
Scalability Evaluation of a Polymorphic Register
File: a CG Case Study

Cătălin B. Ciobanu1, Xavier Martorell2,3, Georgi K. Kuzmanov1, Alex
Ramirez2,3, and Georgi N. Gaydadjiev1

1 Computer Engineering Laboratory,
Electrical Engineering Department,

Delft University of Technology, The Netherlands
{c.b.ciobanu, g.k.kuzmanov, g.n.gaydadjiev}@tudelft.nl

2 Universitat Politècnica de Catalunya, Spain
3 Barcelona Supercomputing Center

{xavier.martorell, alex.ramirez}@bsc.es

Abstract. We evaluate the scalability of a Polymorphic Register File us-
ing the Conjugate Gradient method as a case study. We focus on a hetero-
geneous multi-processor architecture, taking into consideration critical
parameters such as cache bandwidth and memory latency. We compare
the performance of 256 Polymorphic Register File-augmented workers
against a single Cell PowerPC Processor Unit (PPU). In such a scenario,
simulation results suggest that for the Sparse Matrix Vector Multiplica-
tion kernel, absolute speedups of up to 200 times can be obtained. More-
over, when equal number of workers in the range 1-256 is employed, our
design is between 1.7 and 4.2 times faster than a Cell PPU-based sys-
tem. Furthermore, we study the memory latency and cache bandwidth
impact on the sustainable speedups of the system considered. Our tests
suggest that a 128 worker configuration requires the caches to deliver
1638.4 GB/sec in order to preserve 80% of its peak speedup.

1 Introduction

Recent generations of processor designs have reached a point where just in-
creasing the clock frequency in order to gain performance is no longer feasible
because of power and thermal constraints. As more transistors are available in
each generation of CMOS technology, designers have followed two trends in order
to improve performance: the specialization of the cores targeting improved per-
formance in certain classes of applications and the use of Chip Multi-Processor
(CMP) designs in order to extract more performance in multi-threaded appli-
cations. Examples of specialized extensions include Single Instruction Multiple
Data (SIMD) extensions such as Altivec [9], which are designed to exploit the
available Data Level Parallelism, but also the hardware support for the Ad-
vanced Encryption Standard [8] which provides improved performance for data
encryption. A typical example of a heterogeneous CMP architecture is the Cell



processor [12]. This shift in the processor architectures employs new program-
ming paradigms and has a significant impact on how programs have to be opti-
mized in order to maximize performance. Engineers have to consider both single
threaded performance but also multi-processor scalability. In our previous work
we have proposed a Polymorphic Register File (PRF) [4], which provides an
easier programming model targeting high performance vector processing.

More specifically, in this paper we investigate the scalability of such a PRF
augmented vector accelerator when integrated in a multi-processor system. The
study focuses on the achievable performance with respect to the number of pro-
cessors when employed in a complex computational problem, namely the Con-
jugate Gradient (CG) method. CG is one of the most commonly used iterative
methods for solving systems of linear equations[19]. The iterative nature of CG
makes it a good option for solving sparse systems that are too large to be han-
dled by direct methods. CG scalability is critical, as it determines the maximum
problem size which can be processed within a reasonable execution time.

Previous studies have shown that 1D and 2D vector architectures can signifi-
cantly accelerate the execution of this application - more than 10 times compared
to a scalar processor [4]. In this work, we analyze the performance of such ac-
celerators in a heterogeneous multicore processor with specialized workers - the
SARC architecture [16]. Moreover, we consider critical parameters such as the
available memory bandwidth and the memory latency. More specifically, the
main contributions of this paper are the following:

– Performance evaluation of the Sparse Matrix Vector Multiplication (SMVM)
kernel, comparing a vector processor using a Polymorphic Vector Register
File implementation to the Cell BE and the PowerXCell 8i [10]. The Polymor-
phic vector register file system achieved speedups of up to 8 times compared
to the Cell PowerPC Processor Unit (PPU);

– Scalability analysis of the SMVM kernel: simulation results suggest that a
system comprising of 256 PRF accelerators can reach absolute speedups of
up to 200 times compared to a single Cell PPU worker. The system scales
almost linearly for up to 16 workers, and more than 50% of the single core
relative speedup is preserved when using up to 128 PRF cores;

– Evaluation of the impact of memory latency and shared cache bandwidth
on the sustainable performance of the SMVM kernel. We consider scenarios
of up to 128 PRF workers and target at least 80% of their theoretical peak
speedups. The memory latency simulations indicate that the system can
tolerate latencies up to 64 cycles to sustain that performance. The cache tests
suggest that such a configuration requires a bandwidth of 1638.4 GB/sec.

