd a good hypothesis,

but usually do not guarantee that it is optimal, nor that it is

\probably lose to optimal" with a maximal deviation and

minimal probability hosen by the user.

In pratie, the exploration and pruning of andidate hypo-

theses an follow several searh strategies. Among the most

eÆient strategies is depth-�rst exploration, retaining and

re�ning only the urrent best hypothesis; this strategy is

implemented in Foil [67℄ and Tilde [13℄ among others.

The prie to pay for this eÆieny is the myopia of greedy

optimization. In the worst ase (see Setion 4.3), greedy

searh is trapped into some loal optima of poor preditive

quality. In other ases, it might happen that depth �rst

exploration leads to unneessarily spei� hypotheses (see

[63℄) due to perturbations of the searh riteria aused by

the amount of data.

Beam searh is another searh strategy; it avoids the limit-

ations of greedy myopi searh, by retaining and re�ning a

limited number of the best urrent hypotheses [9℄. The om-

putational ost varies linearly with the beam width. The

advantage is that a better learning robustness is obtained

through beam searh, though there are still no guarantees

of optimality.

A third strategy implements the stohasti, population-based

exploration of the hypothesis spae. This strategy is that of

evolutionary omputation and geneti algorithms (GAs) [31;

7℄, whih rudely mimi the Darwinian priniple of survival

of the �ttest. During eah generation, andidate hypotheses

are generated by randomly perturbing the urrent pool of

hypotheses; the resulting hypotheses are thereafter evalu-

ated, and the worst andidate hypotheses are �ltered out.

An important point is that these perturbations might indif-

ferently generalize or speialize the hypotheses, whih makes

it easier to esape from loal optima.

GA-based relational learning, suh as implemented in Regal

[28℄, Dogma [34℄ or G-Net [3℄, usually provides very aur-

ate and preditively eÆient hypotheses, at a high om-

putational ost; a few hundred of generations is routinely

ahieved, generating a few hundred andidate hypotheses

eah. As geneti searh is intrinsially parallel (hypotheses

are assessed independently of eah other), the omputational

ost was an inentive to develop parallel implementations of

GA-based relational learning [2℄.
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The searh spae explored by GA-based relational learning

is usually de�ned from a template seleted by the expert,

in the line of DLab-like spei�ations; as ould be expeted,

the hoie of the template is ritial to the suess of learning

[28℄.

More exible searh is permitted by variable-length evolu-

tionary omputation, more preisely Geneti Programming

[43℄. Geneti Programming extends the priniples of ge-

neti algorithms to tree-strutured searh spae, and was

spei�ally designed for optimization in program spaes [44;

8℄. It has been used to explore Horn lauses and ontext-free

grammar spaes [84; 68℄. It also allows for diret exploration

of higher order logi languages, suh as Esher [49; 39℄.

Interestingly, eÆient solutions are found on some problems

after a few generations (three or four), indiating that pure

random searh might be suÆient to solve the learning prob-

lem. This statement is orroborated by reent results ob-

tained with Monte-Carlo exploration, randomly sampling a

set of hypotheses and returning the best one [77℄. In spite

of its simpliity, this Monte-Carlo relational learner yields

results omparable with those of other learners on some ap-

pliation domains. Further researh is onerned with elab-

orating truly uniform sampling mehanisms on omplex re-

lational hypothesis spaes.

4. EVALUATING CANDIDATE SOLUTIONS
As mentioned in the previous setion, the searh for solu-

tions is interleaved with evaluating the urrent andidate

solutions with respet to the database. These evaluations

involve mathing the ondition part of the hypotheses to

spei� examples. Therefore, the eÆieny of this mathing

proedure is ritial to relational data mining.

In this setion, we �rst introdue the mathing proedure

most used in ILP (�-subsumption [65℄), and ompare it with

logial querying. In the general ase, logial queries and �-

subsumption test are equivalent to NP-hard onstraint sat-

isfation problems. For this reason, several optimization

heuristis have been developed and will be presented. Last,

a theoretial study of �-subsumption, based on the phase

transition paradigm [36℄ has been ahieved [29℄ and its im-

pat on the salability of ILP has been examined on arti-

�ial problems. These results are briey summarized and

disussed.

4.1 Logical queries and �subsumption
A (andidate) solution is most often of the kind all instanes

satisfying ondition A also satisfy ondition B, where on-

dition B usually is a very simple one (e.g., membership of

some lass). The fous therefore is on optimizing the proess

of olleting the examples satisfying ondition A, where A

orresponds to a onjuntive query.

