 Idaho
National
Engineering

Laboratory

. INEL-96/125

 May, 1996

Scalablllty of
- Preconditioners as a
~ Strategy for Parallel
Computatlon of
7 CompreSS|ble FImd
. Flow | |

| m 2085
08Tl

G. 'A.-Hén"s_én' | -

ﬁ}lackheed :

fdaho Tecﬁnaiagfss C’empany M A ER

DISTFIEBUTION OF THIS DOCUMENT IS UNUMFTED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government, Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal fiabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that ifs use would not infringe privately
owned rights. Reference herein to0 any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the Unitegd States Government or any agency thereof.

Dlsm

Portions of this document may be illegible
_ in electronic image products. ‘Images are
produced from the best available original

document.

INE Jo—=FL)1 25
INEL-96/125

Scalability of Preconditioners as a Strategy for Parallel
Computation of Compressible Fluid Flow

Glen A. Hansen

. Published May 1996

- Idaho National Engineering Laboratory
Lockheed Martin Idaho Technologies
Idaho Falls, Idaho 83415

Supported by the
U.S. Department of Energy
through DOE Idaho Operations Office
Contract DE-AC07-9411D13223

SCALABILITY OF PRECONDITIONERS AS A
STRATEGY FOR PARALLEL COMPUTATION
OF COMPRESSIBLE FLUID FLOW
A Dissertation
Presented in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy
with a
Major in Computer Science
i!.l the

Collegs of Graduate Studies

Tniversity of Idaho

by

Gleﬁ A Hansen

April 5, 1996

Major Professors: John W. Dickinson, Ph.D.

Eugene Saghi, Ph.D.

AUTHORIZATION TO SUBMIT

DISSERTATION

This dissertation of Glen A. Ha,nsen,. submitted for the degree of Doctor of Philosophy and
titled .“Scala,biﬁty of Preconditioners as a Strategy for Parallel Computation of Compressible
Fluid Flow,” has been reviewed in ﬁnal form, as indicated by the signatures and dates given
below. Permission is ﬁow granted to submit final copies to the College of Graduate Studies

for approval.

Major Professor jﬂ o&— M ¥, Date ‘(/ s / 45

John W, Dickinson

Co-Advisor | gﬁ——-— M ' Date ?A//.?é

“Fugene § -

Committee Members

Date 4(//6/ 76

Rod Wibo S _
LDM (/44-’6/ Date __4/0tf7¢

Dana A. Knoll /
M A”’ Date 9, /// 74
Michael Barnett 4
Department ; .
Administrator Tole. Db Date Y/ «/96

John W. Dickinson

Enpgineering
College Dean Date
' Richard T Jacobsen

Final Approval and Acceptance by the College of Graduate Studies

Date

Jeanne M. Shreeve

Abstract

Parallel implementations of a Newton-Krylov-Schwarz algorithm are used to solve a model
problem representing low Mach number compressible fluid flow over a backward-facing step.
The Mach number is specifically selected to result in a nurﬁerica]ly “gtiff” matrix problem,
based on an implicit finite volume discretization\of the compressible 2D Navier-Stokes/energy
equations using primitive variables. Newton’s méthod is used to linearize the discrete sys-
tem, and a preconditioned Krylov projection technique is used to solve the resulting linear
system. Domain decomposition enables the development of a global preconditioner via the
parallel construction of contributions derived from subdomains. Formation of the global pre-
conditioner is based upon additive and multiplicative Schwarz algorithms, with and without
subdomain overlap. The degree of parallelism of this technigue is. further enhanced with the
use of a matrix-free approximation for the Jacobjan used in the Krylov technique (in this
case, GMRES(K)). |

Of paramount interest to this study is the implementation and optimization of these
techniques on parallel shacred—ﬁemory hardware, namely the Cray. Ca0 a.ﬁd SGI Challenge
architectures. These architectures were chosen as representative and commonly available to |
researchers interested in the solution of problems of this type. The Newton-Krylov-Schwarz
- solution technique is increasingly being investigated for computational fluid dynamics (CFD)
applications due to the advantages of full coupling of all variables and equations, rapid non-
linear convergence, and moderate memory requirements. A parallel version of this method
that scales effectively on the above architectures would be extremely attractive to practi-
tioners, resulting in efficient, cost-effective, parallel solutions exhibiting the benefits of the

_ solution technique.

The multiplicative Schwarz preconditioner did not yield performance advantages over the
additive Schwarz version due to the coloring technique mandated for parallelism. Subdomain
overlap also was not effective in providing solution scalability due to the extreme memory
reqnirements of the method. A solution technique based on a parallel Jacobian formation
algorithm, additive Schwg,ré preconditioning, and a matrix-free implementation did provide
excellent pmfommce on 8 C90 processors and 4 SGI processors when pseudo-transient con-

tinuation was employed as a check on the increase of linear iterations with the number of

subdomains.

DISCLAIMER
This report was prepared as an account of wotk sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or uscfulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

_ manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-

" mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United Stdtes Government or any agency thereof.

Acknowledgments

I wish to thank the many people that were involved in the development of this work.

Dr. Michael Barnett of Microsoft, Inc. acted as my advisor throughout the first half of
this research while he was on the faculty of the University of Idaho. For the latter half of this
work, Drs. Eugene Saghi and John Dickinson of the University of Idaho shared the advising
duties.

I am grateful to the remaining members of my committee, Drs. Dana Knoll and Rod
Douglass of the Idaho National Engineering Laboratory (INEL). Dr. Knoll provided the
inspiration and considerable technical guidance toward this work; this task would have been
impossible without his pioneering research in Neﬁton—Krylov—Schwarz methods. I greatly
appreciate Dr. Douglass’ efforts in the review of several preliminary drafts of this thesis,
suggestions for improvements, and countless .hours of discussions about how a dissertation
should be constructed.

I wish to thank several people at the INEL, Drs, Paul McHugh and Paul Jacobs, and
Mr. Vince Mousseau, for all the technical help that they provided towards this work. I also
wish to thank Dr. John Ramshaw, Science and Engineering Fellow ag the INEL, for his many
suggestions and support.

¥ am indebted to the INEL Long Term Research Initiative in Computational Mechanics
(LTRI-CM), headed by Dr. Rod Douglass, for the financial support of this effort and many
of the facilities used for this research. Cray Research, Inc. (Mr. Steve Baumann, Dr. Tom
Ashbrook, and Dr. James Harcourt) provided the Cray time for development and countless

hours of parallel execution at their facilities in Minneapolis. Without the support of the

INEL LTRI and Cray, a study of this magnitude could not have-been atiempted.

1 am grateful to the University of Idaho and the Computer Science Department for al-
lowing me to pursue a Ph.D. degree in Idaho Falls. Additionally, I thank the department for
the opportunity to develop and teach the course in C++ at the Idaho Falls campus.

In closing, I wish to thank my wife, Jeanne, for her understanding and moral support
during the course of this work. Finally, I would also like to express my appreciation to Jerold

Kilug P.E., for his inspiration and guidance into my first engineering study.

Contents

A uthorization .Form
Abstract
Acknowledgements
Table of Contents
List of Figures

List of Tables

List of Symbols

1 Introduction

1.1 Solution of the Navier-Stokes Equations |

1.2 ‘Research Overview

vii

il

xiv

© oxvit

.................................

1.2.1 Historyand Related Worko,
1.2.2 Mathematical OvVerview v v v v vt e v e r et e et e e
1.2.3 BResearch Quthine v v o i v v i i ittt e e e e e e e

1.2.4 Alternatives

.................................

viil

1.3 Summary of Procedures and Results 26
2 The Mathematical Basis 29
2.1 TlLe Backward-Facing Step Problem 29
9.2 The Governing EGUAtIONS . + v « v v v v v v v v v et e eaeeee e e 34
2.2.1 Non-Dimensionalization of the Governing Equations 33

2.2.2 Discretization of the Governing Equations 40

2.2.3 The Finite Volume Approximation of the Governing Equations 42

23 Boundary Conditions i, 63
2.4 The Non-linear Algebraic System of Equations 67
3 Solution of the Non-linear Algebraic System 71
31 NewtonsMethod i, 72
3.2 The Inexact Newton’s Method v v v v i v e ve e on e ee e e 75
3.3 Preconditioning.....,............ 77
3.3.1 Additive Schwarz Preconditioning o . oo v e et ine e 81

3.3.2 Multiplicative Schmz Preconditioning 85

3.3.3 Preconditioning of the Model Problem 91

3.4 Krylov Subspace Algorithmso oL 96
3.4.1 Transpose-Free Quasi-Minimal Residual Method (TFQMR) 100

3.4.2 Generalized Minimal Residual Method (GMRES) 110

3.5 The Matrix-Free Technique- e 112
3.6 Mochanics R 114

3.7 SUMIMATY -+« « vt e e e s e e e s e e e e e e e e e e e e e e 117

4 The Additive Schwarz Preconditioner

4.1 Architecture Overview vt i i i e e e e e e e e e e e e e

4,11 Cray Optimization i it v ettt e e e e
4.1.2 SGI Optimization R
42 Imitial Results i i e e e e e e
4.2.1 The Jacobian Algorithm
4.22 ThePreconditioner i i ittt s
4.3 Jacobian Granularity and Contention.

4.4 Subdomain Overlap with Additive Schwarz

....................

45 SUMINATY . . ¢ v v v o e e et e e e e e e e PR

5 The Multiplicative Schwarz Preconditioner

51 Results. i i

6 The Matrix-Free Technique
6.1 Robustness COMCRTNS « « « o v v v v v e e e e e e e e e e e e
6.2 Performance of the Matrix-Free Technique

6.3 Summary

......................................

7 Conclusions
7.1 Optimal Architecture. L e

7.2 Summary of Results and Future Research Topics

A Some Mechanics of Shared Memory Parallel Computation

A.1 Applied Parallel Computation

LI L L I R R I T T R T R

A.2 Hardware Selection for Applied Parallel Computation

A2l Requirements R
A.2.2 The Optimal Architecture
A23 TheComparison
A24 Final Thoughts
A.3 Shared Memory Hardware Programming Basics .
A.3.1 Cray Optimization Process
A.3.2 SGI Optimization Process

A.4 Parallel Processing In A Production Environment
B Sample Cray FLOWTRACE Output

Bibliography

................

................

................

oooooooooooooooo

................

................

................

203
205
210
211
215
216
218
230

235
238

242

List of Figures

1.1 Theproblem domain. e e e e e e e 17
2.1 The backward-facing step. e e e e e e e e e e e e e e .30
2.2 Flow velocity, L e e e e e e e e e e 30
2.3 Mach number contours. 31

2.4 Pictorial representation of a finite volume,)., assuming a rectilinear two-
dimensional discretization. 0. 44

2.5 The computational cell used for the development of the mass conservation

equation approXimation. i h h i e e e e e e e 45

2.6 The computational cell modified for coincident velocity and demsity. 47

2.7 The z-momentum stencil. L., 52

2.8 The y-momentum stencil. . . . v . v i e e e e e 56

29 Theenergystencil.00, S 60

© 2,10 The problem domain.o vttt e e e | 64
2.11 No-slip y-momentum conditior along an east wall. e L. 66

2.12 Adiabatic temperature condition along aneast wall. 66

3.1 The structure of the Jacobian matrix. 0 u.. ... 75

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

Al

A2

Simplified Jacoblan matrix. ot e e e e e 79
Partitioned Jacobian matrix, four subdé)ma,ins. e e e e e e e e e 80
Magniﬁed subdpma.in. 80
Partitioned Jacobian matrix, 16 subdomains. 82
Partitioned Jacobian matrix, four subdomains with overlap. 83
Overlap of Subdomain 3.. oL e e e 84
Normal block numbering.« o i it e e 88
Renumbered blocking.ottt e 89
“Checkerboard” domain decomposition. 91
Flowchart for Newton-Krylov-Schwarz solution technigue. 118
64 x 320 domain solution time. oo oL 127
Majority of execution time devote& to Jacobian formation and TFQMR iter-

ationsonthe C90. i i i i e e e 128
Convergence behavior of the Newton-Krylov-Schwarz algorithm. 130
Jacobian CPU .time, speedup, and efficiency onthe C90. 132
Partitioned Jacobian matrix, four subdomains with overlap. 148
Plot of overlap behavior versus number of subdomains. 149

Plot of overlap behavior versus number of subdomains for Cray 96 X 480 sim-

An array stored in Cray banked memory. 229

Single ProcessOr MEMOIY ACCRSS. .« + « « = v o « = o v« « v v e v b aaee 234

A.3 Two processor memory access.

..........................

xiv

List of Tables

2.1 Parametervalues..t e 32
2.2 Dimensionless Parameters. o oo 38
3.1 ILU memory requirements (adapted from McHugh [1]}. 93
3.2 Schwarz memory requirements (from McHugh [1]). 93
3.3 TIterative behavior of several preconditioners (from McHugh {1]).. 94
4.1 Contributions towards total CPU time. 129
4.2 Memory requirements for Cray 64 x 320 simulation. 130
4.3 DParallel speedup of the linear solution routine on the C90. 132
4.4 Solution algdrithm performance data. 133
4.5 Overall code performa.gce 138
4.6 Overall performance. e e e e e e e e e e e 139
4.7 New Jacobian performance. . . e, 140
4.8 TFQMR routine performance. e e e e e e e e 140
4.9 Speedup of the .a.dditive Schwa.ré preconditioner formation routine. 141
4,10 32 x 160 Onyx simulation iteration behavior. 143

411 SGIOnyx overall performance.ttt v ittt 144

4.12 SGI Onyx Jacobian performance. i i i i it i 145
4.13. SGI Onyx TFQMR performance. o 145
4.14 Speedup of_ the additive Schwarz preconditioner formation routine. 145
415 64x 320 Onyx Run (4 Blocks). e 146
4.16 Memory requirements for SGI 32 X 160 simulation. 148
4.17 32 x 160 Onyx simulation iteraﬁon behavior comparing overlap values. 149

4.18 Additive Schwarz, 4 domain case, showing effe(;t of overlap on TFQMR itera-
tionsand CPU time. i o i i i i it e e e 150
4.19 Speedup values for 8 cell overlap problem. ottt 150
4.20 Memory requirements for SGI 32 x 160 simulation with various overlap values. 151
4.21 Additive Schwarz, 16 domain case, showing effect of overlap on TFQMR iter-
ations and CPU time for a 96 X 480 simulation. 152
4.22 Speedup values for 12 cell overlap, 96 x 480 problem using 8 processors. . .. 153
4.23 Speedup values for 12 cell overlap, 96 x 48¢ problem using 16 processors. .. 154

4.24 Memory requirements of 12 cell subdomain overlap on 96 X 480 16 domain

5.1 3.2 X 160 Onyx simulation iteration behavior comparing additive Schwarz (AS)
and multiplicative Schwarz (MS) preconditioning. 162
5.2 32x160iteration behavior comparing additive Schwarz (AS) and multiplicative
Schwarz (MS) preconditioning on the basisof DOP., 162
5.3 Overall code performa.ﬁce for 32 x 160 stripwise problem on 4 processor Onyx

(* 8 block Tun on 4 PrOCESSOTS) . . . vt i e e e e e e e e e e 163

5.4 Speedup in the Jacobian routine (* 8 block run on 4 processors). . . .- . .. 164

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

Al

A2

A3

A4

xvi

Speedup of the TFQMR routine (* 8 block run orn 4 processors). 164
Iteration behavior with multiplicative Schwarz preconditioning. 165
Matrix-free results using “stale” additive Schwarz preconditioning on a 4 sub-

domain, 32 X 160 problemonthe Onyx. 171
Parameters for the Cray 32 x 160 runs. 173

32 x 160 matrix-free simulation iteration behavior on the Cray (1 X = stripwise

Blocking). . . - ¢ v o i i e e e e e e s 173
Speedup values for 32 x 160 problem. 174
Parameters for the Cray 64 x 320runs. 176

64 x 320 matrix-free simulation iteration behavior {n X 1 stripwise blocking). 177

Speedup values for 64 x 32¢ problem. o 177
Parameters for the SGI32x 160runs. 180
32 x 160 matrix-free simulation iteration behavior (n x 1 stripwise blocking). 181

Speedup values for 32 x 160 problemon the SGL. 181

LINPACK benchmark results for machines under (or near) $300K and over
100 Mflops performan;e {1/1/96). . . . v o i e e 207
LINPACK benchmark results for top four machines under (or near) $300K and
over 100 Mflops performance odnsidering other imposed requirements. 209
NAS parallel benchmarkresults 2}, 209

Speedups within a production environment (Table from Cray Research [3]). . 236

xvii

List of Symbols

Math Operators:
J Integration operatﬁr
§ Line integration operator
v Del oi)erator
D Material derivative operator
a Partial derivative operator
S Discrete cell equation set assembly operator

- Governing Equation Derivation:

A Area of a surface

Coy Specific heat at constant volume

¢ Specific heat at constant pressure

e ¥luid energy

F Body force vegtor

Fr Froude number (Fr = j;)

g Gravity bedy force vector ([g., ¢,] components)
Gz z-direction gravity component

gy y-direction gravity component

¥

Numerical Methods:

b

Grashof number (Gr = ’ﬂ%&p—a)
Thermal conductivity of the fiuid
Flow inlet Mach number (M; = x/ﬁ)
Unit normal vector ([n,, ny] components)

Pressure

Peclet number (Pe = RePr)

Prandtl number (Pr = E;—fz)
Heat flux vector

(Gas constant

Rayleigh number (Re = GrPr)

Reynolds number (Re = £s8oL)

A general surface

Fluid temperature

Time

Fluid velocity vector ([, ¥] components)
z-direction velocity

A general volume

y-direction velocity

Cartesian coordinate vector ([z, y] components)
Horizor-ital Cartesian coordinate variable

Vertical Cartesian coordinate variable

Right hand side

D - Diagonal matrix block

d Newton damping meﬁdent
F Discrete govgmjng equations vector
fi t-th component of ¥
J Jacobian matrix
Ky, Krylov subspace of dimension m
L Lower diagonal matrix block
N,n Matrix dimension
P, Right preconditioning matrix
P, Left precohditioning matrix
v Upper Diagonal matrix block
w Krylov vector
X State variable vector
Greek Symbols:
B Coefficient of thermal expansion
a0 Boundary of the domain of computation
ox Newton update vector
€ Tolerance parameter for Krylov iteration
¥ Ratio of specific heats (v = ¢,/¢,)
A Fluid second viscosity
I Fluid viscosity
2 Domain of computation

p Fluid density

-
Subscripts:

0

L,
Superscripts:

0

n

(Operators;

[

Stress tensor

Starting value for Krylov iteration |
Column number

Block number, row number
Dimension of Krylov subspace
Right preconditioner

Left preconditioner
Initial preconditioner iteration value
Iteration level

Newton iteration level

Transpose of [|

Chapter 1

Introduction

The efficient solution of large two- and three-dimensional Navier-Stokes problems has recently
become quite important to many resea.rchers.. These simulations. arise from the desire to.
understand the fluid dynamics, convective heat transfer, and mass transfer for ever more
realistic situations. Typically, equations similar to those describing the Navier-Stokes problem

arise in many fields of science, including:
¢ atmospheric modeling (weather, pollution tracking, etc.),
& acrospace,
e energy (powerplants, “Taste, etc.},
o eléctronics (cooling),
. gzoundwa.ter. modeling {contaminant transport, oil & gas production),
¢ materials proceséing (molding, spraying, etc.), and

¢ transportation (automotive).

For the remainder of this work, the solution of the Navier-Stokes equations (or similar equa-
tions} using computational techniques will be defined as computational fluid dynamics (CFD).
To simnulate fluid dynamics phenomena computationally, one generally begins with the

Navier-Stokes equations {4]

dp

. +V.(pu) = 0
%(pu)—}- V:(puu) = —-Vp+ V.74 pF
where
p = fluid density,
t = time,
u = fiuid velocity vector, u = (%, v, w), with v, v, and w,

corresponding to the z, y, and z direction velocity components,

p = fluid pressure,
T = viscous stress tensor, and

F = body force term.
Additional equations are often used to describe the phenomena of energy transfer in the fluid

if the specific application warrants it

%(,oe)+v-'(pue) -pV-ut+7:Vu-V.q

€

e(p,p)

. Where

e = fluid internal energy, and

q = heat flux vector.
These equations are general in nature, and may be applied to practically any flow problem
conceivable. However, it is often possible to simplify the equations to describe a specific class
of flow and yield a less computationally challenging equation set.

For a few specific problems, the Navier-Stokes equations can be simplified sufficiently
to obtain a,n exact mathematical solution. Usually, however, these equations cannot be
simplified to this extent and still yield useful data about the flow regimé of interest. It is
desirable to simplify the.equa,tions a.s much as possible to facilitate the construction and
execution of the simulation code, while retaining the desired physical accuracy of the results.
This is clea.rljr a balancing act.

Historically, CFD has focused on the solution of 6119— and two-dimensipnal versions of the
Navier-Stokes equations to model the physica.l phenomena, of interest. In most cases, however,
the approximation of three-dimensional phenomena by a lesser dimensional space yields less
than desirable results. Additionally, the drive for complete and accurate two-dimensional
simulations ofteﬁ results in a complex computational model -tha,t may not yield acceptable
solution times. In summary, the desire to develop better, more accurate models is driving
the interest in large scale two- and true three-dimensional simulations. The direct result is,

however, lengthy solution times.

1.1 Solution of the Navier-Stokes Equations

Above, an argument was made for the simplification of the.general Navier-Stokes equations

to describe only the phenomena required for the accurate solution of the specific problem

of interest. The general equations may be significantly simplified using a selection of the

following constraints:
¢ incompressible flow (the material derivative %f = 0, infinite sound speed),

¢ one- or two-dimensional physical domain of interest,

iseﬁtropic flow {viscosity u and thermal conductivity & equal zero),

constant properties (fluid density, specific volume, etc.), and

other simplifications (Stokes hypothesis [5], Boussinesq approximation [4], etc.).

The application of the selected set of simplifications often results ir a system of non-linear '
partial differential equations (PDEs) called thg governing equations for the flow regime in
the domain of interest, To this PDE set, initial and boundary conditions are added based
on the initial fiow characteristics and the behavior of the flow at the domain boundaries.
The combination of the governing equations and the initial and boundarv conditions forms
a well-posed [6] problem {(the problem has a unique solution that varies continously with the
given inhomogeneous boundary data).

Though perhaps simplified, the governing equation set (with conditions) is usually too
complex to be solved exactly by analytical means. This set may also result in equations
too caniplex for solution usmg other techniques such as symbolic manipulators, high-level
mathematics languages, efc. Typically, the governing equation set is approximated using
discretization techniques, whicli ultimately reduce the PDE system to a {generally) non-
linear system of.algebraic equations. It is these non-linear algebraic equations that require a

numerical solution.

These discrete approximations are usnally based on the subdivision of the problem domain
into a computation domain consisting of a mesh of computational cells {elements, volumes)
that faithfully discretize the problem domain. In each of these cells, the governing equations
are approximated by a set of non-linear algebraic equations. The method used to obtain this
discretization and set of algebraic equations over the computational domain depends on the

specifics of the problem and other factors. Several methods are commonly used,

¢ the finite difference method,
¢ the finite volume method,
o the finite element method, and

¢ spectral methods.

All these methods have advantages and disadvantages; éome are better suited than others for
given classes of problems or problem geometries.

Further complicating the choice of discretizatioﬁ method {that may impact the details of
the method chosen) is the choice of the method used to solve the algebraic system resulting
from the discretization process and initial/boundary conditions. The algebraic system may
be solved ezplicitly (the unknown term in each algebraic equation is evaluated based on the
known values of the other variables), or implicitly (the algebraic system requires simultaneous
solution of the equations involving the unknowns), or some combination of the two.

Given an a,ppropria,te choice of governing equations, initial and boundary conditions,
discretization technique, and algebraic solution method, a computef program {code} may
be constructed to calculate the approximate sﬁlution to the desired problem. The accuracy
of this solution is clearly dependent on the approximations performed. In general terms,

accuracy may be improved by one {or a combination) of the following.

¢ Retaining more terms in the governing equations. Often, terms are removed in the sim-
plification process that affect the details of the solution in favor of reasonable execution

time.

¢ Adding problem dimensions. One- and two-dimensional approximations may not yield

acceptable results if the phenomena of interest is three-dimensional in nature.

¢ Use of a more accurate discretization method. Low-order methods often yield quicker,

but less accurate, solutions.

s Use of a finer discretizing mesh. Problems that have steep gradients often benefit with
the use of a finer mesh. Direct simulation of fluid turbulence requires a fine mesh to

resolve the small wavelength phenomena inherent in such a calculation.

However, all of these approaches lead to a,n.incréase in the time required to obtain a solution,
occasionally drastically so. Again, the accuracy of the solution must be delicately balanced
with the time required to obtain a solution to the problem.

The solution of complex two- and three-dimensional CFD problems are often called
“Grand Challenges,” with good reason. To best i]lustr;.te the magnitude of achieving a
solution of a typicél problem of this type, consider a two-dimensional solution to obtain a
velocity field, with simple governing equations consisting of the mass conservation equation
and ¢ and v momentum equations (3 tofal). Consider use of the popular finite volume tech-
nique on a computation domain consisting of 200 discrete volumes per side (a large problem
by current solution standards, realistically still too small for any detailed resolution of physi-
cal phenomena in complex domains and for turbulence simulation). Furthermore, consider a
simultaneons solution of the algebraic equations using an exact direct technique. A domain

with 200 volumes per side or 200% = 40,000 total volumes in the discretization. For each

of these volumes, three algebraic equations are used to describe the flow within the volume
(one algebraic equation for each of the governing equations to be approximated), resulting in
120, 600 total equations to be solved. Using an implicit tec]mique,. these non-linear algebraic
equations may be].inearized and placed in a matrix form, Ax = b, where A is a matrix
containing the equation coefficients, x is the vector of unknowns, and b is the right-hand-
side vector containing constants. In this conﬁgura,tion, the number of equations (120, 000)
maps directly to the number of rows in the coefficient matrix. To obtain the solution of
the matrix equation requires that the coefficient matrix A be inverted. Several techniques
exist to perform the inversion. Current practices indicate that O(n®) operations are required
to obtain an exact inverse for a dense matrix A (counting both addition and multiplication
operaﬁons, the Gaussian elimination uséd in LINPACK (7] requires 2rn3/3 4+ 2n? operations).
Realistically, an efficient iterative technique on a sparse matrix should easily be more efficient
than O(n®), but certainly cannot require less than O(n?) operations (recall, O(n?} operations
ate required to store the result alone), This example will assume that the inversiﬁn can be
accomplished in O(n3).opera.tions. Thus, a total of 1.73 x 10'® floating point operations will

be required for one matrix inversion
(120, 000)° = 1.73 x 10'® operations (flops, assuming matrix solution & O(n®) operations).

To perform this number of floating point calculations on a personal computer class machine
would require 2.9 years (1.73 x 10**/19 Mflops (Pentium 133MHz (7}) = 2.9 years) of contin-
“uous computation (24 hours per day, 365 days per year). For more efficient processors, the

execution time decreases:

» an EP 735/99 workstation (120 Mflops) requires & 167 days for the calculation, and

s a Cray T90 (one processor, vector code, 1.6 Gflops) needs = 13 days to perform the

work,

These times are for one inatrii inversion; transient and iterative solutions require many such
inversions over the solution of the problem. The use of full Gaussian elimination is a bit
pessimistic and unnecessarily inﬂafes the results for this example. However, this example
may not always represent an extreme case. In fact, the governing equations used were overly
sirnplistic. The problem was two-dimensional rather than the often more desirable three-
dimensional domain, and a direct steady-state result was assumed. Realistically, a useful
simulation would require more operations per inversion, with a corresponding increase in
solution time. It is evident that the solution of 3D problems of this size may not be feasible
due to the extremely long computation times required.

Given the necessity of the solution of larger and more complex two- and three-dimensional
problems, CFD researchers and developers ilave only a few strategies to reduce the time

required for a simulation.
e Wait until hardware advances yield accepta.;ole solution times.

o Improve the. O(n®) matrix solution efficiency. For the usual sparse matrices encoun-
tered, it is ofte_n possible to find algbrithms with better efficiencies. However, solution
efficiency cannot be improved beyond O(n?), the number of operations required to store
the inverse in memory. Furthermore, due to the maturity of many simulation applica-
tions, it may be reasonable to assume that the optimal solution algorithm is already

implemented. As such, improvements here may not be possible.

o Use paraliel algorithms that allow concurrent matrix inversion. Ideally, these algorithms

would scale to a large number of processors to allow the timely solution of an arbitrarily

complex simulation.

1.2 Research Overview

Given the above options, this research will concentrate on the third strategy: concurrent ma-
trix inversion, or more generally, solution of the linear system. As an ideal goal, this research
would result in a reformulation of the relationship between simulation corﬁplexity and solution
time; as accuracy increases, the time reguired for solution also increases, often drastically.
Practically, the aim is to exploit parallel computation for the.implicit, fully-coupled solution
of CFD problems. Specifically, parallelism will be employed in the concomitant non-linear
algebra problem such that the number of processors used for the solution will increase with in-
creasing problem (simulation) complexity to &ield a constant amount of “work” per processor
and an overall code execution time that remains roughly constant. For the purposes of this
study, performance of this nature will be considered “ideally scalajale.” However, in practice,
if an overall speedup approaches the number of processors used to achieve that speedup (see
Appendix A), the performance will be termed “scalable.” Givén that an inversion .technique
is scalable, as the accuracy of a sclution is increased, more processors are required for a given
solution time. In effect, the limiting condition would be the.number of processors available
for use by the simulation, not the simulation time required for a solution.

The existence of a true scalable linear solution technique for general sparse matrices is
unlikely. Realistically, it may be sufficient to develop methods that scale “well” np to n
processors, where n is determined by available hardware. Currently, the majority of CFD
analysis is performed on low-end hardware for economic reasoms. Algorithm scalability to

a large number of processors on high-end hardware will not generally benefit the intended

10

audience. Therefore, the main emphasis will be on hardware readily available fo CFD an-
alysts; shared-memory multiprocessors such as conventional vector/parallel supercomputers
and SMP (Symmetric MnultiProcessor) workstation class machines. For this class of hard-
ware, scalability to n = 32 is presently a realistic upper bound. In fact, as of this writing,
only Silicon Graphics sells a machine with n > 16 processors (for a related discussion, see
Appendix A)..

Within these limits, the primary goal of this research is the implementation of an n < 16
scalable paralle] linear system solution technigue for use with a Newton-Krylov non-linear
solution method (8,9, 10, 11, 12] applied to a compressible flow model using a two-dimensional
backward-facing step problem as a méa;ns of testing the results. Other aspects of this problem

(mesh refinement, physical properties, efc) are not studied as a part of this research.

1.2.1 History and Related Work

The motivation for this work may be traced to research in the two-dimensional solution of
the Tokamak edge (i.c., boundary layer) plasma fiuid equations [13]. The Tokamak is a
promising design for a nuclear fusion reactor that is based on magnetic confinement of the
fusion plasma. Superconducting magnets are used to create a magnetic field of sufficient
strength to confine the fusion reaction in the core of the Tokamak. The edge plasma is
the boundary layer between the magnetic confinement field and the walls of the vessel. An
accurate model of the edge plasma is. .critical. for the proper design of a Tokamak.

Solution of the edge plasma flow is computationally very challenging. In addition to
the fluid equations described previously, equations accounting for the atomic reactions are
neces;sa,z'y. The result is a much larger, more complicated equation set to be solved. These

equations have transport coefficients that are strong non-linear functions of the dependent

11

variables, and incorporate difficult bounda,ry conditions. The Newton solver implemented
by Xnoll [13] proved to be a robust and efficient non-linear solution technigue. Newton’s
method generally results in better coupling between the equations of the simulation than
other common methods [14, 15], which manifests itself in faster and more robust solutions.
éiven this initial success with Newion’s method on complex simulations, research pro-
gressed towards the use of the method to solve more complete edge plasma flows, combustion
problems, and difficult flow domains. Xnoll {8] developed two benchmark problems to further
refine the Newton technique, adding a numerical Jacobian evaluation, convergence enhance-
ment features, and increasing the algorithm’s efficiency. McHugh [9] extended this work using
" an inexact Newton’s method, differing governing equatioﬁs, and conjugate-gradient-“like” al-
gorithms for the linear solution process. McHugh {10} further refined his earlier work on the
linear solution algorithms, and implemented a matrix-free solution technique. Jacobs [12]
studied the use of domain decompaosition to develop a pre_conditioner for the transpose-free
quasi-minimal residual (TFQMR) conjugate-gradient-“like” algorithm, and investigated the
additive and multiplicative Schwarz methods. Johnson [16] examined the use of higher-order
methods to improve solution accuracy. McHugh [17] developed a simulation of the ASME
benchmark problems using many of the above methods. Finally, Knoll [18] has summarized
much of this work. Progress on these techniques and their application continues .una.ba.ted;
from the recent literature these techniques are a fertile research area with interest within

both academia and the various research laboratories.

Related Work

Idelsohn [19] presents an excellent comparison between finite volume and finite element meth-

ods for assorted problems. He stresses the advantages of each technique for the solution of

12

Navier-Stokes problems, and concludes that a hybrid of the two techniques (the finite clement
method is superior for the solution of symmetric term.s, the finite volume technique is hétter
suited to solve the non-self-adjoint terms) may provide more efficient solutions.

This work also capitalizes on the wide body of published research performed on Newton’s
method, Krylov techniques, and Schwarz methods. McHugh [20] provides an excellent de-
scription of several Krylov solution techniques. Golub [21] provides a history and overview
of various Krylov techniques, and the Lanczos method. Axelsson [22] shows the develop-
ment of the conjugate-gradient method for symmetric positive-definite matrices and extends
this result via the Lanczos biorthogonalization procedure to obtain the biconjugate-gradient
method (BCG) for the solution of non-symmetric indefinite problems. Freund [23] presents
the TFQMR method. Saad [24] developed the restarted generaljzled minimal residual (GM-
RES) algorithm. Several other Krylov techniques have been developed (but not used in this
study); the Bi-CGSTAB algorithm [25], CGS [26], and hybrid techniques [27], to name a few.
Chronopoulos [28] discusseslbiorthogonal Lanczos methods and compares a restarted squared
Lanczos method to restarted GMRES.

McHugh [1] provides a comparison and contrast of Schwarz, ILU, and some matrix-
splitting preconditioning methods, focusing on issues of serial performance, mémory Tequire-
ments, and robustness of algorithms on compressible 2D flow on a backward-facing step
problem. Cai provides an ovvervieﬁr of Schwarz preconditioning [29] and a discussion of addi-
tive and multiplicative Schwarz algorithms (including coloring schemes) [30]. Pavarino {31]
presents an additive Schwarz preconditioned method applied to petroleum reservoir simula-
tion on an elliptic problem. Bramble [32) djscﬁsses additive and multiplicative preconditioning
on elliptic problems.

Finally, several examples of directly related work appear in the Literature. This study fo-

13

cuses on extending work by McHugh, Xnoll, Jacobs, Mousseau, and Johnson [1, 8, 9, 10, 12,
16, 17, 18, 20, 33, 34, 35 to parallel architectures, based on preliminary work peﬁormed by
this author [1, 36]. In {1], McHugh provides a comparison between ILU and Schwarz precon-
ditioning on a low Mach number backward-facing step problem. He concludes that Schwarz
preconditioning is generally more robust than ILU fér small Mach number simulations. Work
by Venkatakrishnan [37, 38] suggests that ILU preconditioning tends to perform better than
other matrix-splitting techniques. These results indicate that Schwarz preconditioning may
possess certain advantages for pooﬂy conditioned problems such as the one considered in this
study (see Chapter 3).

Bjgrstad [39] employs decoupling of the PDE system (using pressure and saturation equa-
tions) in conjunction with additive Schwarz preconditioned Krylov techniques for the par-
allel solﬁtion of ﬁetroleum Teservoir equa.tion.s. Bj?rsta,d solves the pressure equation using
a preconditioned conjugate-gradient algorithm. (the pressure equation results in a symmet-
Tic positive-definite linear system), and emplﬁys a preconditioned Bi-CGSTAB algorithm to
solve the nonfsymmetric saturation equation. He also adds that “ASM preconditioning is
very robust with respect to large variations in permeability,” (ASM is an acronym for the
additive Schwarz method). Venkatakrishnan [40] implements a modified-Newton-Krylov-ILU
parallel solution of an aerodynamics problem at Mach 0.2. He compares the implicit modified-
Newton-Krylov scheme with an explicit technique (usually trivially ﬁara]le].izeable) and finds
that the iterative technique provides superior performance due to superior convergence behav-
ior. Venkatakrishnan simplifies certain Jacobian terms (hence the nomen modified-Newton)
and thus is not guaranteed the full Newton quadratic convergence behavior.

Cai [41] provides results of Newton-Krylov-Schwarz and matrix-free solutions to an in-

viscid compressible flow problem. Shadid [42] examines a parallel implementation of several

14

Krylov solution techniques on an nCUBE 2 architecture. However, Shadid does not investi-
gate Schwarz preconditioning. or matrix-free methods, the set of model problemé he studies
are not closely related to this work. His efficiency regults show that parallelization of the
Krylov technique is feasible on certain architectures and would be an obvious extension to
this study. Ajmani [43] solves a compressible two-dimensional backward-facing step prob-
lem using preconditioned Krylov techniques. He does not examine Schwarz preconditioning
or matrix-free techniques and employs larger Mach and Reynolds numbers for the solution.
Choquet [44] examines a parallel Newton-Krylov finite element solution to compressible flow.
Choquet concentra.tes on aerodynamics problems and uses diagonal or ILT preconditioning.
Of particular interest is Choquet’s comparison of the convergence of the Newton linearization
step usiﬁg both exact and numerical Jacobian derivations. For his example problem, use of

_ an exact implementation decreases the number of iterations required for convergence by ap-
proximately 14%.. This small improvement may not justify the use of exact implementations,
especially considering the oomplexity of these expressions.

In summary, the W.Ol‘k reported herein provides several contributions to the field of the par-
allel implicit solution of Navier-Stokes problems (speciﬁca]ly low Mach number compressible
flow on a backward-facing step domain) using Newton-Krylov-Schwarz solution techniques.
The overall goal of this study is an efficient mapping of the Newton-Krylov-Schwarz solu-
tion procedure to selected parallel architectures while preserving the robustness, convergence
behavior, and generality of the technique that was demonstrated on a single processor [i].

. Specific goals are listed below,

1. Provide robust, parallel solutions to steady-state viscous compressible flow on a backward-

facing step at a Reynolds .number of 100 and inlet Mach number of 0.0025. This problem

15

is numerically extremely challenging due to the large off-diagonal terms in the Jacobian
and is an excellent test of the robustness of the solution algorithm. Serial solution of
this problem has been achieved by McHugh [1]. This study is the first to tackle such a

problem focusing on parallel solution efficiency.

k]

2. Investigate the mapping of implementations of this Newton-Krylov-Schwarz solution
algorithm on the Cray C90 and SGI Onyx. While there have been several investigations
of subsets and variations of these techniques, this is the first to analyze the parallel
behavior of the full inexact Newton algorithm with a global Krylov linear solution

using Schwarz preconditioning methods on a mapping problem of this type.