The rest of the paper is organized as follows: Section 2 provides the back-
ground information on the competitive architectures we have selected, the target
application and describes related work. The case study scenario is presented in
Section 3. Simulation data along with their analysis are presented in Section 4.
Finally, the paper is concluded in Section 5.



2 Background and Related Work

Fig. 1. The Polymorphic Register File

A Polymorphic Register File (PRF) is a parameterizable register file [4],
which can be logically reorganized by the programmer or by the runtime system
to support multiple register dimensions and sizes simultaneously. Figure 1 shows
an example of a two-dimensional PRF assuming that the physical register file
is 128 by 128 elements. The physical register storage space is allocated to a
number of 1D and 2D logical vector registers, while remaining space is available
for defining more logical registers. The benefits of this architecture are:

1. Potential performance gain by increasing the number of elements processed
with a single instruction, due to multi-axis vectorization;

2. A more efficient utilization of the register file storage, eliminating the po-
tential storage waste of fixed register size organizations;

3. Variable number of registers which can be defined in order to arbitrarily
partition the available physical register space;

4. Reduced static code size as the target algorithm may be expressed with
higher level instructions. The same binary instructions may be used regard-
less of the shape, dimensions or data type of the operands. The compatibility
of the operands is checked by the microarchitecture.

The logical registers are defined by adding a second register bank to the ar-
chitecture - the Register File Organization (RFORG) Special Purpose Registers
(SPR). For each logical register, it is required to specify the coordinates: the
location of the upper left corner (Base), the horizontal and vertical dimensions
(Horizontal Length and Vertical Length) as well as the data type using a 3 bit



field, supporting 32/64-bit floating point or 8/16/32/64-bit integer values. More
details on the organization of the PRF can be found in [4].

The Conjugate Gradient Method is one of the most important methods
used for solving a system of linear equations, with the restriction that their ma-
trix is symmetric and positive definite [19]. The iterative nature of the algorithm
makes it suitable for solving very large sparse systems for which applying a direct
method is not feasible.

The CG version we have used is part of the NAS Parallel Benchmarks [1].
By profiling the code we have found that the main computational kernel is the
double precision Sparse Matrix - Dense Vector Multiplication (SMVM), which
accounts for 87.32% of the total execution time in the scalar version of CG. The
Compressed Sparse Row (CSR) format is used to store the sparse matrices. The
following pseudo code sequence presents the SMVM kernel, where a is a one-
dimensional array storing all the non-zero elements of the sparse matrix, p is the
dense vector and w stores the result of the multiplication. colidx and rowstr
contain the extra information required by the CSR format.

for (j = 1; j <= number_of_rows; j++) {

w[j] = 0.0;

lowk = rowstr[j]; upk=rowstr[j+1];

for (k = lowk; k < upk; k++) {

w[j] += a[k]*p[colidx[k]];

}

}

By using the CSR format, the access to the vector p becomes irregular,
making it difficult to vectorize the kernel unless a gather instruction is available
in the architecture. Therefore, in order to vectorize the kernel, we first partitioned
the code into an inspector and executor loop [6], effectively transforming the
kernel into number of Dense Vector multiplications. The inspector loop gathers
the data required to process a number consecutive rows of the sparse matrix
from the global shared memory and places it into the Local Store of the worker,
using DMAs.