More generally in ILP, a andidate solution is a (set of)

lause(s); mathing a lause with an example boils down to

searhing a variable instantiation suh that the body of the

lause is true given the example.

For eÆieny reasons,

3

the relational mathing test used

in the ILP literature [58; 60; 25℄ is the theta-subsumption

test de�ned by Plotkin [65℄; it amounts to �nding a vari-

able instantiation for the lause body (resp. head) suh

3

Logial impliation is not deidable in the general ase [69℄.

For this reason, the ILP literature uses a weaker overing

test, orret but not omplete.

that this body (resp. head) beomes a subset of all fats

in the example. In the partiular ase where lauses are

equivalent to onjuntive queries (i.e., their head is empty),

�-subsumption is equivalent to query ontainment.

Definition 2 (�-subsumption). Clause C

1

�-subsumes

lause C

2

if and only if there exists a substitution � map-

ping the variables in C

1

onto the variables/onstants in C

2

suh that all literals in body(C

1

)� appear in body(C

2

) and

head(C

1

)� = head(C

2

).

Example 2. Let C be de�ned as the onjuntive query

? � student(X; ; ); student(Y; ; ); follows(X; alulus);

follows(Y; algebra). C subsumes the lause given by the

onjuntion of all fats in the toy database, Fig. 1. In-

deed, C subsumes the database given in Fig. 1 aording

to two possible substitutions �

1

= fX=joe; Y=janeg and

�

2

= fX=jane; Y=janeg.

In other words, lause mathing orresponds to exeuting a

logial query. The theory of �rst order logi and of logi pro-

gramming (see, e.g., Lloyd, 1987) provides a large number

of theorems and tehniques that an be used to reformu-

late these queries, making them simpler or more eÆient to

exeute.

Inspiration for improving the eÆieny of mathing is also

provided by the database ommunity. Reordering of rela-

tional algebra operations is a well-known method for im-

proving the eÆieny of a omputation. For instane, when

applying onseutive seletions it is useful to apply the most

seletive ones �rst [38℄. Similar tehniques an be used to

improve the eÆieny of lause-example mathing [78℄.

Note, however, an important di�erene between query ex-

eution in relational or dedutive databases and in Pro-

log systems: queries in a database are normally exeuted

bottom-up, whereas the Prolog exeution mehanism works

top-down. This is natural from the point of view that data-

bases aim at omputing sets of results, whereas Prolog aims

at on�rming or denying the existene of at least one solu-

tion. This di�erene, however, inuenes the optimization

tehniques.

4.2 Optimization heuristics
As mentioned earlier on, theta-subsumption testing is NP-

omplete due to the fat that the literals in the lause and

example need to be mathed to eah other, and the number

of possible mathings grows ombinatorially in the number

of literals.

Several heuristis have been onsidered in the literature to

keep the omplexity under ontrol and redue the number of

possible mathings as muh as possible. These heuristis an

be grouped into three ategories: i) ad ho heuristis operat-

ing on partiular kinds of lauses; ii) optimization heuristis;

iii) relaxed, stohasti, heuristis.

4.2.1 Exploiting particular clause structures

The simplest way of reduing the �-subsumption ost is to

onsider only short hypotheses, if at all possible. Inident-

ally, this heuristi (also known as Oam's razor or simpli-

ity bias) is built-in in most ILP systems.

Another heuristi relies on the deomposition of the hypo-

thesis into independent (sets of) literals. As this is not pos-

sible in general (ILP systems look for onneted lauses), a
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relaxed version of deomposability known as k-loality has

been de�ned [41℄; the idea is to take advantage of the fat

that sets of literals are independent, after the instantiation

of some variables has been de�ned.

