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Abstract—Multi-FPGA systems (MFSs) are used as custom 
computing machines, logic emulators, and rapid prototyping 
vehicles.  A key aspect of these systems is their programmable 
routing architecture which is the manner in which wires, FPGAs, 
and Field-Programmable Interconnect Devices (FPIDs) are 
connected. Several routing architectures for MFSs have been 
proposed and previous research has shown that the partial 
crossbar is one of the best existing architectures. A new routing 
architecture, called the Hybrid Complete-Graph and Partial-
Crossbar (HCGP), was proposed by Khalid and was shown to 
provide superior speed and cost compared to partial crossbar. In 
this paper we address the issue of scalability of the HCGP 
routing architecture.  The motivation for this work was to 
evaluate the suitability of the HCGP architecture for a future 
rapid prototyping system product that was being developed at 
Cadence. Experimental results show that the HCGP architecture 
is scalable and can be used with the state-of-the-art,  high gate 
count FPGAs.

Index Terms—Partitioning, reconfigurable components, 
reconfigurable-computing, reconfigurable-systems, system-level. 

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are widely used 
for implementing digital circuits because they offer 
moderately high levels of integration and rapid turnaround 
time. Multi-FPGA systems (MFSs), which are collections of 
FPGAs joined together by programmable connections as 
illustrated in Figure 1, are used when the logic capacity of a 
single FPGA is insufficient, and when a quickly re-
programmed system is desired. The typical applications of 
MFSs are for logic emulation [1], rapid prototyping [2], and 
reconfigurable custom computing machines [3].  

The routing architecture of an MFS is the way in which the 
FPGAs, fixed wires, programmable interconnect chips are 
connected. The routing architecture has a strong effect on the 
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speed, cost, and routability of the system. Many architectures 
have been proposed and built and some research work has 
been done to empirically evaluate and compare different 
architectures. Previous research has shown that the partial 
crossbar [4] is one of the best existing architectures. A new 
routing architecture, called the Hybrid Complete-Graph and 
Partial-Crossbar (HCGP), was proposed by Khalid [5] and 
was shown to provide superior speed and cost compared to 
partial crossbar. The HCGP architecture uses a mixture of 
hardwired and programmable connections between the FPGAs 
whereas the partial crossbar uses only programmable 
connections. The speed and cost of the HCGP and partial 
crossbar architectures were compared experimentally, by 
mapping a set of 15 large benchmark circuits into each 
architecture. A customized set of partitioning and inter-chip 
routing tools were developed, with particular attention paid to 
architecture-appropriate inter-chip routing algorithms. Using 
the experimental approach, a key architecture parameter of 
HCGP, called percentage of programmable connections (Pp),
was also analyzed. Results showed that a Pp value 60% 
provided good routability for a variety of circuits. The HCGP 
architecture was licensed to Quickturn Design Systems (San 
Jose, California) and a U.S. patent was granted for this 
architecture [6].

In this paper we address the issue of scalability of the 
HCGP routing architecture. The previous experimental 
evaluation of this architecture and comparison to other 
architectures was done using relatively small FPGAs 
(compared to currently available FPGAs). This paper is 
organized as follows: in Section II we briefly describe the 
HCGP routing architecture. In Section III we discuss in detail 
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Figure 1. A Generic Multi-FPGA System 
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the scalability issues of the HCGP architecture and then 
describe the experimental procedure used to evaluate its 
scalability in Section IV. We present experimental results and 
conclude the paper in Section V. 

II. HCGP ARCHITECTURE DESCRIPTION
Ideally, all the FPGAs in an MFS should be connected 

using a single crossbar switch. Any connection between any 
set of FPGAs, irrespective of fanout, would be possible. Such 
a system would be always routable and would provide good 
speed.  Unfortunately, such a crossbar switch is impractical 
for real systems because the size of the crossbar switch 
increases as square of the crossbar pins.   The partial crossbar 
architecture [4] provides routability similar to that of a full 
crossbar (for real world netlists) at a much lower cost.  The 
HCGP architecture provides lower cost and higher speed than 

the partial crossbar. In order to understand the main ideas 
behind the HCGP architecture, we first   need to study the 
partial crossbar architecture.  A partial crossbar using four 
FPGAs and three FPIDs is shown in Figure 2. The pins in 
each FPGA are divided into N subsets, where N is the number 
of FPIDs in the architecture. All the pins belonging to the 
same subset in different FPGAs are connected to a single 
FPID. Note that any circuit I/Os will have to go through 
FPIDs to reach FPGA pins. For this purpose, a certain number 
of pins per FPID are reserved for circuit I/Os. The number of 
pins per subset (Pt) is a key architectural parameter that 
determines the number of FPIDs needed and the pin count of 
each FPID. The extremes of the partial crossbar architecture 
can be illustrated by considering a system with four FPGAs, 
and assuming 192 usable I/O pins per FPGA: a Pt value of 192 
will require a single 768-pin FPID that acts as a full crossbar. 
A Pt value of 1 will require 192 4-pin FPIDs. Both of these 
cases are impractical. A good value of Pt should require low 
cost, low pin count FPIDs, and provide good routability.