In order to access a full row of the sparse matrix, a single DMA is sufficient
as the non zeroes are stored in consecutive positions in vector a. However, in
order to fetch the elements of the dense vector p on the positions stored into
the column index array, multiple DMA requests are necessary as there is no
predefined pattern of the positions of the non zero elements within a row of the
matrix. Issuing a DMA for each element of the dense vector would be inefficient,
requiring the issue of tens or hundreds of DMAs in order to multiply one row of
the sparse matrix with the dense vector. Therefore, we have chosen to transfer the
complete vector p to each worker before the actual computation of the SMVM.
This way, the inspector loop always accesses the Local Store when accessing
the dense vector. We have used a binomial tree broadcast algorithm, in which
only the root node transfers the vector from main memory to its Local Store,
and all the other transfers are Local Store to Local Store. In each step, all the



workers which already have a copy of the vector will participate in the transfers
as sources. For P workers, log2(P ) steps are required to complete the broadcast.

After executor loop can be first vectorized in one dimension by performing
each dot-product operation with one instruction. In order to vectorize the code
on the second axis, multiple dense vectors are placed in a 2D vector register.
Therefore, we have blocked the outer loop so that block size rows of the matrix
are processed in each step. The following pseudo code presents the reorganization
of the kernel, with the apriv and priv buffers being allocated in the LS of the
accelerator:

for (jj = 1; jj <= num_rows; jj+=block_size) {

//inspector loop

for (j = jj; j < jj+block_size; j+=1) {

lowk = rowstr[j], upk = rowstr[j+1];

kp=0;

for (k = lowk; k < upk; kp++, k++) {

priv[j-jj][kp] = p[colidx[k]];

apriv[j-jj][kp] = a[k];

}

}

//executor loop

for (j = jj; j < jj+block_size; j+=1) {

w[j] = 0.0;

lowk = rowstr[j], upk = rowstr[j+1];

for (k = lowk; k < upk; k++)

w[j] += apriv[j-jj][k-lowk] * priv[j-jj][k-lowk];

}

}

Previous work done in [4] assumed that all the necessary data to perform
SMVM are available in the LS of the accelerator before the computation, a
limitation which is not present in this study. However, we do assume that the
size of the LS is sufficient to store a complete copy of the dense vector p.

The SARC architecture is a clustered heterogeneous multi-core architec-
ture designed for the master-worker programming model. Figure 2 presents a
block diagram of the architecture. A Network on Chip (NoC) connects multi-
ple tiles (or clusters) of Workers (W), the Master (M) processor, the Memory
Interface Controllers (MIC) and the shared L2 cache.

Each cluster may contain multiple Worker processors interconnected by a
bus. In this work it is assumed that the main computational tasks are off-loaded
to the worker processors. The workers have access to a private Local Store (LS)
and use DMAs to transfer data from the global shared memory or from other
worker’s LS. The workers may be general purpose or specialized accelerators. By
providing each worker with a private LS, there is no need for L1 caches for the
worker processors.

The Master (M) processors are high performance, out-of-order superscalars
which handle the dispatch of tasks to the workers and the control part of the



Fig. 2. The SARC architecture

program. Each Master processor is equipped with a private L1 cache which is
coherent with the shared L2 cache. The architecture supports multiple Master
processors, but since we offload the bulk of the computations to the worker
clusters, we only instantiate one Master in this study.

Multiple Memory Interface Controllers provide access to the off-chip DRAMs,
with each MIC supporting multiple DRAM channels. Fine-grain interleaving as-
sures that when accessing consecutive memory addresses, the data are provided
from multiple MICs and multiple DRAM channels in order to increase the ef-
fective bandwidth utilization. In order to exploit data locality, a shared multi-
banked L2 cache is connected to the NoC, which also uses fine grain interleaving.

Related Work: The efficient processing of multidimensional arrays has been
targeted by other architectures as well. One approach is to use a memory to
memory architecture, such as the Burrows Scientific Processor (BSP) [13]. Be-
ing optimized for executing Fortran code, the ISA composed of high level vec-
tor instructions with a large number of parameters. The arithmetic units were
equipped with 10 registers which are not directly accessible by the programmer.
The Polymorphic register file also creates the premises for a high level ISA, but
can reuse data directly within the register file. The Complex Streamed Instruc-
tions (CSI) [11] approach also did not make use of any data registers. CSI allows
the processing of two-dimensional data streams of arbitrary length, but requires
data caches to benefit from data locality. Our approach can use the register file
in order to reduce the need for high speed data caches.