Example 3. Consider the onjuntive query ?�p(X;Y );

q(Y; Z); r(Y; U). q(Y; Z) and r(Y;U) are dependent, in the

sense that suess of the query ? � q(Y; Z); r(Y;U) annot

be determined by heking whether ? � q(Y;Z) sueeds in-

dependently of heking whether ?� r(Y; U) sueeds. How-

ever, given a �xed instantiation for Y , they are independent:

for example, the query ? � q(a;Z); r(a;U) sueeds if and

only if both ? � q(a; Z) and ? � r(a;U) sueed. If we know

that the Prolog exeution mehanism upon alling p(X;Y )

instantiates Y ,

4

then the remainder of the query an be de-

omposed into independent parts. The query is transformed

into ?� p(X;Y ); one(q(Y; Z)); r(Y;U). The meta-prediate

one indiates that only one solution for q(Y; Z) need be

generated. After �nding a solution for q(Y; Z), if no solu-

tion for r(Y; U) is found, the normal Prolog exeution meh-

anism would baktrak and try to generate di�erent Z that

make q(Y; Z) true, but beause of the independene property

we know this is pointless. By introduing the one meta-

prediate (whih has a simple de�nition in Prolog) in the

lause, this an be avoided, without hanging the normal

Prolog exeution mehanism.

She�er et al. [71℄ propose an improved implementation of

k-loality, based on the onstrution of an intermediate data

struture, the substitution graph.

Along the same lines, Santos Costa et al. [70℄ present a

number of query transformations that an speed up query

exeution onsiderably. These are based on identifying parts

of a query that an be heked independently of eah other,

whih inuenes the eÆieny in two ways. First, the stand-

ard baktraking proess of Prolog has no notion of suh in-

dependenies and may therefore perform unneessary bak-

traking. This an be avoided by reordering literals into

groups that sueed or fail independently of eah other and

plaing uts between these groups. (A more advaned ver-

sion of this transformation applies the same priniple re-

ursively.) Seond, in a typial ILP searh proess, part of

the query is known to sueed for ertain examples (beause

the lause is obtained by extending a previously enountered

lause that has been evaluated already). Any part of the

lause that sueeded previously and is independent from

the extension of the lause, will ertainly sueed and need

not be tested again.

Another line of researh examines the ase of ayli on-

juntive queries. Following Gottlob [32℄, Horvath andWrobel

[37℄ disuss how eÆieny gains an be obtained by onsid-

ering only ayli onjuntive queries, a relatively general

sublass of queries for whih the mathing problem is trat-

able. Suh lasses of queries/hypotheses are partiularly

representative in tree-strutured appliation domains, suh

as XML data.

4.2.2 Optimization heuristics

In the general, intratable, ase, the proedures developed

for onstraint satisfation problems (see Tsang [81℄ for a

4

Suh knowledge is often available in pratie, and espeially

in the ontext of relational databases it is typially true

beause tuples in a relation do not ontain free variables.

omprehensive presentation) an be exploited to enhane

the �-subsumption test eÆieny. A spei� rewriting of

the mathing lause problem into a binary CSP has been

proposed [51℄, making it possible to employ standard ar

onsisteny and onstraint propagation proedures, and re-

due the subsumption ost by some orders of magnitude.

4.2.3 Relaxing �subsumption

In partiular regions of the searh spae, whih will be fur-

ther detailed in the next setion, it makes sense to replae

�-subsumption by a stohasti estimate [73; 74℄. Stohasti

subsumption proeeds by uniformly sampling the set of sub-

stitutions mathing the andidate solution with the example,

and deiding whether the solution subsumes the example

based on this sample only. Note that stohasti subsump-

tion is orret, but not omplete; if lause C stohasti-

ally subsumes example E, C subsumes E, but the onverse

does not hold. Hene, lause assessment based on stohasti

subsumption is biased towards overly general solutions, al-

though this bias might be ountered by using again stohasti

mathing when applying the lause.

A last possibility is to evaluate lauses on a subsample of

the available learning set. Sub-sampling of the learning set

has been extensively investigated in propositional learning

(e.g., [63; 72℄), with onsiderable eÆieny gains in ompu-

tational ost and little loss if any in preditive auray in

general. In the relational ontext, Srinivasan (1999) explores

two sampling tehniques (seleting sub-samples randomly,

or through \windowing"; in the latter ase examples with

erroneous preditions are added to the sub-sample), with

similar results.

4.3 The phase transition barrier
As mentioned earlier on, �-subsumption testing and logial

querying are equivalent to onstraint satisfation problems

[33℄.

In CSPs, another framework for analyzing the omputa-

tional omplexity has appeared in the nineties [17℄. Con-

trasting with average- and worst-ase analysis, this novel

framework handles omplexity as a random variable depend-

ing on the order parameters of omplexity (e.g., onstraint

density and tightness).