3. Examine a parallel matrix-free implementation of the above methods, using pseudo-
transient relaxation in conjunction with a lagged Jacobian and preconditioner forma-
tion strategy to reduce the influence of the preconditioner formation on the algorithm

execution time.

4. Finally, suggest the “ideal” jla.rdwa.re configuration for parallel Newton-Krylov-Schwarz

Navier-Stokes solutions for problems similar to the model problem.

1.2.2 Mathematical Overview

The efficiency of various methods used for the linear solution process and the suitability of
a given method for a particular problem is somewhat dependent on the governing equations,
boundary and initial conditions, and discretization technique employed in the solution. The
linear solution method may also be strongly affected by the details of the specific application.
It is tempting to select a simple problem with simple equations to allow concentration on the

parallel aspects of the solution process. Unfortunately, this approach is of little interest as the

16

goal.is tp examine the solution of realistic problems. Additionally, results from a simplistic
mode] problem may not map to complex problems of more general interest. Therefore, to
provide real benefits to current topics in CFD research the governing equations, initial and
boundary conditions, discretization techniques, and application specifics from current CFD
research areas are selected as a basis for this study.

Industry has also recognized the difficulty of mapping basic research using a simplistic
basis into realistic application domains. In response, the American Society of Mechanical
Engineers (ASME) Heat Transfer Division has defined a set of “more realistic and difficult”
benchmark problems that may be used as a basis for research and that allow the verification
of _softwaré accuracy and validity [45]. One of these benchmarks is a model of fluid flow
and heat transfer in a backward-facing step geometry. For the present study, the solution
of the benchmark backward—facing_ step problem using a finite volume discretization and
fully implicit solution techniques [17] is selected as the physical basis for examination of the
algebraic equation solver.

The benchmark problem of steady, two-dimensional, compressible fluid flow over a backward-
facing step may be simulated with the use of the following equations for (z,y) € Q, the

physical domain of the problem (Figﬁre 1.1)

Continuity:
Bpu | Opv _ '
e + 3y =90 (1.5)
Momentum:
Ty = mralmlk G
oz Ty T "o TRy lF\oy T 82
' 0 Bu 2 [Ou v p
+5 e - (G 5w 9

17

Figure 1.1: The problem do:tha.in.

dpuv Opv® Op 1 {3[(3'::. 30)
8z v dy 8y+R, dz # 8y+8:¢:
8 v 2 (Bu Ov p
"oy [%—y -3 (5 a_y)] }+ ry? a7
Energy:
apuT_I_ava _ 7 63+T'+6‘2_T]
Oz fy P, |8z 8y?
u Ov .
— - 2l — 4
State:
_ T
P L

and subject to conditions on p, w, v, T, p on the boundary JQ, with the nomenclature

18

% - z velocity component,

v -y velocity component,

p - pressure,

T - temperature,

p - fluid density,

R, - flow Reynolds number,

P, - flow Peclet number,

¥ - ratio of specific heat capacities,

M; - inlet low Mach number, and
Fr - Froude number.
The Newton-Krylov method is a fully implicit scheme used for the solution of the non-
linear algebraic equations that result from thg discretization of the governing partial differ-
entjal equations. The finite volume discretization of the governing equations results in a

non-linear system,

{gl (X), 92(}[): gS(x)s 94_('}{), gS(x)} H (1'10)

for each discrete volume cell {£2,) composing the physical domain. The state variable, x, can

be expressed as

X = {Xx,xz, X3, x‘is xS]T = (Pa U, ‘U,P,T). (1'11)

The system of equations (1.10) in each cell may be re-written in the following form:

(%) = 0, Fo(x) = 0, fo(x) = 0, () = 0, fu(x) = 0} . (1.12)

The contributions of each of the above equations in each cell may then be assembled together

to form the global non-linear system over the computational domain
F(x)=0.
Application of Newton’s method requires the iterative solution of the linear system,
.?“ &x" = —-F(x"),

where n is the iteration number and the elements of the Jacobian are defined by

- 8w

= ’
row, column a z:dumn

and the new solution approximation is obtained from

x"t = x® 4+ d éx".

19

(1.13)

(1.14)

(1.15)

(1.16)

The constant, d € (0,1], in Equation 1.16 is used to damp the Newton updates. The damping

strategy is designed to prevent the calculation of non-physical variable values (i.e., negative

temperature), and to scale large variable updates when the solution is far from the true

solution. This iteration is continued until the Euclidean norm of either §x or F(x) is below

some suitable tolerance level.

Newton’s method is attractive because it converges quite rapidly when given an appro-

priate initial estimate. In fact, Newton’s method is the standard used to compare rapidly

convergent methods for solving the non-linear system (Equation 1.13) [46].

The application of Newton’s method results in a linear algebraic system (Egquation 1.14) to

20

be solved each Newton iteration. This system may be solved directly {with banded Gaussian
e}imiﬁation, for example). D_irect methods are generally difficult to parallelize and require
an excessive amount of computation especially as an exact solution to the linear system is
not needed until the final Newton iteration. The use of an iterative Krylov technique ;(z'.e.,
a conjugate-gradient- “like” method), such a.s the transpose-free quasi-minimal residual tech-
nique (TFQMR) {46], to solve Equation 1.14 gives rise to an “inexact” Newton’s method.
Inexact methods can be used to prevent excessive computation by the linear solution algo-
rithm when the non-linear iteration is far from convergence. In this technique, the tolerance

level for the iterative linear solution process is tightened as the Newton residual decreases

according to
[1976x" + F(x")]|
[Iesgli

< €, (1.17)

where ¢ is a user-specified tolerance parameter,

For realistic, complex problems, solution of the linear system may be quite difficult (or
impossible). Often this system is poorly conditioned (s.e., the Jacobian matrix contains a
wide disparity in eigenvalues). Preconditioning is used to improve the condition number of
the system to facilitate solution. A preconditionef (P;) may be applied to the left' of the

Jacobian, resulting in the expression
P7iI" 6x" = -PrF(x"). (1.18)

Effective preconditioning requires that the preconditioner be a reasonable approximation of
J and that systems of the form P;v = b, which arise within the TFQMR iteration, can be

solved efficiently. One popular class of preconditioners is based upon incomplete factorizations

1Right preconditioning is also a valid approach (see Section 3.3} and results in a slightly different expression.

21

(ILU) of the Jacobian matrix [47]. However, ILU preconditioners often do not scale well with
problem size [48] and exhibit data dependencies that hinder parallel implementations.

The formation and inversion of the preconditioner may quickly dominate the Newton-
Krylov solution time on larger problems. This task potentially requires O(n®) operations (if
LINPACK Gaussian elimination is used to invert the preconditioner, a total of 2»%/3 + 2n?
operations are needed for the inversion task [7]). Two possibilities exist that may improve

the efficiency of this task.

o The formation and inversion of the preconditioner can be performed concurrently
on multiple processors. Beyond the concept of a linear execution time decrease as
a function of the number of processors employed, this technique typically creates a
preconditioner by assembly of several preconditioner subblocks obtained in parallel
{e.g., domain-based preconditioning). Construction of the preconditioner using multi-
ple smaller subblocks theoretically provides much greater efficiency than a simple work
division among several processors would indicate (using four subblocks decreases the
number of operations to 4 X (2[»/4]%/3 + 2[n/4]?) = 1/16 >< (2n3/3), a factor of nea.ﬂ}f

© 64 for large n).

o It is likely possible to improve the overall O({n®) inversion time for a sparse linear system
significantly, as discussed previously. However, for the remainder of this study it will
be assumed that the optimal inversion algorithm is insufficient {o provide the desired

performance increase.

The additive and multiplicative Schwarz algorithms {30] are examples of domain-based pre-

conditioners that lend themselves to parallel implementations.

22
1.2.83 Research Outline

The thesis begins by pioviding the theoretical develop:ﬁent of the governing equations in
two dimensions, _fo]lowéd by a finite volume approximation of the equations as background
ﬁateriﬂ. Given the approximate equations, Newton’s Method is then applied to linearize
the approximations, followed by the application of Krylov-subspace-based algorithms to solve
the resulting linear system.

A preconditioner is usually employed to accelerate the convergenée of the Krylov method.
Indeed, for stiff, poorly-conditioned matrices, preconditioning is often required to obtain a
solution. The quality of the preconditioner strongly influences the convergence behavior of
‘the Krylov technique. The optimal preconditioner is one that balances the minimization of
- the number of Krylov iterations with the number of operations required to develop the pre-
conditioner, resulting in a preconditioner that minimizes the time spent in the linear solution
procedure. Based on operation count (approximately O(r?)), the formation of the precon-
ditioner is possibly the. dbmina;nf task in the solution .procedure for large two-dimensional
problems. As the remainder c;f the process requires o{n®) operations, large problem sizes
increase the importance of obtaining a quality preconditioner.

Given this background information, the research presented here concentrates on obtaining
a quality preconditioner based on parallel algorithms. Ideally, the preconditioner will not
only minimize the number of Krylov iterations required per Newton step, but .wi]l also be
amenable to paraliel construction that is scalable beyond a small number of subblocks (or
PIOCESSOrs, assuining each processor is dedicated to obtaining its respective subblock of the
preconditioner). This research examines the additive Schwarz method in detail and considers

the feasibility of algorithm modifications that exhibit scalability without degradation of the

23

global preconditioner. Additionally, the multiplicative Schwarz algorithm (while not parallel
in the base form) may be modified for parallel execution, forming a second candidate for
study. Depending on the outcome of these efforts, further study of other algorithms (such as
a matrix-free approach} may be appropriate in the search for a scalable preconditioner.

Previous research [12] examines the additive and multiplicative Schwarz methods used
towards the development of a linear solve preconditioner ﬁ_sing domain decomposition tech-
niques. Of the algorithms studied, only additive Schwarz with no domain overlap is parallel
without subblock dependencies in base form. At some reduced level of efficiency, additive
Schwarz methods with overlap can be parallelized. Multiplicative Schwarz techniques require
a renumbering (coloring) operation to resolve data dependencies. Jacobs {12] compares and
contrasts serial implementations of additive and multiplicative Schwarz preconditioners on a
24 x 96 cell backward-facing step problem.

With this background research, it is clear that parallel implementations of the additive
and multiplicative SCilW&l‘Z method should be examined. To study the feasibility of these ap-
proaches, the author performed preliminary work on a parallel implementation of the additive
Schwarz algorithm on a Cray C90 {36). The additive Schwarz algorithm was successfully im-
plemented in parallel and demonstrated scalability to four processors. The eight-processor
case, however, was disappointing. This loss of scalability was largely due to an increase in
the numbér of Krylov iferations required to solve the eight-block case. This behavior indi-
cates that for the additive Schwarz a.]gbrithm with no subdomain overlap, the quality of the
resultant preconditioner decreases rapidly as the number of subblocks (processors) increases.

To achieve the primary goal of this research, further work should be invested in the study

of subdomain overlap and how it affects the behavior of the additive Schwarz method. As

of this date, overlap is not expected to result in an acceptable scalable preconditioner (even

24

small values of subdomain overlap may result in extreme memory requirements). Beyond the
study of overlap with the additive Schwarz method, this research will examine the parallel
implementation of a renumbered (colored) multiplicative Schwarz method. Study of these

algorithms will proceed as outlined below.
1. Tmplementation of a paraﬂel, shared-memory version of the algorithm.
2. Testing and optimization of the aigorithm.

3. Benchmarking of the algorithm.

1.2.4 Alternatives

Many alternatives to the path cutlined for this research exist. The selection of a physical
problem defines the governing equations to use in the development of the simulation. Along
the path chosen for this study (the governing equations, finite volume discretization, and
NewtomKrylov-Schwarz fechniq_ues), several decision points were encountered where alter-

native decisions were possible:

e selection of the discretization technique (finite difference, finite volume, or finite ele-

ment},

¢ selection of the method to linearize the non-linear algebraic system resulting from the

discretization process,
s solution of the linear system resulting from the previous step, and
¢ the use of preconditioning, if necessary.

Recall that the motivation for the selection of the discretization method and the use of

Newton’s method for a linearization technique serves to narrow the field of alternatives. The

25

previous development assumes the use of a Jacobian matrix as part of the Newton-Krylov
solution scheme. An alternative, the matrix-free implementation, shows much promise in
comparison to conventional techniques. With most Xrylov projection methods, the Jacobian
matrix appears as matrix-vector products of the form Jw, where w is an intermediate vector
used internally in the Krylov techi:.ique. For an inexact Newton’s method, the actual Jacobian

matrix need not be calculated, because only the product,

~ F(x+ ew) — F(x),

Jw (1.19)

is needed for the solution. For the matrix-free technique, only the matrix-vector products
Jw are stored and manipulated; the Jacobian J is never actually calculated.

Alternatives also exist in the selection of algorithms for the development of the precondi-
tioner. Additive and multiplicative Schwarz allow the development of a preconditioner with
the use of subblocks. Given appropriate modifications to the algorithms, the construction
of a global preconditioner based on the assembly of these subblocks can be performed in
parallel.

It is clear that many alternatives to the research outlined in this opening exist and some
of the alternatives have the potential to yield useful results. Based on the knowledge and
background information to date, the finite volume discretized Newton-Krylov-Schwarz solu-
tion of the 2D compressible Navier-Stokes equations is competitive with, and in many aspects
superior to, other usable techniques to solve this problem. Given the robustness and suit-
ability of Newton-Krylov techniques for the solution of this problem and the computational

complexity of the preconditioner formation in comparison with the remainder of the solution

algorithm, concentration of this research on the preconditioner formation algorithm is cleatly

Fustified.

1.3 Summary of Procedures and Results

In this introduction, motivation was provided for the efficient solution of compressible Navier-
Stokes-based problems on two- and three-dimensional domains, using approximate compu-
tational methods. It was argued that as discretization refinement, problem dimension, and
the complexity of the governing equations increases, the construction of a quality Newton-
Krylov preconditioner may quickly overwhelm the other routines in the simulation in terms
of opera,tiﬁn count and, proportionately, execution time. With this beipg the case, solution of
these types of problems (at least in a meaningful time frame) will require an algorithm that
constructs a quality preconditioner in a minimum of time. Current research suggests that
the most promising approach to this end would involve a scalable preconditioner construction
method based on subblocks.

To obtain a scalable preconditioner, further research on the additive Schwarz method tar-
geted towards maintaining preconditioner quality as the number of preconditioner subblocks
is increased is clearly warranted. Additionally, .a. parallel implementation of the multiplicative
Schwarz method should be examined. Most likely, other algorithms and variations should be
reviewed for a.pplica.'bility towards providing an efficient and robust parallel preconditioner.

To summarize this work, addressing the above arguments, two parallel implementations
of Newton-Krylov-Schwarz algorithms were used to solve the low Mach number compressible
fluid fiow model problem. Tile first technique involved a direct Newton-Krylov-Schwarz so-
lution, with the second using a pseudo-transient relaxed matrix-free implementation of the

technique. In both cases, Newton’s method was used to linearize the discrete system, and

27

a preconditioned Krylov projection technique was used to solve the resulting linear system.
Domain decomposition enabled the development of a global preconditioner via the parallel
construction of contributions derived from subdomains (by assigning each subdomain contri-
bution to an independent processor). Formation of the global preconditioner was based upon
additive and multiplicative Schwarz algorithms, with and without subdomain overlap. For
the second case, the degree of parallelism of the technique was further enhanced with the use
of a matrix-free approximation for the Jacobian used in the Krylov technique. Furthermore,
with the use of the pseudo-transient algorithm, additional robustness was added by enhancing
the sphere of convergence within the Newton algorithm. Relaxation also allowed a reduction
in the influence of the preconditioner on the overall solution time by “lagging” the formation
of the preconditioner, amortizing this penalty over several Newton iterati'ong.

The multipﬁc;tive Schwarz preconditioner did not yield performance advantages over the
additive Schwarz version, because the superior convergence behavior was effectively offset
by the required coloring technique used to address data dependencies within the method.
The Schwarz preconditioner quickly degraded in guality as the number of subdomains were
increased, resulting in a sharp increase in the number of Krylov iterations required for the
simulation. This behavior severly limited the degree of parallelism that could be employed
“ﬁthin the preconditioner. Subdomain overlap was somewhat successful in reducing this effect
and resulted in some degree of scalability .to 16 C90 processors. However, overlap values that
provided the best performance resulted in extreme memory requirements. Additionally, even
with overlap, preconditioner degradation with an increase in the number of subdomains,
along with remaining serial code withjn the Krylov solve, continued to limit scalabi}itf.

A solution technique based on a parallel Jacobian formation algorithm, additive Schwarz

preconditioning without overlap, and a matrix-free implementation did provide excellent per-

28

formance on 8 C80 processors and 4 SGI processors when pseudo-transient continuation was
employed as a check on the increase of linear iterations with the number of subdomains. Fur-
thermore, this study concluded that further work on the algorithms and hardware mapping
concerns along with additional hardware features would likely result in scalability to larger
machines.

To place this result in ﬁerspective, the model problem studied requires a very powerful
preconditioning technigue due to the low Mach pumber inlet condition. If this were not
the case, better scalability results could certainly have been achieved. As such, the model
problem selected demonstrates the “worst-case” scalability that would be obtained with these
techniques. It is evident that the results and conclusions of this study are specific to the model
problem. However, these results may be applicable to a much wider variety of situations if the
results are viewed as a lower-bound to the performance that may be achieved on a “general”

simulation.

29

Chapter 2

The Mathematical Basis

This chapter outlines the theoretical development of the governing equations for two-dimensional,
compressible fluid flow including energy effects from the Navier-Stokes and energy equations.
Given the governing equation set, a finite volume discretized form is developed to obtain the
non-linear set of algebraic equations that represent the flow on the computational domain. To
complete the basis, the Newton-Krylov technique is developed and applied to the non-linear

system to obtain a linear algebraic system for solution.

2.1 The Backward-Facing Step Problem

Prior to the derivation of the governing gystem and solution technique, it is necessary to
define the model problem to be examined. As discussed in the introduction of this study, the
two-dimensional steady-state solution of low Mach number compressible flow over a backward-
facing step provides a non-trivial test case for the Newton-Krylov-Schwarz méthod.' '

Consider the physical layout of a two-dimensional backward-facing step domain (see Fig-

ure 2.1). This figure illustrates the domain, where the reference y axis is horizontal paraliel

30

Upper Flow Boundary

Infet

: Ouilet
Step
x
Lower Flow Boundary
b4
Figure 2.1: The backward-facing step.
0 —
[Tt e e T
- Inlet oo
- -_—-h-—-‘_-‘-_‘__
1F HK Outlet
x E - . . "R M oM Em e e EmSsS T SEAeE,,m_—_—_————
PSS SN
3 E 1 Il I 1 H H | L | S —— J_L L i | L 1 Fl l L 1 1 L I L L L 1 l
-2 0 2 4 & 8 10 12

Figure 2.2: Flow velocity.

31

adiabatic, no-slip

[=0, vTe) 0.0007

| dpidy=0 Fixed p

b o.onzs . Fully Davaloped
tr —— 0.0020

adiabatic
x 1 no-slip 0.001t
| “0.0009>
adiabatic, no-slip
s L 1 1 ke 13
-2 Q 2 4 6 8 14 12

Y

Figure 2.3: Mach number contours.

to the major fluid fow direction, and the z axis is vertical perpend.icular. ¥o the flow. The
flow enters the domain at the left boundary, proceeds horizontally, and exits at the right of
the figure. Figure 2.2 shows the results of an actual flow simulation on this domain, indicat-
ing both the fiuid velocity field and a set of streaklines to indicate the flow path. Finally,
Figure 2.3 displays s contour plo; of Mach number on the domain (again, from an actual
simulation).

To complete the definition of the model problem requires specifying the independent
parameters in the governing equations (such as 7, u, Re, etc.). The majority of the results
in this s1;ucl).r will be based on a defaunit problem; if a particular set of_ results deviates from
the default parameters this will be noted in the section where the results are presented. The
default problem uses the parameter values shown in Table 2.1.

The domain physically extends 10 units along the y direction, 2 units in the z direction.
The channel walls along with the step are a.diabatic; with the no-slip condition applied. Inlet
conditions are u = 0, v =T = 1, and gs = 0, with outlet conditions of fixed pressure and

fully developed flow. The inlet Mach number is 0.0025, and a flow Reynolds number of 100

is used for all simulations unless otherwise noted.

r=2 y=10
k=1 v=14
p=1 A=-2
M; = 0.0025 Fr=o00
Re =100 Pr =0.70
Pe=170

Table 2.1: Parameter values.

In the intreduction, the case for parallel Navier-Stokes solutions was preéented. It was
| argued that scientists and engineers need to solve ever larger and more complex problems.
An example was presented indicating the computational difficulty involved in solving mod-
erately sized two-dimensional problems. Additionally, the solution of compressible flow over
a backward-facing step was selected as a non-trivial benchmark problem (an ASME “more
realistic and difficult problem” [45]). In computational sclutions there are two ca.tégories of
difficulty; problems may be difficult to solve due to limited resources and/or they may be
difficult due to characteristics that result in a poorly conditioned solution procedure. Recall

that the best solution procedure is applicable to a wide variety of problems.

¢ The solution technique should be robust. It should vield a converged, accurate solution
to a wide variety of problems without extensive user interaction. Numerically “stiff”

: soh_ltions should be accommodated.

¢ The technique should be computationally efficient. It should enable the solution of

large problems in a reasonable time.

o The technique should also be memory efficient to enable solutions to the desired problem

33

on available hardware.

This backward-facing step model problem is potentially challenging due to its “size” (a
fine level of discretization will result in a large number of unknowas), and its numerical com-
plexity (the algebraic system is difficult to solve due to its mathematical characteristics).
One technique to enhance the spacial accuracy of a discrete solution relies on a refinement
of the discretization of the domain to achieve the desired level of accuracy (resulting in in-
creased memory requirements and longer execution times). For this study, the “size” of the
model problem will be selected primarily to adequately challenge the hardware platform of
interest, with accuracy being of peripheral interest. However, in all cases examined here, the
base discretization refinement is sufficient that further refinement only produces marginal
accuracy improvements. Achieving a numerically challenging model problem is accomplished
by concentrating on the low Mach number compressible flow regime. The solution of the
compressible flow equations in this regime ;equ.ires a robust numerical technique to obtain a
result. In general, this model problem becomes progressively more difficuit to solve (numeri-
cally) as the Mach number is decreased below 0.2.

The low Mach number compressible flow problem is computationally challenging because
very stiff Jacobians arise due to the appearance of large off-diagonal terms associated with
the pressure dependencies in the momentum equation (pioportional to 1/M?). These terms
result in a poorly conditioned Jacobian (i.e., 2 wide disparity in eigenvalues). Consequently,
effective preconditioning is a.n extremely importa.nt consideration in these flow regimes. Al-
though normally considered iﬁcomﬁressible, compressibie flow simulations of this flow regime
are still important in situations where significant density variations 6ccur (i.e., low with

significant heat transfer effects).

34

In summary, the backward-facing step model problem provides a challenging test for
the solution technique. It is scalable, pr{;viding an adequate growth of computation and
memory requ_iremeﬁts with problem size. Additionally, the model mandates a robust solution
a_.]gorithm due to the wide disparity of eigenvalues (physically corresponding to multiple length
scales) inherent in the problem definition. To further illustrate the difficulty of this model
problem, popular iterative solution techniques employing ILU preconditioning do not yield
convergence -.311 this problem {1]. The remainder of this study will be devoted to efficient
solutioﬁs of this model problem on various architectures of interest, focusing on the parallel

aspects of the Newton-Krylov-Schwarz solution techuniques.

2.2 The Governing Equations

In differential form, the general fluid mechanics equations of interest are [4]

% 4v-(w) = 0 (2.1)
%(,au) +V-(puu) = —-Vp+V-.r4pF (2.2}
%(pe)+v-(,oue) = -pV:.u+7:Vu-V-q (2.3}

p = ppe) (24)

with the viscous stress tensor (in index notation) given as

du

_ 8‘&,‘ 3u,- .
Tij = A@zk 6ii + 1 (-5;; a—x'—) . (2.5)

. All simulations performed in this research are targeted towards a steady-state solution

to the flow equations. With this in mind, none of the transient terms are required in the

35

governing equations. This restriction simplifies the mass continuity equation (Equation 2.1)

to

V-(pu)=0. (2.6)

' For two-dimensional rectilinear analysis, the viscous stress tensor assumes the form

Ju du Ov ' '
Tee = 2up_+A (_3.1: + ““ay) (2.7).
dv ou &Ov
T = 2, A (_3::: + ay) (%)
du v
Toy = Tyo = ‘“[_ay"'_az]‘ (2.9)

The vector expression V - 7 may be expressed as
V.= . (2.10)
The Stokes hypothesis [49],

A=—2p, (2.11)

is used to further simplify the viscous stress tensor. The Stokes hypothesis is only rigorousty
valid for monatomic gases, but is widely assumed to hold for other fluids {4].

Finally, the form of the body force vector F must be determined. For this model problem,

F=g. (2.12)

With the above assumptions and simplifications, the momentum equation becomes
V-(puu)= -Vp+ V-7 +pg, (2.13)

or in # and y component form

Opu* Bpuw 8p 8 (Bu 31:)]

3z T 8y - 9: "oy “\5y T o

-) o
Y

toz 175 ~ 3%\ 5

Opuv Gpv* 8p 8 (&u 81:)]

gz "oy~ oy 8z |"\5y 5
8 g (=

dy 'uc')‘y 3

35
8z ' By Py-

+
The energy equation (Equation 2.3),
a .
E(pe)-&-V-(pue) =—pV.u+7:Vu-V-q, (2.16)

may be simplified with the use of the mass continuity equation (Equation 2.6). Additionally,

if the viscous dissipation term (7 : Vu} is neglected, and Fourier’s Law [49] is used to

represent q,

(2.17)
and the energy equation becomes

De

pﬁ=——pv'u+?-(kVT).

Farther simplification requires an equation of state.

37

This study will be restricted to the compressible flow of ideal (perfect) gases. Thus, the

characteristics of an ideal gas may be applied to establish an equation of state for the fluid.

For ideal gases, the following relationships describe the thermodynamic behavior [49].

Cy

= pRT

= ¢e(p,T) = T

De
DT

P

With these relationships, the energy equation may be expressed as

¢V - (pul) = —pV-u+ V. (kVT).

(2.19)
(2.20)

(2.21)

(2.22)

This completes the derivation of the goverhjng equations, which can be summarized with

the following set.

V.(pw) =

dpu® 4 dpuv
Oz oy

dpuv Bpv®

3z+3y =

¢, V-(pul) =

_?_33+_§_[(3;“+3_")]
5z " oy ' \By " Bz

07 du 2 (Ou
+a[2#5; 3 (a—+a)]+”=

op O du]
"oy T oz [8+8z

dy Oz

a v 2 [Ou

vy iy~ 3 (3 + 3 oo
—pV-u+ V. (EVT)

pRT

¢, T

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

38

De

DT,

¢, =

(2.29)

2.2.1 Non-Dimensionalization of the Governing Equations

To norn-dimensijonalize the governing equations, the dimensionless parameters given in Ta-

ble 2.2 are used [5].

[L 1} F— _2
ut——uo z3_L p pﬂug
+ _ T f— 2 k":i—
T'=z = i
£
y=: y=£ G —~c =R
v o
M= 4 Fr = Yo Re = getel
~RT; oL (o
Potptio L
ko

Pr= “—;?- Pe= RePr =
Table 2.2: Dimensionless Parameters.

Using these parameters, the continuity equation is unchanged. This equation assumes

the form (after dropping the primes).

V -{pu} = 0. (2.30)

A similar process results in the dimensionless momentum equations, which take the form

(after dropping the primes)

dpw® Opuv ﬂp 1 { a [(311. +§£)
dz Ay &y 0z /|
3 v\ P
P2 en
dpuv 8pv® _dp WL { i) [(3u 5)
o0z dy By Oz dy Oz/|

39

3 dv 2 [8u &8v P
* 9y [2!#5'3; ~ 3k (Bsc + 39)]} * P (2:32)
The energy equation becomes (again, after dropping the primes)
V- (puT) = LV - (k9T)—7(y - 1) M}pV - . O (233)

Finally, the equation of state becomes

_ T
=0z

(2.34)

This result completes the non-dimensionalization process of the governing equations for
the two-dimensional backward-facing step problem. At this point, it is useful to summarize
the assumptions made in the theoretical development process before moving on to the finite

volume approximations.

1. The development assumed a two-dimensional rectangular coordinate system (right-

handed).
2. Only steady-state solutions were desired.
3. Thermal buoyancy effects were ignored (Fr, = Fr, = o0).
4. Heat generation within the flnid (by chemical reactions, etc.), is ignored.

5. The equations are only valid for ideal (perfect) gases. The following simplifications

were used as a result of this imitation.

6. The Stokes hypothesis (A = —2u) applies.
7. Fourier’s Law applies (q = —&VT).

8. Viscous energy dissipation (v : Vu) is ignored.

2.2.2 Discretization of the Governing Equations

In the introduction to this study, the problem of efficient and robust computational solutions

to the Navier-Stokes equations was presented. Several solution techniques were discussed,

all originated with the full Navier-Stokes equations. It was argued that these equations

were too complex (and computationally challenging) to solve directly. The previous section
discussed a sequence 6f simplification operations that may be performed on the base Navier-
Sfokes equations to reduce the complexity of the equations without significantly degrading
the accuracy of the solution for a specific problem set (in this case, compressible fluid flow
over a backward-facing step domain). However, at this point, the governing equations are
still in the form of non-linear partial diﬂ'erentiallequa.tions (PDEs). In general, the resulting
governing equa.tio.ns cannot be simplified sﬁﬂ'icieﬁtly to enable sclution in functional form.
To employ a digital computer for the solution of a system of PDEs, the problem must
be mapped into an equivalent discrete problem. For this specific case, the simplified non-
linear partial differential equations developed in the previous section must be transformed to

discrete expressions to enable a computational solution.

41

Discrete approximations are usually based on the subdivision of the problem domain
into a computation domain consisting of a mesh of discrete computational cells (eiements
or volumes) that faithfully cover the problem domain. In each of these cells, the gpverning
equations are approximated by a set of non-linear algebraic equations. The method used to
obtain the discretization and the set of algebraic equations over the computational domain
depends on the specifics of the problem and other.fa.ctors. Several methods commonly used

include:

e the finite difference method,
¢ the finite volume method,
e the finite element method, and

e spectral methods.

Each method has advaﬁtages a.nd‘ disadvantages; some are better suited than others for
given classes of problems. Further complicating the choice of discretization method is the
choice of the method used to solve the algebraic system resulting from the discretization
process and initial/boundary conditions. The algebraic system may be cast .a.nd solved ez-
plicitly, implicitly, or using some combination of the two. Implicit techniques are based on a
fully-coupled solution of the cell equations, where a system of algebraic equations are solved
each time step or iteration level. Explicit methods are generally simpler than implicit meth-
ods, The discrete approximation of the governing equation is cast such th#t only one ferm
of each cell equation is unknown. A semi-implicit .techn.ique casts some terms at the new
time (or iterate), and others at the old time; as such it falls between implicit and explicit
and exhibits solution characteristics of both techniques. In common with implicit techniques,

semi-implicit methods require simultaneous solution of the system,

42

Tmplicit techniques are of interest as they allow a fully-coupled solution of the equations
and are not gta.bility_ limited to a Courant (or similar) wavespeed criterion. Explicit techniques
do not lend themselves to the solution of problems With a wide disparity of time (length)
scales, because the shortest wavelength phenomena must be resolved during the solution for
stability. While the advantage of a fully-coupled solution is of peripheral interest to this
study, basing this work on implicit methods allows the application of its contributions to
problems of this type. Implicit methods, and more specifically, Newton-Krylov techniques
are increasingly being investigated for computational fluid dynamics (CFD}) applications due
to thé advantages of full coupling of all variables and equations, rapid non-linear convergence,
and moderate memory requirements [11, 50, 51, 52].

Given the complete representation of the governing equations in dimensionless form, an
implicit form of the ﬁnité volume technique can be selected to approximate the equations on

the computational domain.

2.2.3 The Finite Volume Approximation of the Governing Equations

The finite volume approximation method is based on the concept that the physical domain,

R, can be subdivided into F finite sized subdomains 2., such that

Q:GQG. _ | | (2.39)

e=1

The method requires that there are neither spacial overlaps between the {2, subdomains (i.e.,
for any two sub-volumes §; and Q;, : N Q; = @), or holes in (i.e., Q is composad of
disjoint closed subsets, ,). Then, if each of the five equations describing the flow can be

represented as L;(x) = 0, where x is a vector of the dependent variables, the subdomain

43

method of weighted residuals [53] leads to the expression

E .
/;E,—(x) 0 = Uf Li(x)dQ=0, i=1,...,5. (2.40)
e=1"%2 : d
Thus, for each .,
f Li(x)dR =0, i=1,...,5 (2.41)
2.

From each of these equations, an algebraic expression is then obtained describing the rela-
tionship between the dependent variables, x, in the sub-volume ,. As an example of this

process, consider the continuity equation

dpu B -
L) =2+ -3‘3;1 = 0. (2.42)

This expression may be cast in divergence form
Ly(x)=V - pu=0. ' (2.43)
For sub-volume (2., the finite volume expression for the continuity equation becomes
[ﬂ ‘ z:l(ﬁc) do = L Vopuan=0. (2.44)

The application of Gauss’ Theorem for a given vector v contained within a volume V having

a bounding surface S with outward unit normal fi gives the identity

LV-vdVEﬁ(ﬁ-v)dS. - | (2.45)

Thus,

f v-pudsz:f fi-pudS =0, (2.46)
0. =841,

where 0, denotes the boundary (surface) of element Q..

l— &>

szAt
dQ=A,
Cy— Q. - &
dQ=A,
l dQ=Ay
n

" Figure 2.4: Pictorial representa.ﬁon of a finite volume, (., assuming a rectilinear two-
dimensional discretization. '

By inspection (see Figure 2.4), Equation 2.46 may be expressed in the algebraic form
f;_ i-pudS = (pu) A, ~(pu)d; + (pv)A; ~ (pv)s 4 = B. (2.47)

In a similar manner, the remaining governing equations (2.30-2.34) may be cast into algebraic
form. The resulting non-linear algebraic system, when assembled for all F values, forms the
system that is the input to the Newton-Krylov algorithm.

Given the theory of the subdomain method of weighted residuals (i.e., the “finite vol-

ume technique®), it is now possible to rigorously derive the discrete approximations to the

45

_—

Ai.

Figure 2.5: The computational cell used for the development of the mass conservation equa-
tion approximation.

simplified non-linear partial differential governing equation set previously developed.

The Mass Conservation Equation

The mass conservation equation is straightforward to develop from the dimensionless govern-

ing equation

V- (pu) = 0. (2.48)

The finite volume process begins with integrating this equation over a finite volume con-

sisting of a computational cell (shown'in Figure 2.5)

fv V-(ou) dV=0. (2.49)

46

With the use of Gauss’ Theorem, this volume integral can be converted to a surface integral
fispu ‘nd§ =0. ' (2.50)

Evaluating this integral on the computational cell results in the equation
(p)ede — (P} hu + (r5)ode = (0 =0 (251)

At this point, it is necessary to examine the (pu); terms, above. At first glance, one is
tempted to simplify these to pyu;. If this simplification is performed, the computational cell
assumes the form shown in Figuré 2.6. Furthermore, for the purpose of illustration, consider
only the z component of the variables and assume A4, = A,,. Thus, on the grid shown, the

expression

Pelle = Py, (2.52)

describes the continuity equation in the z direction for cell (4,7). At this point, imagine
defining a new cell that is offset 1 cell width in the positive i direction. The vertices of this
cell lie on the points p,, p,. and the points p,.., pne. (2ot shown in in Figure 2.6 for simplicity).
For the purposes of this discussion, this new offset cell will be named cell (i + %,7). For cell

(i+ %,5), the equivalent expression. to (2.52) is

peeuu = p?“?' (2.53)

As an example, consider a uniform flow-field where the quantity pyu; equals 100 over the

domain. This statement satisfies Equations 2.52 and 2.53 for all cells on the domain. Also

47

lee
-
(i, J)
v
Pw $e
9 Uy, —@— v, @°F
w #—re ee

o-———
P’* Pse

Figure 2.6: The computational cell modified for coincident velocity and density.

48

consider a flow-field where the quantity peu; equals 100 for just the cells of (4,j) form,
and let pru; equal —50 for the cells of (i + 1, 7) form. Again, the continuity equations are
satisfied exactly. However, this result is clearly non-physical and an obvious error. The
diﬂimﬂty with this scheme is the lack of coupling between the (i, 7) c.e]ls and the (i + 1, 7)
cells in the discrete approximation. This difficulty (often coined tl:le 2Az instability, because
the wavelength of the anomaly is 2Az)} can be eliminated with the use of a higher-order
discretization technique of fhe governing system or the staggered velocity-density grid shown
in Figure 2.5. Thg staggered grid will be employed in this study because the hjgﬁer—order
discretization techniques are scmewhat more complex to implement. For further study of -
this difficulty, Patankar [54] provides an excellent presentation of coincident versus staggered
grid discretizations.

Consulting the staggered grid shown in Figure 2.5, it is obvious that the velocities u; are
located on the “cell” fa,;es, with p; located in the cell centers. As these guantities are not
located coincidently, special treatment is nécessa.ry. Considering cell (i, 7), the u; values are
correctly located at the cell boundaries. However, the p, values are not (the only p value
that actually “belongs” to cell (7, 7) is P> at the center of the cell). As a first attempt, one
may simply “average” the p; appropriately. To express (pu)., a linear average of p,, and p,
could be used

(P0)o = 3(pu +)t (2.54)

With convective terms, such as (pu)g, it is possible to encounter another non-physical

result similar to that encountered in the previous example. Again, consider a simplified

49

one-dimensional form of the above continuity equation with 4, = A4,,

(pu)e = (pt)w- (2.55)

Furthermore, employing Equation 2.54 to express the density results in

Pultly — Pelle = Pp(‘ue - uw)' (2.56)

Consider a flow in a cell where u, = 2, 4, = 1, p, = 3, and p,, = 1. For the continuity
equation on this cell to be satisfied, p, must equal —1. Cleazly a negative density is a2 non-
physical result. Furthermore, p,, must fall between p,, and p,. From this result, a simple linear
interpolation of density (such as Equation 2.54) is clearly insufficient. Several techniques may
be employed to remedy this behavior [54], an upwind scheme was chosen for this study due
to its simplicity.

The upwind scheme is based on the “upwinding,” or backward differencing, of the con-
vected variable. Physically, in cell (i, 7), the velocity u,, is “convecting” a density. Consider
the velocity u.,, 25 shown in Figure 2.5. This velocity signifies that a volume of fluid in cell
(¢ - 1,7) is moving into cell (4,), with a velocity u,. This volume of fiuid has a density
Pw, DOt some averaged value. Thus, the correct form of (pu), is py . (for u, moving from

(i—1,7) to (¢,5)). One must also allow for a negative u,, which complicates the expression
(pt)e = pu 10, uu]l — pp [0, —u.] - (2.57)

The notation {a,b] denotes the maximum value of (a,b). This expression clearly results

in the correct interpretation of (pu),, independent of the direction of u,. Comparing this

50

result with the previous example using interpolated density on the cell faces, it is clear that

non-physical densities are prevented.