The Vector Register Windows (VRW) [14] concept allows the grouping of
consecutive vector registers in a 2D window. However, one of the dimensions is
fixed, contrary to our proposal. The Matrix Oriented Multimedia (MOM) [5]
also uses a 2D register file, but with a fixed number of registers which used
sub-word parallelism in order to store up to 16x8 elements. The Polymorphic
register file also supports sub-word level parallelism but doesn’t restrict the
number or shape of the two dimensional registers. Modified MMX [18] supports



8 multimedia registers, each 96 bits wide. However, the matrix operations are
constrained only to loads and stores.

The Register Pointer Architecture(RPA) [15] provides extra storage to a
scalar processor by adding two additional register files - Dereferencible Register
File (DRF) and the Register Pointers (RP). The DRF provides the extra storage
space, while the RP provide indirect access to the DRF. The PRF also uses
indirect accessing to a dedicated register file, but the RPA maps scalar registers,
while in our proposal each indirection register maps to a matrix, being more
suitable for vector processing.

In order to adjust the number of registers in a VLIW, FPGA partial reconfig-
uration is used to adjust the size of the physical register file in [20]. Our approach
assumes that the physical register file is fixed, but offers a higher level view of
the available storage space, eliminating many overhead instructions, possibly
improving performance.

3 Case Study Scenario

We have used the Mercurium source-to-source compiler infrastructure [3] to ob-
tain a parallel version of the CG benchmark. In such a parallel version, each of
the parallel loops annotated with directives is transformed in a set of parallel
tasks, each task executing a subset of the loop iterations. Examples of how the
loops are annotated can be found in [7]. The resulting code contains calls to an
instrumented runtime system that generates a trace with the relevant events,
like task spawning, joining, and starting and ending of DMA transfers. While
running the benchmark, the runtime system generates a file with the traced
events, which is later analyzed to obtain the execution times of tasks, and the
latencies added by the DMA transfers. Runs can be done in any serial system
to obtain the traces.

Traces are later used as input to our simulation environment (Tasksim [17]),
where the events are analyzed, and replayed, and the simulation environment
changes timestamps according to the characteristics of the simulated architec-
ture. Tasksim accurately simulates the timing of memory transfers, but the dura-
tion of the computational phases needs to be provided separately. Therefore, we
have optimized the executor loop of the kernel for each accelerator type assuming
that the required data are already present in the Local Store of the processor.

The normalized performance of the executor loop on a single core is presented
in Figure 3, using the Cell PPU as the baseline processor. The results for the
Cell and PowerXCell Synergistic Processor Units (SPUs) were obtained using the
hardware counters in IBM QS21 and QS22 blades, compilation being performed
using GCC 4.1.1 and IBM XLC 9.0 (optimization flags used are -O3 for GCC
and -O5 for IBM XLC). In order to evaluate the PRF we used SARCSIM, a cycle
accurate simulator [4], with a vector register size of 10x320 elements. It can be
observed that the best results are obtained by using the IBM XLC compiler,
which is between 68% and 259% faster than GCC. Therefore, throughout the
paper, we shall only refer to the results obtained using the XLC compiler. The



Fig. 3. CG - Normalized single core performance

Cell SPU is twice as fast compared to the Cell PPU, with the PowerXCell SPU
providing a speedup of more than 4 times compared to the baseline, thanks
to the improved double precision floating point arithmetic units. Using a PRF-
augmented vector processor with 2 vector lanes or with 32 lanes accelerates the
execution by more than 6 and respectively 8 times. The PRF implementation
was based on the work presented in [4], implementing the updated kernel which
uses the inspector/executor paradigm presented in Section 2.