This framework has been adapted for analyzing the om-

plexity of the �-subsumption test by Giordana and Saitta

[29℄. Considering the �-subsumption of example e by lause

(hypothesis) h, four order parameters are onsidered:

- the number n of variables in h,

- the number m of prediate symbols in h,

- the number L of onstants in e (assuming that e is a groun-

ded lause)

- the number N of literals in e per prediate symbol in

5

h.

For the sake of simpliity, it is assumed that all prediates

are binary, and that example e ontains exatly N literals

built on eah prediate symbol in h.

For �xed values of parameters n and N , one thousand pairs

(h; e) have been generated for eah value of (m;L), where

h is a onjuntion of m literals built on m distint predi-

ate symbols involving n variables, and e is the onjuntion

of m � N ground literals, the arguments of whih are uni-

formly seleted without replaement in a set of L onstants

5

Prediate symbols in e that do not appear in h do not play

any role in the subsumption test.
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For eah value pair (m;L) one measures the average ompu-

tational ost

6

of �-subsumption (Fig. 3) and the perentage

of suess of the �-subsumption test (Fig. 4).

Figure 3: Computational ost of �-subsumption in plane

(m;L), averaged on 1,000 pairs h; e, forN = 100 and n = 10.

(Reprodued with kind permission from A. Giordana and L.

Saitta.)

Figure 4: Perentage of suessful �-subsumption tests in

plane (m;L) over 1,000 pairs h; e, for N = 100 and n = 10

This experiment on�rms the �ndings of CSPs [35℄. The ef-

fetive omplexity landsape depited in Fig. 3 shows that

the �-subsumption ost is almost always negligible, exept in

a narrow region termed the phase transition region. The av-

erage omplexity reahes its maximum in this region, where

the probability of suess of the �-subsumption test abruptly

dereases from almost 1 (in the high plateau on the left of

Fig. 4, alled satis�able region) to almost 0 (in the low

plateau on the right, alled insatis�able region).

Example 4. It is important to see that the (satis�able

and insatis�able) regions haraterize lauses and examples

with respet to one another. By abuse of language, as the

examples are �xed from the ontext in ILP and MRDM, one

often says that a andidate lause belongs to the satis�able

or insatis�able region.

For instane, with respet to the toy database (examples)

6

The onjeture done in CSP is that the height of the om-

plexity peak depends on the algorithm used to solve the CSP

problem, but the loation of the peak is independent of this

algorithm [36℄.

given in Fig 1, lauses suh as follows(X; Y ); ourse(Y; ; )

belong to the satis�able region (the examples ontain many

students following many ourses).

In ontrast, lauses suh as follows(X; Y ); ourse(Y; ; );

follows(X

0

; Y ); follows(X

00

; Y ); X 6= X

0

; X 6= X

00

; X

0

6=

X

00

would belong to the insatis�able region, as the toy data-

base ontains at most two students following the same ourse.

(One sees that this lause would belong to the satis�able re-

gion if a larger database had been onsidered).

This landsape desribes the behavior of hypotheses and ex-

amples with respet to eah other. When examples are �xed,

as is the ase in mahine learning and data mining, the satis-

�able region would orrespond to overly general hypotheses

(almost surely subsuming all examples), and the insatis�able

region to overly spei� hypotheses (almost surely subsum-

ing no examples).

The phase transition phenomenon that is observed for the

�-subsumption test, has far reahing e�ets on the beha-

vior of relational learners [30℄. Comprehensive experiments

on arti�ial learning problems �rst show that most learners

tend to selet hypotheses lying in the phase transition. In

retrospet, this should have been expeted sine this region

onentrates the hypotheses separating the examples.

These experiments also demonstrate that the greedy optim-

ization of overage-related riteria is misleading, when deal-

ing with long examples with poor bakground knowledge.

Fig. 5 displays the ompetene map assoiated to FOIL

[66℄, i.e. the region where FOIL sueeds in learning (the

preditive auray on the test examples being greater than

80% for all problems indiated with a +), while the failure

region is indiated with a �.
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Figure 5: Competene map of FOIL in plane (m;L).

The phase transition region is situated between the dotted

urves.

Typially, when the learning searh starts in the satis�able

(or in the insatis�able) region, the overage riterion just

misleads the learner sine it hardly makes any relevant dif-

ferene between the hypotheses

7

. The reader is referred to

Giordana et al. [30℄ for more details.