Upwinding the convective terms results in

(pu)o = o]0, 20] — £, [0, —uu] = cluxw
(pw)e = ppl0,2.] — p. [0, —u.] = cliuxe
(pu)n = pp10,ua] — pn [0, —u,] = clluxn

(pu)s = Ps E[O, usﬁ - Pr IIO-,- -u,]] = cftuxs.
This result may be further simplified by realizing that for an arbitrary cell (3, j),

Ay, = A. = Ay;

A, = As = Ax; 5
resulting in the simplified form
{cfluxe — cfluxw)Ay; + {cluxn — cfluxs)Az; = 0.

The z-Momentum Equation

The momentum equations developed previously

dpv® dpuv {3 [()
=ty T ay '\oy T 52
8 u 2 au 61: p
¥ 83: [2‘”03 Pl (6:1: B 63;) } v .t
dpuv | Gpv* { [()
P + oy - i +

(2.58)
(2.59)
(2.60)

(2.61)

(2.62)

(2.63)

51

8 ov 2 [Ou -313 p
Zlops — {24 22 .
* dy [Hay ~ 3t (3:‘: * ay)]} * FI (2.64)
may be written in vector form
o 1 P
v. (pqu) =-V. (pI) + l—év -T+ FI' (2.85)

Integrating over a finite volume results in

LV-(puu) dV=-LV-(pf) W+-§¢TLV'TW+L#E‘£V (2.66)

Gauss’ Theorem allows this result to be rewritten as

f(puu)-ﬁds:ufpf-ﬁdwrifr-ﬁds+f L fav, (2.67)
s s Re Js v Fr

or for the z-component

o FA 1 . P
fs(pu)u-ndsz-fspz-nd3+-éc—?-ﬁ‘r,-nd5+fvﬂszd.'V. (2.68)

The derivation of the first term is rather complicated. Several steps are required to achieve
an appropriate approximation; these steps will be discussed in defail. The first term may be

approximated as

f (pu)u- @ dS ~
5 .
A, - (Pu)wﬂwAw + A, - (Pu)eueAe + f, - (Pu)nunAn + 1, - (,ou),u,A,

= (cfixe)A, — (cfixw)A,, + (cfhxn) A, ~ (cixs)A4,, | (2.69)

52

ol N
|] — - L
\'4
Vow) éne
| ij |
Pw,T P, T
Py S w;& W——-——?- ,pe —e—‘ja- °
n : u : u
w : P : e
—
Vew Vse
e —> @
Ug

Ai

Figure 2.7; The z-momentum stencil.

where the areas of the cells are

Ae=Aw=ij

A=A, = %(A:{:; + Az;_,).

Upwinding is used to develop the convection approximations

(pu)ese = (pPW)gtinp

Up [Os (pu)g]} - . [0, -(pu)E]] = Cﬂ};e

where (pu)g = p, =2 -; e _ (2.70)

ty [0, (pu)w] — % [0, —(pu)w] = cfixw

(Pa)utty = (pR)wityp =

where {pu)w = py Uy ; o (2.71)

iy Eos (pu)N}] = Un ﬂ.ga "'(Pu)N:ﬂ = cflxn

(pu)nun = (pu)ytwp =

53

Azs"vnw + Azs’-lvne

where (pF)N = pn Ac, + Arrs (2.72)
(pu)sts = (PWstup = 1 [0,(pu)s] — %, [0, ~(pu)s] = cllxs
where (pu)s = p, A2:Vsy + ALi1 s (2.73)

Az; + Az

where the notation [a, b] represénts max{a, b). This result may be further simplified by noting

that

Ay; (Azipy + Azic1pe) + DYip1 (ALipry + ATi_1p5.)
: (Az; + Az;_1) (Ay; + Agipa)
Ay; (AZipgw + AZi_1p,.) + AYj_1 (AZipw + AT;_1p)

s = . 2.74
a (Az; + Azia) (Ay; + Ay;1) (2.74)

Pn

The pressure term takes the form

f_};ﬁ - pi dS = p. A, — pu Ay, = (pe "Pw) ij- (2.75)

The viscous term may be expressed as

fﬁ-r, ds =
5

-

ne'(‘rg'i)eAg“{”ﬁw'(rz'i)wAw-!-

ng - (Tf 'j)nAﬂ + ﬁ".'(fz 'j)s A, .

(1o -3), Ao~ (12 8), Aw +

(2), An — (75 - §), As- | (2.76)

An expression for 7 was developed previously

ou 2 [Bu Ov du Ov
s {2%‘5“(5*‘3?)’“(5;*5;)}

- {1(m+5) w53 B+)
S W\ Tay) e 3\ G T e

resulting in

(7= -9), = ()—% (g—;)szdﬂxe
= 2 (

(7= By = g_‘) (g;) = dfixw
(9 = (53 a");dﬂxn
(r,-3), = (g—:+)s=dﬂxs,

Az,-. i
i = o () - G (e +) < e
(e o = 2 (ot e) g
ooy = (g R Fe) = s

This can be expressed over a general momentum cell as

}Jﬁ-'r, ds =
s
Uy ~ Up _?__ (ue‘-up ‘vne-vae)] _
[2“*’(Az) -3 Azt Ay %

— Uy o 2 Up ™ Uy Vnw — Vs)]
[2ﬂw (Azi_y) 3% (Az, + Ay; Ao ¥

(2.77)

(2.78)

(2.79)
(2.80)
(2.81)

(2.82)

(2.83)
(2.84)
(2.85)

(2.86)

55

Uy — U tVne — 7
9 n(n ' ne nw)] Aﬂ—
[# Ay,'+1 + Ay: v ﬁﬁi + A:c,-_l

Up — Us Vse — Vs
2u, A,. . 2.
[#, (Ayf + Ay + Az + Awe—1)] (2.87)

This result is easily verified to be identical to a normal incompressible central difference
V - u representation when a uniform mesh (Az; = Az, Ay = Ay;yy Vi,7 € @), and

it = constant is used

U — 2Up + Uy | Uy — 2Upy U,
Aa:Ay[—A,7 + Ay?] . (2.88)
Finally, the body force term can be expressed as
P . 1 Pet Pu
fv gt dV = 23 L pdV x %ﬁ:rl(azi_l + Az;) Ay, (2.89)
With the above approximations, the z-momentum equation assumes the form
[(cfixe)A, — (cixw)A,, + (cflxn)A, — (cixs)A] + [PcAe — Puho]—
1 - - -~ '
R (e« 3}, Ae = (72 - D)y A0 + (75 -), A = (12 - 3), As] -
(pe 1 Pu)] |
=l ANAL L = 0. 2.90
[t 0 (2.90)

The y-Momentum Equation

Using a similar process to that illustrated for the z-momentum equation, the y-momentum
equation can be developed. In component form, the y-momentum equation can be expressed.

as (see Equation 2.67)

f((pu)v-ﬁds=-fpj-ﬁds+-1-j§ry-ﬁds+f P_av. (2.91)
5 s Re Js v

P2

56

n
A
|
unw pn'Tll u
—r---- 0 —r= “ne
Vw h G,) 4'P pVe
| I |
— e e ——t
Yew ps’ Ts Uge
A
I
VS
—
A

Figure 2.8: The y-momentum stencil.

Each of the terms in the above equation will be examined in a similar manner to the
process followed for the z-momentum equation. The convective term is shightly different

than the z-momentum representation

f (pu)v-4 dS =
5
n, - (P“)w’-’wAw + A, - (Pu)eveAe + ﬁn * (p“)nvﬂAn + 1o, - (Pu)svsAs

= (cflxe}A, — (cfixw)4,, + (cfixn)A, — (cfixs)A,. (2.92)
The areas of the cells are

1
A=A, = §(Ay,- + Ay;_y)

A, = A, = Azx;.

Upwinding is again used to develop the convection approximations

(pu)v, = (pu)pvp = %, [0,(pw)e] = v. [0, —(pu)e] = chixe,

ij—luﬁe + ijuu
Ay; + Ay

(Pu)wt’w = (P“)W‘Uup = 2, [0, (pu)W]] — Y fo, _(Pu)w]] = cilxw,

ij—lumw + ij Uyw

where {(pu)g = p.

where (pPU)w = P R Ay s

(pwnvn = (pu)vvp = %[0, (pw)n] — 2a [0, —(pu)n] = cfixa,

v + v
Ly

where (pu)x = p

(pu)sv, = (pW)svup = v, [0,(pu)s] — v, [0, —(pu)s] = cfixs,

Up + Vs

where (pu)s = p, 3

where

_ Az (Ayj-1pn + Ay;ps) + Az (AYi—1Pne + AsPse)

= (Az; + Azi1) (Ay; + Ay;-n)

Azi_y (Ay;_10n + AY;ips) + Az (AYi—1Pne + BYiPsw)
(Az; + Az) (Ay; + Ayj—1) '

The pressure term takes the form

}iﬁ 97 4S % Pudn — DAy = (Dn —) Azi.

57

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

58
The viscous term can be expressed in the form

fﬁ-fgdSz
s

ne'(ry 'i)eAe"'ﬁw ‘(Ty 'i)wAw +

Ay, - (Ty j),, A, + 1, (1 5), A,

= (n- A~ (ry 1), 4u +

(7y 3 A — (74 - 3), As. (2.99)

An expression for 7, was developed previously (Equation 2.78)

v Ou v 2 (Ouv OBv
Ty = {ﬂ' (b‘;'i‘ ‘6—y') ,2#55 3 ('a—z' + gg)} ; {2.100)
resulting in

s dv | Gu\ _

{7y -vt)e = f (55 + 3;)8 = dfixe (2.101)
o gv Ou\

(19 %)y, = fo ('; + a’;)w = dflxw {2.102)
« ov 2 Bu Ov\

(rg*3), = 2ps (B—y T Fhn ('3';' + -é;)n = dfixn (2.103)
= v 2 Qu | Ov\

(-9, = 24, (-—5)3 ~ 3t (55 + ay), = dfixs, (2.104)

or using differencing for the discrete approximation of the differential terms

i UV, — Up Une — Uye
. — = -1 5
(7 -3). e (&ziu + Az; * Ay; + A%‘-—l) e (2109
N Tp — Vy Uny — Usw
. _ — 2.106
(ry -2y e (Aa:,- YAz T Ay; +Ay:'—1) e (2100

59

“Up — 2 e Ynuw n —
(Ty j)n = 2y, (‘U ‘Up) — abn (uﬂ . + R v?) = dflxn (2.107)

Ay; 3 Az, Ay;
s _ Up— Vs _?_ Usge = Usw | Vp — Vs) _
(7y .7)3 = 24, (ij—l) 3;0'3 (Az, + ij—l) = dflxs. (2.108)

This can be expressed over a general momentum cell as

fn r, dS =
— Y Une — Use
24, - e |
[5 (Azs-}-l + ASE, * Ay; +_ij-1 :
Upey — U
2 nu J.1]1] Aw
[Ho (Az, + Aa:._1 Ay; + ij_1)] *
Uy — Vg Upe —~ Upw , Un—Up _
[2“" (Ay;) - 3h (Ae; | Ay)] =

v, — U e, — wm, — v
2 3 'z s . L1 aw P a)] .- 210
[“ ay,_l) 3 (As T Ana /A (2.109)

Again, as was seen from the z-momentum development, this result is easily verified to be
identical to a normal incompressible central difference V - u representation when a uniform

mesh (Az; = Az, Ay; = Ay Vi, § €), and g = constant is used

TV = 20p + Vo vﬂ—2vp+v,]
AzAy [rvamnh e v e b (2..110)
Finally, the body force term can be expressed as
. n + s
| sl dV = (” 2)A:c, (Ag;_a + Ay;). (2.111)
¥

With the above approximations, the y-momentum equation assumes the form

[(chxe) A, — (chxw)A, + (cixn)4, — (ciixs)A,] + [pnds — pods) —

*J‘T . P .
+ ¥n
Ga.p |
Te
T L] —_— L] — L]
w uw Tp ue
!
® - L |
Ts
———
A

.Figure 2.9: The energy stencil.

% {(ry-9), Ae = {1y 1), Auw + (1 - D) An — (7 - 3), A] -
[;Fr%— £y,]=0_ | (2.112)

The Energy Equation

Using a similar process to that illustrated for the z-momentum equation, the discrete energy
equation may be developed. Consider the general form of the energy equation developed
earlier

V. (puT) = }'}-’gv A(EVT) - y{y — 1) M?pV - u. (2.113)

Integrating this equation over a cell volume, and using Gauss’ Theorem, results in

fﬁ-(puT) ds = —"’—f i (kVT) dS—‘y(Qf—l)Mf/ PV -u dvV. (2.114)
5 .PE 5 v

| Examining each of the terms in the above equation in a similar manner to the process fol-

61

lowed for the z-momentum equation, results in the following approximations. The convective

term is slightly different than the z-momenfum representation

f n-(pul) dS = f(pT)u-ﬁ R
s s _
(PT)c'ueAc - (PT)w'uwAw +

(PT v An — (pT)0, A,, (2.115)

where

(pT)eue = (pPT)etp = ppTy [0, %] — p.Te [0, —2,] = clixe . (2.116)
(Dutte = (pPTutap = puTev [0,1,] — ppT, [0, —uy] = cllxw (2.117)
(pT)ntn = (PTIaup = £pT, [0,20] — poTn [0, —vn] = cfixn (2.118)

(6T)svs = (pT)svap = p:T.[0,9,] — p, T [0, —v;] = cfixs. (2.119)
The areas of the cells are

A, = A, = Ay

A, = A, = Azx;.
The gradient term can be expressed in the form

j{ﬁ-(wz") ds =
5

ar ar
k. (%)GAG —ky (Eg)wAw +
ar oT
k. ('a?),, A, ~k, (5), A, | (2.120)

62

where

() -)
b (), = o (mraes) =
= (%)ﬂ = 2 (Ay?;:;;l) = ik
b (5), = % (mraes) =0

This result (Equation 2.120) is easily verified to be identical to a normal central difference

(V?T) representation when a uniform mesh is used

T, 9T, +T, T,—-2T,+T,
AzAy [A::2+ +=gk e] : (2.121)
Finally, the remaining term is
' va-uczv::pp(v-u)pvp, (2.122)
where
Ue — Uy, U — 1y
(Vou), m 2 4 Y (2.123)
i i
and
V= A = AziAy;. (2.124)

With the above approximations, the energy equation assumes the form

[(pT)eu A, ~ (PT)o s Aus + (pT)t An — (pT)v,4,] —

63

-1%;: [(dfixe)A, ~ (dflxw)A, + (dﬁxﬁ)A,, — (dfxs)A,] +

T(7 =) Mip, (V- u), A4, = 0. (2.125)

The State Equation

Expressing the equation of state in discrete form is the final step of the discretization of the

governing equations. The form of the state equation was developed earlier (Equation 2.34)

T
b 22, (2126)

This resnit may be expressed in discrete form as

T, -
p=2. | | (2.127)

In effect, this equation allows the calculation of a given cells pressure based on the density
and temperature of the cell. The simplicity of the derivation aside, this equation is necessary

to form a well-posed system and enable a solution to the problem.

2.3 Boundary Conditions

In general, a set of PDEs having space and time as independent variables requires both
boundary and initial conditions to be well-posed. For the particular case of steady-state flow
considered, initial conditions will not be required as the transient terms have been elimiua.tgd
through the simplification process discussed in Section 2.2.

Boundary conditions are simply requirements placed on the dependent variables (for this

study, p, 4, v, p, T) at the boundary 8Q (see Figure 2.10) of the domain in which the governing

64

0Q

Figure 2.10: The problem domain.

_equations are defined (i.e., in). That is, the governing eqnations describe the physical
process in the domain

L{u,v,p,9,T)=10 x € £, (2.128}

however, they do not apply outside or at the boundary of the domain. The conditions at the

boundary must be specified to obtain a well-posed system
{u,v,0,0,T)=0 x € 09, (2.129)

Boundary conditions may be of three classical forms, Dirichlet, Neumann, and mized.
Dirichlet conditions specify a boundary value as a constant or algebraic function, like the

no-slip fluid condition on solid boundaries

H{u)=u=0 z,y C 89 (2.130)

65

{v)=v=10 z,y C 69, (2.131}) .
or a parabolic velocity inlet condition
1. dp
(w)=u= —5&5(@(1 - y) z C 0Q. (2.132)

Neumann conditions are derivative conditions that specify a gradient as a constant or alge-

braic expression on 942, similar to an adiabatic boundary

T)=gq= —kg—: =0 =zCoQ (2.133)

Mixed conditions are a combination of the above

T)=kVT -2+ hT —T.) =0 z,y C 89 (2.134)

Specification of discrete forms of these conditions is related to the discretization of the
governing equations. Consider the application of the no-shp velocity equation for the y-
momentum equation along an east boundary (Figure 2.11). In discrete terms, the formuiation

of the no-slip condition would be
Ve = Upe = Use = 0. (2.135)

As an example of a Neumann condition, consider the energy equation with an adiabatic east

wall (Figure 2.12). To specify & = 0 along this wall,

T, =T, (2.136)

66

. East Wall

Figure 2.11: No-slip y-momentum condition along an east wall.

— East Wall
M Ty
J
[] [] ®
4 ¥n
Gjy |
Uy 'I'{3
* 1= @ L]
Ty T,
i
VS
[] * L |
TS
rre—— .
i

Figure 2.12: Adiabatic temperature condition along an east wall.

67

Consulting Equation 2.120; setting T, = T, results in satisfying the heat flux derivative

condition
o7 T, -T .
e = "'ke . = e | F__° =u. .
? (33?) g 2k (A3£ + A3¢'+1) 0 (2.237)

These concepts may be extended in a similar manner to describe all three types of bound-

ary conditions in discreie form.

2.4 The Non-linear Algebraic System of Equations

The previous development transforms the continuous PDEs of the Navier-Stokes equations
into (discrete) algebraic equations that jllustrate the relationships between the variables lo-
cated in each computational cell in the domain of interest (Q U 8$?). In effect, each of the
four PDEs, in conjunction with the equation pf state, are expressed as five algebraic repre-

sentations per computational cell. To summarize, let x be defined as the state vector
X= (313 T2 L3, Ty m5) = (.\07 u,v,p T)s (2-138)

in the continuous space of the problem domain. This definition results in the following

equation set.

V.-(pu)=20

i

g1(x)

fix) (cfluxe — cluxw)Ay; + (cfluxn — cfluxs)Az; = 0 (2.139)

H

Opu? Bpuv 8p 1 [
a0 = oty e Re{"" (a+)]

IR P
5;[2ﬁ63 3”()]} Fr.®

II

- fax)

95(3)

fa(x)

ge(x)

fa(x)

gs(x)

fs(x)

68
[(cfixe)d, — (cAxw)Ady + (cflxn) A, — (clixs)A,] + [Peds — poAu] -

1 .
T [(rz - i) A, (1), Au + (15 - §), An — (7 P A)~

(pe 1 Pu)

St A] (2.140)

L)
8z oy oy d o

2 v 2 ov
'“[2 By "‘(aﬁay)]} 77 =0

{(clixe)A, ~ (cflxw)Ay + (cfixn)A, — (cxs)4,] + [prdn ~ p,4.] -

-.R; (Ts' ‘) A, —(my ‘E)w Ay + (7y j)n An ~(7y .j)s A,] -

n + £5) —
[2Fr, > A,;Aw] =0 {2.141)

| v- (puT)-——V (V) +v(y~ 1) M}pV-u=0

[(pT).u.As ~ (PT)t Aw + (T)0 An = (pT),0,4,] —

%’; [(dfixe)A. — (dfixw) A, + (dfixn)4, - (dfixs)4,] +

(¥ - 1) M!p, (V- u), 4,4, =0 (2.142)
T

P TME 0
i

Py = ;’:ﬁ% =0 (2.143)

One immediately recognizes that ge(x) corresponds to the dimensionless form of the

governing equations, with £ an index 1 < k < 5 signifying the continuity, z-momentum,

y-momentum, energy, and state equations, respectively. The second function representation,

fr{x), is the corresponding discrete form of gi(x).

69

The discrete equation set for each discrete cell, fi(x),..., fs(x), may be collapsed into a
shorthand notation. Cleé.rly, a set of these algebraic equations exists for each and every cell

(¢,7) in Q. Let f; ;) denote this equation set for the arbitrary cell (i, 5)

£.17(x) = [fu(x), folx), fo(x), fu(x), f(x)] = 0. (2.144)

Note that this expression is valid for every cell (4,5) in QU 8%, for 0 < i < I and
0 < j £ J, with the boundaries 80 corresponding to ¢ = 0, ¢ =1, 7 = 0, and j = J.
These cell contributions f;; ;;(x) may be assembled over the domain QU 8Q via the use of an
assembly operator §, forming a non-linear algebraic system

FE 4
Fx)=S S fei(x)=0. (2-145)

i=0 5=0

- To summarize, use of the assembly operator S over the two-dimensional domain 2 U 8Q

on the cell contribution equations (Equation 2.144) results in the non-linear algebraic system
F(x) = 0. (2.146)

This result completes the derivation of the discrete system to be solved. The system has
been cast into an implicit form to enable a simultaneous, fully-coupled solution. This solution

is typically achieved in two steps.

1. An iterative linearization operation that results in a linear system to be solved each

iteration.

2. Solution of the “inner” linear system. This may be accomplished directly, or via the

70

use of an iterative algorithm.

For this study, an inexact Newton technique will be employed as the linearization operator,
with an iterative preconditioned Krylov technique used to solve the resulting linear system.
This results in an outer Newton iteration loop for linearization, and an inner Krylov loop for
the iterative solution of the linear system resulting from the Newton technique. This process

will be explained in detail in the following chapter.

71

Chapter 3

Solution of the Non—linéar

Algebraic System

In the previous section, the discretized form of the gcwerni.ng equations were shown to assume

the form of a non-linear system

F(x) = [AX), H(x), fa®), - (0} = 0, (3.1)
with the state vector x expressed as-
X= [3152:2&33?'”331\']1" (3'2)

To obtain a solution of this non-linear system, it is important to examine it’s characteristics.
The system

F(x)=0, (3.3)

may be defined as the non-linear mapping ¥ : R® — R" with the properties:

72
1. 3 2* € R* with F(x") = 0,

2. F is continuously differentiable in the neighborhood of x* (it is generally sufficient that

the Jacobian exists and is continuous at x*), and
3. F'(x") is non-singular,

Given an F(x) = 0 that meets this criterion, Newton’s method is attractive as it converges
quite rapidly given an appropriate initial estimate x, [46]. In fact, Newton’s method is
the standard used to compare rapidly convergent methods for solving the non-linear system
(Equation 3.1); a way of characterizing superlinear convergence is that each convergence step

should asymptotically approach the Newton step in both magnitude and direction [55).

3.1 Newton’s Method

Newton’s method is an iterative technique used to linearize the algebraic system of equations.

To obtain an approximation (z2) of the root f(z,} = 0 using Newton’s method [56]

g S0 |
To=2, f’(zg)] (3.4)

or
fa)as, - 22) = —f(23), | (3.5)

F(@)Az; = - f(ag). (3.6)

73

Given a system of ¥V equations, Newton’s method may be expressed as

ayr 8y a1z

%5 st 7 et | | O%F f(=1)

af arr afr

Sor Go% o Az f(=3)

4 V) = — 1 > . (3.7)

afn afn f R :

Por D5 Bos Dy f(z%)

E 1 2 F . Y y \ 4

With the application of this method using consistent notation, the resultant linear system is

obtained

I*6x" = —F(x"). (3.8)

The elements of the Jacobian (J) for this system can be defined as

ofr

i — az}l ?

(39)

x is the Newton iteration update vector, and the n superscript ({-}") refers to the Newton
iteration number. The Jacobian for this system is calculated numerically [8]. The new

solition approximation in the Newton step is-obtained by
x™+ = x* 4 dfx®, (310

where the constant d (0 < d < 1) is used to damp the Newton updates. Selection of this
constant employs a strategy to prevent _the Newton update from being driven into the non-
physical domain (i.e., the calculation of negative temperatures), and to scale hrge variable
updates when the trial solution is far from the correct solution. This is accomplished by

setting the parameter d based on the ratio of the thermodynamic variables and the Newion

update vector on the domain

(3.11)

d = min [1,mjﬁ (2‘9‘-)] ,
ix

where o is a user specified damping value. The Newton iteration process continues until the
trial solution is “sufficiently close” to the actual solution. In this context, “sufficiently close”
is the point where the norm of the difference between the approximate solution and the exact

solution is below a suitable tolerance level n
max [__,,l,_’ﬂ__ < 1. (3.12)

Using Equation 3.9, the Jacobian matrix may be readily calculated from the non-linear
algebraic system (Equation 3.1). The Jacobian has a sparse, banded, pentadiagonal structure
(Figure 3.1), and is generally non-symmetric and indefinite.

This discussion has lightly touched on the fact that the linear system J*éx" = —F(x"}
must be solved to obtain ix" at each Newion iteration. A direct scﬂve, such as Gaussian
elimination, could be used to find the solution. However, for most applications of interest in
this area (especially the large two-dimeﬁsional problems of interest), such a technique would
be prohibitively CPU and memory intensive. At this point, some cbservations may be made

which are directed at overcoming this dilemma.

¢ Is an exact direct solution of the linear system really necessary when the Newton trial
solution is far from the correct solution? Would a less intensive, less accurate, but more

efficient method suffice?

» Given a more efficient method, could it’s accuracy be improved as the Newton frial

solution approaches the actual solution, thereby completely eliminating the need to

75

Figure 3.1: The structure of the Jacobian matrix.

perform a direct solve of the linear system?

The inexact Newton’s method coupled with a Krylov-based iterative linear solution technique
does indeed allow the accuracy of the solution to increase as the solution approaches conver-
gence, reducing the work required when the solution is far from convergence. Additionally,
Krylov methods are sufficiently accurate to completely dispense with a direct solution method

in most cases.

3.2 The Inexact Newton’s Method

The inexact Newton’s method was developed to decrease the computational requirements of
the linear solution for Newton iterations far from the solution of the system. This technigue

capitalizes on the behavior of iterative linear solution techniques. A desirable iterative linear

6

system solution scheme requires I iterations to converge on a solution to the linear system.
As the number of iterations of the technique approach I, the approximate linear solution
progressively approaches the true solution of the linear system. If the iteration procedure
is interrupted, say at iteration ¢, where 0 < ¢ < I, the current result lies somewhere on the
path from the initial “guess” (¢ = 0) to the true solutior (i = I). This approximate result
at ¢ may be sufficiently accurate to allow progress toward the solution in the next enclosing
Newton iteration.

- Initially, this process appears to shift some of the work in achieving a solution from the
solution of the linear system to the Newton iteration process. If the linear system iteration
is interrupted too early, this may certainly occur. In fact, the linear system update to the
Newton iteration may be of such low quality that the Newton iteration is shifted further from
convergence than the previous iteration. However, if the linear system iteration is interrupted
near convergence, the solution is often “sufficiently close” to a converged solution that the
enclosing Newton iteration is negligibly a.ﬁ'ected. In many cases, the last few linear iteratioss,
while signiﬁca,nﬂy increa.sing runtime of the solution, do not contribute much to the overall
solution efficiency. Experience has shown that a linear solution tolerance based on the norm
of §x and the norm of F(x) is effective {9]

ft Iéx + F(x*) || <
[l F{=") |

(3.13)

The above expression indicates that the inner iteration process is truncated when the norm
of the salution is less than the norm of the residual (F(x™)) multiplied by a tolerance crite-
rion (¢). As the Newton iteration process approaches convergence, the residual approaches

zero, tightening the tolerance on the linear solution process. In effect, the linear solution

77

process “automatically” becomes more accurate as the Newton solution process approaches
COnVErgence.

In summary, the inexact Newton method relaxes the tolerance .on the linear iterative
solution process when the Newton iterate is far from convergence. This tolerance parameter
is automatically tightened as the Newton pfocess approaches convergence, thus reducing

unnecessary linear solution iterations and increasing computational efficiency.

3.3 Preconditioning

The inexact Newtbn method described previously is a very powerful technique. The New-
ton iteration process has the potential to achieve quadratic (superlinear) convergence, the
iterative linear solution technigue is more efficient (and requires less memory) than a direct
inversion method, and the dynamic tolerance facility increases the computational efficiency

of the method. How'fever, this method is baised on the solution of the linear system
Jrex® = —F(x"). (3.14)

The speed of convergence of an algorithm depends on the condition number, x5(J), of the
Jacobian matrix J and the distribution of the eigenvalues of J. k5(J) is the ratio of the
maximum tc minimum eigenvalues of J. If x,(J) is large or the spectrum of the eigenvalues
of J is scattered and wide, J is called poorly conditioned and the convergence rate may be
quite slow. In fact, is not difficult to encounter problems where the solution technigue will
not yield convergence [43). As this study is directed at large, challenging solutions; it is
mandatory that the techniques employed work on a wide variety of difficult problems.

Preconditioning is a technique used to improve the condition number of the Jacobian

78

matrix. Ideally, the goal of preconditioning is to “force” the Jacobian towards the behavior
of the identity matrix (). This may be facilitated by multiplying both sides of the linear
system by a preconditioning matrix {(in this case, the inverse of the Ipreconditionjng matrix
P;). |

P;lJ"6x" = P IF(x") (3.15)

Equation 3.15 is called the “left preconditioned form” of the linear system. It is also possible
to use right preconditioning.

I"PlP,6x" = —F(x") (3.16)

In the remainder of this study, left preconditioning is assumed unless specified otherwise.

Ideally, one would desire the product P;'J" to form the identity matrix. In this case,
- it is obvious that once one computes —P;F(x"), the solution §x* is immediately known.
This result, P;1J* = I, occurs when P, = J. However, inverting P) requires an appreciable
amount of work (as large as O(n®) operations for dense Gaussian elimination). Effective
preconditioning requires that the preconditioner reasonably approximate J and that systems
of the form P;v = b, which arise \ﬁthin the linear solution iteration, can be solved efficiently.
Thus, it is reasonable to begin with P, = J, and use an approximate technique to invert Py.

A popular class of preconditioners is based upon incomplete factorizations (ILU) of the
Jacobian matrix [47]. However, ILU preconditioners often do not scale well with problem
size [48)], and are difficult to para]lelize. As an attempt to overcome these difficulties, this
study will examine doma.in-hased preconditioning such as the additive and multiplicative
Schwarz algorithms [48, 57].

Domain-based preconditioning is a method of partitioning the global Jacobian matrix to

form a global preconditioner. Figure 3.2 depicts a simplified representation of the pentadi-

79

Figure 3.2: Simplified Jacobian matrix.

agonal Jacobian matrix, Domain-based preconditioning considers the sparsity of the matrix
to partition it into subdomains, as shown in Figure 3.3. For sparse, diagonally-dominant
systems, this methpd captures the majority of the Jacobian data in subdomains that oc-cur
along the main diagonal of the Jacobian matrix. Subdomains constructed in this manner are
essentially independent and may be inverted indi\fidua]ly and re-assembled back into a global
preconditioner.

To better understand this mappiﬁg from the global Jacobian matrix to the subdomains,
examine Figure 3.3. This figure shows the Jacobian matrix partitioned into four subdomains.
The data for subdomains 1 and 3 are obtained from the upper-left rectangular quadrant
of the Jacobian, while the data for subdomains 2 and 4 are obtained from the lower right
quadrant. Figure 3.4 shows a magnified image of the upper-right quadrant (subdomains 1
and 3). This quadrant is divided into hotizontal rectangular strips; subdomain 3 consists of

the da.ta,.fa.]ling in the shaded regions, while subdo:ﬁain 1 consists of the data in the remaining

Subdomain 1,3

Subdomain 2,4

Figqre 3.3: Partitioned Jacobian mairix, four subdomains.

Subdomain 1

\/\/

Subdomain 3

Subdomein 1,3

Figure 3.4: Magnified subdomain.

80

31

regions. Clearly, the data for the subdomains 1,3 and 2,4 are o‘ﬁtained from distinct, non-
overlapping regions of the Jacobian. Additionally, in each quadrant, the. data composing
the individual subdomains originate from non-overlapping regions. These figures reflect the
decomposition of the Jacobian matrix based on a four block physical decomposition of the
problem in a two-dimensional grid (with two blocks in the z extent and two blocks in the y).
A stripwise decomposition { with one block in the # extent and four blocks in the y extent) _
- results in a different matrix decomp.osition (similar to that shown in Figure 3.4 extended over
the entire Jacobian matrix). In this case, there are no quadrants, and the strips alternate in

the subdomain sequence [1,2,3,4,1,..].

3.3.1 Additive Schwarz Preconditioning

The additive Schwarz method specifies the global preconditioner in terms of adding the

preconditioner subdomains to obtain the preconditioner

P
Pil=J7t 4+ 30 =Y 37, (3.17)

i=1

where J;* is the inversla of the subdomains of the Jacobian shown in Figures 3.3 and 3.4.
Four subdomains are shown in the figures, but p subdomains are possible (Figure 3.5 shows
16 subdomains). Again, in Figure 3.5, each of the four rectangular regions shown is further
subdivided into a four subdomain strip sequence similar to that shown in Figure 3.4. For
example, the rectangdar region correspondiﬁg to subdomains 1,5,9,13 would consist of the
alternating strip sequence {1,5,9,13,1,..].

It is interesfing to note the effects of increasing the number of subdomains on the amount

of data captured from the Jacobian for use in the preconditioner. Only the data on the

Subdomain 1.5,%.13

Subdomain 2,6,10,14

Subdomain 3.7.11,15

Subdomain 4.8.12,16

.Figure 3.5: Partitioned Jacobian matrix, 16 subdomains.

subdomain interiqr is inverted for use in the preconditioner (in the figures, the data outside
the subdomains was deliberately excluded from the diagrams to better visualize the data
that constitutes the preconditioner). The data on the exterior of the subdomain is effectively
discarded and does not contribute to the precondifioner. it is clear that more data is discarded
in the 16 subdomain case than in the 4 subdomain case. As the number of subdomains is
increased, less data from the Jacobian is inverted to form the preconditioner. Thus, the
expected quality of the preconditioner degrades as the number of subblocks is increased.

To mitigate fhis degradation, subdomain overlap may be employed. For example, in
~ Figure 3.6, all the Jacobian data is now part of the subdomains and will be inferted to form
the preconditioner. However, increasing the amount of overlap increases the size of each of
the subdomains, which én turn increases the number of operations required to invert each
subdomain. In Figure 3.6, the regions corresponding tér subdomains (1,3) and (2,4) overlap

at the subdomain boundaries. Additionally, the rectangular strips in Figure 3.4 also overlap

83

Subdomasin 1,3

Subdomain 2.4

Figure 3.6: Partitioned Jacobian matrix, four subdomains with overlap. -

the subdomains above and below. This is illustrafed in Figure 3.7.

The additive Schwarz preconditioning technique (in common With the multiplicative tech-
nique) requires inversion of each of the preconditioner subdomains to form the inve;se of the
‘ preconditioner. In this study, an exact direct technique (LINPACK banded Gaussian elim-
ination) is used to perform this task. It is also possible to implement an inexact method
(such as ILU(0)). The use of an approximate technique will generally decrease the memory
requirements of the solution techﬁi@ue and could (depending on the method chosen) decrease
the overall solution time. However, an inexact technique may decrease the quality of the
overall preconditioner and negatively affect the scala.bi]itj of the solution algorithm. For this
reason, inexact subdomain inversion methods were not examined in this study.

Domain-based preconditioning has an algorithmic efficiency advantage beyond any par-
allelism concerns. Brute force inversion of the complete Jacobian (a non-domain technique}

using a direct method requires O{(n®) operations (the matrix is » x n). With p subdomains,

Subdqmain 3

Subdomain 1

Subdomain 3

Subdomain 1

Subdomain 3

Figure 3.7: Overlap of Subdomain 3.

the effort required to invert each subdomain is O (’—;l:-) operations. If the subdomains were
inverted serially, p-O (%;) or O (:—:-) total operations would be required. All else being equal,

the subdomain scheme would provide a speedup of p? due to algorithmic efficiency alone.

_ fullinversion _ O(n®) .
S 0 (n_) =0(p") (3.18)
- 4

Tht-e. additive Schwarz method is of central interest to the present research because it
allows concurrent formation of the preconditioner. The subdomain inversion and assembly
processes are completely independent from a subdomain perspective, and may be performed
on p processors, where p is the number of subdomains. Subdomain overlap, while increasing
the quality of the preconditioner, reduces the portion of the preconditioner formation that
may be performed in parallel. This follows from the fact that the assembly operation that

forms the global preconditioner requires serialization when the overlapped region is updated.

85

Additive Schwarz preconditioning without subdomain overlap is analogous to block Jacobi
preconditioning. To best visualize this equivalence and to better understand the function of

additive Schwarz preconditioning, consider the following block-tridiagonal system

- - ! 1 ¢ h'
D: Uy 0 X3 Y:
LD, U4 X =31 - (3.19)
6 L. Ds| | Xs) ; Y5

A solution of this system based on additive Schwarz preconditioning with no overlap begins
with an initial “guess”

XP= X3 = X3 =0, (3.20)

followed by an iterative procedure using the following algorithm.

o= D' - 0 - X))
XH = Dyl Y, - LXE - UsXi) - (3
Xt o= D3'(Ys — L.X; - 0)

To compare this result with Equation 3.17 (without overlap), D,-‘1 = J;‘l. This scheme is
dlearly identical to a block Jacobi technigue. Additionally, the parallel nature of the algorithm
is apparent, each of the expressions in Equation 3.21 is clearly independent of the others, and

the results are independent of evaluation order.

3.3.2 Maultiplicative Schwarz Preconditioning

The ﬁultip]ica,tive Schwarz method is similar to the additive Schwazrz technique. The blocking

strategy and degradation of the preconditioner are identical. However, the preconditioner is

86

formed by using the multiplicative algorithm

P
Pyt = 1- (I-I797) (1- 37737 - (1~ 3;40°) = 1-[[(A-37497). (3.22)

i=1

Understanding the behavior of this algorithm requires some background on the Krylov
iterative linear solution algorithm. The Krylov techniques used herein do not explicitly
require the formation of the matrix-matrix product P;2J". In fact, to solve the linear system
using these methods only requires the formation of matrix-vector products of the form P; v,
where v is .a, vector iterate produced within the Krylov solution procedure (see Section 3.6).

This product results in the vector w = Py lv and may be computed by

vi = Jilv
v; = va+TNv~Tv;y), forj=2,...m (3.23)
w -_— Vs

where n corresponds to the total number of subdomains employed in the preconditioner.
Clearly, this is no longer a parallel algorithm. Multiplicative Schwarz without subdomain
overlap is analogous to block Gauss-Seidel preconditioning. Again, consider the block-

tridiagonal system of Equation 3.19 with the initial “guess” of

X?=X]=X3=0, (3.24)

87

followed by an iterative procedure using the algorithm

X = (v, - 0 - U:X3)
X;;-]-l = D;l(}rz _ le;:‘l-l _ U3X5) (3-25)
Xt = DY Y. -~ L.Xit* - 0).