Table 1. Tasksim simulation parameters

(a) Baseline configuration

Parameter Value

Clock Frequency 3.2GHz

Memory Interface Contr. (MIC) 16

Memory channels 2 DDR3 channels / MIC

Memory channel bandwidth 12.8GB/sec (DDR3 1600)

Aggregate memory bandwidth 409.6 GB/sec

Memory latency Realistic DDR3

L2 cache size 128MB (128 banks)

 L2 cache bandwidth 25.6 GB/sec / bank

L2 cache associativity 4

L2 cache latency 9 cycles

Local Store size 256KB

Local Store latency 6 cycles

(b) L2 cache

Bank size Latency
(KB) (cycles)

256 7

512 8

1024 9

2048 11

4096 13

8192 15

16384 20

32768 30

65536 50

131072 100

The multicore simulations use the default values presented in Table 1(a). We
have focused on three scenarios with our experiments: the general scalability of



the kernel, the impact of the memory latency and shared L2 cache bandwidth on
the sustainable speedups. The simulation results only include the Sparse Matrix
Vector Multiplication kernel, which has been accelerated for the different worker
types. We have used the Class A input data from the NAS Parallel Benchmark
suite, in which the size of the sparse matrix is 14000 rows.

4 Simulation Results and Analysis

In this section, we investigate, through simulations, the scalability of the pro-
posed system with respect to performance. Furthermore, we analyze the impact
of the memory latency and the available L2 cache bandwidth on the overall per-
formance of the PRF-enabled system by comparison to base-line configurations.

(a) Multicore scalability (b) The impact of specialized workers

Fig. 4. SMVM scalability

Scalability results of the SMVM kernel are presented in Figure 4, for five
types of workers: Cell PPU, Cell SPU, PowerXCell SPU, PRF-augmented Vector
Accelerator with 2 vector lanes (PRF-2l) and with 32 vector lanes (PRF-32l).
Figure 4(a) presents the absolute speedups when the baseline performance is
represented by a system with one Master and 1 Cell PPU worker processor, while
Figure 4(b) shows the relative speedup obtained by each specialized worker type
compared to a baseline system which uses an equal number of Cell PPUs. The
baseline in Figure 4(b) corresponds to the lowest curve in Figure 4(a).

The system scales almost linearly for up to 16 workers, increasing the ab-
solute speedup by more than 85% each time the number of processors doubles,
regardless of the worker category considered. For less than 16 workers, the PRF
systems maintain a relative speedup of around four, and the PowerXCell SPUs
a relative speedup of around three.

For 32 processors or more, the difference between the relative speedups of
the worker types becomes narrower: the PRF accelerators maintain 50% of their



relative speedup advantage up to 128 workers, compared to 256 processors in the
case of the Cell and PowerXCell SPUs. The absolute speedup saturates when
using more than 256 Cell SPUs or more than 128 PRF cores.

The highest absolute speedups of the SMVM kernel are obtained when em-
ploying 256 PRF accelerators: the execution is accelerated by a factor of 200
with 32 lanes and 194 for 2 lanes. The peak absolute speedup of the PPUs is
140 for 512 workers, which is lower than the absolute speedup of 149 delivered
by 64 PRF-32 lanes workers.

By analyzing the results with Paraver [2], we noticed that an important factor
which prevents the system from achieving higher speedups when 512 workers
were employed is the relatively small size of the input data. As the number of
tasks available for each processor is reduced by increasing the worker count, it is
increasingly difficult for the system to balance the workload between processors,
because the number of non zero elements in each row of the sparse matrix is
not constant. The small number of rows allocated to each worker also increases
the relative cost of the broadcast of the dense vector. This operation duration
is determined by the characteristics of the memory system, not by the worker
type.

The simulation results suggest that using the PRF for this application is
indeed scalable, as more than 50% of the single core relative speedup is preserved
when using up to 128 cores, and the maximum absolute speedup obtained by 512
Cell PPU workers can be exceeded by 64 PRF-augmented Vector Accelerators,
potentially saving area and power for a target performance level.

(a) (b)

Fig. 5. The impact of the memory latency on the performance of the SMVM kernel

Memory latency: In order to evaluate the impact of memory latency on
the performance of the SMVM kernel, an idealized, conflict-free, high bandwidth
system featuring 256 MICs with 2 DRAM channels each, with a total memory
bandwidth of 6553.6 GB/sec is simulated. The L2 cache is disabled and the
memory latency is artificially fixed to a value between 1 to 16384 cycles. The
speedups for each worker type are normalized to the theoretical peak speedup



delivered by that processor type, which is determined by assuming a perfect
memory system with 1 cycle latency.