7

Unexpetedly, learning beomes easier as the sought tar-

get onept is longer, and the learning problem is farther

away from the PT region. A tentative explanation o�ered

for this fat is that the number of generalizations of the

target onept in the PT, whih are aeptable solutions,

exponentially grows with the size of the target onept.
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These experiments on \Needle-in-the-Haystak"-like prob-

lems suggest that novel heuristis are required to learn long

target onepts [75; 10℄.

However, these results must be taken with are, for two reas-

ons. First of all, phase transition depits a global behavior,

and does not say anything on a partiular ase (meaning

that simple problems an be met within the phase trans-

ition, and hard problems an be enountered in the middle

of the satis�able or insatis�able region). Seondly, the ex-

tensive study done by [30℄ relies on arti�ial problems; it an

be the ase that real-world problems involve typial features

(e.g., the existene of large liques, very unlikely in arti�-

ial problems), whih might in turn signi�antly failitate

(or hinder) learning. For instane, in most real-world prob-

lems it is expeted that the phase transition is larger and

smoother, for examples will have di�erent sizes (number of

onstants, number of literals per prediate).

5. SHARING COMPUTATIONS
The methods that we desribe in this setion, aim at im-

proving the eÆieny of the mathing proedure, just like

the previous ones. They are di�erent in the sense that here

we look at the mathing proess in a ontext where many

similar lauses are mathed to the same examples. In this

ontext, some omputations may be repeated over and over

again, and it makes sense to try to store intermediate res-

ults instead of reomputing them. We distinguish three ap-

proahes: materialization of features, pre-omputation of

statistis, and reorganizing the searh in suh a way that in-

termediate results an be reused without e�etively storing

them.

5.1 Materialization of Features
Repeated exeution of the same or similar queries an give

rise to a lot of redundant omputation. For instane, in the

ontext of mining a database ontaining moleular stru-

tures, onsider a prediate benzene(L) that instantiates L

to a list of atoms that form a benzene ring. If a moleule

is represented by listing its atoms and the bonds between

them, �nding all benzene rings in a moleule involves a re-

latively expensive searh proess. If no speial measures

are taken, this omputation is repeated eah time a all to

benzene ours.

In this ase it is learly more eÆient to materialize the

benzene prediate, that is, to ompute for eah moleule

only one whih benzene rings our in it and store this

information expliitly with the desription of the moleule.

Of ourse this inreases the memory requirements of the

database. In general, this option is desirable in those ases

where the omputation is omplex and the number of results

to be stored is limited.

This proess an be automated: an ILP system ould easily

materialize all bakground prediates and add the results

to its database. As this may inrease the size of the data-

base onsiderably, it should happen in a ontrolled fashion,

that is, the prediates to be materialized should be sele-

ted arefully. Currently this deision, and usually also the

materialization itself, are left to the user. The development

of heuristis for automatially seleting prediates to be ma-

terialized seems quite feasible and might have a onsiderable

e�et on the ease with whih ILP systems an be applied in

pratie.

We add that urrent Prolog tehnology inludes methods

for storing intermediate results at the fat level (instead of

the prediate level): this is known as tabling [18℄. Tabling

an be onsidered a lazy version of the materialization men-

tioned above, and might in some ases be preferable over

materialization of omplete prediates. The main problem

remains the hoie for whih prediates tabling should be

employed.

Propositionalization, as proposed by several authors (for an

overview, see Kramer et al. [46℄), is also an instane of pre-

omputation of features. In this ase, preomputed features

are not added to a relational desription of the examples,

but to a propositional desription, so that a propositional

learner an be run afterwards. The eÆieny gain obtained

by running a propositional learner is obvious, but the trans-

formation to propositional format is usually not lossless: the

information ontent of the propositional representation is

not equivalent to that of the original relational representa-

tion.

5.2 Precomputation of Statistics
In the previous subsetion we disussed how features of in-

dividual instanes an be pre-omputed. Pre-omputation

is also possible at the level of the database as a whole. In

this ase, statistis that desribe the database and that will

be needed several times during the indution proess, are

omputed in advane and stored.

Moore and Lee [56℄ present a good example of this approah.