Again, the above result correlates with Equation 3.22 when D;t =371

In Equation 3.25, the dependency of the equation for X3t on Xi** found in the previous
equation (a similar dependency exists between X:i! and X3*') makes this iterative process
sequential. However, the algorithm may yield a more efficient solution due to the the use of
recently computed values in the serial sweep. It is possible to achieve a level of parallelism

in this algorithm with the use of a subdomain. renumbering operation
Color{w;) = min{k > 0| k # Color(w;),Vw; € Adj(w;)}. (3.26)

A blocking sirategy is really nothing more than a subdomain numbering technique. Re-
ferring to the previous figures explaining the subdomain relationships with the Jacobian data,
these subdomains were numbered for convelz;ience. Given a particular problem, it may not
always be desirable to perform computation on the subdomains in serial order. In fact, it may
be advantageous to handle the subdomains by skipping every other one, forward, backward,
or inside out. The blocking strategy is an abstraction that allows the “naming” of each of the
subdomains. For example, with a four subdomain problem, it may be expedient to number
the first subdomain with a “1”, the second with a “o» and so on. For another problem,
better results may be achieved by numbering the subdomains in reverse order. Block {subdo-

main) numbering becomes tiu.ite important when using coloring techniques. To best explain

88

Figure 3.8: Normal block numbering.

coloring techniques, comsider the single-dimensional blocking strategy shown in Figure 3.8

(in this case, each block corresponds to a distinct subdomain, “1” to subdomain 1, “2” to

subdomain 2, and so on). This numbering resuits in the matrix form seen in the previous

examples and shown below,

D, v 0 0 0 0
L, D, U3 0 0 0
6 L, D U, 0 O
0 0 ILs Dy Us 0

6 0 0 Ly Ds Us

Uq

D7

L7

Us

Ds

(3.27)

The structure of this matrix is easily derived. In this expression, I represents a diagonal

mairix block, U and L represent blocks located above and below the diagonal, respectively.

The subscript (¢ in D;) denotes the origin of the matrix block from the numbering scheme

(the i** numbered data is inserted into the i** column). This simple representation assumes

a physical stripwise decompositior and assumes the discrete stencil incorporates only local

block data. For example, consider the block numbered “5” {Ds) above. The discrete stencil

89

Red Black Red Black Red Black Red Black

1 5 2 6 3 7 4 8

Figure 3.9: Renumbered blocking.

only requires data from block “4” (L,) to the left, and block “6” {Us) to the right, to fully
construct the coefficient matrix contribution for block “5.”
Figure 3.9 illustrates a renumbered blocking scheme based on Equation 3.26. This renum-

bering operation vastly changes the structure of the matrix.

D, 0 0 0 {Us O g 0
0 D 0 0 |Usps U O 0
0 0 D3 0610 U Uy 0O

0 0 6 D, 0 O Uy Ug

(3.28)
| Isy Isw 0 0 |Ds 0 0 0

0 Lg Les 0 (0 Dg 0 O

0 0 Lz Lpyi O 0 D O

0 0 0 Lz 0 0 0 Dg

As an example of this new structure, consider the new domain blocking shown in Figure 3.9.
Block “5” (Ds) is now bordered on the left by block “1” (Lg,; in the fifth row, first column)
and on the right by block “2” (Lg, in the the fifth row, second column}.

From Figure 3.9 and Equation 3.28, it can be seen that the blocks colored “Red” are placed

in the upper half of the new matrix and the “Black” blocks placed in the lower half of the

90

matrix. This renumbering operation allows all the “Red” blocks to be inverted independently

Xt = Dy, - 0 ~ Ui X%)
Xt = Di'(Ya — UnXi - UzeX))
(3.29)
Xt = Di'(Ya - UssXi — UsiX§)
X = DYy - UpXi — UwXi),
followed by an inversion of the “Black” blocks
XM = DFVYs - LaXit' - LeapXit
X = DY ~ LeXit - LesXi™
: (3.30)

X;-H' = D;I(Y} - L73X;+1 -— L74X;+1

XM = D% - 0 - LX)

In this example, the coloring scheme allows the inversion of the four “Red” blocks in parallel,
followed by a synchronization step, and then an inversion of the four “Black™ blocks. This
is clearly an improvement over the purely serial algorithm discussed earlier, but less desir-
able that the complete independence available with additive Schwarz. Given eight blocks,
additive Schwarz allows the use of eight processors concurrently. Eight blocks using colored
multiplicative Schwarz allows the concurrent use of only four processors, providing a degree

of parallelism (DOP) half that of additive Schwarz

number of blocks
number of colers

(3.31)

DOPmnlﬁpﬁca:iu Schwarz —

The above resulis assume a stripwise decomposition of the solution domain.

It is possible to employ a “checkerboard” style of colored domain decomposition in the

Green Blue Green Blue
Red Black Red Black

Green Blue Green Blue
Red Black Red Black

Figure 3.10: “Checkerboard” domain decomposition.

preconditioner (Figure 3.10). With the four colors shown in the figure (“Red,” “Black,”
“Green,” and “Blue”), the DOP is one-fourth the additive Schwarz result. Due to the low
DOP, this scheme will likely provide lower parallel efficiencies than the additive Schwarz
algorithm. However, there may be cases where the checkerboard scheme provides a precondi-
tioner that maps to a given problem better than that provided by additive Schwarz, in effect

recouping some of the lost efficiency.

3.3.3 Preconditioning of the Model Problem

In this study, it has been suggested that Schwarz preconditioning may have certain advan-
tages over the popular incomplete LU factorization methods (ILU) for the formation of a

preconditioner.

o Schwarz methods {particularly additive Schwarz) contain inherent parallelism. It is

possible to parallelize ILU methods. However, the need for pivoting to remove diagonal

92

zeros makes parallelization of these techniques difficult and Iimits the DOP that can
be achieved. It may also be difficult to obtain sufficient granularity in the parallel ILU
- methods to provide efficient execution on contemporary shared-memory hardware. The

large subblock granularity of the Schwarz techniques is readily apparent.

o ILU methods may not be sufficiently robust to provide reliable solutions to the model

problem.

However, because solutions to large model problems of the configuration described in Chap-
ter 2 are apt to be memory constrained, there is the added requirement that the selected
preconditioning mefhod be competitive in memory requirements with ILU techniques. An
increase in memory required may be tolerable if the a.d&ed robustness is significant, however,
large increases in required memory over thg ILU techniques (say an order of magnitude)
are generally unacceptable. To examine the memory requirements of the methods, consider a
study of serial Schwarz and ILU techniques with varir.;us levels of fill-in (ILU(k)) as performed
by McHugh [1]. Table 3.1 illustrates the memory and fill-in for the global ILU technigue for
fill-in values of ¥ = 0, 1, and 2 on a 16 x 80 backward-facing step model problem similar to
the problem in this study. Table 3.2 shows the memory requirements of additive and mul-
tiplicative Schwarz pret_:onditioﬁ.ing for various subdomain strategies on the same problem.
Clearly, the Schwarz techniﬁues require mﬁre memory, but as the number of subblocks are
increased these methods become competitive with ILU techniques.

.The row labeled 1 X 1 in Table 3.2 requires further explanation. For this data, a Schwazz
technique with only one block was examined. This solution is simply & direct inversion of the

complete Jacobian matrix using LINPACK banded Gaussian elimination.

93

[ILU(k) Preconditioning
(reverse row ordering)
non-zero | Memory
k | diagonals | (Mbytes)
0 35 1.4
1 59 24
12 94 3.9

Table 3.1: ILU memory requirements (adapted from McHugh [1]}.

T Domain-Based Preconditioning
(Additive Schwarz (AS) and Multiplicative Schwarz (MS))

blocks in | # blocks in | # overlap Reference Memory
z-direction | y-direction cells name (Mbytes)

4 20 0 4x20-0-AS & 4x20-0-MS 2.4

2 10 - 0 2x10-0-AS & 2x10-0-MS 4.3

4 20 2 4x20-2-AS & 4x20-2-MS 5.3

2 10 2 2x10-2-AS & 2x10-2-MS 6.8

1 5 ¢ 1x5-0-AS & 1x5-0-MS 8.3

1 1 0 1x1 8.3

1 | s | 2 | 1x2AS&Ix52MS | 93 |

Table 3.2: Schwarz memory requirements (from McHugh [1}).

94

[Mach=1025 | Mach = 0.025 | Mach = 0.0025 |
Precond. CPU CPU CPU
He | Selection | » T (sec){ n ™ (sec)! m T (sec)
ILU(D) (NS NS NS [NS NS NS [NS NS NS
4x20-0-AS | 8 93 178 | 7 140 222 | 7 184 325
4x20-0-MS | 7 50 124 | 7 73 168 |NS NS ©N$
ILU(1) NS NS NS {NS NS NS [NS NS NS
ILU(2) 8§ 339 431 [NS NS NS |[NS NS NS
2x10-0-AS | 8 41 120 | 7 62 145 { 7 110 235
2%x10-0-MS | 7 21 81 7 30 103 |[NS NS NS
100 { 4x20-2-AS | 8 8 251 { 7 109 305 | 8 141 435
4x20-2MS | 7 28 132 | 7 44 188 [7 72 286
2x10-2-AS | 7 40 134 { 7T 54 169 | 7T 71 210
2x10-2-MS | 7 18 93 | 7 2 120 | 7 47 188
1x5-0-AS | 8 19 106 | 7 26 114 | 7 39 151
1x5-0-MS | 7 @ 7 l7 11 7 |7 19 103
1x1 7 0 43 |17 0 43 |7 © 43
1x5-2-AS | 7 18 9 {7 21 107t 7 33 142
1x5-2-MS | 7 7 70 7 8 72 T 12 147
ILU(0) 9 109 319 [NS NS NS [NS NS NS
4x20-0-AS | 7 85 145 | 6 140 191 | 6 166 222
4x20-0-MS | 7 48 121] 6 64 131 |NS NS NS
ILU(1) 7T 6 71 {NS NS NS |[NS NS NS
ILU(2) 7 2 105 |NS NS NS {NS NS NS
2x10-0-AS | 7 38 101 {6 58 120 | 6 86 164
2x10-0-MS | 7 22 8 | 7 22 85 |[NS NS NS
10 | 4x20-2-AS | 7 58 179 | 6 73 184 | 5 97 197
4x20-2-MS | 7 22 115 | 7 25 125 | 5 40 126
2x10-2-AS | 6 30 96 |6 39 114 | 5 49 115
2%10-2MS| 6 14 69 | 6 15 74 [5 28 92
1x5-00.AS | 7 15 8 |6 21 8 |5 23 79
1x5-6-MS | 6 8 63 | 5 9 56 | 6 12 73
1x1 6 0 38 | 4 ¢ 2% {5 O 32
1x5-2A8 [7 13 8 |6 11 67 | 4 16 55
1x5-2MS | 6 5 56 | 6 5 54 |5 7 51

Table 3.3: Iterative behavior of several preconditioners (from McHugh [1]).

95

To best NMustrate the solution robustness property, consider a comparison of selected
Schwarz preconditioning techniques with ILU preconditioning (Tabie 3.3). This table com-
pares the methods for the model problem at selected Reynolds (Re) and Mach numbers where
n is the number of Newton iterations and 7% is the average number of inner (Krylov) iterations
required per Newton iteration for a converged solution. Entries of NS in a column indicate a
solution was not obta_iined.

It is clear from these results that ILU techniques do not provide robust solutions to
low Mach number flow problems. The performance of the 1 X 1 “direct” solve is somewhat
surprising, considering the number of operations performed (O(n?)). The direct solve pro-
vided the minimal execution time of all the simulations, which may be partially attributed
to elimination of the Krylov solve operations (with the true inverse of the Jacobian for a
| preconditioner, only a matrix-vector multiply is needed for the linear system solution each
Newton iteration). Additionally, the LINPACK Gaussian elimination routine used for the in-
version is highly optimized, while little scalar optimization has been performed in the Krylov
solution code. Finally, the small size of this model problem (16 X 80) may skew the results
in favor of the direct method. For larger problem sizes the difference in operation count
between the direct method and the preconditioned Krylov techniques should resulf in b.et-
ter relative performance of the Krylov techniques, especially when the operations are spread
over multiple processors. Of further note, the direct solve is quite memory intensive (see
Table 3.2), surpassed only by a Schwarz method using subdomain overlap. These extreme

memory requirements render the direct method infeasible for large problems.

96

3.4 Krylov Subspace Algorithms

The discussion of the solution of tﬁe non-linear algebraic system began with the use of New-
ton’s method to linearize the system. Within each Newton iteration, a new linear system
is formed and solved. The use of a suitable iterative linear solution technique in combina-
tion with the inexact Newton’s method was previously explained as a strategy to reduce the
computational effort and memory requirements for the linear system solution. Additionally,
preconditioning was introduced as a method to improve the condition number of the Ja-
cobian matrix to further decrease the computational effort required for a solution. In the
development of the preconditioner, parallelism of the algorithms was discussed as an im-
portant requirement of an efficient linear solution process. This section on Krylov subspace
algorithms will examine possible choices for the actual algorithm(s) used in the iterative
solution of the preoonditioned linear system.

Recall the form of the preconditioned linear system developed earlier
P;lJm6x" = —-P7IF(x*). (3.32)

This system is of the form

‘Ax=b, (3.33)

where, in gengra.l, the matrix A (and J) is a non-symmetric indefinite matrix, aﬁd of sparse
banded structure. Banded Gaussian elimination and other direct methods such as LU decom-
position were discounted as solution techniques due to extreme computational requirements.
Furthermore, the inexact Newton’s method requires an iterative technique to be effective as

described previously. Several approximate methods are available that may be useful on a

97

| system of this form. Examples of these methods include:

incomplete LU factorization methods (ILU),

QR decomposition techniques,

Jacobi related techniques,

L 2

Gauss-Seidel-based techniques, and

conjugate-gradient-“like” methods (Krylov techniques).

Of these methods, only the conjugate-gradient-“like” methods (Krylov techniques) possess
all of the qualities desired for this study.

Matrix-splitting methods such as Gauss-Seidel and Ja.co'tﬁ often yield poor rates of con-
vergence [20, 43]. The convefgence rate of these and other relaxation techniques depends
strongly on the spacial discretization adopted for the implicit operator. ILU techniques and
QR decomposition also may exhibit slow convergence. These types of methods are not gen-
erally robust. To handle a wide diversity of problems and numerically challenging problems,
a robust technique is desired for the solution of Equation 3.32.

A robust technique should have the following properties.

1. The sclution technique is guaranteed to converge in n iterations or less (the solution

effort is bounded).
2. The technique exhibits a finite termination property.

Krylov subspace methods are robust techniques for the solution of linear systems such
as Equation 3.32. These methods {(using exact precision mathematics) will converge within

n iterations, and often yield satisfactory convergence in much less than n iterations (they

98

typically converge rapidly). These techniques compute approximations to x in the affine
space

X, + K, (3.34)

where X, is the initial guess to the solution and K., is the Krylov subspace of dimension m
{58},

Kom(ro, A) = span(r,, Ar,, Alr,,...,A™ 1r,), (3.35)

with

r.=b— Ax,. (3.36)

Conjugate-gradient-“like” algorithms are Krylov algorithms that are derived by relaxing one
or both of the two properties that define a ti‘ue conjugate-gradient method, namely optimality
(error reduction) and short vector Tecurrences (constant work and storage requirements per
iteration). Economical vector recurrences can be obtained, at the expense of optimality,
via the Lanczos biorthogonalization procedure. Other methods, such as the Arnoldi-based
GMRES (the non-restarted version), sacrifice short vector recurrences to ;.chjeve optimality.
Examples of each will be examined in this study.

Several candidate Krylov techniques exist: the generalized minimal residual method (GM-
RES) [24], the transpose-free quasi-minimal residual method (TFQMR) {59], the conjugate-
gradient-squared algorithm (CGS) [26], and the Bi-CGSTAB algorithm {25], to name a few,
Of this set, the GMRES and TFQMR algorithms will be used in this study, due to thier
excellent performance on related problems [1].

Krylov techniques remain a fertile research area [21, 60,61, 62, 63, 64, 65, 66]. McHugh [20]

presents an excellent summazry of these techniques, and an overview of the mathematical basis

99

and development of the various methods.

These algorithms were developed to solve the system
Ax=bh, (3.37)

or

0=b- Ax. (3.38)

A direct inversion method is based on an exact solution (within machine accuracy) to Equa-
tion 3.38. With an iterative technique we do not expect an exact solution, .only & solution
“sufficiently accurate” for our needs. In effect, we may select ';she number of iterations of the
technique, m, to provide a desired level of accuracy

Iim {b—Ax™}=0, (3.39)

=00

or, more practically, develop the algorithm to halt when a certain level of accuracy has been
achieved. Thus, for a given iteration m, there is an error in the solution, defined as the
residual

rm = b — Ax™, (3.40)

Minimal residual approaches are often based on the concept of minimizing the L,-norm of
the residual

llenl, = b~ Ax™i, - (3.41)

This step is equivalent to the minimizing the functional

g(x™) = (b= Ax™)T (b~ Ax™) = x™TATAx™ — 2bT Ax™ + b7b. (3.42)
At this point, we desire a solution of the form

%
Xpp1 =%, + Z @;Pj = Xp + P,y (3.43)

§=0

where a; is a scaling factor and p; is a search direction. Substituting Equation 3.43 into
Equation 3.42, and minimizing the result with respect to a; (8g(x341)/80; = 0) results in

the expression

_ {Ape) 'y (Aps,1)

Qg = = g
T (Ap AP (Api,Ap:)

(3.44)

At this point, search directions are computed (p;) by selecting the appropriate Krylov sub-
space L; [20] and then using either the Lanczos biorthogonalization procedure as defined in

the following section, or the Arnoldi process as outlined in Section 3.4.2.

3.4.1 Transpose-Free Quasi-Minimal Residual Method (TFQMR)

The TFQMR solution technique is based on the Lanczos biorthogonalization procedure ap-
plicable to general non-symmetric matrices, This class of methods sacrifice optimality (min-
imizing the residual with respect to a; fixed norm) to obtain short vector recurrences. It is
not possible, in general, to satisfy an optimality condition with non-symmetric systems using
short vector recurrences [67].

As an introduction to the TFQMR algorithm, consider a development of the biconjugate-

gradient method (BCQG) for the solution of non-symmetric indefinite problems [22, 25, 26, 62,

101

64, 68, 69]. The BCG method uses recurrence relations developed for the conjugate-gradient
algorithm extended with the use of the Lanczos method. This algorithm is developed to solve
the system

Ax=b, (3.45)

by the use of an auxiliary system

A% = b, (3.46)

where A* is the adjoint of A with respect to the inner product.

For the conjugate-gradient method, Equation 3.45 may be represented by the functional
f(x) = % [(Ax—bf(x - A™'B)], (3.47)

cT

£x) = 5(r, A7), (349)

where r = Ax—b and (-,-) denotes an inner product. To minimize the residual of the calcula-
tion, one must minimize this functional. Clearly, the direct solution x = A~'b minimizes the
" functional, but is expensive to obtain as discussed previously. As a potentially less-expensive

method to obtain the minima of the functional, the Krylov vector space
K, = span(v,, vy, Vay ..oy Vi)y (3.49)

spanned by the mutually cbnjugate 6rthogonal vectoIs Vo, Vi, Vg, . . -, Vi, 15 iteratively searched
to obtain the vector that minimizes the residual [22]. As the residuals (gradients) correspond-

ing to each of the search vectors are orthogonal, an iterative update Xz = xz +v,¥v € Ki

will “spiral” towards the X, resulting in a minimum residual.

To minimize the functional, iterates of the form
Xp+1 = X + 03 Vg,
are desired. This result may also be expressed in terms of the residual
(AXps1 — b) = (Axz — b) + oz Avy,

or

Try1 =T + o Avg.

To minimize the functional f(x), the derivative with respect to o is performed

af(x)
8a ’

or

lim, = [76x+ %) — £] =0,

where

flx +6x) - f(x) f(x +ov) — f(x)

= % [r+ cAv,A™(r + cAv)] - %(r, A7)

= % [t+eAV)-(Ar+av)~r- A7)

= _%a(r-v+v-r)+% PAv.v

102

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

= ofr,v)+ %az(v, Av).

Minimizing this result with respect to o results in

(rka Vk)

ap = _(VI,, A‘Vk).

This result may be further simplified by letting

Vi = =Tp + Fe1Vi-1,
so that
(re, Vi) = —(Te,T2) + Br-1{Te; Vi_1)-

In addition,

(!'k,Vk—ﬂ =0,

because the current residual is orthogonal to the previous search direction. Thus,

(rk! vk) = _(rkark)Q
which simplifies Equation 3.56 to
. (rksrb)
ay = ———=t
T (ve, Avy)

Equation 3.57 may be used to determine 8

(Vi1, Ave) = —(Pegr, Avi) + vy, Avi).

103

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

104

Again, (Vi41, Avy) = 0 because the current and previous search directions are orthogonal.

Thus,
(rri1, AVy)
= ———, 3.63
'Bk (V;—, AV;.) ()
This expression may be further simplified by noting
1 1
(e AV&.) = a—k(i‘k+1,1‘k+1 -T) = a(rk+1,l’k+1)a (354)
and
(v, Avy) = (Vi, Ppa1 — Tg) = —(Ve, 1) = (g, 1), (3.65)
resulting in _
B, = (Cr41, Ta4z) {3.66)

(x5, Te)
The previous sequence of steps outline the conjugate-gradient method for symmetric positive-
definite matrices. To extend this result to non-symmetric indefinite matrices, the Lanczos
method is used. This .technique employs the auxiliary system (Equation 3.46), choosing the

parameters a; and By, such that the residual vectors of each of the systems (r,,ry,... and

r,,t;,...) are biorthogonal. That is,
FE)=0 i#] (367)

To complete this process, it is necessary to define a series of expressions for the auxiliary

system (identical to the process used for the conjugate-gradient method) and develop «; and

B to saiisfy the biorthogonality condition.

Rpp1 =
Fry1 =

Vil =

This results in the definitions

Xk + Vi
F;, + a;,A*i'r;,

—Frq1 + BV

By inspection, the terms a; and 8, that satisfy the biorthogonality condition are

Op =

B

(T, Tr)
(f?'k, AV;,)
(§k+1, 1‘k+1)

(Te,r2)

This development results in the following expression of the BCG algorithm.

Algorithm 1 (BCG)

var {x,,T, # 0,

r, = b— Ax,,v, =r,,

p-1= 1)
dok=0,1,2,...
pr = Eiry;

— Pr_.
A Pk-1’

Vi =T 4 FiVio;

Vi = + BV

ok = Vi Avy;

105

(3.68)

(3.69)

(3.70)

166

ap = g_:E

Xp41 = Xp + O Vi;
Try1 = O + 0p Avy;
Frgr = 4 AT

if ||rx4]|, < conv criteria then exit; fi

od

The BCG algorithm is attractive due. to the short vector recurrence relationships used in
its development. In the absence of round-off errors and algorithm breakdowns, this method
exhibits the finite termination property described in the introduction. ‘However, BCG is
susceptable to breakdown if the term {¥r,ry) equals or approaches zero. Additionally, the
conjugate A* is often replaced by the matrix transpose A7,

The desire to eliminate the calculation of the matrix transpose and minimize the severity
of algorithm breakdown has fueled the development of many transpose-free techniques. The
technique employed in this study is the TFQMR algorithm. This algorithm has much in
common with the BCG algorithm, but differs in a‘number of significant aspects. For the sake
of brevity, a rigorous development of the TFQMR algorithm (similar to the explanation of
the BCG algorithm) will not be presented. A few of the differences will be highlighted to
provide an outline of the operation of the algorithm. |

In the TFQMR algorithm, the residuals and search directions of the BCG method are

replaced by the expressions

I = R;-(A)I'a

fi = R(AT)E,

107

Ve = S;,(A)l‘o

= Si(AD)E,
.where R; and S; are polynomials of maximum degree k. Using the definition
£ = RuAPr, (37)
allows p to be expressed as
= [Re(ATYE]" [Ra(A)r,] = #F [Ra(A)'r, = £ 25" (3.72)

The TFQMR algorithm is not developed using orthogonal residual representations as was the
BCG method. The TFQMR method relies on the minimization of the coefficient of ||Py4|l,

in the expression

esll, < || (feoll, € = Beve) | Pesall, (3.73)
where i
Qy B2 0 0
1 s
Ti=| 0 Be |+ (3.74)
1 o
0 .- 0 0 1|

e, is a unit vector with a “1” in the first component, y; is a vector of the minimization

conditions

Y= [Qkh L3S PR akk]T } (3°75)

and P; and W, are vectors of search directions

P, = [Pls P2y~ Prl (3°7ﬁ)

Wl-. = [wlswm'ﬂ,wk]' (3'7?)

The TFQMR algorithm does not minimize the residual in L., or any other fixed norm.

The residual is minimized in a norm that changes with iteration number [64, 70}
D "Wl (3.78)
where
Dk = W’ng. (3.79)
The TFQMR algorithm is presented below.
Algorithm 2 {TFQMR)

var (X,,T, # 0,
0% = b - Ax,,
g =4d, = pa=0p.1=1,

vo =1, = 0,7, = [Fg%,)

dok=0,1,2,...
pr = T 5%

- Pr

ﬁk Pk—l’

w = 7595 + Grqi;

Pe = W + Gi(ae + Bepr-1);

109

Vi = ADs;

O = ffv,,;
P

g = —;
Og

Qi1 = U — O Vi,

CES — nCGS

Tegl — T — o A(up + Qrq1);

dom=2k+1,2+2,...

Urgsl, §rgsl /rme1 5 modd
Vi =
[£55 ", [T ; I even
=1
om = Vit vy

Tm = Tm—1YmCm;

2 o
Con Oy

EY
l

2
v, -
u; ‘|‘ m_.j,nm 1 d

0 o
" Y2 Tt
q: + —m_; d

m—1 | In odd

m—1 j meven

X = Km-1+ Gnm;

Calculate |rnj|, or use [jrn||, < (m+ 1) Tm}

if |irmfl, < conv criteria then exit; fi

od

od

The TFQMR algorithm eliminates the need to calculate the matrix transpose (it is
transpose-free). Algorithms based on QMR (inciudjng TFQMR) do not suffer the same forms
of breakdown as seen with BCG. However, QMR algorithms may still fail due to breakdowns

in the Lanczos process. Thus, the TFQMR algorithm is clearly superior to BCG, but may

not achieve a solution to all problems. The TFQMR algorithm is applicable to a wide class

110

of problems, and often provides excellent performance (as demonstrated in the following

chapters).

3.4.2 Generalized Minimal Residual Method (GMRES)

Due to the remaining breakdown weaknesses in the TFQMR alg&ithm, a second algorithm,
GMRES, was examined to provide an alternative to the cases where the TFQMR algorithm
fails. The GMRES method also provides other advantages that may be important for certain
conditions.

Use of the Arnoldi process to generate search directions, instead of a Lanczos biorthog-
onalization method, makes the GMRES algorithm considerably different from the TFQMR
algorithm. The Arnoldi method uses a Gram-Schmidt orthogonalization procedure [71] to

generate an orthonormal basis for the Krylov subspace. This process seeks to minimize

eell, = ir. — APy, = (v — PryaHiys L) {(3.80)

0

Use of the Arnoldi technique

r, = ”rc:"2 p= "1‘0”2 Priie,

in

results in the residual expression

sl = | (Il o0 — By .- ~ (3.83)

GMRES is based on a least squares minimization, thus an iterate for Equation 3.83 can
always be found. This property makes a breakdown of the GMRES algorithm unlikely. The

GMRES algorithm is presented below,

Algorithm 3 (GMRES)

T, ..

P2 = L7

de k=0,1,2,...,n
comment: Arnoldi Process
hi = (Aphpk); I= 1,2,. ":k

k
Prar = Apr = D AuPprs
=1

hrsrp = “fii:i-l"g;
e
Pi+i hi:+l,i-,
Update H, and QR factorization to solve

mig (el &1 = By |
if [lre|l, < conv criteria

- then Calculate solution from'x;; =X, + Prys; exit; i

od

TFQMR relaxes the optimality condition in favor of achieving short vector recurrence rela-

tionships and GMRES secks to minimize the residual while alowing the storage requirements

112

and computational effort to grow with the iteration count. This behavior is a significant dis-
advantage of the GMRES method, however it may be addressed by using a restarted version
of the algorithm, GMRES(%), where & is the dimension of the Krylov subspace [24]. With the
restarted version, the algorithm is only optimal during each iteration cycle, not throughout
the entire solution process. Multiple restarts may result in slow convergence or algorithm
stall.

In summary, an overview of four Krylov techniques was presented to provide a flavor of
the mechanics of these techniques. Of these four, the derivation of the conjugate-gradient
method for symmetric positive-definite matrices was examined in detail for use as a basis for
the derivation of the BCG method. The final two algorithms, TFQMR and GMRES, were
presented as useful generalizations of the BCG technique and as examples of two Krylov
techniques that show much promise for this study. Detailed developments and analyses of
these Krylov technigues are available in the literature [20, 24, 64, 72, 73]. Finally, the solution

of linear systems using Krylov subspace techniques is an active area of research with new

algorithms and modifications to current algorithms becoming available at a rapid rate.

3.5 The Matrix-Free Technique

One may argue that work on a matrix-free technique that “eliminates” the formation of the
Jacobian matrix really does not belong in a research effort targeted at obtaining scalable
preconditioners for a Newton-Krylov sclution procedure. Cleazly, the elimination of the
need to form the Jacobian matrix decreases the operations and memory required to achieve a
solution. In earlier chapters, it was argued that concentration of this effort on preconditioning

would likely yield the most efficient implementation of a simulation code to solve the model

113

problem, since obtaining the preconditioner requires O(n3) operations. Because the J @bim
formation complexity is less (ﬁkely much less) than the preconditioner complexity, it was
argued that the Jacobian formation time would become negligible for large domain, fine grid
solutions.

The above arguments are true, but neglect a portion of the attractiveness of the matrix-
free technique. It is clear that preconditioning is stil required for the matrix-free technique;
to imptove the condition number of the system and thus lead to improved convergence behav-
ior (and possibly enabling convergence on poorly conditioned systems). In order to obtain a
preconditioner, the Jacobian matrix must be formed. This appears to be a dilemma; forma-

_ tion of the Jacobian is not necessary for the solution of the system, but is necessary to obtain
the preconditioner. If this were truly the case for each Newton iteration, the matrix-free
method would be nothing more than a curiosity, limited to the set of problems tila.t do not
Tequire preconditioning.

However, it may be possible to form the Jacobian and develop a preconditioner on a subset
of the Newton iterations rather than on every Néwton iteration. Perhaps it is sufficient to
form the Jacobian and develop a preconditioner once every other Newtpn iteration, or maybe
once every five or ten Newton iterations. Clearly, the limiting case here is the quality of
the preconditioner and how well it conditions the Jacobian for a given Krylov iteration. As
a minimum, a preconditioner must be obtained for the first Newton iteration (the “stale”
preconditioner is empioyed in the subsequent Newton iterations). Furthermore, the number
of Newton iterations that can be performed before a new preconditioner is developed will
depend on a balance between the coﬁvergence efficiency of the current preconditioner and

the computational penalty of forming & new preconditioner. This balance is expected to be

problem specific.

114

From the above discussion, it is obvious that if the number of times that the Jacobian and
preconditioner are formed in a given solution is reduced, the importance of the efficiency of
the preconditioner formation is lessened. As such, the operations that would be expended in
calculating the preconditioner may be shifted to the Newton (and Krylov) iteration routine(s).

Viewing the differing complexities of these functions, it is clearly desirable to minimize the

number of preconditioner formation operations.

3.6 Mechanics

Recall that the inexact Newton method described previously linearizes the algebraic system
F(x)=0. (3.84)

The linearization process results in a linear system of the form

Jréx" = =F(x"), (3.85)

or
P;yiI"6x" = ~ Py F(x*) (left preconditioned form), (3.86)

or
Ax=Db (generalized form), (3.87)

to solve for each Newton iteration m. Furthermore, recall that in the TFQMR and GMRES
algorithms, the coefficient matrix (A in the notation used in the Krylov section) never ap-

peared alone but always as a matrix-vector product (Ap; and A{u; + qz44) in the TFQMR

115

case, Aij; and Ap; in the GMRES case). This observation may be interpreted to mean that
the matrix A would not be required if | some other manner was available to calculate the
maitrix-vector product.

The matrix-free technique is simply an algorithm that may be employed to calculate these
matrix vector products, Aw, or in Jacobian notation, Jw, for a given general vector w. The

matrix-vector product may be expressed by finite-difference approximations of the form

_ F(x + éw) - F(x)

Jw R (3.88)
¢
where § is a perturbation parameter
1 N
§=+ ;g,-, (3.89)
and
& =ext+o. (3.80)

In the é.bove development, N is the dimension of the state vector x, m; is the s'”'. component
of the state vector, ¢ is a perturbation consfant (= O(machine round-off)), and g is a user-
specified perturbation parameter (1.0 x 10~° for this study) [20].

The matrix-free technique requires the following form of a linear system (inexact Newton)

convergence criteria

“ F(x"-]-f&:;")—?(x’) + F(xn)u
1F)|

<e (3.91)

The utility of this approximation is immediately obvious. Matrix-vector products are

116

notoriously computau;ionalljr expensive to construct, while the above products may be con-
structed with the relatively inexpensive difference relation (Equation 3.88) in the matrix-free
technique. Additionally, all of the operations to form the Jacobian matrix are now unneces-
sary. Preconditioning_: complicates the advantage, because as the Jacobian is required for the
preconditioner. However, as discussed above, this complication may be mitigated for certain
problems.

Fi:ua]ly,_ the matrix-free technique influences the reasoning employed to obtain a solution.
Consider the use of the Newton-Krylov-Schwarz algorithms to obtain a steady-state solution
to a problem from a given imitial “guess.” With the background discussed thus far, an
analysis of operation counts would suggest that the number of Newton iterations should
' be minimized during the solution process. Each Néwton iteration entails formation of the
Jacobian (O(n?)), and development and application of the preconditioner (O(n®)). The
Krylov linear solution method is very inexpensive, comparatively, With the matrix-free
technique, a situation may exist whereby the Newton iterations are less expensive than the
Krylov iterations if one considers the potential of lagging the Jacobian and preconditioner
formation ojperations to amaortize this penalty over several Newton iterations. In this case,
one would desire a minimization of the Krylov iterations. Realistically, it would be helpful
to “tune” the numﬁer of Newton a.:nd Krylov itera,t.ions for a particular problem to maximize
solution efficiency. One method that provides a tuning paramseter for the number of Newton
and Krylov iterations is called pseudo-tmnsieni relazation.

Pseudo-transient rela.xatic.m applied to the Newton algorithm adds artificial transient
terms {25} to the main diagonal of the Jacobian matrix in order to create a diagonally-

dominant matrix and thereby improve the Newton convergence behavior. This technique

117

modifies the original linear algebra problem to one of the form

{% + J"} 5x* = —F(x"). (3.92)

This artificial diagonal dominance allows user control over the ratio of Newton to Krylov
iterations. Additionally, the pseudo-transient representation provides the welcome benefit of
increasing the Newton radius of convergence for difficult solutions.

The effectiveness of this method {matrix-free with pseudo-transient relaxation) is likely
problem dependent. Depending on the characteristiﬁs of the model problem, this method may
be more or less computationally efficient than the direct Newton-Krylov-Schwarz technique
described earlier. However, the matrix-free, pseudo-transient (MFPT) method is more robust
overall, due to the increase in the radius of convergence of the Newton technique. The
methods described to this point are clearly not capable of solving all non-linear algebraic
systems. For solution convergence, it is necessary but not sufficient that the initial iteration
of the Newton technique (the initial “guess”) fall within the Newton radius of convergence.
As this initial point may not be easily speciﬁed,a it is highly desirable that the radius of

convergence be as large as possible.

3.7 Summary

This chapter was devoted to an explanation of the inexact Newton-Krylov-Schwarz solution
technique, beginning with the non-linear algebraic system and proceeding through all phases
of solution. Preconditioning of the linear system was outlined in detail, along with a discussion

of the matrix-free approximation and pseudo-transient relaxation of the Jacobian. Figure 3.11

presents a flowchart of the implementation of the solution techniques employed.

Read Input
Initialize Problem

[|

|
4

Need P & Y Build Jacobizn
eed Precond?
and Precond

X

Do GMRES)

i

; Krylov Loop
Newton Loop N ' :
Converged? -

Update State Pseudo-Time Loop
Vector

Update Pseudo-
Time

Y

N
At Steady-State?

Print Data

¥

Figure 3.11: Flowchart for Newton-Krylov-Schwarz solution technique.

119

This discussion cbmpletes the specification of the theory, approach, and model problem
specifics. The rema.inder. of this study is devoted to an analysis of the mapping of these
procedures onto various shared-memory multiprocessors. The primary goal is to develop and
optimize the machine-algorithm mapping to result in minimal runtime, while focusing on

the scalability of the preconditioning operation. However, this goal must be accomplished

" without a reduction in the robustness of the algorithm and within reasonable memory bounds.

120

Chapter 4

The Additive Schwarz

Preconditioner

This chapter on the begins the analysis and optimization of a code that employs the Newion-
Krylov-Schwarz algorithms described previously. As such, this chapter is not limited solely
to a discussion of the preconditioner and its scalability; other topics that affect the precondi-
tioner and the overall code efficiency will also be addressed. Information ga.there& from the
study of these topics is in ma.ﬁy cases uniformly applicable to the following chapters on the
multiplicative Schwarz preconditioner and matrix-free methods.

Recall the purpose of this study; obtaining scalable performance in the construction and
application of a preconditioner to provide efficient solutions to the model problem. In theory,
given a scalable preconditioner, one may select the number of processors require{i to provide
a solution of a problem of a particular size in the desired a.mbunt of time.

This chapter begins with an effort {o obtain efficient parallel/vector solutions to the model

problem on two different architectures; a Cray C90 supercomputer and a multiprocessor SGI

121
Challenge machine (Onyx model). Two sizes of the model problem were initially attempted:
o a 64 x 320 finite volume discretization (81,920 unknowns) on the Cray C90, and

¢ a similar 32 X 160 problem (20,480 unknowns) on the SGI Onyx.

4.1 Architecture Overview

For this study, .the model problem was mapped to two different machine architectures. The
first was an example of a traditional supercomputer, the Cray C906. Three Cray C90 machines
were available for this research; the first was a four processor machine equipped with 256
Mwords (2.048 Gbytes) of main mermory, the second had eight processors and 512 Mwords
of memory, and the third was eqﬁipped with 16 processors and 512 Mwords of memory.

Architecturally, the Cray machines implement 256 banks of SRAM memory connected to
the processors through a crossbar network. Pipelined access may be employed for efficient
memory access. Memory is implemented using a “real” (physical) addressing mode into the
banks, virtual memory and caching is not available. The prbceésors operate at a clock speed
of 4.2 ns, and contain two vector pipes and two functional units per processor. Thus, with
eight processoré 8x2x2= 32-wa,y parallelism is possible.

The SGI Challenge machine has four processors. This machine is equipped with 1 Gbyte
of conventional DRAM main memory connected to the four processors by a proprietary bus.
Each processor is a MIPS R4400, cqntaining 1 Mbyte of SRAM cache (512 K data, 512 K
instruction)\, and is of superpipelined superscalar design. The cache controllers implement
a snoopy bus protocol for coherence. This machine implements a demand-paged virtual

memory scheme.