In the single worker scenario (Figure 5(a)), all the worker types can sustain
more than 90% of the theoretical peak speedups for a memory latency smaller
than or equal to 64 cycles. While the PPU can sustain 80% of its theoretical
peak performance for a memory latency of 512 cycles, the SPU can only achieve
this for a latency of 256 cycles, and 128 cycles in the case of the PRF. When
fixing the latency to 512 cycles, the normalized speedups drop to 78% of their
theoretical peak for the Cell PPU, 65%-for the Cell SPU, and to 45%-for the
processor using the 32-lanes PRF.

When 128 workers are employed (Figure 5(b)), for a fixed memory latency of
32 cycles or less, the normalized speedups stay above 90% regardless of the type
of cores. A minimum of 80% of its theoretical peak speedups can be sustained
for a memory latency of up to 128 cycles for the slowest worker type, the Cell
PPU and up to 64 cycles for the PRF. A 512 cycles memory latency reduces the
normalized speedup to 54% in the PPU case and 20% in the case of the PRF.

The simulations suggest that using multicore configurations and/or faster
workers require lower memory latency in order to sustain a fixed proportion of
their own theoretical peek speedup.

(a) (b)

Fig. 6. The impact of the L2 cache bandwidth on the performance of the SMVM kernel

L2 cache bandwidth: In order to evaluate the influence of the available
L2 cache bandwidth, the total size of the L2 cache is fixed to 128MB, and
the number of cache banks is varied from 1 to 512. The latencies used for the
cache according to the size of the banks are presented in Table 1(b). As in the
scalability test, realistic memory latencies are assumed. The speedups reported
are normalized to the theoretical peak speedup of each worker type, achieved in
this case for a very high L2 cache bandwidth of 13107.2 GB/s for 512 banks.

When a single worker is employed, a cache bandwidth of 51.2 GB/sec is
sufficient to sustain 99% of the PPU’s and 97% of the PRF’s peak speedups, as



suggested by Figure 6(a). For bandwidths in excess of 51.2 GB/sec, the speedups
saturate regardless how fast the worker processor is.

Figure 6(b) suggests that for 128 workers to sustain 80% of their peak
speedup, 16 cache banks providing 409.6 GB/sec are required for the PPUs,
and 64 cache banks for the PRFs. In order to perform within 5% of their peak
speedup, the PPUs require the use of 32 cache banks supplying 819.2 GB/sec,
while 128 cache banks are need by the PRFs to deliver 95% of their peak speedup.

5 Conclusions

We evaluated the scalability of a system facilitated by a Polymorphic Register
File, using the CG method as a case study. Furthermore, we analyzed the im-
pact of the memory latency and cache bandwidth on the sustainable speedups
of the system considered. Simulation results suggested that compared to a single
Cell PPU, significant speedups could be achieved for the SMVM kernel when
integrating the PRF in a competitive heterogeneous multicore architecture em-
ploying up to 256 cores. Moreover, a target performance level could be achieved
using fewer PRF cores compared to a Cell PPU-based system, potentially saving
area and power. This proves that the PRF is suitable not only for small scale
systems with few processing elements, but it can be successfully embedded in
high performance many-core implementations, as well. In the future, we plan to
analyze the PRF scalability in a wider range of applications, as well as evaluate
the feasible microarchitectural implementations in terms of performance, power
and hardware complexity.

Acknowledgements

This work was partially supported by the European Commission in the context of
the Scalable computer ARChitectures (SARC) integrated project #27648 (FP6),
the HiPEAC-2 Network of Excellence (FP7/ICT 217068), the Dutch Technology
Foundation STW, applied science division of NWO, the Technology Program
of the Dutch Ministry of Economic Affairs (project DCS.7533), the Consolider
contract TIN2007-60625 from the Ministry of Science and Innovation of Spain
and the Generalitat de Catalunya (project 2009-SGR-980).

References

1. D. Bailey, J. Barton, T. Lasinski, , H. Simon, and eds. The NAS Parallel Bench-
marks. Technical Report Technical Report RNR-91-02, NASA Ames Research
Center, Moffett Field, CA 94035, 1991.