They argue in favor of preomputing suÆient statistis for

indution proedures. More preisely, given a table with n

attributes, they propose to ount and store the frequeny of

every ombination of attribute values ourring in the data-

base. Note that this amounts to estimating the full joint

probability distribution of the domain of the table. This full

distribution ontains all neessary information to ompute

for instane lass entropy (for deision tree indution), on-

ditional probabilities (for Bayesian approahes), et. They

propose a data struture alled AD-tree to eÆiently store

the distribution. Note that the memory onsumption of an

n-dimensional table representing the full joint probability

distribution is proportional to 2

n

. AD-trees are a sparse

data struture that stores only the non-zero frequenies ex-

pliitly; thus the size of this representation is bounded lin-

early by the size of the data set. A number of other triks are

used to minimize the memory onsumption of the data stru-

ture. Nevertheless, suh AD-trees an still be very large.

Pavlov et al. [64℄ look at the so-alled query seletivity es-

timation problem, where the task is to estimate the size of

the result set of a query in a database. Note that this is

exatly the kind of query that is frequently generated by

data mining systems. They ompare several approahes to

approximating the joint probability distribution of a rela-

tion; these approahes inlude AD-trees, models based on

independene of all attributes, maximum entropy modeling

(whih models some dependenies between ombinations of

attributes), and more. They ompare the eÆieny and a-

uray of these approahes, and onlude that ounts an of-

ten be estimated quite aurately and eÆiently with models

of reasonable size. In other words, even when AD-trees are

infeasible beause of their size, aurate estimates of stat-

istis an be made eÆiently using other tehniques.

All of the previous work is set in a propositional setting,

but it is obvious that similar approahes ould be employed
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in a relational setting, with equally large eÆieny gains to

be expeted. Some work in this ategory is presented by

Getoor et al. [27℄. They de�ne stohasti relational models,

whih form a probabilisti desription of a relational data-

base based on relational Bayesian networks. Further work

in this diretion seems very promising.

5.3 Reorganizing Computations to Reuse In
termediate Results Without Storing Them

The previous methods are based on storing intermediate res-

ults for later use. This priniple is appliable only when

there is little risk of running out of memory beause of this

storage. An alternative approah that avoids this risk, is

to reorganize the omputations in suh a way that inter-

mediate results are used immediately after they have been

produed, so that they do not have to be stored for a long

time. This implies that all onsumers of these results should

be run shortly after the results have been produed, whih

often makes some kind of parallelism neessary (that is, al-

gorithms are oneptually run in parallel, not neessarily on

parallel hardware).

One approah in this ategory is the work on query oks

by Tsur et al. [82℄. A query ok is a set of queries where

all queries have the same struture but di�er with respet

to spei� onstants that are �lled in ertain positions. An

example of suh a ok, taken from Tsur et al., is

answer(P) :- exhibits(P, $s), treatments(P, $m),

diagnoses(P, D), not auses(D, $s).

The idea is that if the user is interested in all ouples ($s,$m)

that o-our at least  times in a database,

8

instead of om-

puting the ount for eah ($s,$m) ombination onseutively,

it is better to run a single query (the ok) through whih

all the ounts are simultaneously omputed.

A similar approah is proposed by Blokeel et al. [15℄. In

this ase, the set of queries that is evaluated onsists of quer-

ies that share part of their struture, but not all of it. The

queries are strutured into a kind of tree, alled a query

pak, so that the ommon part of the queries is represented

only one. Suh a tree an be de�ned in Prolog and ex-

euted by any standard Prolog engine, but to exeute it in

a maximally eÆient way, hanges at the level of the Prolog

interpreter are neessary. ilProlog is a dediated Prolog

system for data mining that provides suh a pak exeution

mehanism [15; 83℄.

Example 5. Consider the set of queries

?- p(X), I = 1.

?- p(X), q(X,a), I = 2.

?- p(X), q(X,b), I = 3.

?- p(X), q(X,Y), t(X), I = 4.

?- p(X), q(X,Y), t(X), r(Y,1), I = 5.

The task is to �nd out for whih queries sueed for whih

X. We will use the variable I as a query identi�er; that is,

a solution X = a, I = 3 implies that query 3 sueeds for

X = a. The set an be strutured into a pak as follows

(the or operator is similar to the Prolog disjuntion but has

slightly di�erent operational semantis, see Blokeel et al.

[15℄):

8

Suh a ouple represents mediation $m that often has

some side e�et $s.

?- p(X), (I=1 or q(X,a), I=2 or q(X,b), I=3 or q(X,Y),

t(X), (I=4 or r(Y,1), I=5))

When running the pak, the ommon parts of the queries

are exeuted less frequently than when running all queries

onseutively. For instane, �nding all instantiations of X

for whih p(X) holds, is done only one in the pak, but �ve

times if all queries are exeuted independently.