The simulation code for this study was implemented in well-structured FORTRAN 77.

122

The base version was defvelqped to be quite portable, using an “elementary” style (see Ap-
pendix A). No attempts were made within the original code to increase its suitability toward
any pa.ttipular architecture; the development platform that preceded this work was a unipro-
cessor UNIX workstation.

Finally, the study was performed during multiuser operation on all hardware examined.
The results on dedicated machines could vary significantly. Cray warns that dedicated access

to their machines is necessary to fully evaluate the performance aspects.

4.1.1 Cray Optimization

The injtial cievelopment work was performed on the four processor CQOI and v;ra.s limited to
routine compilation tasks and verification of correct operation and results. The vectorization
and parallelization passes and all optimization were disabled for the initial porting phase.
Following the initial porting phase, scalar optimization parameters were investigated to
obtain an optimal cbnﬁgura.tion in preparation for a flow analysis of the code. For the
flow analysis, the Cray utility FLOWNTRACE was used to identify code blocks that warrant
optimization. Additionally, Cray library calls corresponding to the LINPACK routines used
.in the original code were sﬁbstituted to provide better efficiency. FLOWTRACE results indicated
that several functions and subprograms were suitable for inlining (for sample FLOWTRACE
output, see Appendix B). These routines were explicitly inlined with the use of compiler
directives and the requisite oompile options. Following this work, FLOWTRACE was again used
to find that several routines compriséd the bulk of the execution time for the simulation code.

These routines were those involved in forming the Jacobian matrix, mainly:

¢ the u-momentum contribution routine umormn,

123
¢ the v-momentum routine vmbm,
» the routine for the mass-conservation contribution cont, and
¢ the temperature routine femp.

Additionally, the routine that forms and factors the preconditioner, precond, required an
appreciable amount of computation time. Following these routines in 'percenta,gé of execution
time were several utility routines, matmul - general matrix-vector multiply, mivmidd - a
banded linear equation solution routine, and eztrcv - a data extraction routine.

Following this analysis, the vectorizing phase of the compilation system was invoked.
Vectorization pioved quite effective in reducing the overall runtime of the code. Reductions
of over an order of magnitude were seen in some loops, resulting in nearly a factor of ten
speedup overall. However, in a nesied looping construct, only the innermost loops may
be vectorized. The Jacobian and pfecond.itioner formation routines contained many such
structures and continued to dominate the execution time despite vectorized inner loops.

The logical progression of this stndy suggested that the enclosing loops in these routines
should be uniformly divided and executed on maultiple processors. However, the Cray C90
series machines have an a,pprecia,ble amount of parallel overhead, attributable to the following

SOurces.

¢ Semaphore wait time. At the end of a parallel region, all threads must synchronize
prior to the main thread continuing. K the main thread finishes last, this time is zero.
However, if not, the main thread must wait (for a time that depends on the load balance

among the threads) until all child threads synchronize at the exit point.

o Extra autotasking code. Executable code is added by the autotasking mechanism to

124

create and manage the multiple threads. Some of this is executed by the master thread

prior to forking the child threads and leads to additional serial overhead.

¢ Increase in memory bank contention. If contention exists on a single processor, it will

be generally be greatly compounded with multiple CPU’s.

¢ Decrease in vector performance. If parallelism is implemented in a manner such that

the vector length is shortened or chaining is prevented, the vector efficiency is reduced.

On avera.ée, autotasking startup and executing the extra autotasking code on a dedicated

machine requires 3600 clock cycles on the C90 [3]. Appendix A details many of the challenges
of mapping an algoﬁthm to the Cray architecture for best performance, and explains the

memaory contention problem in more detail.

4.1.2 SGI Optimization

The SGI Onyx optimization process was initiated near the end of the Cray study. A quick
examination of the scalar behavior of the code using prof -pixie verified that the same

routines that required sigxﬁﬁca.ut CPU time on the Cray also required significant CPU time
on the SGL It was quickly concluded that any work to enhance parallelization on the Cray
also benefited the SGI implementation.

The SGI is a cached, superscalar superpipelined architecture in contrast to the vector-
based Cray architecture. As such, user-level vectorization was not possible on the SGI. In fact,
for most efficient use of the SGI arébjtecture, programs shouid be written to preserve data
locality rather than vector efﬁciency;- An extensive study to best match the serial behavior of
the code to the cache-based SGI was not performed. Additioﬁally, it was desirable to maintain

excellent performance with a single copy of the code executable on either architecture. Thus,

125

SGI scalar optimizations that would severely impact the Cray vector performance of the code
were avoided. However, a cursory study with the base code versus the Cray vectorized version
on the SGI showed few differences that could be attributed to efforts to better vectorize the
Cray version. Thus, this version was used “as is” on the SGL

Aside from those issues specific to vectorization, the SGI suffers from the same parallel
overhead concerns that afflict the Cray. The SGI uses a similar interleaved memory design.
However, all memory accesses are via a local processor cache. The Cray uses a crosshar
switch for memory bank access, while the SGI uses a p.roprieta.:ry bus. It is conceivable that
fewer memory contention difficulties are encountered on the SGI due to the fewer processors,

Iocal processor cache, and the slower processor speed of the machine.

4.2 Initial Results

The backward-facing step model problem with an inlet Mach number of .0025 and a Reynolds
number of 100 was selected to investigate the efficiency of the numerical solutioﬁ algorithm
described previously. Specifically, the vector/parallel aspects of this solution algt.;nrithm are
highlighted.

An HP 735/125 workstation with 36Mwords (288Mbytes) of RAM was used as the baseline
machine. The Cré.y runs were performed on an 8 processor C90 with 512Mvmrds of memory.
All runs were performed in double precision on the workstation {64 bit, 52 bit mantissa)
and single precision oﬁ the Cray (64 bit, 48 bit mantiséa.). Simulation results were identical
to machine precision (the Cray has slightly less precision than the HP in the comparison,
however this difference is not significant), and were verified for all comparisons. No attempts

were made to achieve dedicated access to either machine, they were both operating in a

126

production, multi-user mode. Little effort was devoted to create an optimized version of the
code for the HP platfqrm. In fact, ignoring Cray vectorization and autotasking directives
(that appear as comments to the HP compiler) the same version of the code was run on both
the Cray and the HP. The HP run was compiled under full optimization and employed the HP
LINPACK libraries where possible. .The single processor Cray run used the Cray LINPACK
library, inlining, and vectorized routines where pmdent {based on FLOWTRACE results and
the labor, cost, and feasibility of vectorizing various routines). The multiple CPU rua also
employed autotasking directives in order to distribute the formation of the Jacobian and the
preconditioner across the available CPU’s.

In base form, the Jacobian formation algorithm consisted of calls to four subroutines;

cont, temp, umom, and vmom. Each of these routines contained three distinct sections.

1. The first section computes the residual for the interior finite volume cells (in Q).

2. The secord region formally creates the Jacobian matrix by sweeping over the matrix

in an element by element fashion.

3. The last section initializes unused values in the Jacobian to zero, along with corre-

sponding positions in the residual array.

FLOWTRACE indicated that only the first two sections warranted parallelization. Thus, for
each of the subroutines, two parallel regions were created (8 total parallel regions executed
for each Jacobian update).

For the initia.l. runs, the additive Schwarz preconditioner formation and application tasks
were also parallelized, because these routines directly followed the Jacobian formation rou-
tines in computational cost for this size of the model problem. The formation of the precondi-

tioner was separated into two parallel sections; the first factors each of the subdomains while

127

the second performs a direct inversion of each factored subdomain followed by a solution of
the resulting system

(LUx =y, (4.1)

for x (where LU is the result of the factorization procedure).

The fc;]lowing results do not isolate the effectiveness of the parallelization of the precon-
ditioner for simplicity. The preconditioner operations add to the time required to obtain
a solution to the linear system (i.e., perform the Krylov iterations). Although execution
times are presented for the entire Linear solution process, the preconditioner is expected to

overwhelm the remaining operations for larger problem sizes.

E10)
HP 7351125

30
%)
@ s
s
@ 200
..E... ;
R
> [
n' 1000 [
O m €80 (One Proc)

! - C90 (Eight Procs)
" E—

Figure 4.1: 64 X 320 domain solution time.

Figure 4.1 illustrates the CPU time required to obtain a solution for this model problem
using a 64 x 320 grid (81,920 unknowns) with an 8 block additive Schwarz preconditioner.
The HP required 3017 sec., the €90 using a single processor needed 424 sec., and the C90
with 8 processors spent 118 sec. 1;0 obtain a converged steady-state solution. In comparison
with the baseline machine, the Cray CQO architecture clearly yields a significant performance

advantage and is a viable platform for this study.

200

inner Iteration Contribution

1 i 1 1 L |
5 L] 7 8

Number of Processors/Subdomains

2

Figure 4.2: Majority of execution time devoted to Jacobian formation and TFQMR iterations
on the C90.

Figure 4.2 illustrates the parallel performance on the C90 for two, four, and eight sub-
blocks ({mapping to an equal number of processors) for this simulation. This figure reinforces
the FLOWTRACE results that indicate that the formation of the Jacobian and performing the
inner (Krylov) iterations combrise the bulk of the execution time of the simulation. For the
two-processor case, the inner iterations require 120 of 240 total seconds for execution. The
combination of the J#cobia.n and inner iterations contribute 230 seconds of the total time

(96%). Several other interesting phenomenon are apparent from this graph.

» The Jacobian routine displays a consistent decrease in execution time as the number of

processors are increased.

¢ An increase in processors from two to four substantially decreased the inner iteration
time. However, a further increase to eight processors resuited in an increase in execution

time for this region. Recall that only the preconditioner portion of the inner iteration

time is parallel.

129

¢ As the number of processors was increased, the effect on the remaining code execution

time was negligible. Because the remaining code is serial, changes in the runtime

behavior of these routines with an increase in processors was not expected.

Linear Jacobian Total

Num. Solve Formation | CPU

of CPU Time | CPU Time | Time
Subdomains |} (% of Total) | (% of Total) | (sec.)
2 50.0 46.5 242.30

4 47.0 46.0 120.24

8 56.9 34.3 117.67

Table 4.1: Contributions towards total CPU time.

Table 4.1 presents the percentage of Cray CPU time spent forming the Jacobian and the
percentage of CPU time required to solve the linear system arising on each Newton step (the
sum of the time required to form the ﬁrecondjtioner and to perform the.TFQMR iterations)
for 2, 4, and 8 processors. This data indicates that the formation of the Jacobian and the
solution of the linear system continue to dominate tghe solution time when executed in parallel.

Figure 4.3 illustrates the convergence behavior of the Newton-TFQMR solution algorithm
for this sequence of results. Clearly, on this model problem, monotonic Newton convergence
has been achieved. This result further reinforces the selection of the Newton-Krylov-Schwarz
solution technique as a viable solution technique for numerically challenging non-linear pr;)b-
lems with a similar character to that of the model problem.

Table 4.2 illustrates the memory requirements for the sc;lution of the 64 x 320 problem
(no subdomain overlap). Memory usage for the solution is a function of the problem size,

the number of subdomains in the preconditioner, subdomain overlap (if present), and the

Elght Subdomalns
Four Subdomalns
Two Subdomains

Residual Error

Convergonce Tolerance

PP I R T T SN TN SURDY AIOY SN AU TR T T
3 . 5

Number of Newton lterations

Figure 4.3: Convergence behavior of the Newton-Krylov-Schwarz algorithm.,

decompositioﬁ strategy. The problem size dependence is easily seen; as the problem size

is increased, the Jacobian contains more cell -entries. As the Jacobian becomes larger, the
_memory required for the preconditioner increases along with the memory required to invert
each preconditioner subdomain. If the number of subdomains is increased, each subdomain
is smaller and the memory required for inversion decreases. Overlap makes the subdomains

larger, requiring more memory as overlap is increased. The larger subdomains also increase

Num. Memeory
of Required
Subdomains || (Mbytes)
2 259
4 133
8 70

Table 4.2: Memory requirements for Cray 64 x 320 simulation.

131

the amount of work performed within a parallel region while the serial sections in the re-
mainder of the code are basically unchanged; thus increasing the parallel granularity of the
code. Finally, the decomposition strategy {stripwise in tile o direction, stripwise in the y
direction, or checkerboard) changes the amount memory required for each of the subdomain
- matrices. As an example, the 8 X 1 blocking strategy (above) requires 70 Mbytes, a 1 x 8
strategy requires 510 Mbytes. From this data, it is easily seen that increasing the number of
subdomains results in higher DOPs, decreased memory requirements, and greater algerithmic
efficiency (due to a lower operation count to invert each snbdomain}). Thus, the focus of this

study on achieving a scalable solution is clearly warranted.

4.2.1 The Jacobian Algorithm

The formation of the jacobian parallelizes trivially, and exhibits excellent performance on
two and four processors (see Figure 4.4). The two-processor 'speedup is 1.94, while the
four-processor speedup is 3.96 (the ideal speedups are 2.0 and 4.0, respectively). The eight-
processor speedup is 5.42, which is notably lower than the ideal value of 8. The decrease in
parallel efficiency for the eight-processor case is most likely dué to a combination of memory
contention as the processors update the Jacobian matrix and reduced parallel granularity for
this section of the code.

Parallel granularity is an important consideration whgn mapping parallel a.lgorithnis to
a given architecture. To achieve optimal parallel performance, one should strive to maxi-
mize the time spent in paralle]l execution in proportion to the time spent in serial execution
(for a constant amount of work to be performed). Clearly, this concept will maximize the

speedup achieved within the simulation code {see Appendix A). Although this requirement

is necessary for optimal execution, it is not sufficient. If the code is constructed using many

132

small parallel regions separated by synchronization operations, barriers, or serial regions, the
overhead required to enter and leave parallel execution may overwhelm any speed increases
obtained from the parallel code sections. As such, the parallel regions must form the bulk of
the simulation operations and be “sufficiently large™ to prevent parallel overhead from seri-
ously degrading the performance of the execution. Clearly, sufficient parallel granularity is
subjective, and dependent on the implementation and design of the algorithm and the design

of the architecture of interest.

e}

Parallel Spesdup—

CPU Time (sec)

&

Parallel Efficiency (%)= |

Y

Paralle! Speedup/Efficiency

P A
2

& []
Number of Processors

Figure 4.4: Jacobian CPU time, speetiup, and efficiency on the C90.

Num. Serial | Parallel
of Cru CPU Parallel
Sub- Time | Time | Parallel | Efficiency
domains || (sec.) | (sec.) | Speedup (%)
2 198.48 | 121.35 1.64 82
4 13049 | 56.56 2.31 58
8 196,82 | 66.94 2.94 37

Table 4.3: Parallel speedup of the linear solution routine on the C90.

133
4.2.2 The Preconditioner

The roufines that form and apply the preconditioner also parallelize trivially. Parallel
speedups of 1.64, 2.31, and 2.94 were obtained for the linear solution routine on two, four,
and eight processors, respectively (see Table 4.3). Recall that the preconditioner formulation
contributes to the time required in the linear solution routine (in the 8 CPU parallel case,
only 14% of the linear solution time is spent in forming the preconditioner). Unfortunately,
for the problem size considered, most of the remainder of this routine is serial. The large dif-
ferences in pa,ra]lel efficiency between the ideal and actual case are attributed to the decrease

in global preconditioner effectiveness as the number of subdomains (processors) increases.

Num. Newton | Avg. TFQMR
Subdomains || Iterations Tterations
2 7 16
4 6 32
8 7 70

Table 4.4: Solution algorithm performance data.

Table 4.4 iltustrates the performa,n.ce of the solution algorithm for the different subdomain
blocking strategies employed; The number of Newton iterations is independent of the number
of subdomains chosen. The discrepancy between 7 iterations for the two and eight block case
and 6 for the four block case is due to the seléctiqn of the Newton convergence criteria. For
this problem, the convergence criteria in conjunction with slightly different inner iteration
results between the runs a.]low;ed the four block case to cbnverge in only 6 iterations. This
selection of the criteria was not planned; with a discrete process, such as iteration using a
continuous convergence criterion, it is always possible to encounter situations where skight

(often very slight) differences in the solution path can result in convergence behavior that

134

is on the “ragged edge” between two iteration counts. In this case, the convergence criteria

could be tightened slightly to result in 7 iterations for all runs, or loosened slightly resulting

* in a aniform 6 iterations.

This table also illustrates an interesting trend of an increase in the number of TFQMR
jterations with an increase in the number of subdomains. The increased number of iterations
results from the lack of coupling information between subdomains in the global precondi-
tioner. Thus, the study is presented with a dilemma; a large number of subdomains is
ﬂesired from an operation count standpoint and for mapping to a large number of processors,
but results in the undesirable eﬁ'éct of increasing the number of Krylov iterations to achieve
convergence. To better illustrate this problem, let thé inner iteration time 7 be a combina-~
tion of the time s required to execute the serial code in the Krylov algorithm and the time p

required to execute the parallel preconditioner on a single processor, such that
T=s+p. (4.2)

Furthermore, assume that the serial code time is a constant (does not vary with the number
of subdomains or processors}), that the number of Krylov iterations are directly proportional

to the number of subdomains (and processors) n, and that 100% parallel efficiency can be

achieved. Then, 7,, the parallel execution time is
b
fp=nr=n(s+;;)=ns+p. (4.3)

This result indicates that even if the amount of serial code in the Krylov solution routine

was driven to zero, parallelization of the preconditioner is not a feasible method of reducing

135

the execution time of the code. Fortunately, this result is overly pessimistic; it ignores
algorithmic efficiency improvements due to the inversion of progressively smaller subdomains
as the number of subdomains increases. Furthermore, the results in Table.4.3 indicate that
parallelization of the preconditioner does indeed reduce the inner iteration time, for up to at
least to eight subdomains. One may quickly conclude that Equation 4.3 does not capture the
true complexity of the inner iteration algorithm. However, this equation does suggest several

topics that should be considered.

¢ Traditional technriques used to enhance parallelism (maximizing granularity, minimizing

serial code, etc.} may not yield the desired results and/or may not perform as expected.

¢ Expectations of scalability of the inner iteration routine to large numbers of processors
may not be warranted. In fact, these results suggest that there is a point of maximum
efficiency corresponding to n processors (possibly eight prbcessors in this case). Adding
Processors bgyond this figure may not result in a further decrease in inner iteration time

and could likely increase execution time.

¢ The increase in Krylov iterations as the number of subdomains is increased will prevent
a truly scalable linear solution routine. Under ideal conditions, if the number of Krylov
iterations did not increase with the number of subdomains, scalability could be achieved.
However, it may be possible to obtain useful performance increases if the number of

iterations increases at a slower rate than the number of subdomains

k= kn k<1, (4.4)

where x is the number of Krylov iterations, n is the number of subdomains, and %

136

is a proportionality function. Efforts should be directed at decreasing the value of &
initially, followed by an attempt to increase the parallel efficiency of the preconditioner
formation, and finally by an effort to decrease the serial component of the remaining

inner iteration routines.
¢ For a given simulation, the value of k¥ in Equation 4.4 will likely be problem specific.

e Speedup concerns aside, a secondary benefit of increasing the number of subdomains
may be realized on distributed memory architectures. As the bulk of the memory re-
quired in a simulation is confined to the preconditioner, distributing this requirement to
multiple processors in a distributed memory configuration dra.ma.i:icaﬂy decreases the
memory required on the “master” process. Additionally, the number of subdomains
(processors) employed for a solution could be determined by the memory requirements
of the solution; large memory requirements could be spread over many processors en-
abling solution of ﬁmblems-too large to be attempted on a single processor or a shared-

memory machine.

Finally, as a potential mitiga.ﬁng factor to large values of &, note that the use of sub-
domain overlap can be used to improve the effectiveness of the global preconditioner as the
. number of subdomains increases, because more of the Jacobian data is captured in each of
the subdomains. However, as discussed previously, the larger subdomains associated with
increased overlap result in higher operation counts for the subdomain inversion process and
increased memory re;quirement;s for the solution algorithm. Lastly, the use of subdomain
overlap decreases the parallelism of the additive Schwa.rz method, because access to mem-
ory must be serialized when the global preconditioner is updated with inforﬁa.tion from the

subdomains in the overlap areas. Other alternatives that may show promise are listed below.

137

¢ The use of a “coarse grain/fine grain preconditioner.” A “coarse grain” solution is
employed to encapsulate the communication between the nearly decoupled local sub-

domains [30].

¢ Use of a different preconditioning strategy such as multiplicative Schwarz may provide

better inner iteration behavior as the number of subdomains are increased.

» Use of the matrix-free technique may allow an amortization of the preconditioner and

Jacobian formation penalty over several Newton iterations.

The coarse grain/fine grain approach is based on adding additional information to the

additive Schwarz expression

P
Pil=Jt4--43,0 =337 _ (4.5)

i=1

or expressing the global preconditioner space in terms of the subspaces (subdomains)
V=V+Vo+---+ V. ' (4.6)

To encapsulate the coarse grid information on the subspace V,, this subspace is simply added
to the above expression

V=V, +Vi+Vat -+Va (4.7)

The space V, contains the information concerning the communication of information between
the remaining subspaces Vi,..., V.. To construct this information, a coarse grid operator is
developed based on the governing equations and satisfying the boundary conditions on 0€2.

This approach is very effective at minimizing the degradation of the solution as the number

Num. |[| Serial | Parallel
of CPU | CPU ' Paraliel
Sub- Time | Time | Parallel | Efficiency
domains || (sec.) | (sec.) | Speedup (%)
2x1 426 | 242 1.8 88
4x1 326 120 2.7 68
8x1 424 118 3.6 45

Table 4.5: Qverall code performance.

of subdozﬁa.ins is increased for certain problems [31, 32, 74, 75]. However, for the governing
system used in this study, a suitable coarse grid operator has yet to be developed (this general
eoncept is currently an active research topic).

The investigation of multiplicative Schwarz preconditioning will be performed in the fol-
lowing chapter. This technigue ‘shows prm;nise in decreasing the Krylov iterations required
for convergence [1].

Finally, matrix-free techniques do not directly impact the precondjtioner.(and linear so-
lution) scalability. However, these techniques may reduce the frequency of preconditioner
formation by the use of one preconditioner (a “stale” preconditioner) for several Newton
iterations. If the matrix-free tecim.ique is scalable and the preconditioner formation may be
relaxed sufficiently, useful runtime efficiency improvements may be obtained.

In summary, Table 4.5 illustrates the overall solution performance of the code on the
C90 for 2, 4, and 8 processors, respectively. Clearly, excellent performance is achieved using
two processors but the parallel efficiency quickly decreases as the number of processors is
increased. This behavior is a.ttributed to poor granularity and memory contention in the
Jacobian routine, and the increase in Krylov iterations with subdomains discussed earlier.
Additionally, granularity and contention problems may also exist with the preconditioner

routines. The relative importance of these potential problems requires further study.

139

4.3 Jacobian Granularity and Contention

It was previously noted that the Jacobian formation routine is “embarrassingly” parallel,
leading to a concern about the low parallel speedup on 8 Cray processors (5.4). In an
attempt to investigate this result, the J#cobian routine was re-structured to maximize the
parallel granmlarity by encapsulating all of the Jacobian formation routine in a single parallel
loop (the base routine had three parallel regions). Additionally, an attempt was made to
decrease memory contention in the routine by changh}g the location and spacing of arrays
relative to the memory banks. These efforts resulted in the overall code performance indicated
in Table 46 In this table, the Tow labeled 8 X 1 is the previous data for the 8 block case,

the 8 X 1* row is an identical run using the new Jacobian routine.

Num. || Serial { Parallel
of CPU | CPU - Parallel
Sub- Time | Time | Parallel | Efficiency
domains [} (sec.) | (sec.) | Speedup (%)
8x1 424 118 3.6 45
8x1* 294 | 113 2.6 33

Table 4.6: Overall performance.

Table 4.6 clearly indica.tés: that the reformulated Jacobian reduces the execution time of
the code. In fact, a 30% reduction in serial time was observed. The parallel version was
also faster, but the 4% dec:rea,sé was less than expected, in fact the opposite (large parallel
reduction, small or zero serial reduction) was anticipated. To better understand this result,
Table 4.7 isolates just the J g.cobian formation routine performance.

The new Jacobian reduced execution time by 55% and the parallel time by 45%. As
the serial performance increased by a greater pércenta,ge than the parallel performance, the

speedup decreased from 5.5 to 4.5. Recall that the serial runs on the C90 were using full

Num. " Serial | Parallel
of Jacobian | Jacobian Parallel
Sub- Time Time Parallel | Efficiency
domains || (sec.) (sec.}) | Speedup (%)
8x1 219 40 5.5 68
g§x1" 99 22 4.5 56

Table 4.7: New Jacobian performance.

149

vectorization. The parallel runs also used full vectorization and in addition, autotasking.
Because the amoﬁnt, type, and ordering of the work performed was not changed from the
original routine, the increase in serial performance is attributed to decreased memory con-
tention and increased vectorization performance due to the increased granularity. The parallel
performance also increased due to these efforts, however, the memory contention caused by

the multiple processors lessened the rate of increase in comparison to the serial results.

Num. Serial | Parallel
of TFQMR | TFQMR Parallel
Sub- Time Time Parallel | Efficiency
domains [(sec.) (sec.) | Speedup (%)
8x1 197 67 2.9 37
gx1 187 83 2.3 28

Table 4.8: TFQMR routine performance.

For completeness, the effect of the new Jacobian algorithm on the TFQMR iteration
routine is shown in Table 4.8. Because this algorithm was not modified for this Jacobian
study, one would expect the results here to be identical. This was not the case. The serial
results improved by 5% and the parallel results were 24% slower with the new Jacobian
routine. This may also be explained by considering mémo_ry conteﬁtion. For the serial run,
decreasing contention in the Jacobian routine also decreased the contention in the TFQMR

routine (some of the newly spaced arrays used in the Jacobian are also referenced in the

Num. Serial Parallel
of Precond. | Precond. Parallel
Sub- Time Time Paralle] | Efficiency
domains {| (sec.) (sec.) | Speedup (%)
8x1* 50 15 3.3 42

141

Table 4.9: Speedup of the additive Schwarz preconditioner formation routine.

TFQMR routine). However, in parallel mode, the new Jacobian access pattern increased the
memory contention in the TFQMR routine.

Table 4.9 isolates the parallel preconditioner factorization from the TFQMR routine.
From these results, the preconditioner factoriza.tioﬁ comprises 27% of the serial time and
18% of the parallel TFQMR algorithm for this problem size. Again, the speedup for this
routine on 8 processors is not ideal. This section of code cannot be grain-packed further
without paralielization of sections of the TFQMR algorithm itself. As discussed eazlier, it is
unlikely that parallelizing the TFQMR algorithm would be effective without first solving the
preconditioner degradation problem. Furthermore, memory contention is alse a concern in
this routine.

The new Jacobian routine is near optimal in tenns“of parallel (and vector) granularity.
It does not appear likely that further granularity improvements can be achieved at least
for this problem size (recall that increasing problem size increases the parallel granularity
inside the Jacobian algorithm as more operations are performed in parallel). Additioﬁa]ly,
the complex memory access pattern of the Jacobian formation routine makes further gains in
reducing memory contention by simple modifications of the FORTRAN common blocks in the
code unlikely. Although incremental improvements are possible, a.pproé.ching the theoretical

speedup figure of eight using 8 processors is probably not feasible. Further work along this

path has not resulted in any significant improvement in the 4.5 speedup noted in Table 4.7.

142

Furthermore, the remainder of the code appears sensitive to memory access optimization
in the Jacobian routine. Clearly, the scalability of these methods with the current memory
structure on the Cray architecture appears unlikely (at this problem size). The best approach
would be a complete re-work of the memory structures and perhaps the code for the Jacobian
formation that may be specific to the Cray architecture. This approach is considered later
iﬁ this chapter.

The use of local processor data caching mé.y also be an attractive method to reduce the
penalty of memory contention. If the bulk of memory accesses could be directed at a lo-

cal cache instead of a main memory pool, contention among processers for data items on a

common bank may be significantly reduced. A god_d caching scheme would also implement

& virtual memory mapping that would transparently locate often-used data in a particular
processor cache. Given this scheme, less expensive DRAM memeory could possibly be em-
ployed without a significant pe:forman;:e' degradation, because the majority of accesses will
be to cache instead of main memory. Unfortunately, a Cray-class machine implementing this
arrangement is not available.

To consider this approach, an SGI Onyx multiprocessor was used to investigate the fea-
sibility of implementing the Newton-Krylov-Schwarz scheme on a cache-based architecture.

The SGI Onyx differs in many ways from the Cray C80. They are both shared-memory ar-
chitectures, but they differ in processor speed and performance, vector versus superpipelined
superscalar design, number of available processors, and memory access methods. Due to these
many differences, it is impossible to isolate any performance variations to just the cached ver-
sus banked memory design. Based on algorithm scalability, however, it may be possible to
state that the Newton-Krylov-Schwarz method employed in this study maps better to a given

architecture.

143

Num. Newton | Avg. TFQMR
Subdomains || Iterations Iterations
2 7 11
4 6 24

Table 4.10: 32 x 160 Onyx simulation iteration behavior.

To perform this analysis, the code employing the coa.rse-gra.ine(i Jacobian routine was ex-
amined. All memory access optimization developed for the Cray was replaced by a straight-
forward si‘:ora,ge mode] that optimizes the use of available memory. As the SGI was limited
in memory (1Gbyte), little leeway existea for memory access optimization. Additionally, be-
cause the memory access methods varied greatly betweén the Cray and 5GI, techniques that
optimized access on the Cray would likely have a reverse effect on the SGI. Finally, due to
the rednced number of processors and slower execution speed of the SGI, a smaller problem
(32 x 160) with only 4 subdomains was initially considered.

For the 32 x 160 simulation on the Onyx, again the J #cobian formation and TFQMR
. iteration routines comprised the bulk of the execution time. The Jacobian and preconditioner
formation and application algorithms were pa.rallélized. Unlike for the C90 case, a benefit was
also gained by the pa.ra]ieliza.tion of the algorithm that computes the matrix-vector products
(this algorithm also contributes to the TFQMR iteration time). Two versions of this matrix-
vector product algorithm were used in this study; a vector version with data dependencies that
inhibited parallelization, and a parallel version with a branch that inhibited vectorization.
The parallel version provided much better perfdrma.nce in parallel on the SGI, the vector
version provided nearly a 10-fold performance improvement versus a 6-fold improvement of
the paralle]l version on 8 processors on the C90. As such, the most appropriate version for

the machine in question was employed.

144

Table 4.10 illustrates the iteration behavior of the model problem on the Onyx. This table
confirms the nearly identical algorithm behavior on the machines; the increase in TFGMR
iterations with subdomains may be noted along with the difference in Newton iterations be-
tween two and four subdomains due to the convergence criteria. Additionally, fewer TFQMR
iterations are required on the Onyx. This difference is not due to machine differences, but
to the different problem sizes run on the machines (the number of iterations and the rate of

increase is likely problem specific).

Num. || Serial | Parallel
of CPU | CPU Parallel
Sub- Time { Time | Parallel | Efficiency
domains || (sec.) | (sec.) [Speedup (%)
2x1 422 188 2.2 112
4x1 375 118 3.2 79

Table 4.11: SGI Onyx overall performance.

Table 4.11 displays the initia.l performance obtained on the SGI. The two- and four-
processor speedup values are 2.2 and 3.2, respectively. Recall that these results are for the
overall code execution, and that a significant portion of the solution consists of serial code.
Furthermore, the superlinear 2.2 speedup on two processors is noteworthy. Clearly, caching
of the working set of data in each of the two processor caches is suiﬁf:ient to overwhelm
parallel overhead, contention, and any Amdahl’s law effect for this case, and reéults in an
improved cache “hit ratio” over the single-processor case. Appendix A further explains how
caching may result in larger than expected performance increases when the cache-size and
problem-size combine for optimal performance.

In an effort to further examine the performance degradation in the four-processor case,

cach parallel section of the code was examined in further detail, beginning with the Jacobian

Num. Serial Parallel
of Jacobian | Jacobian | Parallel
Sub- Time Time Parallel | Efficiency
domains || (sec.) (sec.) | Speedup (%)
2x1 -96 42 2.3 114
4x1 77 21 3.7 92

formation routine (Table 4.12). For the Jacobian routine, superlinear speedup (2.3) was seen

for the two-processor case, and a respectable speedup of 3.7 was seen for the four-processor

Table 4.12: SGI Onyx Jacobian performance.

trial.
Num. Serial Parallel
of TFQMR | TFQMR Parallel
Sub- Time Time Parallel | Efficiency
domains || (sec.) (sec.) | Speedup (%)
2x1 321 141 2.3 114
4x1 294 92 3.2 80

Table 4.13: SGI Onyx TFQMR performance.

Finally, because the Jacobian formation and TFQMR solution routines comprise the bulk
of the execution time of the code, the TFQMR routine was further examined (Table 4.13).
Unlike the Jacobian routine, much of the TFQMR routine remains serial (only the precon-

ditioner formation, application, and matrix-vector multiply routines are parallel). Again, it

Num. ~ Serial Parallel
of Precond. | Precond. Parallel
Sub- Time Time Parallel | Efficiency
domains || (sec.) {sec.) | Speedup (%)
2x 1 94 42 2.2 112
4x1 30 8 3.8 94

Table 4.14:

Speedup of the additive Schwarz preconditioher formation routine.

146

is noteworthy that even with this handicap, a parallel speedup of 2.3 was achieved in the
TFQMR routine on two processors.

The superlinear parallel speedups in the parallel sections of the code using two processors

result in an overail superlinear speedup for the simulation. However, this effect does not scale

to four processors, This behavior may be due to several factors.

¢ Four processors may increase bus contention to the point that any superlinear effects

disappear.

o Parallel overhead with a larger number of processors may overwhelm any improvements

due to an increase in cache hit efficiency.

» For the problem size selected, the cache hit efficiency for the two-processor case may
be near optimal. Adding another two processors (and caches) in this case may not
improve the hit ratio sufficiently to overcome the additional overhead of two additional

Processors.

To eliminate the last item from consideration, one may scale the problem size to reduce the
cache hit ratio for the iwo—processor case. As an initial attempt, the simulation grid was

doubled in each direction, forming a 64 x 320 grid (the identical problem run on the Cray).

Mode

Total

Time .

(sec.)

Jacobian
Portion

(sec.)

TFQMR
Portion

(sec.)

Precond.
Portion

(sec.)

Serial
Parallel

3426
1212

488
169

2018
1083

341
92

Speed-up

2.8

4.5

2.7

3.7

Table 4.15: 64 X 320 Onyx Ran (4 Blocks).

Table 4.15 presents the execution data for this larger problem. The Jacobian routine

147

indeed exhibited a superlinear speedup on four processors. However, an overall superlinear
improvement was not seen, and neither the TFQMR ﬁor the preconditioner formation routines
were overly efficient. Recall that the granularity in the Jacobian routine is near optimal. This
is not the case for the TFQMR routine and the preconditioner formation routine. Further
work 1o increase the granularity in these routines (and minimize the serial portion of the
TFQMR routine) may result in the achievement of superlinear speedups in these routines and.
in the overall simulation for the four-processor runs. However, it is not clear that superlinear
effects will scale beyond two {or four) processors without furtﬁer data.

The apparent improvement in scala'bﬂity of the SGI over the C90 architecture is primarily
due to cache effects. However, this benefit could disappear as the number of processors are
increased. Note that when comparing the 64 X 320 problem on four processbrs, the Cray is
an order of magnitude faster.

Further work on the Jacobian algorithm is probably not warranted. On the 32 x 160
problem (4 block parallel}, the Jacobian amounts to 18% of the total execution time. This
decreases to 9% on the larger problem. The TFQMR routine amounts to 89% of the total
execution time on the larger problem. Clearly, as problem size increases further, the Krylov
algorithm will dominate. This data suggests that further efforts should be focused om the
scalability of the Krylov solution. Given a solution to the increase in inner iterations that
accompanies an increase in the number of subdomains, parallelization of the TFQMR routine
may be warranted.

Finally, Table 4.16 shows the memory requirements for the smaller SGI run. A similar
decrease in the memory requirements with an increase in the number of sui)domains is evident.

The reﬁuiremenfs for the 64 x 320 SGI run are identical to the regquirements presented for

the Cray data (Table 4.2}, because the problems are identical.

Num. Memory
of Required
Subdomains {| (Mbytes)
2 33
4 17

Table 4.16: Memory requirements for SGI 32 x 160 simnulation.

Subdomain 1.3

Subdemain 2,4

Figure 4.5: Partitioned Jacobian matrix, four subdomains with overlap.

4.4 Subdomain Overlap with Additive Schwarz

As an initial effort to investigate methods to mitigate the increase in Krylov iterations as
the number of subdomains is increased, the additive Schwarz method employing subdomain
overlap was examined. Recall that subdomain overlap includes a portion of the data from

the Jacobian matrix adjacent to each of the subdomain regions in an attempt to increase the

quality of the preconditioner by providing a better approximation to the Jacobian prior to

the inversion of the subdomains (Figure 4.5). -

Table 4.17 compares the effects of no subdomain overlap versus an 8 cell overlap {for each

Num. Avg. TFQMR Iterations
Subdomains || 0 cell overlap { 8 cell overlap
2 11 7
4 24 14
8 51 23
16 108 32

149

Table 4.17: 32 x 160 Onyx simulation iteration behavior comparing overlap values.

100

Krylov Heratlons

2 4 -]] 10 t2 14 16
Number ¢f Subdomains

Figure 4.6: Plot of overlap behavior versus number of subdomains.

8 cell subdomain, the upper and lower 4 ce]ls' .a.re solved as part of the neighboring domains)
on a 32 X 160 run. Eight cells of subdomain overlap using additive Schwarz substantially
decreases the number of TFQMR itera.tﬁons for a given .number of subdomains. Figure 4.6
is a plot of the data in Table 4.17. It is clear that there is a reduction in the slope of the
increase over the zero overlap case. Furthermore, the slope of this line appears to decrease
further as the ﬁumber of subdomains is increased.

Table 4.18 illustrates the effect of overlap on parallel CPU time for a constant four sub-

domains on the 32 x 160 Onyx run. Recall that overlap requires serjalization when the global

Overlap || Newton | Avg. TFQMR | Para. CPU
(cells) || Iterations | Tterations Time

4 8 19 119

8 6 14 117

12 6 - 13 135

16 6 11 140

Table 4.18: Additive Schwarz, 4 domain ca.se,. showing effect of overlap on TFQMR iterations
and CPU time. '

preconditioner is assembled, resulting in the slightly poorer performance for all these runs
(this result is clear when the 119 sec. 4 cell overlap run is compared to the 118 sec. run with
no overlap). From the table, the minimum runtime is achieved with an 8 cell overlap. Over-
lap did not appear to significantly decrease the parallel CPU time. As overlap is increased
beyond 8 cells, the CPU time increases as the solution on each subdomain approaches a direct
solve of the entire Jacobian (from Figure 4.5, it is apparent that as each subdomain increases

in size, it contains more of the Jacobian data).

Total | Jacobian | TFQMR. | Precond.
Time | Portion | Portion | Portion
Mode (sec.) | (sec.) {sec.) {sec.)