The HCGP architecture for four FPGAs and three FPIDs is 
illustrated in Figure 3. The I/O pins in each FPGA are divided 
into two groups: hardwired connections and programmable 
connections. The pins in the first group connect to other 
FPGAs and the pins in the second group connect to FPIDs. 
The FPGAs are directly connected to each other using a 
complete graph topology, i.e. each FPGA is connected to 

every other FPGA. The connections between FPGAs are 
evenly distributed, i.e. the number of wires between every pair 
of FPGAs is the same. For programmable connections, the 
FPGAs and FPIDs are connected in exactly the same manner 
as in a partial crossbar. As in the partial crossbar, any circuit 
I/Os will have to go through FPIDs to reach FPGA pins. For 
this purpose, a certain number of pins per FPID are reserved 
for circuit I/Os. The direct connections between FPGAs can 
be exploited to obtain reduced cost and higher speed. 

A key architectural parameter in the HCGP architecture is 
the percentage of programmable connections, Pp. It is defined 
as the percentage of each FPGA’s pins that are connected to 
FPIDs (the remainder are connected to other FPGAs). The 
choice of a value of Pp involves tradeoffs between routability, 
speed, and cost. If Pp is too high it will lead to increased pin 
cost and lower speed, if it is too low it will adversely affect 
routability. If Pp is 0% the HCGP architecture degrades to a 
completely connected graph of FPGAs with no FPIDs used. If 
Pp is 100% the HCGP architecture degrades to a standard 
partial crossbar. Previous research [5] has shown that a Pp

value of 60% is a suitable choice for obtaining good 
routability and speed at a reasonable cost. 

III. HCGP SCALABILITY ISSUES
The previous experimental evaluation of the HCGP 

architecture and comparison to other architectures [5] was 
done using relatively small FPGAs (compared to currently 
available FPGAs). The architecture can scale in three ways:
1. We can keep the FPGA logic and pin capacity constant 

and increase the total number of FPGAs.  
2. We can keep the total number of FPGAs relatively small 

and increase the logic and pin capacity of each FPGA
3. We can increase both the total number of FPGAs and the 

logic and pin capacity of each FPGA. 
The scalability issue 1 was addressed by using a 

hierarchical architecture such as the Hardwired Clusters 
Partial Crossbar (HWCP), proposed by Khalid [7]. Scalability 
issue 2 has not been explored so far for the HCGP architecture 
and is the subject of this paper. Note that scalability issue 3 is 

Figure 2. Partial Crossbar Architecture 
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Figure 3. HCGP Architecture 
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a combination of scalability issues 1 and 2.  
As FPGA logic and pin capacities continue to rise, it makes 

sense to use a limited number (say, 16 or less) of very high 
capacity FPGAs for creating MFSs that can be used for logic 
emulation or rapid prototyping of small to medium sized 
designs. This way we avoid the costs associated with using 
high pin count connectors and expensive boards for multi-
board systems, that would be needed if we use many tens or a 
few hundreds of smaller FPGAs. For handling very large 
designs, processor-based emulators such as Cadence’s 
Palladium are proving to be more effective than FPGA-based 
emulators [8]. 

IV. EXPERIMENTAL OVERVIEW 
To evaluate the scalability of the HCGP architecture for 

large FPGAs, we first had to generate synthetic netlists similar 
to post-partition netlists produced for real multi-million gate 
designs. For the experiment we chose netlists consisting of 6, 
8, 12, and 16 FPGAs. In order to resemble the real netlists, the 
netlist generation process was not completely random but 
followed some statistical patterns derived from real multi-
million gate design netlists. First, consider the issue of the net 
fanout distribution in the synthetic netlist. We took real design 
partitioning results and collected statistical data on the nets 
distribution according to the fanout. On different types of real 
design partitioning results we determined typical distribution 
of nets connecting two FPGAs, three FPGA, four FPGAs, etc. 
We reproduced the same distribution while randomly 
generating the connections in the synthetic netlists. 

