
�

Abstract—Multi-FPGA systems (MFSs) are used as custom
computing machines, logic emulators, and rapid prototyping
vehicles. A key aspect of these systems is their programmable
routing architecture which is the manner in which wires, FPGAs,
and Field-Programmable Interconnect Devices (FPIDs) are
connected. Several routing architectures for MFSs have been
proposed and previous research has shown that the partial
crossbar is one of the best existing architectures. A new routing
architecture, called the Hybrid Complete-Graph and Partial-
Crossbar (HCGP), was proposed by Khalid and was shown to
provide superior speed and cost compared to partial crossbar. In
this paper we address the issue of scalability of the HCGP
routing architecture. The motivation for this work was to
evaluate the suitability of the HCGP architecture for a future
rapid prototyping system product that was being developed at
Cadence. Experimental results show that the HCGP architecture
is scalable and can be used with the state-of-the-art, high gate
count FPGAs.

Index Terms—Partitioning, reconfigurable components,
reconfigurable-computing, reconfigurable-systems, system-level.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are widely used
for implementing digital circuits because they offer
moderately high levels of integration and rapid turnaround
time. Multi-FPGA systems (MFSs), which are collections of
FPGAs joined together by programmable connections as
illustrated in Figure 1, are used when the logic capacity of a
single FPGA is insufficient, and when a quickly re-
programmed system is desired. The typical applications of
MFSs are for logic emulation [1], rapid prototyping [2], and
reconfigurable custom computing machines [3].

The routing architecture of an MFS is the way in which the
FPGAs, fixed wires, programmable interconnect chips are
connected. The routing architecture has a strong effect on the

Mohammed A. S. Khalid is with the Department of Electrical and
Computer Engineering, University of Windsor, Windsor, ON, Canada N9B
3P4 (corresponding author, phone: 519-253-3000, x2611; fax: 519-971-3695;
e-mail: mkhalid@ uwindsor.ca).

Viktor Salitrennik is with Cadence Design Systems, San Jose, CA 95134
USA (e-mail: viktor@cadence.com).

speed, cost, and routability of the system. Many architectures
have been proposed and built and some research work has
been done to empirically evaluate and compare different
architectures. Previous research has shown that the partial
crossbar [4] is one of the best existing architectures. A new
routing architecture, called the Hybrid Complete-Graph and
Partial-Crossbar (HCGP), was proposed by Khalid [5] and
was shown to provide superior speed and cost compared to
partial crossbar. The HCGP architecture uses a mixture of
hardwired and programmable connections between the FPGAs
whereas the partial crossbar uses only programmable
connections. The speed and cost of the HCGP and partial
crossbar architectures were compared experimentally, by
mapping a set of 15 large benchmark circuits into each
architecture. A customized set of partitioning and inter-chip
routing tools were developed, with particular attention paid to
architecture-appropriate inter-chip routing algorithms. Using
the experimental approach, a key architecture parameter of
HCGP, called percentage of programmable connections (Pp),
was also analyzed. Results showed that a Pp value 60%
provided good routability for a variety of circuits. The HCGP
architecture was licensed to Quickturn Design Systems (San
Jose, California) and a U.S. patent was granted for this
architecture [6].

In this paper we address the issue of scalability of the
HCGP routing architecture. The previous experimental
evaluation of this architecture and comparison to other
architectures was done using relatively small FPGAs
(compared to currently available FPGAs). This paper is
organized as follows: in Section II we briefly describe the
HCGP routing architecture. In Section III we discuss in detail

Scalability Evaluation of a Hybrid Routing
Architecture for Multi-FPGA Systems

Mohammed A. S. Khalid and Viktor Salitrennik

Figure 1. A Generic Multi-FPGA System

Programmable
Interconnection
Network

FPGA

FPGA

FPGA

FPGAFPGA

FPGA

FPGA FPGA

Hardwired
connection
s

162

The 18th International Confernece on Microelectronics (ICM) 2006

the scalability issues of the HCGP architecture and then
describe the experimental procedure used to evaluate its
scalability in Section IV. We present experimental results and
conclude the paper in Section V.