An interesting open problem is how the use of query paks

an be ombined with individual query optimization teh-

niques, suh as the ones mentioned in Setion 4.2. The

ombination is non-trivial beause restruturing individual

queries may destroy the struture of the pak as a whole.

6. MEMORYWISE SCALABILITY
As long as external storage devies have more storage a-

paity than internal memory, it will remain useful to devise

algorithms that an handle data that are stored on disk.

As external memory aess is relatively slow, the amount of

suh aess should be kept low, and this may require hanges

to indution algorithms. A number of tehniques follow this

approah. Alternatively, memory-wise salability an be im-

proved by storing data in internal memory as eÆiently as

possible.

6.1 Processing Data on Disk
Blokeel et al. [14℄ desribe a version of the �rst order

deision tree indution algorithm Tilde that proesses an

ILP knowledge base without loading it entirely into main

memory. The approah is based on the level-wise tree build-

ing approah proposed by Mehta et al. [55℄ for propositional

trees. It loads the database one example at a time and needs

a single san of the full database for a single level of the

deision tree. To ahieve this, two loops in the standard de-

ision tree indution algorithm are swithed. The standard

desription of deision tree indution involves omputation

of the quality of all possible splits for a ertain data set; this

involves iterating over all tests and evaluating their quality.

The latter involves omputing the split the test generates by

evaluting the test on eah relevant example in the database,

whih is done with a seond loop. By making the example

loop the outer loop, the quality of all tests has to be om-

puted inrementally, whih inreases administrative work,

but ensures that for a given level of the tree only one san

through the database is needed.

This approah was proposed for the learning from interpret-

ations setting, and indeed some notion of loality of relevant

information is ruial for it to work. There is an assumption

that all information about a single example an be loalized

and it is possible to load just this information into main

memory. In the learning from interpretations setting this

information onsists of the interpretation desribing the ex-

ample together with the bakground knowledge.

Note that the \swithing the loops" priniple is to some ex-

tent exploited impliitly in the query paks approah (run-

ning a query pak on an example is equivalent to running all

queries ontained in it on that example). Consequently, the

latter an easily be adopted when proessing data on disk.

6.2 Compact Representations of Data
A running thread through this and the previous setion is

the trade-o� that has to be made between storing inform-

ation expliitly and omputing it on demand. In ertain
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appliation domains, expliit storage of all information re-

ates a lot of redundany as far as storage is onerned, while

on-demand omputation reates redundany with respet to

omputations and hene makes the proess omputationally

more expensive.

Consider for instane knowledge bases that desribe game

sessions of a board game suh as Go. A game session is a

list of onseutive board states and the move made in that

state. In priniple, eah board state is determined by the

previous state and the move taken, so storing just a list of

moves is suÆient to desribe the whole game. In pratie,

the data mining system needs expliit representations of the

states, and omputation of the next state involves quite a

bit of work (in Go, adding a stone may result in a set of

stones being removed from the board and omputing this

set is non-trivial). The question is then whether it is pos-

sible to �rst ompute expliit representations of all states

and then store them in a more ompat way but without

making reomputation of all information neessary, e.g., by

making the representations share ertain data strutures.

For instane, instead of storing the move, one ould store

the set of stones that are added and removed during a game

turn. This yields a representation that is muh more om-

pat than storing full board positions and still avoids most

of the omputational e�ort that is needed to ompute the

following state from the urrent one.

A general solution to this problem is proposed by Struyf et

al. [79℄. Their approah is set in the learning from interpret-

ations setting. They introdue two operators for de�ning an

interpretation in terms of other interpretations; one (Di�)

de�nes the di�erene between the interpretation and a pre-

vious one, the seond (Comb) ombines two or more inter-

pretations into a new one. Examples an be desribed either

expliitly, by listing the interpretation, or impliitly, by re-

ferring to other examples or strutures and using the above

operators. As materializing an interpretation may require

to materialize other interpretations �rst, the question arises

how the database should be navigated in order to minimize

these omputations. Struyf et al. use a graph representa-

tion for the knowledge base and follow a planning approah

to navigate through it.