Serial 364 77 281 62
Parallel 117 21 91 18
Speed-up || 3.1 3.7 3.1 34

Table 4.19: Speedup values for 8 cell overlap problem.

Finally, Table 4.19 illustrates the speedup figures for the above 8 cell overlap run using
four subdomains. Contrasting this data with Tables 4.11,4.12, 4.13, and 4.14, overlap appears
to increase the serial performance of the TFQMR algorithm to a greater extent than for the
paralle] performance. The speedup in this routine drops from 3.2 to 3.1, which decreases the

overall speedup from 3.2 to 3.1. Further, the speedup decreases from 3.8 to 3.4 in the Schwarz

151

preconditioner formation routine. Considering speedup values alone, it does not appear that

overlap enhances the parallel scalability of the method, at least with this limited data.

Num. Memozry
of Overlap || Reguired
Subdomains | (cells) || (Mbytes)

2 0 33

4 0 17

2 4 46

4 4 32

2 8 61

4 8 48

2 12 78

4 12 72

2 16 97

4 16 98

Table 4.20: Memory requirements for SGI 32 x 160 simulation with various overlap values.

Table 4.20 presents the memory requirements for various levels of subdomain overlap on
the 32 x 160 problem. Clearly, even small values of overlap significantly increase the memory
requirements over the non-overlap case (Table 4.16). For example, on the 4 subdomain
‘problem, eight cells of overlap increase the memory requirements from 17 Mbytes to 48
Mbytes. Furthermore, increasing overlap beyond a certain extent erases the advantage of
a reduction in memory requirements with an increase in the number of subdomains. This
is expected. Once the overlap value approaches the condition where the entire Jacobian is
contained in each subdomain, the solution memory requirements wiil approach a value equal
to the number of subdomains multiplied by the amount of memory required for a direct
Jacobian inversion. |

From this data, it appears that while subdomain overlap is effective in reducing the

number of TFQMR iterations, it is only minimally effective in reducing runtime. However,

it may be possible to compensate for the increased work performed in the subdomain solves

152

Overlap || Newton | Avg. TFQMR | Para. CPU
(cells) || Iterations { Iterations Time
4 7 125 273
8 7 105 267
12 6 68 202
16 7 59 238

Table 4.21: Additive Schwarz, 16 domain case, showing effect of overlap on TFQMR, iterations
and CPU time for a 96 x 480 simulation.

by increasing the number of subdomains, provided the TFQMR iteration growth does not
overwhelm any runtime improvements. Unfortunately, this effect cannot be studied on the
Onyx due to the limit of four prooeséors (the local machine had only a total of four processors
installed). Furthermore, the memory demands of an overlap solution appear quite severe for
even small values of overlap. Because many moderate to large simulations may be memory
limited, employing overlap may not be an option. For the problem size considered, overlap
does not provide any significant advantages on the four processor SGI architecture.

A 16 processor Cray C90 was used for the overlap study employing greater than four
subdomains. Initially, a 16 processor parallel run was analyzed on the machine to obtain
algorithm scalability data similar to that shown in Table 4.18 (see Table 4.21). Due to the
superior performance of the Cray and the expected overhead in sca]iné to 16 processors, the
problem discretization was increased to 96 X 480. Figure 4.7 shows that, for this problem
size, subdomain overlap again decreases the number of TFQMR. iterations. The decrease in
required iterations is guite substantial. For example, a comparison of the two tables reveals
that with 12 cells of overlap on the 16 block problem, 59 iterations are required versus 70
for the 8 block case with no overlap. Provided the increase of subdomain size with overiap
may be mitigated by increasing the number of subdomains, it may be possible to achieve

reasonable scalability for the overall solution.

153

-

o

o
1

-

™

o
1

o
(=]
L]

80 |-

Keylay fterations

&0 [

preeeerdloin J
E & 10 12 14 16
Number of Subdomains

wl

20'...|....|.,,.|A.

Figure 4.7: Plot of overlap b.eha,_vior versus number of subdomains for Cray 96 x 480 simula-
tion. '

Total | Jacobian | TFQMR | Precond.
Time | Portion | Portion | Portion
Mode || (sec.) | (sec.) (sec.) (sec.)
Serial || 888 217 645 231
Parallel 194 28 - 141 31
Speed-up || 4.6 7.8 4.6 7.5

Table 4.22: Speedup values for 12 cell overlap, 96 x 480 problem using 8 processors.

Table 4.22 and Table 4.23 illustrate the actual runtime performance on 8 and 16 C90
processors, respectively. These tables show a noticeable performance gain over the earlier
Cray data (at least in the Jacobian and preconditioner algorithms), however, several changes

in the simulation were made between the two datasets.

s The ﬁara]lel granularity in each of the parallel sections of the code was increased sub-

stantially by scaling the problem to 96 x 480 over the previous 64 X 320 simulation.

¢ Dynamic memory allocation was added to the code. Any arrays involved in the pre-

http://Subdom.int

154

Total | Jacobian | TFQMR | Precond.
Time | Portion | Portion | Portion
Mode [(sec.) | (sec.) (sec.) (sec.)
Serial 993 186 777 216
Parallel 202 13 159 16
Speed-up | 4.9 14.3 4.9 13.5

Table 4.23: Speedup values for 12 cell overlap, 96 x 480 problem using 16 processors.

conditioner were removed from the common data structure and dynamically allocated

via malloc{) in the main program.

¢ These results employ subdomain overlap and attempt to mitigate the increase in sub-
domain complexity by employing more subdomains, thus increasing the degree of par-

allelism of the preconditioner and Jacobian routines.

Clearly, these changes significantly enhance the performance of both the Jacobian and
preconditioner mutinés. In fact, these two algorithms scale quite nicely, at least to 16 proces-
sors. The overall simulation performance does not reflect this increased efficiency, however.
For example, a speedup of only 4.9 was achieved on 16 processors. Also noteworthy is the
fact that the eight-processor run provided a minimum runtime for this problem (194 sec.
versus 202 sec. for the 16 processor-case). From Table 4.23, the serial portion of the TFQMR
time dominates the overall solution performance (159 sec. - 16 sec. = 143 sec. of the total 262
sec. runtime). The overall code performance and overall scalability are not likely to improve
further without increasing the parallelisin in the TFQMR routine.

To exa.mjne. the potential of a parallel TFQMR routine with this problem, a.ssﬁme a
speedup of 14 could be attained. This figure results in an overall runtime of approximately
08.5 sec. on 16 processors, all else being equal. A similar exercise on the eight-processor

solution results in 139 sec. for a TFQMR speedup of 7.5. For this scenario, doubling the

155

number of processors results in a factor of 1.4 (iecrease in runtime. From this analysis, it is
obvious that parallelization of the TFQMR routine will not likely provide true overall solution
scalability from eight to 16 processors. The lﬁprocessor result would, however, result in the
minimal execution time seen thus far on this problem.

From these results, the benefits of subdomain cverlap a.ré apparent. The numBer of
TFQMR iterations are drastically reduced using this technique. The reduction appears to
allow an increase in sabdomains to partially compensate for the additional work required in
each subdomain inversion, leading to an increased degree of parallelism. The combination
of overlap, a larger simulation, and a new memory structure clearly resulted in scalability
of the Jacobian and preconditioner algorithms on the Cray architecture. However, even
assuming that the TFQMR algorithm could bg parallelized with the efficiencies denoted
above, overall sc'ala,bility cannot not be achieved due to the remaining increase in TFQMR

iterations between eight and 16 subdomains.

Problem || Overlap | No-overlap
Size (Mbytes) | (Mbytes)
96 x 480 f| 1639 122

Table 4.24: Memory requirements of 12 cell subdomain overlap on 96 X 480 16 domain
problem.

There is one large drawback to an overlap scheme; the greatly increased memoi:y require-
ments, Tabie 4.24 indicates the memory requirements of the above problem, both with and
ﬁithout overlap. The order of magnitude increase in memory requirements for this problem
is clearly an unacceptable tradeoff for solution scalability. This example problem (96 x 480)

is still quite small from a simulation standpoint, yet 1.6 Gbytes of memory are required

for a scalable solution. Very few circumstances can be envisioned where these extreme re-

156

quirements could be accommodated on available hardware for a realistic three-dimensional

simulation.

4.5 Summary

This chapter on the additive Schwarz preconditioner began with an overview of the mapping
of a code employing the additive Schwarz scheme onto the two architectures of interest; 2
Cray C90 and SGI Challenge multiprocessor. Following this discussion, results were compared
“with a baseline HP platform to illustrate that significant performance increases were possible
with the use of 2 parallel supercomputer. Additionally, the performance of the base code was
analyzed to focus the parallel (and vector in the case of the C90) optimization effort.

It was discovered that the Jacobian and preconditioner routines indeed warranted further
study. Furthermore, the preconditioner and | Krylov iterations appeared to dominate the
comiauta.tion time as the problem size was increased. For small problems, the C90 did not
provide outstanding results due to low parallel granularity in the parallel sections of the code
and problems with memory contention that could ‘not be easily overcome without significant
code changes. Additionally, as the number of subdomains (processors) were increased, the
increase in Krylov iterations due to a reduction in preconditioner effectiveness quickly limited
the overall efficiency of the code.

The Onyx machine appeared to perform significantly better on the smaller problems due
to cache effects. However, this could not be verified beyond four processors on the machine
available for this study. Reasonable scal;abi].ity of the algorithms was seen on both architec-
tures if the number of processors was limited to four. This result should be quite encouraging

to users that are limited to inexpensive hardware or provided with limited resources. It is

157

indeed possible to achieve worthwhile reductions in simulation runtime on workstation class
shared-memory multiprocessors using the additive Schwarz preconditioner.

For those applications demanding scalability beyond four processors, the increase in
Krylov iterations driven by preconditioner degradation was addressed. Severai options were
discussed and subdomain overlap was studied in detail. For smaller problems on the Onyx,
overlap significantly reduced preconditioner degradation as the number of subdomains was
increased. However, due to the increase in the number of subdomain operations, the runtime
of the simulation was not improved significantly. A hypothesis was suggested concluding
that it may be possible to increase the number of subdomains (and processors) to mitigate
the increase in operations, allowing overlap fo check the increase in Krylov iterations. A
larger study employing a 16 processor Cray was performed to examine this possibility. Addi-
tionally, the memory structures in the code were re—woﬂ:ed and dynamic memory allocation
was employed for convenience. This larger study confirmed that scalability of the Jacobian
and preconditioner algorithms had been achieved. However, an overall scalability was not
observed, and it was argued that even with a i)axaﬂel Krylov solve, true overall scalabil-
ity would remain elusive. This success was further diminished due to the extreme memory
' requirements of the overiapped subdomains and the necessity of parallelizing the Krylov
algorithm to approach scalability of the overall solution procedure.

With these results, it appears unlikely that a simple Newton-Krylov procedure using
additive Schwarz preconditioning as outlined in this study will result in a truly scalable
parallel solution algorithm within reasonable memory bounds. Of the options presented
previously, neglecting the use of a coarse grid operator (a possible but premature technique

to reduce the Krylov iteration increase with the number of subdomains), the following two

topics remain:

1. multiplicative Schwarz preconditioning, and
2. matrix-free techriques employing' pseudo-transient relaxation.

The following chapters discuss these two methods in detail.

159

Chapter 5

The Multiplicative Schwarz

Preconditioner

The multiplicative Schwarz preconditioner was examined as a possible remedy for the in-
crease in Krylov iterations due to a degradation in the global precﬁnditionez as the number
of subdomains in the simulation is increased. Previous work by McHugh [1] suggests that the
multip]iﬁa.tive Schwarz preconditioning technique results in a higher-quality global precon-
ditioner than the additive method in h.a,se, ﬁon—overlapping form. Additionally, the overlap
version of the technique also appears superior to the additive algorithm, at least for the val-
ues of cell overlap studied. However, the multiplicative algorithm results in identical memory
requirements to the additive routine for comparable overlap values; thus overlap will again
~ prove intractable due to its memory requirements.

The implementation of a parallel multiplicative Schwarz method followed the additive
Schwarz process detailed in the preceding chapter. In fact, thé simulation code was structured

such that one may select the desired preconditioner via an input value. As such, the code

160

is largely unchanged from the version used to obtain the previous results; only the routines
specific to the differences betwéen the additive and multiplicative algorithms are distinct.

- The major structural difference between the two algorithms is the degree of parallelism
inherent in the preconditioner. Data dependencies in the base multiplicative Schwarz algo-
rithm prohibit the direct paralielization that was employed in tile additive form. Recall that

w = P;'v is computed by

vi = I
v = Vima+ I v=Tv;y), forj=2,...,n (5.1}

W =V,

and 7 corresponds to the total number of subdomains employed in the preconditioner (see
Section 3.3.2). It is clear that the factor v; is dependent on the formation of the term v;_;.

If a coloring scheme
Color{(w;) = min{k > 0| k # Coler(w;),Vw; € Adj{w:)}, {(5.2)

is employed to renumber the subdomains in the solution, it is possible to arrange the pre-
conditioner algorithm such that the values of Vj-1 are either vy, or can be obtained from a
previous parallel calculation. This mathematical explanation can be easily visualized by con-
sidering a stripwise domain decomposition {as was used in this study). Figure 5.1 illustrates
a stripwise, 4 subdomain problem (4 X 1) where the subdomains are colored in a red-black
scheme. This figure also shcﬁs an 8 subdomain problem in a “checkerboard” decomposition

(4 x 4), colored red-black-green-blue (RBGb).

161

Red Green Blue Green Blue
Black Red Black Red Black
Red Gresn Blue Green Blgs
Black Red Black Red Biack

Figure 5.1: Red-black coloring on stripwise, RBGDb coloring on “checkerboard” decomposition.

In the stripwise scheme, the two red subdomains may be calculated immediately and
in parallel, because v;_; = v;. Following this operation, a synchronization step is needed
followed By a parallel calculation of all the black subdomains (v;_; for each black subdomain is
now known from the results of the pret.;ious red subdomain calculation). This concept (slightly |
extended) also holds for the two-dimensional blocking in the “checkerboard” deconﬁposition.
However, from the discussion in Section 3.3.2, the degree of parallelism is now less than that
observed with the additive Schwarz method. A stripwise decomposed multiplicative Schwarz

algorithm using two colors has half the available parallelism

number of blocks

DOP = 3

(5.3)

This loss of parallelism is a concern. For the stripwise case, twice as many preconditioner
blocks would be required for performance similar to that of the additive algorithm. Thus,
for the multiplicative algorithm to be useful for this study, it must provide fewer Krylov

iterations and a reduction in the increase of iterations with subdomains at a two-for-one

disadvantage to the additive algorithm.

j AS MS
Num. Newton | Avg. TFQMR [Avg. TFQMR
Subdomains {| Iterations Tterations Iterations
2 7 11 5
4 6 24 13
8 7 51 23
16 -8 1066 53

Table 5.1: 32 x 160 Onyx simulation iteration behavior comparing additive Schwarz (AS)
and multiplicative Schwarz (MS) preconditioning.

AS MS

Num. Avg. TFQMR | Avg. TFQMR
Processors Tterations Tterations
2 11 13
4 24 23
3 51 53

Table 5.2: 32 x 160 iteration behavior comparing additive Schwarz (AS) and multiplicative
Schwarz (MS) preconditioning on the basis of DOP.

5.1 Results

The investigation of the mﬂtiﬁhca.tive Schwarz preconditioner was restricted to the Onyx
platform and used identical model problems to those previously considered teo allow for corre-
lation of the resnlts to the additive Schwarz data. Table 5.1 contrasts the iteration behavior of
the two algorithms using a 32 x 160 domain with stripwise decomposition. The multiplicative
‘results employed red-black coloring. Clearly, multiplicative Schwarz preconditioning reduces
the number of Krylov iterations fequired for a given number of subdomains for this problem
size.
Table 5.2 provides the same information, but normalized on the basis of the degree of
parallelism of the two algorithms (the number of processors that may be effectively employed

for each of the algorithms). This result indicates that, given a constant operation count

Num. || Serial | Parallel
of CPU | CPU Parallel
Sub- Time | Time | Parallel | Efficiency
domains || (sec.) | (sec.) | Speedup (%)
2x1 318 240 1.3 66
4x1 315 147 2.1 54
8x 1* 514 162 3.2 79

163

Table 5.3: Overall code performance for 32 x 16{ stripwise problem on 4 processor Onyx
{* 8 block run on 4 processors)

between the two algorithms, multiplicative Schwarz does not provide any advantages of de-
creasing Krylov iteration count when based on the available parallelism. At this point, it
. appears doubtful that the multiplicative algorithm will provide any benefit over the addi-
tive version u_nless the parallel performance is markedly improved (i.e., the multiplicative
algorithm results in a significantly lower operation count).

Table 5.3 illustrates the performance of the colored multiplicative Schwarz preconditioner
based on the overall solution time. Since the Onyx was equipped with only four processors,
the 8 X -1 run employed eight subdomains in the preconditioner to allow full effectiveness
(recall, with this algorithm eight subdomains are required to achieve a DOP of féur within
the preconditioner). The two other runs, 2 x 1 and 4 x 1, employed two and four processors,
réspectively. Contrasting this result with the additive Schwarz data, it appears that the
multiplicative algorithm displayed beﬁer overall serial performance (executed on a single
processor) than the additive method, but worse parallel performance (serial; 315 sec. versﬁs
375 sec. for the 4 block case, parallel; 147 sec. versus 118 sec.). Table 5.4 reveals slight
dlﬂ'erences in the performance of the Jacobian algorithm, Wh.icﬁ is likely due to different

cache utilization. Finally, Table 5.5 shows that the performance of the TFQMR algerithm is

superior in regard to serial time, but inferior in regard to parallel time.

Num. Serial | Parallel
of Jacobian | Jacobian Parallel
Sub- Time Time Parallel { Efficiency
domains || (sec.) (sec.) | Speedup (%)
2x1 79 34 2.3 il6
4x1 66 21 3.1 79
8x1* 82 24 3.4 83

Table 5.4: Speedup in the Jacobian routine (* 8 block run on 4 processors).

164

Num. Serial Parallel
of TFQMR | TFQMR | Parallel
Sub- Time Time | Parallel | Efficiency
domains || (sec.) (sec.) | Speedup (%)
2x1 234 195 1.2 60
4x1 245 122 2.0 50
8§x1° 427 134 3.2 80

Table 5.5: Speedup of the TFQMR routine (* 8 block run on 4 processors).

Clearly, these results paint a bleak picture for the multiplicative Schwarz algorithm. The
overall performance results in conjunction with the TFQMR. results indicate that the multi-
plicative algorithm has appreciably more overhead (in parallel execution) than the additive
routine. Due to data dependencg constraints, colored multiplicative Schwarz must serialize
between parallel solves of colors. This synch%mization step not only adds operations to the
algorithm, it also decreases the parallel granularity of the algorithm by one-half. This result,
coupled with (1) the loss of degree of pé.ra}lelism, and (2) comparable Krylov iteration behav-
ior, demonstrates that additive Schwarz is superior to multiplicative Schwarz for problems
such as those examined in this study.

For completeness, a siinpliﬁed ovgrlap study was performed using the multiplicative
Schwarz algorithm in a similar manner to the earlier additive results. Table 5.6 presents

these results.

165

Overlap Newton | Avg. TFQMR | Para. CPU
(blks—cells) ii Iterations | Iterations Time
40 6 13 147
4-2 6 10 138
4-4 6] 140
80 6 23 162
8-2 6 19 138
&4 | 19 162

Table 5.6: Iteration behavior with multiplicative Schwarz preconditioning.

As with the additive Schwarz study, subdomain overlap decreased the number of TFQMR
iterz;t_ions as the overlap was increased. Two cel]s of overlap significantly decreased the parallel
CPU time for both the four and eight subdomain cases (particularly in the 8 block case).
Again, as the overlap was increased beyond 2 cells, the CPU time increased. Using two cells
of overlap and comparing the four domain case (only two processors are effectively used) to
the eight domain case (all four processors used effectively), the increased Krylov iteration
count in conjunction with the higher overhead and lower granularity completely neutralized
the addition of the two processors. For this problém, the minimum runtime was obtained

with the additive Schwarz algorithm.

5.2 Summary

The multipﬁ;;ative Schwarz preconditioner does not appear to provide any a.dvantages to
the additive Schwarz method examined previously. In fact, several disadvantages exist that
suggest that the additive method is more practical as a basis for a scalable solution procedui'e.
The multiplicative resuits indicate that any decrease in the Krylov iterations are offset by
a lower degree of parallelism when solutions comparing the same number of subdomains

are considered. If the number of subdomains are increased to provide a similar degree of

166

parallelism, the multiplicative algorithm does not provide any decrease in the number of
Krylov iterations over the additive method (for the model problem examined). Additionally,
the synchronization overhead and reduced parallel granularity inherent in the multiplicative
algorithm suggests that it would. be impossible to approach the parallel results of the additive
technique with the operation count of the {wo algorithms held constant. Subdomain overlap
does not provide any benefits that would mitigate these disadvantages, and suffers from the

same extreme memory reguirements seen with the additive algorithm with overlap.

167

Chapter 6

The Matrix-Free Technique

The matrix-free technigue is the third, and last algorithm considered as a strategy to obtain a
scalable algorithm for the solution of the model problem under study. Unlike the previous two
methods, this techpique does not directly affect the preconditioning operation (the additive
and multiplicative Schwarz algorithms form the preconditioner). In the ideal case, where
preconditioning is not required, the matrix-free technique could be used to eliminate the
necessity of forming the Jacobian to obtain a solution to the linear system.

The Jacobiar matrix appears in the form of matrix-vector products (Jw) in most Krylov
projection methods (including the TFQMR and GMRES algorithms). As such, in the ideal
case, these methods do not require the formation of the complete Jacobian matrix. Only the

product

" F(x + ew) — F(x)

Jw (6.1)

appears in the linear solution algorithms. The need for preconditioning, however, complicates

the scheme greatly as the Jacobian is required for the development of the preconditioner.

In the previous solution results, a new Jacobian and preconditioner were formed for each

168

Newton iteration. Using this preconditioner, the lirear (Krylov) solve itera;tes to obtain
an a.pproxim.a.te solution to the system. If the Newton solution results in the need for an
appreciably different preconditioner ea.ch.Newtcm iteration, the only option is to form one.
However, if the preconditioner only ‘changes slightly between Newton iterations, it may be
feasible to form the preconditioner every n iterations, using the latest existing preconditioner
for those iterations that fall between :preconditioz;er formation steps. In effect, a “stale”
preconditioner is used for several iterations, greatly reducing the impact of preconditioner
formation operations on the overall solution behavior.

It is not sufficient to simply amortize the preconditioner over several Newton iterations
using the base Krylov algorithms. These algorithms rely on matrix-vector products based on
~ the Jacobian used to form the preconditioner to solve the linear system. If the preconditioner
(and 3a,cobian) formation is lagged, the Krylov algorithms will also use a stale Jacobjan to
solve the linear system. This practice may significantly compromise the convergence behavior
of the overall technique (likely much more so than by the use of stale preconditioning alone).
To eliminate the need to use the stale Jacobian within the Krylov algorithm, the matrix-
vector product terms in these algorithms may be replaced with an equivalent expression
(Equation 6.1) that includes the convergence contribution of previous Krylov iterates. Re-
. placement of the matrix-vector products with this expression results in a matrix-free Krylov
algorithm that removes the requirement for the Jacobian in the solution procedure. Thus, the
Jacobian is only required for the preconditioner, not for the solution of the linear system. The
matrix-free technique may also reduce total operation count, and is largely parallel. Given
a suitable implementation of the technique, it may also bé possible to increase the degree of
parallelism contained in the XKrylov solution algorithm.

The Jacobian-based Krylov routine forms the preconditioner at the beginning of the first

169

iteration. The remainder of the routine (at least in the cases of TFQMR and GMRES) con-
sists of small sections of code that are amenable to parallelization. Abstractly, these sections
are analogous to basic blocks in conventional terms, however in this case a basic block is
defined as the largest sequence of statements that may be encapsulated into 3 parallel reg_ion.
" To further this analogy, these basic blocks are usually separated from one another by a length
of serial code or a synchronization operation (often a bartier or mutex s’éction). Furthermore,
the degree of parallelism of these basic blocks is often quite high, perhaps even as large as a
measure of the Jacobian. As an example, recall the parallelization of the matrix-vector prod-
uct routine performed on the SGI and described in the earlier discussion qf the results for the
additive Schwarz preconditioner. Unfortunately, the parallel granularity of the other basic
blocks is_ relatively small. On any parallel architecture, the granularity of each parallel region
should bé kept as high as possible to reduce the influence of serialization before and after the
basic block. This is of utmost importance on hoth the Cré,y and SGI machines. The overhead
of entry and exit from parallel regions, barriers, and other serialization techniques is appre-
ciable. To study the feasibility of parallelization of the Krylov iteration, parallel execution
of the basic blocks (beyond the existing concurrent matrix-vector product routine) within
the TFQMR algorithm was attempted on the SGI Onyx. This effort was abandoned when
it became cbvious that, with the exception of the matrix-vector product routine, granularity
in the remaining basic blocks was not sufficient to yield an appreciable performance increase
on the Onyx. A similar task was not attempted on the C90, however experience with the
additive Schwarz work performed earlier suggested that, due to the speed of each processor
without a corresponding decrease in overhead, this large granularity requirement would be
more sigpificant than on the Onyx. Due to these results, it a..ppea.rs that achieving a useful

performance increase within the Krylov routine through parallelism (on these architectures)

would require a signiﬁcé.nt. te-work of the algorithm.

The matrix-free routine (mfmatmul) replaces the existing matrix-vector product algo-
rithm, and has a similar degree of parallelism. However, the granularity of this routine
is much larger (more operations are performed within mfmatmul than the matrix-vector
product routine). Furthermore, the structure of mfmatmul is quite similar to the Jacobian
formation algorithm, ma,kmg it possible to capitalize on the knowledge obtained from paral-
lelization of the Jacobian. Fina]ly; in a given simulation, if a sufficient number of Jacobian
and preconditioner formatién steps (with the attendant lower degree of parallelism caused
by preconditioner degradation) ate replaced by matrix-free operations, it may be possible to
achieve a solution with a net savings in operation count (recall, the preconditioner is roughly
O(n®)} and the Jacobian and matrix-free algorithms are roughly O(n?)). Additionally, due
to the high granularity and degree of parallelism within mfmatmul, these added matrix-free
steps have the potential for efficient paraliel execution on the architectures of interest.

Table 6.1 shows some initial resaits of the matrix-free algorithm on an Onyx model prob-
lem. A restarted version of the GMRES Krylov algorithm (GMRES(k)) was used in favor
of the TFQMR method- used previou_sly, because this algorithm appears to provide better
convergence behavior when the matrix-free technique is used. This 32 x 160 result used a
stripwise decomposition employing four subdomains and processors on the SGI Onyx. The
matrix-free algorithm formed a new J a@bim and additive Schwarz préconditioner only on
the first and second Newton iterations. The remaining it_erations used a stale form of the
second preconditioner.

From these results, it is clear that the matrix-free technique shows promise as a solutioﬁ
method. This scheme resulted in the.m.inimum runtime achieved thus far in the study (93

sec., 21% better than the best additive Schwarz results at 117 sec.)

171

CPU Time Serial | Parallel | Speed-up
Total (sec.} 258 93 2.8
Jacobian (sec.) 26 6 4.5
GMRES (sec.) 227 82 2.8
Precond (sec.) 12 3 3.5
mfmatmul (sec.) | 104 31 3.3

Table 6.1: Matrix-free results using “stale” additive Schwarz preconditioning on a 4 subdo-
main, 32 X 160 problem on the Oayx.

6.1 Robustness Concerns

The previous results on the matrix-free technique are based on a specialized, simplistic prob-
lem. Generally, a true Newton iteration path to a steady-state solution results in appreciable
preconditioner changes each Newton iteration; the use of a stale preconditioner in the manmner
shown above would not generally provide a converged solution. Additionally, it may not be
possible to obiain a starting point (or initial “guess”) for the Newton algorithm that lies
within the radius of convergence of Newton’s method. This 1at-ter difficulty is not unique
to the matrix-free method, the previous results shown for the additive aﬁd multiplicative
Schwarz algorithms are likewise highly dependent on the initial “guess.”

A technique labeled “pseudo-transient relaxation” (see Section 3.6) may be employed to
increase the diagonal dominance of the system, which effectively increases the Newton radius
of convergence. Additionally, this technigque also provides user control of the “damping” of
the Newton updates. This capability allows the change in the preconditioner each Newton
iteration to be reduced to better accommodate lagging of the precondiﬁoner. Through this
mechanism, the “time step” may be selected to vary the number of Newton and Krylov

iterations required to obtain a solution. In effect, for a particular subdomzin strategy, the

number of Krylov iterations per Newton iteration may be directly controlied. Independent

172

of the number of subdomains employed, the number of Krylov iterations may be bounded
below some arbitrary value § by the appropriate selection of the time step. This scheme has
the drawba& of increasing the number of Newton iterations required for solution, in essence
“shifting” the work required for a solution from the Krylov algorithms into the Newton
algorithm. This will negatively affect the quadratic convergence of the Newton algorithm
seen in the previous results.

The results beyond this point shouid not be expected to correlate and, aside from scala-
bility, should not be compared to the previous work. The pseudo-transient relaxation scheme
cannot always effectively compete with a direct Newton-Krylov steady-state solution on a
problem where the direct method results in an efficient solution. However, the technique is
generally applicable, while the direct steady-state solution is not. Direct solutions may only
be achieved for simple, specialized proﬁiems. Additionally, without overlap or a coarse grid
operator, scalability of the direct methods cannot be achieved, as evidenced in the previous

two chapters.

6.2 Performance of the Matrix-Free Technique

Due to the excellent performance seen on the Cray C90 with the overlapped additive Schwarz
method, the initial examination of the performance of the matrix-free technique was limited
to this architecture. The Cray study commenced with an examination of a relatively small
problem, 32 X 160, with general parameters as listed in Table 6.2. This set of data differs in
many ways from the earlier steé,dy-state results in that a pseudo-transient technique was used
at a time step size of 1.0. Furthermore, a potential advantage of the matrix free technique

was used; the Jacobian and preconditioner were formed every five Newton iterations instead

173

Problem Description
Problem Size 32 x 160
Jacobian Updated 5 Newton Iter.
Pseudo Time Step Size 1.0 '
Inlet Mach Number 1.0x 10!
Residual Tolerance 1.0 x 10~¢

Table 6.2: Parameters for the Cray 32 x 160 runs.

Num. Newton | Avg. GMRES(%)
Subdomains || ferations | - Iterations
4 177 12
g . 177 21
16 177 51

Table 6.3: 32 X 160 matrix-free simulation iteration behavior on the Cray (1 x n stripwise

blocking).

of for each iteration, as was previously required. Finally, the inlet Mach number was relaxed
to 0.1 for expediency. -
Table 6.3 illustrates the Newton and Krylov iteration behavior for this new problem as
a function of the number of subdoméins used in the preconditioner (with 1 X n stripwise
blocking). Again, this data suggests a decrease in preconditioner effectiveness as seen earlier,
and is evidenced by the increase in Kryloir itéations witﬁ the number of subdomains.
Table 6.4 shows thé performance data of this problem with the 1 x n blocking, on four,
eight, and 16 processors, respectively. Note the use of eight processbrs ﬁith only four .pre-
conditioner blocks. For the matrix-free technique as implemented, possibly contrary to one’s
initial impression, the use.of more procéssors than preconditioner subdomains may be jus-
tified and results in performance advantages. Recall that the degree of parallelism for the
additive Schwarz preconditioner formation and application routines is identical to the num-

ber of distinct subdomains used to construct the preconditioner. The Jacobian possesses a

174

Total | Jacobian | GMRES(k) | Precond. | mfmatmul
Time . | Portion Portion Portion Portion

Mode (sec.) { (sec) (sec.) (sec.) {sec.)
X 4 blocking - Mem. req. 65 Mbytes
- Serial 1120 157 960 187 613

4 proc/Speed-up | 383/2.9 | 43/3.7 | . 337/2.8 59/3.2 193/3.2
8 proc/Speed-up || 504/2.2 | 21/7.5 | 480/2.0 59/3.2 | 365/1.7
_ "1 x 8 blocking - Mem. req. 65 Mbytes
Serial 1495 157 1335 106 1025
8 proc/Speed-up || 291/5.1 | 22/7.1 266 /5.0 15/7.1 183/5.6
: 1 x 16 blocking - Mem. reg. 65 Mbytes
- Serial 2940 157 2780 76 2334
16 proc/Speed-up |f 498/5.9 | 21/7.5 475/5.9 9/8.4 354/6.6

Table 6.4: Speedup values for 32 x 160 problem.

higher degree of parallelism, usually equal to the number of discretization cells along the =
or y axis of the ﬁrobiem {z or y due to the nested loop structure of the J acobian routine that
consists of an indexed traversal over the two-dimensional domain). The matrix-free routine is
structured quite similarly to the Jacobian formation routine. As such it has a similar degree
of parallelism.

Previously, only the Jacobian and preconditioner routines were paxalleli;ed (the SGI re-
sults included parallelization of the matrix-vector product routine also). It was argued that
as the preconditioner came to dominate execation time with growing problem size {the pre-
conditioner requires roughly O(n?) 6pera.tions versus roughly O(n?) for the Jacobian), the
parallel performanc;,e of the code would approach the degree of parallelism of the precondi-
tioner (wiﬂl infinite problem size}. Clearly, if this is the case, the preconditioner limits the
scalability of the simulation code. The sole addition of the matrix-free technique does not
change this behavior, because the number of operations is polynomially less than for the pre-

conditioner (similar to the Jacobian). However, as discussed previously, it may be possible

175

to forgo the Jacobian and preconditioner formation each and every Newton iteration. This
concept suggests that under certain conditions it is conceivable that the number of precon-
ditioner formations may be re(iuced to the point that this routine no longer dominates the
simulation.

Returning to the data, the four-processor run resulted in the minimal runtime and the
greatest parallel speedup overall (2.9). The use of four additicnal processors; (again, only used
to full effect in the Jacobian and matrix-free routines) slowed execution time. Considering
the Jacobian time alone, a respectable speedup was obtained when moving from four to eight
processors. The time spent on the preconditioner did not change (the degree of parallelism did
not change and only four processors were used to full effect). However, the time spent in the_{
GMRES routine (recall that mfmatmul is contained within GMRES) increased substantially
with the increase in processors. Because the mfmatmul algorithm is the only parallel section
contained within GMRES, it is quite likely that this algorithm alone is responsible for the
decrease in effi.ciency inside GMRES. Finally, as the mfmatmul algorithm has a degree of
parallelism similar to the Jacobian routine, this efficiency decrease is surprising.

The lower sections of Table 6.4 illustrate the performance on this problem using 8 and
16 block preconditioners on 8 and 16 processors. Again, the serial time increases due to
the degradation of the preconditioner requiring more Krylov iterations as the number of
subdomains increases. As the number of Krylov iterations is increased, the number of calls
to mfmatmul increases, translating to increased time in this routine. The decrease in the
total preconditioner time is not unexﬁected due to the decrease in the size of each subdomain
with increasing decomposition. Because the number of Newton iterations is independent of
the number of subdomains, the preconditioner routine is called a cmst@t 177 times for each

blocking strategy.

176

Problem Description
Problem Size 64 x 320
Jacobian Updated 10 Newton Iter,
Pgeudo Time Step Size 0.5
Inlet Mach Number 1.0 x 10!
Residual Tolerance 1.0x 107%

Table 6.5: Parameters for the Cray 64 x 320 runs.

From the parallel results on this problem, it is evident that the Jacobian and precondi-

" tioner routines scale quite well to eight processors, but not beyond. The mfmatmul routine

offers a reasonable performance boost for up to eight processors (a speedup of 5.6). Because

the GMRES portion consists of the preconditioner time plus the mfmatmul time and some

serial time, the overall GMRES time reflects a bit lower performance than mfmatmul alone.
However, mfmatmul appears to dominate this algorithm at this problem size.

Table 6.4 indicates that further work in mapping the mfmatmul algorithm to the Cray
should be performed. The degree of parallelism of mfmatmul is limited only by the problem
size. Thus, it is quite likely that a memory contention problem is negatively affecting the
results, especially for 16 processors. The eight-processor, four-subdomain case clearly indi-
cates a mapping problem within the algorithfﬁ that appears to be strongly influenced by the
namber of subdomains within the preconditioner.

To summarize this smaller problem, the eight-processor paralie]l run using 1 x 8 precon-
ditioner blocking resulted in the minimal solution time. Furthermore, this particular dataset
indicates that a level of scalability is achieved for up to eight processors, but not beyond.

Table 6.5 specifies the input parameters to a similar 64 x 320 C90 run using the matrix-
free techniques. The iteration behavior of the larger problem is shown in Table 6.6. Note

that distinctly fewer Newton iterations are required for this larger problem. This behavior

177

Num. Newton | Avg. GMRES(%)
Subdomains }| Iierations Tterations
4 92 16
8 92 30
16 92 76

Table 6.6: 64 X 320 matrix-free simulation iteration behavior (n X 1 stripwise blocking).

is due to a “larger” convergence criterion for the overall solution, 1.0 X 10~* for this larger
problem in contrast to 1.0 x 10~ for the smaller. The convergence criterion was modified not
for algorithmic, mapping, or performance reasons, but to decrease the execution time of each
of the simulations (the monthly Cray time available for this work was limited). Farthermore,
the blocking was changed from 1 X n to n X 1 to reduce the memory requirements of the
larger problem. These tolerance and blocking differences between datasets prevents detailed’

comparisons between the two problem sizes. However, some general comments may be made.

Total | Jacobian | GMRES(k) | Precond. | mfmatmul
Time Portion Portion Portion Portion
Mode (sec.) (sec.) | {sec.) {sec.) (sec.)
. | 4 x 1 blocking - Mem. req. 133 Mbytes
Serial 2353 215 2128 103 1712
8 proc/Speed-up l 1175/2.0 | 28/7.7 1137/1.9 27/3.8 | 1009/1.7
[~ 8 x 1 blocking - Mem. req. 70 Mbytes
Serial 3756 216 | 3530 79 3010
8 proc/Speed-up || 615/6.1 | 31/7.0 574/6.1 10/7.9 440/6.8 |
16 x 1 blocking - Mem. req. 38 Mbytes T
Serial 8586 216 8360 66 7360
16 proc/Speed-up || 1781/4.8 | 38/5.7 | 1734/48 | 10/6.6 | 1388/5.3

Table 6.7: Speedup values for 64 X 320 problem.

Table 6.7 shows the execution data for this larger problem. With the larger problem,
the trends and subsequent interpretation are quite similar to the smaller problem. Again,

the eight-processor, eight-block case resulted in a minimal execution time, The scalability

178

ta eight processors on this larger-grained problem improved somewhat (a speedup of 6.1 was
achieved on eight processors).

From the above data, it is apparent that the matrix-free technique in conjunction with
pseudo-transient relaxation results in a better performing, more robust solution method than

the direct method.

1. The pseudo-transient technique increases the Newton sphere of convergence, allowing

the use of the Newton-Krylov solution on a wide variety of challenging problems.