II. HCGP ARCHITECTURE DESCRIPTION
Ideally, all the FPGAs in an MFS should be connected

using a single crossbar switch. Any connection between any
set of FPGAs, irrespective of fanout, would be possible. Such
a system would be always routable and would provide good
speed. Unfortunately, such a crossbar switch is impractical
for real systems because the size of the crossbar switch
increases as square of the crossbar pins. The partial crossbar
architecture [4] provides routability similar to that of a full
crossbar (for real world netlists) at a much lower cost. The
HCGP architecture provides lower cost and higher speed than

the partial crossbar. In order to understand the main ideas
behind the HCGP architecture, we first need to study the
partial crossbar architecture. A partial crossbar using four
FPGAs and three FPIDs is shown in Figure 2. The pins in
each FPGA are divided into N subsets, where N is the number
of FPIDs in the architecture. All the pins belonging to the
same subset in different FPGAs are connected to a single
FPID. Note that any circuit I/Os will have to go through
FPIDs to reach FPGA pins. For this purpose, a certain number
of pins per FPID are reserved for circuit I/Os. The number of
pins per subset (Pt) is a key architectural parameter that
determines the number of FPIDs needed and the pin count of
each FPID. The extremes of the partial crossbar architecture
can be illustrated by considering a system with four FPGAs,
and assuming 192 usable I/O pins per FPGA: a Pt value of 192
will require a single 768-pin FPID that acts as a full crossbar.
A Pt value of 1 will require 192 4-pin FPIDs. Both of these
cases are impractical. A good value of Pt should require low
cost, low pin count FPIDs, and provide good routability.

The HCGP architecture for four FPGAs and three FPIDs is
illustrated in Figure 3. The I/O pins in each FPGA are divided
into two groups: hardwired connections and programmable
connections. The pins in the first group connect to other
FPGAs and the pins in the second group connect to FPIDs.
The FPGAs are directly connected to each other using a
complete graph topology, i.e. each FPGA is connected to

every other FPGA. The connections between FPGAs are
evenly distributed, i.e. the number of wires between every pair
of FPGAs is the same. For programmable connections, the
FPGAs and FPIDs are connected in exactly the same manner
as in a partial crossbar. As in the partial crossbar, any circuit
I/Os will have to go through FPIDs to reach FPGA pins. For
this purpose, a certain number of pins per FPID are reserved
for circuit I/Os. The direct connections between FPGAs can
be exploited to obtain reduced cost and higher speed.

A key architectural parameter in the HCGP architecture is
the percentage of programmable connections, Pp. It is defined
as the percentage of each FPGA’s pins that are connected to
FPIDs (the remainder are connected to other FPGAs). The
choice of a value of Pp involves tradeoffs between routability,
speed, and cost. If Pp is too high it will lead to increased pin
cost and lower speed, if it is too low it will adversely affect
routability. If Pp is 0% the HCGP architecture degrades to a
completely connected graph of FPGAs with no FPIDs used. If
Pp is 100% the HCGP architecture degrades to a standard
partial crossbar. Previous research [5] has shown that a Pp

value of 60% is a suitable choice for obtaining good
routability and speed at a reasonable cost.

III. HCGP SCALABILITY ISSUES
The previous experimental evaluation of the HCGP

architecture and comparison to other architectures [5] was
done using relatively small FPGAs (compared to currently
available FPGAs). The architecture can scale in three ways:
1. We can keep the FPGA logic and pin capacity constant

and increase the total number of FPGAs.
2. We can keep the total number of FPGAs relatively small

and increase the logic and pin capacity of each FPGA
3. We can increase both the total number of FPGAs and the

logic and pin capacity of each FPGA.
The scalability issue 1 was addressed by using a

hierarchical architecture such as the Hardwired Clusters
Partial Crossbar (HWCP), proposed by Khalid [7]. Scalability
issue 2 has not been explored so far for the HCGP architecture
and is the subject of this paper. Note that scalability issue 3 is

Figure 2. Partial Crossbar Architecture

FPGA 4
A B C

FPGA 3
A B C

FPGA 2
A B C

FPGA 1
A B C

B pins
 FPID

A pins
 FPID

C pins
 FPID

Figure 3. HCGP Architecture

FPGA 4
A B C

FPGA 3
A B C

FPGA 2
A B C

FPGA 1
A B C

B pins
 FPID

A pins
 FPID

C pins
 FPID

163

The 18th International Confernece on Microelectronics (ICM) 2006

a combination of scalability issues 1 and 2.
As FPGA logic and pin capacities continue to rise, it makes

sense to use a limited number (say, 16 or less) of very high
capacity FPGAs for creating MFSs that can be used for logic
emulation or rapid prototyping of small to medium sized
designs. This way we avoid the costs associated with using
high pin count connectors and expensive boards for multi-
board systems, that would be needed if we use many tens or a
few hundreds of smaller FPGAs. For handling very large
designs, processor-based emulators such as Cadence’s
Palladium are proving to be more effective than FPGA-based
emulators [8].