2. Barcelona Supercomputing Center. Paraver. http://www.bsc.es/paraver.

3. Barcelona Supercomputing Center. The NANOS Group Site: The Mercurium Com-
piler. http://nanos.ac.upc.edu/mcxx.



4. C. Ciobanu, G. K. Kuzmanov, A. Ramirez, and G. N. Gaydadjiev. A Polymorphic
Register File for Matrix Operations. In Proceedings of the 2010 International Con-
ference on Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS 2010), pages 241–249, July 2010.

5. J. Corbal, R. Espasa, and M. Valero. MOM: a Matrix SIMD Instruction Set
Architecture for Multimedia Applications. In Proceedings of the ACM/IEEE SC99
Conference, pages 1–12, 1999.

6. R. Das, M. Uysal, J. Saltz, and Y. shin Hwang. Communication Optimizations for
Irregular Scientific Computations on Distributed Memory Architectures. Journal
of Parallel and Distributed Computing, 22:462–479, 1993.

7. R. Ferrer, M. González, F. Silla, X. Martorell, and E. Ayguadé. Evaluation of
memory performance on the Cell BE with the SARC programming model. In
MEDEA ’08: Proceedings of the 9th workshop on MEmory performance, pages 77–
84, New York, NY, USA, 2008. ACM.

8. S. Gueron. Intel Advanced Encryption Standard (AES) Instructions
Set. http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-
aes-instructions-set/, 2010. Available online.

9. L. Gwennap. AltiVec Vectorizes PowerPC. Microprocessor Report, 12(6):1–5, May
1998.

10. IBM. Cell Broadband Engine Programming Handbook Including the PowerXCell
8i Processor, 1.11 edition, May 2008.

11. B. Juurlink, D. Cheresiz, S. Vassiliadis, and H. A. G. Wijshoff. Implementation
and Evaluation of the Complex Streamed Instruction Set. Int. Conf. on Parallel
Architectures and Compilation Techniques (PACT), pages 73 – 82, 2001.

12. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.
Introduction to the Cell Multiprocessor. IBM J. Res. Dev., 49(4/5):589–604, 2005.

13. D. Kuck and R. Stokes. The Burroughs Scientific Processor (BSP). IEEE Trans-
actions on Computers, C-31(5):363–376, May 1982.

14. D. Panda and K. Hwang. Reconfigurable Vector Register Windows for Fast Matrix
Computation on the Orthogonal Multiprocessor. In Application Specific Array
Processors, 1990. Proceedings of the International Conference on, pages 202 –213,
5-7 1990.

15. J. Park, S.-B. Park, J. D. Balfour, D. Black-Schaffer, C. Kozyrakis, and W. J. Dally.
Register Pointer Architecture for Efficient Embedded Processors. In DATE ’07:
Proceedings of the conference on Design, Automation and Test in Europe, pages
600–605, San Jose, CA, USA, 2007. EDA Consortium.

16. A. Ramirez, F. Cabarcas, B. Juurlink, M. Alvarez Mesa, A. Azevedo, C. Meender-
inck, G. Gaydadjiev, C. Ciobanu, S. Isaza, and F. Sanchez. The SARC Architec-
ture. Micro, IEEE, 30(Issue:5):16 –29, Sept.-Oct. 2010.

17. A. Rico, F. Cabarcas, A. Quesada, M. Pavlovic, A. Vega, C. Villavieja, Y. Et-
sion, and A. Ramirez. Scalable Simulation of Decoupled Accelerator Architectures.
Technical report, Universitat Politècnica de Catalunya, Barcelona, Spain, 2010.

18. A. Shahbahrami, B. Juurlink, and S. Vassiliadis. Matrix Register File and Extended
Subwords: Two Techniques for Embedded Media Processors. In Proceedings of the
2nd ACM Int. Conf. on Computing Frontiers, pages 171–180, May 2005.

19. J. R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain. Technical report, Carnegie Mellon University, Pittsburgh, PA,
USA, 1994.

20. S. Wong, F. Anjam, and M. Nadeem. Dynamically Reconfigurable Register File
for a Softcore VLIW Processor. In Proceedings of the Design, Automation and Test
in Europe Conference (DATE 2010), March 2010.