Second, post-partition netlists may vary on how evenly the 
connections are distributed between the FPGAs. A netlist may 
consist of FPGAs that have approximately the same number of 
connections to each other. In a more typical case there are 
clusters of tightly connected FPGAs, where there are more 
connections between FPGAs inside a cluster than between 
FPGAs that belong to different clusters. In our experiment we 
generated four types of netlists with different connection 
patterns.  In the first pattern all FPGAs were connected to 
each other by approximately even numbers of nets. In the 
second pattern the netlists consisted of tightly connected two-
FPGAs clusters. In the third pattern the netlists consisted of 
tightly connected three-FPGAs clusters. Finally, the last 
pattern included one cluster of two tightly connected FPGAs 
with the rest of the FPGAs connected to each other by 
approximately even numbers of nets. Note that this issue deals 
with the amount of “locality” in post-partition netlists. 
Replicating “locality” of real post-partition design netlists in 
synthetic netlists is a very elusive task and there has been little 
success in this respect in research efforts to date [9]. 
Fortunately, synthetic netlists produced using our approach 
are usually much more difficult to map compared to real 
netlists. Hence they yield a conservative evaluation of 
architecture and/or mapping CAD tools (rather than overly 
optimistic evaluation results).  

Each netlist was derived using FPGA I/O pin utilization 
ranging from 50% to 100%. Then each generated netlist was 
sequentially mapped into HCGP architectures with Pp ranging 
from 0% to 100%. The numbers of FPGA and FPID I/O pins 
were assumed to be 1024 and 500 respectively. For every 
architecture, we tried to route the mapped netlist. We 
developed an architecture-specific router that restricted the 
number of chip hops for routing a net to one or two. A chip 
hop is defined as a pin-to-pin connection between two chips.

Hence, the routability of the HCGP architecture was 
evaluated for different combinations of (a) Pp value, (b) pin 
utilization per FPGA, (c) total number of FPGAs (varied from 
6 to 16), and (d) FPGA interconnection pattern. The goal was 
to find a minimum value of Pp that provides routability for all 
cases depending on the I/O pin utilization.

V. RESULTS AND CONCLUSIONS
In this section, we present the experimental results obtained 

by mapping synthetic post-partition netlists to different 
configurations of the HCGP architecture. Recall from 
previous sections that our objective is to evaluate the 
routability of the HCGP architecture using large FPGAs. We 
are also interested in the value of Pp that results in routing 
completion in most cases. 

The experimental results are shown in Figure 4 which 
consists of four graphs, each characterized by the number of 
FPGAs used in the HCGP architecture. We used synthetic 
post-partition netlists obtained using 6, 8, 12, and 16 FPGAs 
and mapped each to an HCGP architecture that used the same 
number of FPGAs. The FPGA pin utilization (shown on the 
X-axis) used in the synthetic netlist was varied from 50 to 
100%. Each pin utilization case was mapped to the HCGP 
architecture using different values of Pp (shown on the Y-
axis). There were four different types of netlists used: evenly 
connected FPGAs, collection of 2-FPGA clusters, collection 
of 3-FPGA clusters, and finally one 2-FPGA cluster with rest 
of the FPGAs evenly connected. 
The results show that a Pp value of 60% is sufficient for 
achieving routing completion for all types of netlists provided 
we restrict the FPGA pin utilization to 82%. This is in 
agreement with previous research results [1] if we consider 
that in real design netlists, the average pin utilization per 
FPGA would likely be less than 80%. We have confirmed this 
assumption by pin utilization statistics collected on ten real 
designs. Recall that for netlists used in our experiments, 
FPGA pin utilization of 82% implies every single FPGA has 
82% of its pins used This is even more conservative than what 
would be expected in real design netlists. 

164

The 18th International Confernece on Microelectronics (ICM) 2006 



(a) 6 FPGAs
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(b) 8 FPGAs
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(c) 12 FPGAs
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(d) 16 FPGAs
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We can conclude from the experimental results that the HCGP 
architecture is scalable using very large FPGAs, such as 
Xilinx Virtex II [10],  and can be used to handle multi-million 
gate designs.

With improved fabrication technology, the logic capacity of 
FPGAs increases much faster than their pin capacity due to 
I/O pad placement limitations. Obviously FPGA logic 
utilization in HCGP, i.e. logic capacity, can be further 
improved if we use pin multiplexing on FPGAs to effectively 
increase the number of inputs and outputs per FPGA. 
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Figure 4. Experimental results: (a) for 6 FPGAs, (b) for 
8 FPGAs, (c) for 12 FPGAs and (d) for 16 FPGAs
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