7. OTHER APPROACHES
The suitability of ILP to mine relational databases has been

reognized early on in the history of ILP, and some researh

in ILP has expliitly foused on the relational database view-

point [86; 12; 42℄. As ILP uses a logial representation,

whih is di�erent from but largely equivalent to a relational

database representation, a natural question is how ILP sys-

tems ould be adapted to work diretly with data that are

stored in a relational database. Some researh e�ort was

spent on this question. It was also hoped that if suh a

link ould be made, the ILP system would pro�t from the

query optimizers and eÆient query exeution proedures

that haraterize RDBMSs.

Blokeel and De Raedt [12℄ desribe a number of di�erent

levels at whih ILP algorithms an be oupled with RDB

systems, ranging from loose to tight integration. Morik and

Brokhausen [57℄ present an implementation alled RDT/DB

where logial queries are transformed into SQL and these

SQL queries are run by a RDBMS. The results of these ef-

forts, in general, were somewhat disappointing. By now it

has beome lear that the omplexity of data mining lies

not only in the size of the database but also in the number

of queries, and in order to make the mining proess as ef-

�ient as possible, single query optimization tehniques are

insuÆient. It is essential to exploit the fat that many sim-

ilar queries are run on the same data, in other words, to

optimize sets of queries. Both approahes are not neessar-

ily mutually exlusive: some of the work on single query

optimization in databases an probably be ombined with

the multi-query optimization approah. Exatly how this

should be done, is an open problem.

Finally, we repeat that this paper does not aim at an ex-

haustive survey of all approahes beyond the propositional

ones in mahine learning and data mining. For instane,

we did not detail the Multiple Instane Problem paradigm

introdued by Dietterih et al [24; 54℄ whih has been ana-

lyzed as intermediate between propositional and fully rela-

tional settings [19℄. Desription logis [16℄ also onstitutes a

setting most relevant to data mining in partiular relational

domains, e.g. XML data, beyond the sope of our paper.

8. SOME CONCRETE EXAMPLES
Several onrete appliations on�rm that nowadays multi-

relational data mining systems an indeed proess relatively

large databases. We list a few.

Kramer et al. [45℄ used a multi-relational data mining ap-

proah to �nd strutural properties in a set of over 40000

moleules, where eah moleule has a relatively omplex de-

sription. A small perentage of these moleules is known

to be ative. Kramer et al. look for substrutures appearing

frequently in the ative moleules and infrequently in the

inative ones, using an approah that an be seen as an ex-

tension of Apriori that uses both maximum and minimum

frequeny onstraints, and that is tuned for �nding hains of

spei� atoms (e.g., Cl-C:C:C:C-O with `-' denoting a single

and `:' an aromati bond) in �rst-order desriptions of mo-

leules. Their approah exploits the tehniques mentioned

here, in that they onstrain the searh spae in a lever

way, using the frequeny onstraints, and that they look for

patterns for whih the mathing proedure is heap (linear

patterns).

In a projet on mining UK traÆ data, the ILP system

ACE-ilProlog [15℄ was applied to a relational database on-

taining over �ve million examples, using samples of 100,000

to 1,000,000 instanes [47℄. First order logi deision trees

[13℄ were built and onverted into preditive rules, and trend

analysis was performed on frequent relational patterns found

by the ACE-ilProlog implementation of the �rst order asso-

iation rule algorithm Warmr [23℄. ACE-ilProlog inorpor-

ates many of the tehniques mentioned here (query paks,

data sampling, . . . ).

In a di�erent investigation [79℄, the same ACE-ilProlog sys-

tem was applied to a 194MB database of Go games on-

taining 172411 examples of game boards and moves made.

These data were analysed in order to �nd a good heuristi

for prediting the quality of a move in ertain situations in

Go. To handle a data set of this size, the authors applied the

ompat representation tehniques mentioned before. Typ-

ial runtimes in this ase were under �ve minutes. The ex-

periment also indiated that the ompat representation did

not ause any signi�ant loss of omputational eÆieny.
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9. CONCLUSIONS
In reent years, tehniques for ILP and multi-relational data

mining have undergone a signi�ant evolution in the dire-

tion of more salable and more eÆient systems. We have

attempted to give an overview of this evolution. In our

opinion, major steps towards better performane are the in-

orporation of stohasti tehniques in ILP systems, a shift

towards individual-entered methods (whih brings this re-

searh more in line with other data mining researh), and

methods for preomputing features and statistis. Espe-

ially in the latter area, work seems to have just started,

and further advanements an be expeted. In addition, an

inreased understanding of omplexity issues in relational

data mining (from, e.g., the results on phase transitions)

may yield important novel approahes to optimization in

the future.
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