2. The matrix-free method may eliminate the need to form the Jacobian and precondi-
tioner each Newton iteration. Judicions use of this capability has the potential to reduce
the influence of the preconditioner and Jacobian formation on the execution time of the

overall solution.

3. The use of matrix-free techniques in conjunction with pseudo-transient relaxation al-
lows “tuning” of the number of Krylov iterations per Newton step, at the expense of
increasing the total number of Newton iterations and the loss of superlinear conver-

gence,

4. Overall solution scalability has clearly improved; the 64 x 320 problem using 8 blocks
and B processors yielded a speedup of 6.1, the best results to date. Scalability to 16

blocks on 16 processors, however, appears ualikely.

With these points in mind, the matrix-free solution performs quite well on up to eight
processors. At this point, considering the above data and the scalability difficulties that were
observed with the additive Schwarz preconditioner, efforts to enhance the scalability of this
method should be directed along two paths: (1) mapping of the mfmlatmul algorithm to the

hardware and. (2) examination of the preconditioner scalability issue.

178

The mfmatmul algorithm has a high degree of parallelismn. This routine should scale
well beyond the current eight-processor limit. Again, this is a mapping problem of the
algorithm to the hardware; the memory access patterns and granularity of the algorithm
currently prevent scalability. A smular problem was addressed earlier in this study within
the Jacobian construction routines. mfmatmul has a very similar character to the Jacobian
construction routine but accesses the banked meﬁmry of the Cray in a very different manner.
Due to the complexity of this algorithm, rework to effectively reduce this contention problem
is non-trivial and will require a significant amount of further research.

The scalability of the additive Schwarz precondjtioner (manifested by the increase in
Krylov iterations with the number of subdomains} must also be a,ddregsed_ at some level.

Three potential possibilities are apparent.

1. Use of the matrix-free technique in conjunction with pseudo-transient relaxation to
reduce the number of preconditioner formation steps to a minimum. From the results,
this js clearly a promising opfion. However, it is not clear if it will be effective on every
problem. Furthermore, it is very likely that an optimal formation strategy exists (it may
be quite difficult to compute, however). If the preconditioner is formed more often than
necessary, the increased convergence rate of the overall solution does not offset the work
reﬁuired to form the preconditioner and the result is below optimal performance.. Ha
new preconditioner is formed too seldom, the deterioration of the overall conifergence
rate will quickly avercorﬁe any savings of preconditioner formation time (if the solution
converges at all). Realistically, an algorithm to compute the optimal preconditioner
formation frequency will likely be strongly problem and method dependent. Currently,

an attempt to approach this ideal amounts to an iterative optimization problem over

180

Problem Description
Problem Size 32 x 160
Jacobian Updated 5 Newton Iter.
Pseudo Time Step Size 1.0
Inlet Mach Number 1.0x 107!
Residual Tolerance 1.0x10°*

Table 6.8: Parameters for the SGI 32 x 160 runs.

a multidimensional computational surface. Finally, it is certainly not clear that the
influence of preconditioner formation can be reduced sufficiently to achieve scalability

for a given {or arbitrary) problem.

2. As mentioned earlier, it is not necessary to capitalize on the available processors by
selecting a preconditioner t.hat uses an equivalent number of subdomains. In fact, one
of the above data pqints mustrated the use of 8 processors on a 4 block preconditioned
simulation (recall that the Jacobian and matrix-free algorithms can use all the available
processors to full advantage, .but doring the preconditioner stage only a number of
PIOCEssOrs eqﬁal to the number .of subdomains can be used). This attempt did not
appear to provide any advantage for the single case considered, largely due to the poor
performance of the mfmatmul algorithm. If this problem can be cortécted, the reduced

block concept has some potential {especially if it is combined with the first item, above).

3. Again, as mentioned in the direct solution results previously, the preconditioner degra-
dation problem can be addressed directly with the use of a coarse grid/fine grid tech-

nique.

The performance of the Newton-Krylov additive Schwarz matrix-free techniques were next
studied on the SGI Ounyx. Table 6.8 lists the parameters for the 32 x 160 simulation. Note

that the convergence tolerance has been returned to 1.0 x 10~° and that the preconditioner

181

Num. Newton | Avg. GMRES(k)
Subdomains | Iterations Hterations
2 177 10
4 177 18

Table 6.9: 32 x 160 matrix-free simulation iteration behavior (n x 1 stripwise blocking).

Total | Jacobian | GMRES(%) | Precond. | mfmatmul
' Time Portion | Portion Portion Portion
Mode (sec.) (sec.) (sec.) (sec.) | (sec)

2 x 1 blocking - Mem. req. 33 Mbytes
Serial 3646 467 3169 427 1094
2 proc/Speed-up |{ 1872/1.9 | 195/2.4 { 1667/1.9 | 220/1.9 | 574/1.9
4 proc/Speed-up {| 1746/2.1 | 103/4.5 | 1633/1.9 | 29§/1.4 | 312/3.5
T 4 x 1 blocking - Mem. req. 17 Mbytes
Serial 5044 651 4384 178 2508
4 proc/Speed-up || 1302/3.6 | 180/3.6 | 1198/3.7 | 46/3.9 | 492/5.1

Table 6.10: Speedup values for 32 X 160 problem on the SGI.

is updated every 5 Newton iterations. In a similar vein to the Cray results, Table 6.9 reports
the iteration behavior of the Newton-Krylov technique. The increase in Krylov iterations
with the number of subdomains is again clearly evident. |

Table 6.10 illustrates the s;olution execution times for variants of the model problem. In
this case, 2 X 1 preconditioner blocking was examined using both two ax;d four processors.
Finally, a solution was achieved using a four block preconditioner with four processors em-
ployed. In this case, the four block, fotr-processor configuration minimized runtime at 1392
sec. (a speedup of 3.6). A major portioﬁ of this result is probably due to the superlinear cache
performance exhibited in mfmatmul for this execution (a speedup of 5.1 on four processors).
Similar to the direct additive Schwarz steady-state solution considered early in this study,'

these algorithms are scalable to four processors on this architecture.

Unlike the behavior exhibited by the Cray results, the two-block, four-processor results

182

indicated that it may be useful to consider this execution mode on cached architectures (recall
though that the Cray results compared 4 blocks on 4 and 8 processors). However, this mode
did not result in the minimal runtime nor maximal speedup. The Jacobian routine scaled
well, and the mfmatmul algorithm did not exhibit the mapping problems to the degree seen
on the C30. However, on this problem, the precondjtiomr.time is a major portion of the
overall rgntime (also unlike the C90). The speedup reduction from 1.9 to 1.4 on this routine
(likely due to cache behavior) was a factor in the overall performance; the mfmatmul speedup
of 262 sec. was partially offset by the 79 sec. increase in precondiﬁoner time, resulting in a
GMRES improvement of only 34 sec. A meaningful comparison of this concept between the
SGI and Cray is not possible with the available data. It is quite likely that an examination of
this mode on a larger (in number of processors) SGI would result in the same behavior seen on
the Cray. It is clear that this mu:ed block /processor mode would not currently be of interest
in comparison with the four-block, four—prooesspr Iresults without further work on mapping

the preconditioner and mfmaimul algorithms to the hardware under these conditions.

6.3 Summary

Recall that the matrix-free technique, in conjunction with pseudo-transient relaxation, was of
interest to both increase the robustness of the overall solution technigue and provide better
overall solution scalability than the diret;t additive Schwarz solution examined previously.
Pseudo-transient rela.xa_tion offers an increased sphere of Newton convergence (to provide a
more general solution method) and allows user control of the Newton convergence behavior.
The matrix-free method enables a linear solution without explicitly forming the Jacobian

matrix. However, it was immediatély obvious that the Jacobian was required to form the

183

preconditioner. It was also evident that it. may not be necessary to form the preconditioner
for each and every Newton iteration. In fact, depending on the problem, one can use a
“stale” preconditioner judiciously to decrease the influence of preconditioner scala.'bi].&y on
.the solution algorithm.

The use of the matrix-free method resulted in scalable solutions on up to eight processors
on the Cray C90, and four processors (all that were available) on the SGI Onyx. The Cray so-
Iution clearly did not scale to sixteen processors, both due to the increase in Krylov iterations
with increa.éing number of subdomains and mapping problems (likely memory contention) of
the mﬁnatmul routine to the C90 processors. It is clear from these results, however, that con-
sidering robustness, memory requirements, and scalability issues, the matrix-free technique

as implemented is superior to the direct additive Schwarz solution described previously.

Chapter 7

Conclusions

This dissertation is logically divisible into two parté; a theoretical outline of the methods and
model problem followed by results and discussion of the mapping of the employed techniques
on the paraliel machines studied. In thié final chapter it is valuable to examine a summary
of this study and how successfully the results.a,ddressed the goals of this research. Most
importantly, it is necessary to examine the theoretical devebpxﬁent and results with a critical
eye towards the goals of the research, address any shortcomings, and suggest a path {or paths)
for further research.

The introduction of this work provided an overview of the importance of the efficient
solution of the Navier-Stokes equations to many industries and areas of science. Given this
‘information, the process of obtaining a solution to these equations using discrete techniques
was examined. Tt waé argued that an implementation of an inexact Newton-Krylov-Schwarz
technique could be a promising path for the solution of equations of this type. As stated
in the introduction, the memory requirements and CPU .time needed for the computation
of Navier-Stokes discrete solutions limit the utility of the techniques (including the Newton-

Krylov-Schwarz method). Finally, the use of parallelism to decrease the severity of these limits

185

(particularly the clock time required per sclution) was suggested as a potential technology
to aliow larger, more complex, and more accurate simulations. .

The target of this research was the development and study of an “n < 16 scalable parallel
linear system solution technique for use with a Newton-Krylov non-linear algebraic solution

method.” More specifically, the following goals were listed in the introduction:

1. provide robust, parallel solutions to steady-state viscous compressible flow on a backward-

facing step at a Reynolds number of 100 and inlet Mach number of 0.0025,

2. investigate the mapping of various implementations of Newton-Krylov-Schwarz solution

algorithms on the Cray C90 and SGI Onyx,

3. examine a parallel matrix-free implementation of the above methods, using pseudo-
transient relaxation in conjunction with a lagged Jacobian and preconditioner forma-
tion strategy to reduce the influence of the preconditioner formation on the algorithm

execution time, and

4. suggest an “optimal” hardware configuration for i)axallel Newton-Krylov-Schwarz Navier-

Stokes solutions of this type.

With the exception of the final topic (to be discussed later), this work remained faithful
to the goals initially posed in the introduction. First, model problem was developed and
the discrete representation of the governing equations was derived. The action of the in-
exact Newton technique on the resultiné non-linear system was investigated ne#, followed
by the derivation of the Schwarz precond.itioﬁng methods and a detailed explanation of the
Krylov linear system solution process. Finally, the concepts of pseudo-transient relaxation
and the matrix-free technique were examined in detail. These analyses form the theoretical

component of this study.

186

The second component of this work was devoted to an experimental examination of the
parallel performance of implementations of the aforementioned concepts. Numerous simu-
lations on the architectures of interest were presented along with discussions of the results.
To remain faithful to the goals of this work, all that remains is a summary of the results,
a discussion of further study topics, and a qualitative discussion of hardware features that

could be useful for future simulations of this type.

7.1 Optimal Architecture

The results of this work indicate a solution scalability to four ProCessors on the SGI Onyx
(recall however that only four processors were available} and eight processors on the Cray C90.
Most, if not all, of the suggestions on how scalability could be extended to more processors on
each architecture were couched in terms of algorithm and algorithmic mapping improvements.
This is a very reasonable approach, as scalabﬂity beyond this point was negatively affected
by preconditioner degradation, inefficient memory access behavior, and a lack of available
parallelism within .the Krylov technique. Furthermore, the software (and algorithms) is the
only area within the control of the .computational scientist. On the other hand, it may be
possible to add h@rdwa.re features or modifications tha,t assist with algorithmic efficiency and
mapping issues or allow the scientist more latitude with algorithm modifications. This section
suggests pﬁssible hardware changes, additions, or improvements that could prove helpful in
achieving scalable performance of CFD solutions based on Newton-Krylov-Schwarz methods
or similar technigues.

Architecturally sj)ea.king, several general facts became apparent during this study.

¢ The Cray C90 architecture performed very well, overall, on this problem. Its archi-

187

tectural features, vector processing capability, memory access latency and bandwidth,
and development tools combined to result in a very satisfactory environment for the
simulation research. The Cray ran larger problems and achieved much faster rates than
the SGI. For the computational scientist or developer, the compilers, analysis tools,

and development environment on the Cray are second to none.

¢ Cache-based a.rchitecturés may yield better than expected performance if the cache size,
problem size, and number of processors can be selected to optimize cache hit ratios.
The superlinear speedup obtained on particular problems due to cache effects on the
SGI certainly provided an interesting result. It is an open question if these effects could
be utilized to achieve better scalability in a system with greater pa.ra]lg]ism, j_Jerhaps

mitigating a portion of the algorithmic and mapping difficulties encountered.

¢ Efforts to increase granularity and decrease memory contention on banked vector ma-
chines increased vectorization effectiveness and parallel performance, often in unpre-
dictable ways. Significant decreases in execution time appear possible by considering

architectural details.

¢ The decline in popularity of vector processors suggests to many that modern superscalar
processors may be approaching a performance parity with vector capable hardware,
This conclusion may be true for certain applications, however it did not appear to hold
for this study. Early work on vectorizing the code for the Cray quickly reaped significant
performance benefits with this loop-laden, indexed array intensive simulation code.
This result suggests that symmetric multiprocessor (SMP) vendors majr be premature

in dismissing vector capability for large scientific codes of a similar nature.

¢ Extreme memory capacities may be necessary to run larger problems,

188

¢ Throughout this study, the importance of dedicated access to both machines was ob-
vious. It became difficult to obtain consistent results (and likely meaningful results)
as the multiuser workloads grew heavy. It is likely not realistic to expect acceptable

parallel application performance on heavily loaded machines.

It is also apparent that, given the Newton-Krylov-Schwarz algorithms as implemented
in this study, neither of the two architectures were optimal for the solution of the model

problem.

s The SGI was limited by the number of available processors (four). It was not possible

to assess its performance in comparison to the Cray with 8 or 16 processors, or examine

in detail the scalability of the cache effect.

¢ The R4400 pracessors employed on the SGI had a significant performance disadvantage
when compared to a Cray processor. The Cray had a clock cycle advantage over the
SGI, 4.2 ns. versus 6.6 ns., but the vector units and memory systems in combination with
other effects allowed the Cray to perform much better than the clock cycle difference

would seem to indicate.

¢ Efficient memory access was difficult to achieve on the Cray. The memory contention
problems. initially encountered in parallelizing the Jacobian appeared time and again
at greater levels of severity as the scala.biiity study increased in number of processors
considered. These comtention problems, while relatively easy te visualize in a simple
loop construct, become very difficult to mitigate in this application due to access pattern

complexity.

¢ In comparison to Cray’s offering, the programming tools and compilers available on

the SGI were lacking features and usability. The Cray compilation system supported

189

a large number of modes, options, and directives that allowed user specification of
minute details of the optimization process. The SGI system was not nearly as flexible.
Methods that would allow the user to greatly increase the system petformanée, such
as filling the delay .slot on branches and explicit inlining of particular routines, could
not be easily specified to the compiler. Analogous operations on the Cray system were
easily accomplished. Of particular interest was Cray’s vectorization amalyzer. This
tool provided a listing that indicated the loops that vectorized, and more importantly,
which did not. The reasons why vectorization was inhibited were explained, typically
Histing the offending variable on the offending line. Throughout the entire analysis (and
barring user enthusiasm), the compiler never vectorized a routine incorrectly to produce

a logic error.
¢ Both machines were limited by the quantity of main memory.

Any comparison of this type quickly becomes somewhat subjective. To determine, beyond
a certain margin .of error, the optimal architecture relies on a qualitative interpretation of the
phenomenon encountered, the correct understanding of the phenomenon, and the derivation
of a reasonable solution to correct the observed behavior. With this process in mind, one could
quickly surmise that a combination of two technologies, a data caching mechanism similar to
that seen on the SGI and the Cray hardware/software system, has a strong potential to yield
a near optimal scenario.

All of the data seemed to suggest that the Cray hardware was near optimal, except
when granularity (i.e. parallel overhead) or memory contention issues were encountered.
The memory access system and its performance on this machine was quite impressive, even

considering the access problems encountered. The mfmatmul algorithm would not scale to 16

190

processors due to memory access difficulties. This is a very complex algorithm that accesses
all of the state variables in each of the discretization cells and all the corresponding “Jacobian-
vector” locations each Krylov iteration. Co:nsideriitg this amount of data being accessed by
two vector units on each of 16 processors with a cycle time of 4.2 ns. in a concurrent fashion
is a bit overwhelming. The SGI system was not tested under conditions even remotely
comparable (recall that the SGI uses a bankéd memory system on a proprietary bus accessed
by four superpipelined superscalar processors running at a rate of 6.6 ns. through a distributed
cache system).

It is quite].ikély that the addition of a local processor cache to each Cray processor could be
used to good effect on scalar memory accesses, even on the SRAM-based C90. Thgse scalar
accesses cannot be accomplished efficiently .using vector memory access; experience with
workstations (and SMPs) indicate that data locality (optionally with a pre-fetch capability)
best addresses these types of loads and stores. A distributed cache capability on the Cray
should behave similarly. Additionally, this hardware could potentially reduce bank contention |
and provide more bandwidth for vector accesses.

It is not immt;dia.tely obvious that it would be beneficial to use cache for vector accesses,
Vector accesses can be accomplished at the rate of a single location per clock cycle on the
C90 architecture (ignoring start-up time and contention). In the ideal case, the access time
for a vector element cannot be improved further with cache. However, if vector accesses can
be limited to the local pi'ocessor cache, bus. traffic will substantially decrease along with the
vector load and store bank contention problem (see Appendix A). An overall efficiency gain
with vector caching would require the decrease in contention and bus traffic to overwhelm the
ove;-hea,d of implementing a vector-based cache coherency mechanism. Vector (array) accesses

also tend to migrate large amounts of data, especially in scientific applications. Experience

191

with workstations indicates that large accesses of this type, especially with non-unit stride, do
not map well onto small (or even moderately sized) caches [76]. The Cray system, however,
functions quite well under this sort of access. It is possible that an effective cached-vector
memory system would require a large amount of cache per proceséor. Clearly, there appears to
. be justification in the further examination of a cached-vector memory capability for scientific
applications.

It may be valuable to construct some form of “virtual” vector memory system on the
Cray. To minimize contention, the arrays must be arranged in memory so that access to a
given bank is not attempted more than once per ¢ clock periods .(see Appendix A). This
can be accomp]i.shed by hand reasonably well for small applications. The Cray compilation
system can perform array and common manipulation as an attempt to mitigate contention at
compile time. This feature would likely be effective on small to mid-sized applications, as long
as the application is limited to one source file. The simulation code employed for this study
had multiple source files, with an include file containing the shared common definitions. With
this structure, the contention analyzer was ineffective and created useless code (because the
conimon definitions were included in éach source file, the analyzer optimized each inclusion
for each particular source file, resulting in a loss of consistency on the common “memory
image” of the data). A more complete tool of this type, however, could prove effective in
addressing contention statically. It may be possible to employ specialized ha.rdw:;xre to address
the contention problem dynamically, using an analysis of the memory access patterns to
move arrays around within memory. Clearly, this technique resembles a conventional virtual
memory system, as dynamic address translation would be required for mexﬁory access. The

dynamic system would incur some runtime overhead, but the efficiency improvement due to

a reduction in contention should easily offset this overhead. As a last point, extending this

192

dynamic translation may also evplve into a physically distributed, logically shared-memary
system. For hardware scalability much beyond the current Cray system, bus traffic will
mandate a distributed memory system. From an ease of programming standpoint, a shared-
memory programming model is desirable. Extension of the translation concept to a true
physically distributed system would be a logical path to address these concerns.

To summarize these ideas, consider the well-known “triangle” balance concept: processing
power, memory access, and I/O must be balanced to provide the optimal general-pﬁrpose
computer. The Cray system clearly provides more processing power in comparisen to the
SGI (although for this application, more would be welcome). The memory system on the
Cray was designed to provide data to tlﬁs aggregate processin_g power to keep the CPUs
busy. However, for these algorithms as implemented, the effective memory access efficiency
was not sufficient to sustain scalable performance beyond eight processors. Clearly, the

hardware provided sufficient memory to CPU bandwidth with adequately low latencies, but
| the ajgorithms as implemented could not take full advantage of the Cray hardware (due to
complex memory access patterns). It was discussed that software changes may not be the
optimal method to increase the scalability of the algorithms; hardware assistance along the
lines of scalar caching and/or virtual vector addressing may prove helpful. Additionally,
virtual addressing may allow hardware scalability significantly beyond the level presently
implemented by facilitating a physically distributed, logically shared-memory system.

Finally, distributed memory machines (including massively parallel machines) have not
been examined in this study. Clearly, memory contention concerns will be significantly re-
duced on these machines, but communication time among processors (effectively ignored on
the shared-memory machines) will be significant considering the amount and distribution of

serial code remaining in the Newton-Krylov-Schwarz solution as currently implemented. In

193

fact, to achieve any level of meaningful performance oﬁ these Mcﬁte&ures would require an
.overall re-design of the simulation code. Additionally, a large number of processors cannot
be used for the preconditioner formation and application due to the degradation of the pre-
conditioner qua]itf as the number of subdomains is increased (recall the increase in Krylov
iterations as the number of subdomains increases). However, it is likely possible fo implement
a matrix-free pseudo-transient solution that minimizes the importé.nce of a scalable precon-
ditioner in conjunction with a parallel Krylov technique [42] on an architecture of this type. -
.Furthermore, work on & coarse grid precond.itipner could mitigate or eliminate any scalability
problems along these lines. at some point in the future. As such, barring the development
time of a distributed memory 'veréion of the simulation code, these type of architectures
could provide real benefits without many of the disadvantages seen with the hardware (more
correctly algorithm /hardware mapping) employed in this study.

This discussion is clearly hypothetical at this point. Much work (and a study similar
to this one) would need t;a be performed_on a representative architecture of this type to
determine the feasibility of the approach, particularly in the area of preconditioning.

7.2 Summary of Results and Future Research Topics

The results were presented begi;ming with a study of additive Schwarz preconditioning, with
and without subdomain overlap. Multiplicative Schwarz preconditioning was in{*estiga.ted in
a similar manner. The final results examined were based on the matrix-free téc]lnique using
additive Schwarz preconditioning and ﬁseudo-tra.nsient relaxation. This discussion will not

reiterate the material found in the previous chapters; only the salient points directly related

to the overall goals will be summarized.

194

Newton-Krylov-Schwarz a].gorithms were used to solve a model problem of compress-
ible 2D flow past a backward-facing step. Parallel{vector aspects of the solution algorithm
were exploited on a 16 vector processor Cray C90 computer and a 4 processor cache-based
SGI Onyx. The first results examined a direct steady-state solution using additive Schwarz
preconditioning. A study of the algorithms indicated that the Jacobian formation and pre-
conditioner formation and application routines were readily parallelized.

Observations indicated that the Jacobian formati;m routine performed well in parallel
for two and four processors on the C90. However, this routine did not scale well beyond
four processors, and exhibited poor performance on eight processors. Because the Jacobian
formation algorithm is inherently parallel, the ﬁoor scalability beyond four processors was
attributed to memory contention during the Jacobian update operations. The linear solution
operation time (the preconditionér formation and TFQMR iterations) increased as the num-
ber of preconditioner subdomains was increased beyond four on the 64 x 320 volume model

problem {81,920 unknowns). Two factors were identified to explain this behavior.

¢ On the B-processor C90 test case, the formation of the preconditioner contributes 14%
to the total linear solution time. Clearly, the bulk of the linear solution routine remains

serial.

s As the number of subdomains increases, the number of TFQMR iterations required to
solve the system .(Equa.tion 1.18) increases substantially. This behavior indicates that
as the number of subdomains used to construct the preconditioner is increased, the
effectiveness of the preconditioner decreases, requiring more iterations for solution. It
was postulated that this problem may be partially alleviated with the use of subdomain

overlap.

195

The second factor will quickly limit scalability of the solution beyond a small number
of processors. It was also suggested that it may be possible to obtain preconditioners that
scale more effectively with the number of subdomains, perhaps with: (1) an additive Schwarz
scheme with overlap, or (2) a multiplicative Schwarz implementation incorporating a @-
oring scheme to allow concurrent preconditioner formation. It was also suggested that the
use of a matrix-free pseudo-transient simulation may achieve scalability by allowing fewer
preconditioner formation operations per full simulation.

The SGI Onyx 32 x 160 simulation exhibited superlinear speedup due to cache effects on
the two-processor runs. It was verified that this superlinear effect could b_e achieved with four
processors in the Jacobian formation if the problem was scaled to 64 x 320. Scaling alone
did not provide a superlinear speedup in the TFQMR routine or the overall results on four
processors, however. It was acknowledged that the TFQMR routine had not been optimized
for maximum granularity, cache hit efficiency, or to minimize the serial code currently in the
" routine. With these changes, it is not clear that overall superlinear speedup can be achieved
with four (or more) processors.

In comparison with the two and four processor Cray results,.it appeared that the SGI pro-
vided better scalability with additive Schwarz techniques. It is possible that these techniques
map better to a cache-based architecture. However, it is not possible to firmly conclude this
point with this limited data and using the SGI Onyx due to the multitude of other differences
I(prima.rily processor speed and lack of vector capabilities) between the Onyx and the C90.
The data certainly suggests that when m.inimal runtime (ignoring paﬁ‘a]_.'lel scalability) is of
concern, the Cray is the ideal platform. For the 64 x 320 four-processor run, the Cray is an
order of magnitude faster.

Several additive Schwarz simulations were performed using overlap. Furthermore, signif-

196

icant code and algorithm changes were performed on both the Jacobian and preconditioner
routines in an attempt to increase the parallel granularity of these algorithms on both archi-

tectures and to decrease memory contention on the Cray. These changes were quite effective.

¢ Subdomain overlap decreased the total number of TFQMR iterations and the rate of

growth in iterations with an increase in the number of subdomains.

e The combination of code modifications and higher granularity due to larger overlapped
subdomains resuited in a speedup of 14.3 in the Jacobian section and 13.5 in the pre-

conditioner on 16 C90 processors.

Clearly, this data shows that the both the Jacobian and preconditioner scale with reasonable
efficiency to 16 processors. However, the overall solution did not scale well, a speedup of only
4.9 was achieved. The significant amount of serial time remaining within the TPFQMR routine
c;verwhelms the parallel preconditioner time. Furthermore, it was also obvious that due to
the severe memory requirements of overlapped subdomains, this technique is likely only of
interest when memory requirements are not an issue. As such, overlap was abandoned as a
method to ensure precorditioner quality with additive Schwarz.

A similar study of multiplicative Schwarz with and without overlap was performed. It
was quickly determined that on a degree of parallelism basis, muliiplicative Schwarz offered
no advantages over additive Schwarz on the model problem. Again, overlap resulted in ex-
treme memory requirements, and was abandoned. Due to this result, multiplicative Schwarz
preconditioning was not addressed further within this study.

At this point in the study it was apparent that scalability could not be achieved effectively
by concentrating on the preconditioner routines alone. Furthermore, the model problem,

while numerically challenging to solve, was very simplistic in comparison to those problems

197

of current research interest. As such, a method combining a matrix-free solution technique
in conjunction with pseudo-transient relaxation was developed to address both issues.

The effect of the preconditioner on the overall solution algorithm was decreased by “lag-
ging” preconditioner formation operations, i.e., the preconditioner was updated evéry m
Newton iterations instead of each iteration. This method was successful and effectively ad-
dressed both the robustness concern for more complex problems and provided an overall
speedup of 6.1 on 8 C90 processors. This results in an overall scalability to eight processors,
with a parallel efficiency of T6% overall. Clearly, this result appears quite promising. An
attempt to examine scalability to 16 processors was not successful, largely due to a marked
mapping dificulty with the matrix-free algorithm on the C90 architecture. It was postulated
that this is again due to memory contention (similar to the problem experienced earlier with
the Jacobian algorithm). However,. due to the memory access complexity of this routine, it
is not likely that the contention problems can be easily solved.

The goal of achieving scalability to n < 16 processors remains somewhat elusive. Clearly,
despite the fact that access to the C90 was not dedicated, scalability to 8 processors was
demonstrated (these results were not corrected in any way for the multinser workload). The
results also indicate that scalability beyond this point is very unlikely. As of this date, this
issue may not be of paramount importance to the practicing computational scientist solving
these problems; Crays over 8 processors are quite expensive both from an initial expense
perspective and a usage/maintenance viewpoint {CPU time is often charged as a multiple of
the number of processors employed) and SMP workétations beyond 8 processors are very rare.
In the future, however, scalability beyond 8 processors will likely become quite important.

‘Again, computational scientists wish to perform simulations in a minimal amount of time

! Appendix A discusses the scalability metric used.

198

within the reémn-ces available. Thi; work has concentrated on the first desire, but has not
neglected the second (overlap was abandoned due to memory requirements). Simulations are
usually constrained both by memory and time limits. In fact, this study quickly found that
it is not possible to solve problems of any interesting size while being limited to 256 Mwords
(2 Gbytes) of Cray memory. .As the model problem was scaled in size, the memory Limit
was reached long before the simulation time for the solution became an issue (an analogous
problem was encountered on the SGI with its 1 Gbyte of mainx memory). Furthermore, on
the Onyx, a configuration parameter or operating system limit did not allow access of the
total main memory from a single process on the benchmark machine.

Unfortunately, this study appears to have posed more questions than it has answered.
There are many opportunities for future rescarch in this area; ranging from the physics of
the problem to specialized hardware tailored for these techniques. Along.the theme of this

work, three areas of paramount interest are immediately evident.

¢ Reduction of the memory requirements of this solution technique for a given problem.
The use of an inexact subdomain linear solution technique (perhaps ILU versus the

implémented LINPACK Gaussian elimination} would be a promising initial candidate.

» Modification of the preconditioner algorithm to prevent (or decrease) the decay in
preconditioner guality as the number of subdomains is increased. The use of a coarse

grid /fine grid scheme may be an initial approach.
« Hardware or algorithm changes to enhance the scalability of the matrix-free routine.
¢ Development of a parallel Krylov solution technique for this architecture class.

¢ Mapping these technigues to a distributed memory architecture with significant per-

199
processor performance (the IBM SP2, Convex Exemplar, Cray T3E, etc.).

Finally, to provide a closing perspective, the model problem studied reguires a very pow-
erful i)reconditioniz;g technique due to the low Mach number inlet condition. If this were
not the case, better scalability results could certainly have been achieved. As such, the
model problem selected demonstrates the “worgt-case” scalability that would be obtained
with these techniques. If is evident that the results a,nd. conclusions of this study are specific
to the model problem. However, these results may be applicable to a much wider variety of
situations if the results are viewed as a lower-bound to tile performance that mé.y be achieved
on a “general” simulation.

In any event, this area of research appears quite promising and is fertile for further
work and discoveries, especially as hardware improvements in conjunction with improved
parallel preconditioner aigorithms are developed over time. This author has only been further

stimulated by this study to pursue future work in this area.

Appendix A

Some Mechanics of Shared Memory

Parallel Computation

This study has focused on the .sha.red-memory paralle! solution of a specific problem using
parallel algorithms. The research on this problem has resulted in the collection of a substantial
amount of material addressing this topic.

In eséence, this work has reinforced the concept that the developmeni of efficient paraliel
algorithms is an integral ilortion _of obtaining efficient parallel execution on hardware of in-
terest. Clearly, the concentration of this work on the algorithmic theory and the presentation
of the pMom@m results has not adequately addressed the many implementation and ar-
chitectural issues that proved important in this study. This appendix seeks to summarize the
implementation and architectural issues encountered in the implementation of the solution
algorithms on the various architectures examined.

This appendix is intended to present a general implgmentation and architectural overview

based on the empirical data obiained from this study and the experiences therein. As such,

201

an attempt was made to gener?lzlize problem specific behavior observed in this study to a
general form. As much of this information is based on gbservations under particula:r. condi-
tions, they may not be generally applicable to all conceivable problems under all conditions.
Furthermore, proofs or theorems based on these observations are left for future research.
This appendix is organized as a set of notes, with the intention of providing a 1.'eferei1ce on
sha.red-mémory parallel computation. Within this framework, this appendix is a summary

of some of the experiences of this author to date on applied parallel computation.

A.1 Applied Parallel Computation

In this context, applied parallel computation is the efficient .pa.ralle'l solution of large-scale
problems in a production sha.réd-memory environment. To date, there is a growing body of
knowledge of the parallel solution of large-scale problems in a research environment. Many
of these efforts have been very successful and have clearly advanced the understanding of
specific problems under certain conditions. These successes have provided strong motivation
for further research in parallel computation, algorithms, and hardware in order to migrate
from research towards application/production.

Unfortunately, very little of this work h;':,s migrated from the research environment to
provide any significant impact in analysis tools. Engineering analysis is largely still accom-
plished using serial methods, as in '1:he past. Although parallel computation is a popular
areé., it cannot remain popular without clear analysis benefits. There are several reasons for
the lack of parallel analysis tools (and interest in parallel execution in general} outside the

research establishment.

1. Research has been focused on maximizing the performance of a particular problem

202

using the optimal algorithms to solve this problem. This is clearly very important,
as this work drives algorithm and hardware advances. However, the analysts do not
directly and immediately benefit. Analysis requires robust parallel algorithms capable
of solving a large variety of problems with little operator training. Research efforts
often solve a particular problem using finely tuned algorithms. These problems may be
less complicated or of a different na,ture. than those of analysis interest. Additionally,
tuned solution algorithms often require significant changes for use on different problems,

requiring a high level of operator training.

. Parallel capable hardware remains quite expensive. The very recent popularity of SMP

workstations indicates that this problem may not remain significant in the future. How-
ever, in the recent past, hardware that supports parallel execution of any kind (even
inefficient network interconnected resources) has been too expensive to make any impact

on engineering analysis.

. Software supporting parallel execution is extremely expensive. The development of

serial software is very expensive and often beyond the reach of many engineering groups.
Efen simple shared-memory cé,pable software is many times more expensive to develop
and requires specia]ly—tra.inéd personnel for development. Distributed memory parallel
software is yet more difficult and expensive (and is still mainly limited to pure research

areas).

Many analysts (and more importantly, engineering managers) do not entertain the
advantages of parallel execution due to a lack of understanding of the process. In
some environments, computer simulation is not yet accepted as being a precursor to

prototyping as part of the engineering design process, let alone parallel execution of

203
simulation tools.

5. Clearly, some areas, tasks, and app]icatidns cannot use parallel simulation for a benefit.
I multiple executions of a tool are required to obtain a set of data (e.g.; for a parametric
study), it is much more effective to run multiple serial executions on the available
processors rather than one parallel execution for each data point serially. In t]ﬁs case,
the multiple serial executions effectively maximize throughput, providing a “parallel

efficiency” of 100%.

These topics {and likely several more) must be adequately addressed for parallel processing

and simulation to achieve widespread popularity within engineering analysis.

A.2 Hardware Selection for Applied Parallel Computation

The performance of a particular code on a glven platform is strongly dependent on the
structure, size, memory access patterns, layout, and style of the program, to name but a few
factors. Additionally, the performance of the code on a particular architecture is strongly
dependent on the design of the machine, and on how well the program exploits the available
performance characteristics of the computer (i.e., how well the code maps to the architecture
of interest). As an example, it is often possible to construct two computer programs that
perform similar (or identical) tasks, yet execute quite differently on a given machine (conéider
a program that exploits data locality and has a very large cache hit ratio .ver_sus another
program that a.chiéves virtually no cache hits). Furthermore, it is also usually possible to
construct a program that maps well to a particular machine design, but executes poorly |
on a different architecture. In fact, one may concede that a machine with certain features

(machine “A”) is considerably faster than a machine with different features (machine “B”)

204

on a particular set of programs, yet encounter a particular program performing a similar
fanction that executes much faster on machine “B.”

Clearly, the only way fo select an optimal machine to run a particular code is a compar-
ative process of timing the execution of the code on all architectures that may be applicable
(i.e., “benchmarking”). This obvious technique, however, leaves much to be desired. Bench-
marking identifies the fastest machine for the given program on the input data examined on

the set of machines with the configurations tested. This result leads to several questions.

1. If the input data to the program is changed to double the memory requirements of the

execution, is the selected machine still the fastest of the group examined?

2. If the program is updated to a new, more efficient version with different memory access

patterns, is the machine still the fastest of the lot?

3. If the program is designed to model fluid flow and heat transfer in a piping system
using explicit solution techniques, will the selected machine be the fastest with another

program solving the identical problem using implicit techniques?

This set of questions clearly suggest that a general purpose computer system should' be
selected by benchmarking the complete set of codes that will be run on the machine, usually
weighting the results based upon order of importance, selecting the machine that consistently
out-performs all others. This technique may be guickly dismissed due to the obvious cost of
performing an analysis of this magnitude. Is there some technique that may be employed to
select an optimal, or near 6ptima.1, general purpose ma.ching for the workload of interest?

It is often elementary to construct a list of absolute requirements that must be met by the
system. This step allows the elimination of clearly unacceptable machines from consideration.

As an example, given a highly parallel program performing a Monte-Catlo technique or an

205

explicit fluid-flow calculation, a massively parallel system with thousands of processors would
likely be the fastest architecture by a significant margin. However, such a machine would
likely be very costly, possibly tens of millions of dollars. Additionally, the costs of executing a
program on the machine should be considered, as it would likely require a significant number
of ma.n-houis of effort to manually modify a particular program to execute efficiently on the
machine. As of this date, machines of this type are generally only applicable to strongly
research-oriented environments; the ability of an ordinary user to develop and execute a
“production” application efficiently and cost-effectively on such an architecture should not
be assumed. As such, for most installations, thé consideration of this architecture makes
little sense.

Toward the other extreme, the consideration of a PC or “workstation” class machine can
be quickly dismissed due to the limited processing capability and data throughput capacity of
the system. For example, consider a large number of simultaneous scientific applications with
a highly optimistic data _requirement for _each a,pp]ication;. this scenario mandates a system

with a processor and bus capacity many times that exhibited by workstation class machines.

A.2.1 Requirements

The ability to handle a true multiuser scientific workload requires a machine {or an aggregate,
“cluster”) that can handle the processor needs of the appﬁéations and service input/output
(including memory access) requests without a significant degradation of “per appﬁwtion
level” performance. This capability must be accomplished for a reasonable cost (acquisition
cost plus ma.iﬁtena.née costs plus any cos1l;s involved in moving applications to the machine

and modifications required for efficient execution). With this summary of needs, several

specific requirements are obvious.

206

+ Multiprocessor Capability. It is well known that in a batch, throughput environment,
matching available tasks with an equivalent number of processors maximizes throughput
(for a given application assuming no bus or resource contention). Some applications
may also be designed to support task-level parallelism; the use of multiple processors

to complete a task in less time than required for a single processor,

Large main memory. As a minimum, the system must contain mermory sufficient to
execute the largest program. On a shared-memory system additional memory is usnally
added to minimize memory contention under timesharing conditions. In their favor,
shared-memory systems also achieve better memory utilization for a given workload,
often maximizing the time between system upgrades and minimizing the system cost

by decreasing the a,ggfega.te memory requirements.