IV. EXPERIMENTAL OVERVIEW
To evaluate the scalability of the HCGP architecture for

large FPGAs, we first had to generate synthetic netlists similar
to post-partition netlists produced for real multi-million gate
designs. For the experiment we chose netlists consisting of 6,
8, 12, and 16 FPGAs. In order to resemble the real netlists, the
netlist generation process was not completely random but
followed some statistical patterns derived from real multi-
million gate design netlists. First, consider the issue of the net
fanout distribution in the synthetic netlist. We took real design
partitioning results and collected statistical data on the nets
distribution according to the fanout. On different types of real
design partitioning results we determined typical distribution
of nets connecting two FPGAs, three FPGA, four FPGAs, etc.
We reproduced the same distribution while randomly
generating the connections in the synthetic netlists.

Second, post-partition netlists may vary on how evenly the
connections are distributed between the FPGAs. A netlist may
consist of FPGAs that have approximately the same number of
connections to each other. In a more typical case there are
clusters of tightly connected FPGAs, where there are more
connections between FPGAs inside a cluster than between
FPGAs that belong to different clusters. In our experiment we
generated four types of netlists with different connection
patterns. In the first pattern all FPGAs were connected to
each other by approximately even numbers of nets. In the
second pattern the netlists consisted of tightly connected two-
FPGAs clusters. In the third pattern the netlists consisted of
tightly connected three-FPGAs clusters. Finally, the last
pattern included one cluster of two tightly connected FPGAs
with the rest of the FPGAs connected to each other by
approximately even numbers of nets. Note that this issue deals
with the amount of “locality” in post-partition netlists.
Replicating “locality” of real post-partition design netlists in
synthetic netlists is a very elusive task and there has been little
success in this respect in research efforts to date [9].
Fortunately, synthetic netlists produced using our approach
are usually much more difficult to map compared to real
netlists. Hence they yield a conservative evaluation of
architecture and/or mapping CAD tools (rather than overly
optimistic evaluation results).

Each netlist was derived using FPGA I/O pin utilization
ranging from 50% to 100%. Then each generated netlist was
sequentially mapped into HCGP architectures with Pp ranging
from 0% to 100%. The numbers of FPGA and FPID I/O pins
were assumed to be 1024 and 500 respectively. For every
architecture, we tried to route the mapped netlist. We
developed an architecture-specific router that restricted the
number of chip hops for routing a net to one or two. A chip
hop is defined as a pin-to-pin connection between two chips.

Hence, the routability of the HCGP architecture was
evaluated for different combinations of (a) Pp value, (b) pin
utilization per FPGA, (c) total number of FPGAs (varied from
6 to 16), and (d) FPGA interconnection pattern. The goal was
to find a minimum value of Pp that provides routability for all
cases depending on the I/O pin utilization.

V. RESULTS AND CONCLUSIONS
In this section, we present the experimental results obtained

by mapping synthetic post-partition netlists to different
configurations of the HCGP architecture. Recall from
previous sections that our objective is to evaluate the
routability of the HCGP architecture using large FPGAs. We
are also interested in the value of Pp that results in routing
completion in most cases.

The experimental results are shown in Figure 4 which
consists of four graphs, each characterized by the number of
FPGAs used in the HCGP architecture. We used synthetic
post-partition netlists obtained using 6, 8, 12, and 16 FPGAs
and mapped each to an HCGP architecture that used the same
number of FPGAs. The FPGA pin utilization (shown on the
X-axis) used in the synthetic netlist was varied from 50 to
100%. Each pin utilization case was mapped to the HCGP
architecture using different values of Pp (shown on the Y-
axis). There were four different types of netlists used: evenly
connected FPGAs, collection of 2-FPGA clusters, collection
of 3-FPGA clusters, and finally one 2-FPGA cluster with rest
of the FPGAs evenly connected.
The results show that a Pp value of 60% is sufficient for
achieving routing completion for all types of netlists provided
we restrict the FPGA pin utilization to 82%. This is in
agreement with previous research results [1] if we consider
that in real design netlists, the average pin utilization per
FPGA would likely be less than 80%. We have confirmed this
assumption by pin utilization statistics collected on ten real
designs. Recall that for netlists used in our experiments,
FPGA pin utilization of 82% implies every single FPGA has
82% of its pins used This is even more conservative than what
would be expected in real design netlists.

164

The 18th International Confernece on Microelectronics (ICM) 2006

(a) 6 FPGAs

0

20

40

60

80

100

50 54 58 62 66 70 74 78 82 86 90 94 98

Pin utilization

M
in

 P
p

re
qu

ire
d

(b) 8 FPGAs

0

20

40

60

80

100

50 54 58 62 66 70 74 78 82 86 90 94 98

Pin utilization

M
in

 P
p

re
qu

ire
d

(c) 12 FPGAs

0

20

40

60

80

100

50 54 58 62 66 70 74 78 82 86 90 94 98

Pin utilization

M
in

 P
p

re
qu

ire
d

(d) 16 FPGAs

0

20

40

60

80

100

50 54 58 62 66 70 74 78 82 86 90 94 98

Pin utilization

M
in

 P
p

re
qu

ire
d

We can conclude from the experimental results that the HCGP
architecture is scalable using very large FPGAs, such as
Xilinx Virtex II [10], and can be used to handle multi-million
gate designs.

With improved fabrication technology, the logic capacity of
FPGAs increases much faster than their pin capacity due to
I/O pad placement limitations. Obviously FPGA logic
utilization in HCGP, i.e. logic capacity, can be further
improved if we use pin multiplexing on FPGAs to effectively
increase the number of inputs and outputs per FPGA.

REFERENCES

[1] Mentor Graphics, (2006) VStationPRO Datasheet.
[Online] Available: http://www.mentor.com

[2] C. Chang et al, “Implementation of BEE: a Real-time,
Large-scale Hardware Emulation Engine,” Proc. of
International Symposium on FPGAs, 2003, pp. 91-99.

[3] Timelogic Corp., (2004) DeCypher Bioinformatics
Accelerator, [Online] Available:
http://www.timelogic.com

[4] M. Butts, J. Batcheller, and J. Varghese, “An Efficient
Logic Emulation System,” Proc. of IEEE International
Conference on Computer Design, pp. 138-141, 1992.

[5] M. A. S. Khalid and J. Rose, “A Novel and Efficient
Routing Architecture for Multi-FPGA Systems,” IEEE
Transactions on VLSI, February 2000, Vol. 8, No. 1, pp.
30-39.

[6] M. A. S. Khalid and J. Rose, “Multi-logic Device
Systems Having Partial Crossbar and Direct
Interconnection Architectures”, U.S. Patent No. 6604230,
issued August 5, 2003.

[7] M. A. S. Khalid and J. Rose, "Hardwired-Clusters Partial-
Crossbar: A Hierarchical Routing Architecture for Multi-
FPGA Systems," Proc. of the 1999 Sixth Reconfigurable
Architectures Workshop (RAW’99), Springer, pp. 597-
605, April 1999.

[8] Cadence Design Systems, (2006) Palladium Datasheet.
[Online] Available: http://www.cadence.com

[9] M. Hutton, J. Rose and D. Corneil, "Automatic
Generation of Synthetic Sequential Benchmark Circuits,"
in IEEE Trans. on CAD, Vol. 21, No. 8, August 2002, pp.
928-940.

[10]Xilinx, Inc., (2006) Virtex II FPGAs Datasheet. [Online]
Available: http://www.xilinx.com

Figure 4. Experimental results: (a) for 6 FPGAs, (b) for
8 FPGAs, (c) for 12 FPGAs and (d) for 16 FPGAs

Evenly connected 2-FPGA clusters

3-FPGA clusters Single 2-FPGAs cluster

165

The 18th International Confernece on Microelectronics (ICM) 2006