Upgradeability and expandability. The system should be readily (and inexpensively)
upgraded to newer, faster processors, more processors, and larger memory than the

base system.

Softwaze development environment. Giﬁn an appropriately constructed application in
general form, the development environment {e.g., compilers) should generally create an
image that executes at peak efficiency on the hardware. As an example, given a parallel
application, the compiler must recognize the parallelism and construct an image that
executes efficiently on the available processors in parallel without user intervention or

manual code restructuring.

Reasonable costs. The system must be affordable in the initial purchase, later upgrades,

maintenance, licensing, and administration.

207

Machine N =100 (Mflops) N = 1000 (M#flops)
IBM RS/6000-R24 (71.5 MHz) 142 246
IBM POWER2-990 (71.5 MHz) 1490 254
DEC 8400 5/300 (4 proc 300 MHz) 140 1351
IBM RS/6000-59H (66 MHz) 132 230
IBM POWER2 model 590 (66 Miiz) 130 236
SGI POWER CHALLENGE (90 MHz, 4 proc) 126 2045
Cray J916 (4 proc. 10 ms} 121 743
DEC 2100 5/250 (4 proc 250 MHz) 119 317
IBM POWER2 model 58H (55 MHz) 101 197
SGI POWER CHALLENGE (75 MHz, 4 proc) 104 993

Table A.1: LINPACK benchmark results for machines under (or near) $300K and over 100
Mflops performance (1/1/96).

For a general purpose scientific system, it makes little sense to consider any system that
is not competitive on a per-processor performance level with other machines in the price
range allowable. Ideally, one would immediately narrow down i;he machines that would be
considered to a set of the most desirable (say, the top 10 performers on the set of programs
of interest). As this difficulty of comparison has previously been discussed, perhaps the
machines could be ranked on performa.nﬁe based on a widely accepted (or at least understood)
benchmark that has some meaning to the scientific workload envisioned. Furthermore, this
technique may be quite valuable if it is used only to eliminate the consideration of clearly

_ unacceptable machines, not as a technique to select the “best” machine from a group.

Many scientific applications involve_ solving dense systems of linear equations. Many of
these applications employ caﬂs to the LINPACK linear solution library. As such, a bench-
mark based on this iibrary [7] may have some meaning to provide a rough comparison of
hardware. Table A.l lists the machines within (and close) to the $300K purchase window,

with LINPACK N = 100 performance above 100 Mflops. The N = 100 level column is for

a small solution of order 100, allowing no changes to the benchmark program beyond what

208

the compiler itself recognizes and performs. As a side note, a pfoblem of this size will almost
always fit in a moderate Worksta.tiqn cache. Additionally, as the LINPACK benchmark is not
explicitly parallel, a compiler is not likely to recognize any parallelism within the code; as
such these figures likely indiﬁate performance on a single processor. The N = 1000 colomn
is a larger problem of order 1000 {may still result in a high cache hit ratio in a well designed
system). Furthermore, unlimited changes to the code are allowed for this benchmark, as long
as the accuracy of the solution is retained. In the case of a multiprocessor machine, ven-
dor modification of the Benchmark typically guarantees optimal performance in an efficient
parallel execution mode.

Discarding all machines below 100 Mflops single processor performance may at first seem
arbitrary; considering that .the fastest machine in the group is capable of 142 Mflops, any
machines below 100 Mﬂops are then at least 30% slower than the fastest machine in the
range on the LINPACK single processor results. The line must be drawn somewhere, it
is not likely a very defensible position to purchase hardware that is 30% (or more) slower
than a competitor considering the importance of single processor performance in a scientific
environment. Based on this statement of requirements and a multiuser (30--50 users) scientific
workload, a minimal entry level system would likely consist of 4 processors, 40 Gbytes disk
storage, and 512 Mbytes main memory. Further enforcing the requirement that the initial
cost be under (or near) $300K, very few systems remain for consideration. As a side note,
the SGI machines with this configuration are somewhat above the $300K limit but aggressive
vendor discounting could allow them to meet the cost requirements; as such they will continue
to be considered at this time. The top four machines in parallel performance on the large}'
benchmark are consequently the 90\ MHz SGI, the DEC 8400, the 75 MHz SGI, and finally

the Cray {Table A.2). Of note, with modifications to the benchmark code allowed, the 90

209

Machine _ N =100 (Mflops) N = 1000 (Milops)
SGI POWER CHALLENGE (90 MHz, 4 proc) 126 2045
DEC 8400 5/300 (4 proc 300 MHz) 140 1351
SGI POWER CHALLENGE (75 MHz, 4 proc) 104 093
Cray J916 (4 proc. 10 ns) 121 743

Table A.2: LINPACK benchmark results for top four machines under (or near) $300K and
over 100 Mflops performance considering other imposed requirements.

Benchmark A - Multiples Faster than Y-MP/1

Machine EP MG CG FT IS 11U SP BT Avg
DEC 8400 5/300 (4 proc 300 MHz) 3.23 - - - - 2.10 237 2.92 2.66
SGI P. CHAL. (90 MHz, 4 proc) 2.88 2.69 1.35 173 1.61 1.77 235 2.65 2.5
Cray J916 (4 proc. 10 ns) 2.93 2.07 2.70 2.57 3.00 247 208 249 254
Benchmark B - Multiples Faster than C90/1
Machine EP MG CG FT IS LU SP BT Awg
DEC 8400 5/300 (4 proc 300 MHz) 093 - - - - 0.65 0.76 0.80 0.79
SGIP. CHAL. (90 MHz,4proc) ~ 0.83 068 - 061 - 058 081 0.80 0.72
Cray J916 (4 proc. 10 ns) . 086 0.69 0.81 0.82 093 0.85 0.73 0.72 0.80

Table A.3: NAS parallel benchmark results [2].

MHz SGI is fully 2.75 times faster than the Cray.

A similar exercise performed by consulting the NAS Parallel Benchmark {2] results in
the selection of basically the same sét of machines, but different levels of performance and
rankings result (see Table A.3).

From this exercise, one becomes quite comfortable with the machines cc;mposing this
grouf likely being the optimal set for scientific computation of similar workloads, as the
benchmarks considered result in the selection of the same group. However, it is also quickly
apparent that differentiation between the machines based on benchmarks is a futile effort.
As such, can the benchmark results be combined with a knowledge of each architecture to

reason. which machine would be most applicable to the scientific workioad?

A.2.2 The Optimal Architecture

Clearly, the architectures of the Cray, DEC, and SGI fall into two categories. The Cray is
a shared-memory multiprocessor that directly accesses main memory via a bus without an
intervening cache subsystem. Due to the design of the interleaved memory system, the bus,
and the processors, the Cray can a.lsﬁ pipeline memory accesses under certain conditions.
Each Cray prboessor, in addition to the usnal pipelined scalar processing capability, has a
deep pipeline processing unit able to operate on multiple registers during a single operation
without encou.ntering data hazards (z'.e;, a “vector” unit) for those app]ications that can use
it. Based on this design, the Cray may be called a real memory multiprocessor.

The DEC and SGI machines place a local processor cache at each processor to attempt
to mitigate the usual main memory access penalty. In theory, given a suitable cache design,
the requested memory item will be found in the fast cache memory, eliminating the need
to access the item from the relatively slower main memory. Also, the processors implement
an instruction pipe]ing capability to perform scalar instructions in a minimum number of
clock cycles per instruction (similar to the scalar unit on the Cray). Additionally, this design
also implements the capability to issue multiple instructions each dock cycle (superscalar
operation), in contrast with the Cray’s vector pipelining. In theory, superscalar and vector
processing provides an equivalent execution efficiency, all things being.equal. Due to the
experience with vector proces.sing, compiler design, and the vector memory access system,
current superscalar design_s nia,y not always be competitive, performance wise (for evidence
of this, see the NAS Benchmarks in Table A.3). Because these machines implement a vir-
tual memory model (each memory transaction is translated to a physical address prior to

reference), these systems are often termed virfual memory multiprocessors.

211

Before considering the intricate details of each system and reasoning about the perfor-
mance aspects of the two designs, it is necessary to stipulate what is meant by the term
“scientific computation.” Clearly, this category is strongly open to interpreta,tibn. In the
context of this report, scientific computation will be interpreted to involve simulation, mod-
eling, engineering analysis, solution of equations, numerical analysis, etc. This type of work is
often compufed with the use of large, indexed data structures in the form of arrays. Depend-
ing on. the application, of course, these arrays range widely in size. However, as simulation
needs become more detailed and precise, one increasingly encounters arrays greater than 100
Mbytes in size and complete executable images nearing 500 Mbytes. To summarize, it can
likely be conceded that the efficient processing of large array data types is a very important
aspect of scientific computation {perhaps the most important in many cases). Furthermore,
the expectation of a polynomial growth in the size of these data types in tile immediate futare

is also a defensible position, considering the move to three-dimensional analysis.

A.2.3 The Comparison

At the proéessor design level, it is easy to enter a discussion about the strengths and weak-
nesses of the Cray real memory appro@ versus the cached virtual memory approach. There
are clearly many significant opera,tiongl details that may be exploited by an application to
provide a certain level of performance. However, these differences tend to be very application
specific; the a.d?a.nta.gés of one design on an application often is a disadvantage for a different
application. Reasoning about a general purpose architecture using a suite of dynamically
changing codes using these details is likely not overly productive, in general terms.

As of this writing, the vector real memory approach has one clear and substantial advan-

tage over the cached approach for large scientific codes, the memory access system. Vector

212

memory systems often have significant advantages when array memory accesses do not have
unit stride [76]). Furthermore, if the array access patterns or array size is such that the work-
ing set of cache lines do not fit within the cache, scheduled direct ba.ﬁk men'lpry accesses are
clearly superior. Again, for the larger and more realistic benchmarks in the NAS suite, the
direct memory access of the Cray machine is largely responsible for its performance on the
tests.

To explore this concept in more detail, consider the earlier LINPACK results. These
benchmarks are small enough that the working set of data will likely fit within the cache on
the two cache-based machines. Furthermore, the array sizes are quite small and the overhead
of accessing the Cray memory system is large in compa.rison to the time spent processing
the data. Clearly, with this scenario, the cache machines perform at their best and the real
memory machines are at their wor;st. This is not really an interesting comparison, especially
consideﬁng that the LINPACK benfhma;rk runs to compleﬁon in a matter of seconds on
machines with this level of performance! Of much more interest to scientific users are the
codes that run for hours, days, or even weeks. The NAS benchmarks are more realistic; not
all of the benchmarks are likely to reside in cache on that architecture and the Cray memory
overhead has fallen sigh.iﬁcantly as a fraction of total workload for problems of this average
size. The realism is still limited. For example, benchmark A for LU decomposition executes
in 135 seconds on the Cray. Clearly, this is still a very small problem.

A cache-based architecture i'eads a large array beginning with the processor requesting a
memory fetch of an array element (often the first or last elemeﬁt of the array). Fetches are
always directed at the cache. If the requested item is not resident in the cache, the cache
controller fetches a cache line containing the item from main memory, with the processor

(and pipelines) stalling until the request is satisfied. The time required for main memory

213

to return the line depends on the memory a.n.d bus speeds, bus width, cache line size, and
other factors. Once the data arrives in the cache, the requested item ma.f then be supplied
to the processor, allowing it to resume processing. Because a cache line usually consists
of several adjacent array elements, further requests for elements “close” to the first will be
subsequently found in cache. The length.of a cache line and the number of lines that may
be contained within the cache are functions of the totél cache size. Clearly, within a loop
structure accessing arrays, one desires a 100% cache hit efficiency for each element access
(i.e., every array element requested by .the processor will be resident in the cache prior to
the request). This cannot be achieved, as the processor must initially fill the cache with the -
array, but if the cache is physically large enough to contain the array the cache hit efficiency
will approach 100% as the woﬂc (and time spent) within the loop increases.

This behavior of cache-based machines has a very strong effect on application perfor-
mance, often overwhelming any other considerations. If the array size is large in Icompa.rison
to cache size, the cache hit efficiency in a loop construct will be low. I array-based loop
constructs dominate the workload in an application (they often dominate in scientific appli-
cations), the memory subsystem cannot service the processor data requests without stalling
the processor. As an example, consider a machine with a main memory system that can sup-
ply a request for a cache line in 100 ns., and & processor with a 10 ns. clock. Further assume
a loop structure that accesses successive array elements one each processor clock cycle. If
the element is found within cache each request, the processor is not déla.yed and runs at full
speed. However, for every cache miss, the processor must stall for 10 cycles waiting for mem-
ory to supply the data. This discussion invites a question. If only 10% of the array accesses
miss the cache {a 90% cache hit efficiency), what is the resultant processing efficiency?

To ignore overhead, assume that the loop is infinite in size. If the cache hit efficiency were

214

100%, the system would clearly require one processor cycle to process each array element,

For an efficiency of 90%, the system requires 1.9 cycles per array element {on average)

(1 cycle)(9 items) + (10 cycles)(1 item)
10 items

= 1.9 cycles/item.
Assuming the loop is infinite yields the system efficiency
Eff = 1.0/1.9 = 53%.

In effect, this system runs at 53% of full speed.

Now, consider the same simple example on a banked real memory system. With this
arrangement, the access of the first array element by the processor proceeds at memory
speed, stalling the processor. However, the processor does not request data one element at
a time with this design, it requests a vector of data. The memory system, upon receipt of
this request, supplies the first elemént, say from the first bank of memory, in 10 processor
cycles as one would éxpect. As the memory system knows that the processor has requested a
vector of data; it immediately supplies the sutcessor array element from the second memory
bank on the next processor cycle without the processor’s intervention. This process continues
essentially independent of the processor for a very large array of data. Looking at the above
| example, it is dea.r_ that after the initial 10 cycles of stall overhead for the first item, every
subsequent item may be é.ccessed each processor cycle. As such, for large arrays in inﬁpite
loops (as the above example) the processor runs at near 100% of design speed and does not
stall waiting for memory.

It may not be apparent from this simple example, but many details intercede that may

215

narrow this performance advantage in real situations. Furthermore, the example is a drasti-
cally simplified model of each architecture; the example was designed to illustrate the basic
obera.tion of each system and foster an understanding of the general behavior of each system

for large array constructs.

A.2.4 Final Thoughts

This section was written to illustrate pitfalls of using benchmark data to select a general-
purpose computer system. However, an “approximate” method was described on how bench-
marks could be combined with clear sy;'tem requirements to narrow the search space of
available systems. For the requirements deemed important m this section, two general archi-
tectures dominated the final set of macjlines; the real memory and virtual memory multipro-
cessors from Cray, DEC, and SGI.

The second major topic discussed the memory systems of each architecture in the form
of a simplified model. This exercise s*ugge.sted that vector real memory systems, such as
implemented in the Cray system, has a potential performance advantage for the scientific
problems of interest due to a vector memory accessing capability.

In closing, selection of a system must consider the issues discussed herein along with many
other specific requirements such as porting costs, binary mmpatibﬂity concerns, amortized
sysfem costs, ete. Above all, the final system can oniy be successful if the requirements of

the users drive the selection process to the exclusion of all other perceived criteria.

A.3 Shared Memory Hardware Programming Basics

The simulation code for this study was implemented in well-structured FORTRAN 77. The
base version was developed to be quite portable, using an “elementary” style (only basic,
textbook optimizations were used). Ideally, from this base, a compiler could recognize paral-
lelism implicit in the code and include the necessary structure in the intermediate or assembly
language to execu.te the requisite sections (possibly “basic blocks”} in parallel.

The compilers for both the Cray and SGI are capable of performing this task, at least
to some extent. However, this method is limited, as the compiler does not have intelligence,
50 to speak, It is only capable of performing a sequence of analysis steps to determine if
a particular setiuence of code may be safely executed in paxallel- (these compilers typically
consider only loop constructs at a high level). Loops are typically parallelized if analysis
indicates that there are no data dependencies that will affect the result and that the loop
contains sufficient work to overcome overhead inherent in the parallelization process. It is
clear that this is a sufficient condition for safe parallelism of a construct, however it is not

necessary in many cases. Performing analysis in this manner may “miss” a significant amount

of parallelism.

¢ The loop construct may not contain dependencies, but it niay obfuscate the compiler

due to its complexity, use of indirect addressing, or as a result of the “anthor’s style.”

s The compiler skips loops containing function and subroutine calls due to the difficulty
of dependency analysis (especially with global data, commons, aliasing, and eguivalenc-

ing). As such, the highest level of parallelism often available is completely ignored.

A perfectly acceptable method to address these problems is to allow the programmer to

“instruct” the compiler of the available parallelism, where it occurs, and how the compiler

217

can best handle real and imagined dependencies. These instructions {directives) are often
implemented as comment lines, but with 2 special syntax recognized by the compiler. Di-
rectives are often used (they are really mandatory) in shared-memory compilers to allow the
explicit specification of paralleﬁsm.

The second compiler-based parallelism opportunity is instruction level parallelism {ILP).
Lately, ILP ha.s. become important to pipelined and superscalar processors. Parallelism at
this level can often be analyzed effectively for data dependencies by either hardware, compil-
ers, or both. This fine-grained parallelism is currently v&y important in achieving modern
microprocessor performance levels, but is often dismissed for scientific computing due to the
low degree of parallelism (DOP) inherent in ILP. It is often stated that, on average, a branch
occurs every seven instructions. This limits the effectiveness of ILP to a DOP of roughly
seven. This “rule of thumb” clearly does not hold for loop-intensive scientific computation,
however. One may interpret vector processing as a parallel operation over a séries of identi-
cal serial instructions (perhaps as many as 128) operating on different data streams (SIMD).
One could envision a new genération of a superscalar processor that could accommodate a
large DOP for scientific.codes in the same manner. This processor could be designed as a
“vector processor” that operated on different data streams using optionally different instruc-
tions (MIMD). In this context, the “new” superscalar processor embodies all the advantages
of existing superscalar technology with the addition of the ability to handle many parallel
instructions, and existing vector technology with the ability to handle different instructions
over different data values. This capability may be further enhanced with the vector memory
systems often used in vector machines.

The above discussion outlines the essential points of the differences between parallel and

vector processing on machines like the Cray, and parallel and superscalar processing on the

218

SGI. In summary, the differences are conceptually that parallelism is a large-grained MIMD
concept, _a,nd vectorization (superscalar) is an instruction level SIMD (MIMD) operation. It
is important to note, however, that independent hardware exists that mirrors this hierarchy.
The large-grained parallel contexts are concurrent across multiple CPUs on the machine, while
the vector parallel (ILP) contexts are concurrent across elements of a vector unit {superscalar
pipelines) on a given CPU. As such, @mbin.ing these two “forms” of parallelism may result
in a surprisingly high level of concurrency in a scientific application that can make use of the
hardware. |
At this point, it is most instructive to consider the programming details of each of these

architectures.

A.3.1 Cray Optimization Process

The initial development work was performed on the four processor C90, and was limited to
routine compilation tasks and verification of correct operation and results. The vectorization
(c£t77) and parallelization (fmp) passes and all optimization were disabled for the initial
porting phase.

Following the initial porting phase, scalar optimjz_ation parameters were investigated to
obtain an optimal configuration in preparation for a flow analysis of the code. For the flow
analysis, a Cray utility, FLOWTRACE, was used to identify code blocks that warrant optimiza-
. tion. Additionally, all LINPACK routines used in the code were replaced with Cray library
calls to provide better efficiency.

FLOWTRACE results indicated that several functions and subprograms were suitable for
inlining, These routines were explicitly inlined with tﬁe_use of compiler directives and the

requisite compile options., Additionally, an examination of the available compiler options

219
resulted in a set that minimized execution time,

c£?? -WE"~dp -1 inliner -o aggress -A full"

where

cft77 invokes the FORTRAN compilation system,

~Nf" passes the enclosed options to the c£t77 phase,
-dp converts double-precision code to single precision,

-I inliner forces inlining of files found in the ./inliner subdirectory,

-0 aggress turns on aggressive optimizations, and
-A full uses a full addressing model (enables indirect addressing into extended
mMemory).

Following this work, FLOWTRACE indicated that several routines comprised the bulk of the
execution time for the simulation code. These routines were involved in forming the Jacobian

madtrix, m_a.inly:
¢ the u-momentum contribution routine umom,
¢ the v-momentum routine vmom,
s the routine for the mass-conservation contribution eont, and
¢ the temperature routine temp.

Additionally, the routine that forms and factors the preconditioner, precond, required an

appreciable amount of computation time. Following these routines in percentage of execution

220

time were several utility routines, matmul - general matrix-vector multiply, mivmidd - a
banded linear equation solution routine, esircy - a data extraction routine, and sever_al others.

Following this analysis, the vectorizing phase of the compilation system was invoked, with
diagnostic output directed to interr..nedia.te files. This output was studied, with particular at-
tention to the routines]istgd above, to determine the success of the “automatic” vectorization
abilities of the compiler. Using this inforrﬁa.tion, the routines that did not vectorize were mod-
iﬁed by hand to enable vectorization if feasible. In many cases, a particular routine that did
not vectorize was not significant in the overall runtime of the code. Obviously, spending time
vectorizing these routines (or blocks) would lead to minimal improvements in runtime. Also,
a few routines had dependencies that could not be easily addressed and were likewise ignored.
However, in most cases, it was possible to vectorize important code segments. Automatic
vectorization is ena.bléd by specifying the additional compile option, -ZV, in conjunction with
the above scalar optimization flags.

The Cray vectorizing stage provided very informative output that assisted greatly with the
vectorization step. In most ca.sés, the compiler provided diagnostic information that directed
the user to the exact statement that inrhibited vectorization. Additionally, for routines where
vectorization overhead would surpass the benefits, information was provided indicating this

result. In general, the following conditions inhibit yectorization 13]:
e obsolete conditionals (three branch if’s, assigned and computed GOTQ’s),
o backward branches (besides the loop itself),
¢ directives or command line options that suppress vectorization,

¢ branches into the loop from outside (also violates the ANSI standard),

221
o dependencies (recurrence and ambignous subscripting).

Also, references to external code (functions, intrinsics, or subroutines) often cannot be vec-

torized, including

I/0O statements (generate library calls),

references to functions without vector versions,
o references to external functions or subroutines that are not expanded inkine, and
¢ RETURN, STOP, or PAUSE statements, as library calls are generated.

Overall, vectorizing the code proved to be nearly trivial due to this vectorizing diagnostic

output. To best explain this process, consider the following example.

doi=1,n
a(i) = (i) + c(i)

end do

Most of the loop constructs in the code matched this example. It is obvious that this fragment
has no data dependencies between loop iterations, and may be easily vectorized. The c£t77
pass recogrizes this, and inserts a directive automatically that informs the code generator to

replace the loop with the appropriate vector constructs.

CDIRQ IVDEP
do i=1,n

ali) = b(i) + c(i)

"end do

222

This entire process was accomplished without user intervention or directives. However, situ-
ations were encountered where vectorization was possible, but c££77 was unable to analyze

the dependencies.

do i=1,n
a(i * 4, j) =a(i *4, k~1)
& + b(j)

end do

In this fragment, there is a potential dependency on the. a array. Depending on the values of
the variables j and k, an unknown dependency may exist (flow, antidependence, output, or
no dependencies may exist depending on the values of the variables j and k). The automatic
vectorization skips this loop, indicating the line number of the problem, and that there is a
Tecurrence on a. Again, given proper values of the variables j and k, it may be completely
safe to vectorize the 100;5. In this case, the user may insert a directive to indicate to cft77

that the loop may be safely vectorized.

CDIR$ IVDEP
doi=1,n
a(i * 4, j)=a(i*4, k -1)
- + b(j)

end do

It is very important to thoroughly analyze these cases, blindly inserting the CDIR$ IVDEP
directive on loops that truly contain dependencies will negatively affect the results of the

operation.

223

Of the remaining unvectorized loops, a portion could be rewritten to eliminate dependen-
cies and tile remainder were deemed either insignificant in the overall execution time of the
code or had recurrences that were not possible to address andlwe:re thus ignored.

Vectorization proved quite effective in reducing the overall runtime of the code. Reduc-
tions of over an order of magnitude were seen in some loops, resulting in nearly a factor of
five reduction overall. However, in a nested looping construct, only the. innermost loops may
be .vectorized. The Jacobian and preconditioner formation routines contained many such
structures, and continued to dominate the execution time with vectorized 'mne; loops.

The légical progression of this study suggested that the enclosing loops in these routines
should be uniformly divided and executed on multiple processors. The fmp compilation pass
recognizes Cray autotasking directives. In the absence of dépendencies this pa.sé will trans-
parently execute multiple threads of the outer loop on multiple processors. A dependency
analyzer, fpp, will insert the directives in a similar manner to the vectorizing pass. The
fpp pass is invoked using tﬁe -ZP compile option; this option also invokes full vectorization_
{making the -ZV option redundant).

It was quickly discovered that very few of the code’s outer loops were parallelized auto-
matically. This automatic feature is defeated by potential depeﬁdeﬁcies in a similar manner
to vectorization. Similarly, function and subroutine calls inhibited i}&ra.lle]iZ&tio:n {the loops
that were vectorized seldom contained user calls, the outer loops that could benefit by par-
allelization often called user routines). In cases in which it was apparent that potential
dependencies were not of concern, directives were employed to force parallelization. The

fo]lov{ring example illustrates use of the autotasking directives.

doe i = 1,n

call routine(args)
call another(args)
c multiple vector loops

‘eand do

Given that there are no dependencies between successive i values in the loop construct above
(either in ordering or data dependencies), CMIC$ directives may be used io parallelize the

loop.

CMIC$ DU ALL SHARED(args)
CMIC$1 PRIVATE(args) _
CMIG$2 NUMCHUNKS (arg)
do i=1,n
call routins(args)
call another(argé)
c multiple vector. loops

end do

The directive is more complicated than those used for vectorization. The CMIC$ segment
informs the compiler that the line is an autotasking directive, ﬁrhere CMIC$1-CMICS$n signify
continuation lines. The DO ALL construct informs the compiler to execute the following
loop in parallel, dividing. the n loop iterations into t_hreéds on multiple processors. The
SHARED(args) statement informs the compiler that the variables args are shared among
threads {and the serial region above and below the parallel loop). The argument args is a
comma separated list of the variables (and arrays). The PRIVATE(args) keyword denotes

those variables that are local to each thread {each thread has variables args that do not

225

share common locations in memory between threads). Finally, the NUNCHUNKS (arg) keyword
determines the subdivisipg of the loop span 1,n. The compiler attempts to break the span
into arg portions of roughly equal size, a,ésigning each contiguous chunk to a processor.

The above example illustrates (or suggests) the use of subroutines and functions inside
of parallel regions. This can be dangerous, depending on how the called routines are im-
plemented. In fact, the Cray CF77 Optimization Guide [3] warns against calling user-level
routines from inside parallel regions, but does not thoroughly explain the dilemma. When
calling routines, the arguments to the function (or subroutine) are scoped according to the
PRIVATE or SHARED declarations in the autotasking directive. This remains the case inside the
function (recall that FORTRAN variables are passed via reference). Inside the function, all
data scoped internal to the function is treated as local to the thread. All data in common is
scoped as SHARED unless the common declaration is explicitly declared TASKCOMMON, meaning
the data is local to the thread of execution. In reality, well written modular code should be
safe to call from within parallel regions. Given that the call arguments are typed correctly
{SHARED or PRIVATE, as applicable), the only possible problem that could be encountered is
using local variables in a common data block. The converse of this argument, the use of
locally scoped globally shared variables, may only be accomodated by passing a reference
to the global data through a call argument. This method is perfectly safe assuming correct
scoping in the calling routine. The first case may occasionally be encountered in some ap-
plications, however, one would not typically use local variables in commor as it is a poor
programming practice, regardless of whether the code is destined for a parallel or for a serial
environment. Furthermore, the use of common data is no longer necessary, as FORTRAN
90, C, and enhancements to FORTRAN 77 suppdrt stru(;ture-based data storage. Thus, if

the original serial code was written properly (as was the compressible low code used for this

study), parallelization across function and subroutine calls should be trivial.

The Cray C90 series machines have an appreciable amount of parallel overhead. This

overhead is attributable to several soutrces.

¢ Semaphore wait time. At the end of a parallel region, all threads must synchronize
prior to the main thread continuing. I the main thread finishes last, this time is zero.
However, if not, the main thread must wait {depending on the load balance among the

threads) an amount of time for all child threads to synchronize at the exit point.

¢ Extra autotasking code. Executable code is added by the autotasking mechanism to
create and ma:uége the multiple threads. Some of this is executed by the master thread

prior to forking the child threads and leads to additional serial overhead.

o Increase or creation of memory bank contention among processors and vector umits.

Clearly, if a contention situation exists or a single processor, it will be greatly com-

pounded with multiple CPUs.

o Decrease in vector performance. If paralielism is implemented in a manner such that
the vector length is shortened or chaining is prevented, the vector unit(s) efficiency is

reduced.

On average, autotasking startup and executing the extra autotasking code on a dedicated
machine requires 3600 clock periods on the Y-MP €90 [3].

Memory contention genefaﬂy will significantly reduce the performance of a parallel code
region. Comnsider a simplified example of a hypothetical code on the Cray architecture ex-
amined. The C90 has 256 banks of memory most efficiently addressed in FORTRAN using

column-major indexing. Given the segment,

227

doi=1,n
doj=1, m
a(i,j) = ...
end do

snd do

the rightmost index of the a array (j) varies faster than the leftmost (i.e., row ordering).
In this case, memory accesses occur sequentially along (“down”) a single memory bank.
Howevér, due to the electrical characteristics of memory on the C90, access to a location in
a memory bank camses that bank to be unavailable for further access for some number of
clock periodé. Cray [3] states that a vector load or without memory contention runs from 5
to 8 times faster than the same vector load or store with the greatest memory contention.
For the above example, it is obvious that this method adds a delay of ¢ cycles per inner loop
iteration (where ¢ depends on the bank-busy time of the system), significantly slowing the
execution of the code. This problem can be easily solved by arranging the loops so that ais

addressed by column.

de j=1, m
doi=1%1,n
a(i,j) = ...
end do

end do

In this case, memory is accessed by spanning the banks. Each successive element access
is to the next bank, eliminating the access delay. In fact on the Cray, these accesses may

often be pipelined by the compiler, further improving memory access efficiency. As a side

228

note, arrays in the C language are addressed in row-major order instead of column-major for
greatest efficiency (the mechanics are the same, the languages just define addressing models
differently). The equivalent to the first example would be the correct method (i.e., most
efficient) to nest the loops in C.

The above example oversimplifies the problems encountered by a large code with complex
memory access patterns. To achieve highest performance, memory is often accessed via a
vector load /store command that fetches data from multiple banks through a single command.
This type of access also maps very well to large scientific applications that manipulate data

stored in indexed arrays inside a loop construct. Consider the following algorithm.

do i = 11,1000
a(i) = b(i) * c(i)

end do
The Cray compiler converts this construct to a sequence of vector operations (in psendocode).

VLDAD V1,B
VL0OAD V2,C
VNULT V3,V1,V2

VSTOR A,V3

For this particular loop, a vector load requires 17 clock cycles, a multiply requires 12 cycles,
and a store requires 17 cycles. However, these operations may be “chained,” or overlapped
in time. Using chaining, a total of 41 clock periods are required to perform this loop [3)].
Clearly, one can envision a situation where the load/store operations are such that chain-
ing cannot be accomplished and no overlap between the loads may be tolerated. Consider an

array stored in the Cray memory banks, as shown in Figure A.1. Note that the first element

229

AlljAI2IAI3[AL4[ALISTALG|ALT|ALBIALIS|AZ0A2] |A221A231A24 1 A251A26]|A27 A281A29

Bll(Bi2|B13 [Bi4B15|B16 |B17|B18 |B19|B20!B21B22 |B23B24 |B25 |B26 | B27 |B28 | B29%

C11|C12;C13 |C14 (C15|Cl16 |C17(C18 |C19|C20{C21 [C22 |C23|C24 |C25 |C26 |C27 C28C29

Di11D12{D13 [D14{D15{D16 (D17 |D18|P19(D20:D21 D22 |D23 | D24 D25 |D26 | D27 D28 D29

1 2 3 4 £ & 7 8 9 10 11 12 13 14 &5 16 17 18 19
Bank Number

Figure A.1: An array stored in Cray banked memory.

of the array “A” is stored in the first memory location in bark 1, the second element in
the first location in bank 2, and so on. A vector load on the Cz;a,y allows Joading of all (or
part, depending on the size) of an array \#ith a single command. For a vector load of “A,”
a request is made for the array, giving the starting and ending element to load. Loading
the first element physically may require multiple clock periods {(depending on the memory
and CPU speed). Hypothetically, assume that 10 cycles are required to access memory. To
load the first element then requires 10 cycles. However, each subsequent element follows the
first from meﬁlory_ each clock cycle (recall, a significant portion of the array wa.s.reqnested
through the vect.or.load command). Now, further assume that a vector load of “B” imme-
diately follows “A.” In theory, these two loads could be chained such that the first element
of “B” is delivered to its register the same clock cycle as the second element of “A,” and so
forth. As explained earlier, each bank may be accessed only once per ¢ clock periods. As
such, the loading of the element of “B” that correspondé to the same element of “A” must
be delayed until ¢ cycles have passed.

For this simple example, assuming that the array lengths of “A” and “B” are large in
.compa:tision, this overhead appears negligible. Fuﬂh&mom, chaining Iﬁa,y still occur with

just a slight loss of efficiency. To consider a more complicated example, if “A” had a length

230

of 300 elements, the first and 257th element would both fall in the first bank. The first
element of “B” would follow the last element of “A” in bank 45 (if it immediately follows
H“A” in the FORTRAN common declaration), and so on. To add ferther realism, re-name
“A” to “T7, “B” to “V”, and further include arrays to. hold the remaining state variables of
the Jacobianr formation pfoblem. Finally, the storage to contain the Jacobian must also fall
across the bank stracture. At this point, imagine the complexity involved in performing vector
loads from the state variable arrays, through the sliding stencil access function, followed by
stores into the Jacobian memory locations while niaintajning acceptable chaining efficiency.
To further place this in perspective, recall that there are two vector units per processor,
and potentially 16 processors being used on the C90, all attempting to access this memory
structure concurrently. Clearly, in a realistic simulation code, relaxing memory contention

for vector loads and stores fo a particular bank is a very difficult problem, indeed.

A.3.2 SGI Optimization Process

The SGI Onyx optimization process was initiated near the end of the Cray study. A quick
examination of the scalar behavoir of the code using prof -pixie verified that the same
routines sigrificant in CPU usage on the Cray were also significant on the SGI. It was quickly
concluded that any work to enhance parallelization on the C;ay also benefited the SGL
The SGI is a cached, superscalar superpipelined architecture in contrast to the Cra.y’é
vector-based architecture. As such, user level vectc;riza,tion was not possible on the SGI. In
fact, to best use the SGI architecture, programs should not be b;sed on vector efficiency,
but on data locality methods. An exiensive study to best match the serial behavior of the
code to the cache-based SGI was not performed. Additionally, it was desireable to maintain

excellent performance with a single copy of the code on both the SGI and Cray; any SGI scalar

231

optimizations could potentially impact the Cray vector performance of the code. However,

a cursory study with the base code versus the Cray vectorized version on the SGI showed

few differences that could be attributed to efforts to better vectorize the Cray version. Thus,

this version was used “as is” on the SGI. The compiler options that provided best serial

performance on the SGI were,

£77 -non_shared -jmpopt -02 -mips2 -0limit 2000 -Wo,-loopunroll,8

where

77

-non_shared

-Jjmpopt

-Db2

~mips2

=0limit 2000

-Wo

-loopunrcll,8

invokes the FORTRAN compilation system,

links .to the system archive libraries instead of shared dynamic libraries,
attempts to load the delay slot with instructions,

invokes full scalar optimization,

uses the MIPS2 instruction set (this set matches the Onyx hardware),

increases optimization limit to 2000 basic blocks (at this level, all rouiines

were fully optimized),
passes the following comma separated option to the optimizer, and

allows recursive inlining to eight levels. This level included all routines

that benefited from inlining in the code.

SGI providés a similar parallel analyzer to the £pp tool on the Cray. This tool allegedly

detects parallel regions and inserts the proper directives to multitask the code. However,

this claim could not be substantiated as the analysis tool pfa was not available on the Onyx

232

chosen for this study. However, use of the -mp option in addition to those specified above

allowed directive assisted parallelization in a similar manner to that employed on the Cray.

C$DOACROSS SHARE(args), |
C$% LOCAL(args),
C$& MP_SCHEDTYPE=SIMPLE
do i=1,n
call routine(args)
call another(args)
multiple vector loops

end do

The C$ segment informs the compiler that the line is a parallel directive, where C$& signifies
a continuation line. The DOACROSS construct informs the compiler to execute the following
loop in parallel, dividing the = loop iterations into threads on multiple processors. The

SHARE(args) statement informs the compiler of the variables that are shared among threads

(and the serial region above and below the parallel loop). The argument args is a comma

separated list of the variables (a.nd arrays) that are shared. The LOCAL(args) keyword
| denotes those variables that are local to each thread (each thread has variables args that do
not share common locations in memory among threads). On the SGI, the SHARE and LOCAL
directives behave identically in form and functio_n to the SHARED and PRIVATE declarations on
the C90. Finally, the MP_SCHEDTYPE=SIMPLE keyword determines the s*ui:division of the loop
span 1, . The compiler attempts to break the span into portions of roughly equal size (based
on the number of processors available), assigning each contiguous chunk to a;processor. There

are other options provided (in addition to'SIHPLE), but they incur greater parallel overhead

233

and were not useful for any of the parailel regions studied. Other than the directive syntax,
the behavior of the directives wére very similar between the SGI and Cray.

Aside from those issues specific to vectorization, the SGI suffers from the same parallel
overhead concerns that afflicted the Cray. The SGI uses a similar interleaved memory design,
however, all memory accesses are via a local processor cache, The Cray uses a crossbar switch
for memory bank access, while the SGI uses a proprietary bus. It is conceivable that fewer
memory contention difficulties would be encountered on the SGI due to t;he fewer proceséors,
local processor cache, and the slower processor speed of the machine.

One must access array data in a column-major form on the SGI .a.s was performed on
the Cray to minimize memory contention, but for a different reason. On the SGI (and likely
most RISC cache-based machines), column addressing addresses along a cache line, where
row addressing addresses across cache lines. Ciea.ﬂy, the column addressing along a cache
line results in much better data locality and will likely increasé the cache hit ratio for a given
loop (unless all data accessed fits in the cache).

Again, the above eia.mple illustrates but one consideration that must be examined for
optimal performance. There appears to be a ;strong potential that caching of the working
set of data in each of two processor caches is sufficient to overwhelm parallel overhead and
contention, and results in an improved cache hit ratio over the single prdcessbr case provided
the cache hit effectiveness in the single cache is less than optimal. To better illustrate this
behavior, consider the idealized example shown in Figures A.2 and A.3.

Consider the Jacobian formation routine used in this study. To form the Jacobian in
a single processor environment, all data read from or written to main memory must pass
through the processor cache. Given a Jacchian update that accesses memory locations based

on a loop index covering the values from 1,...,n (i.e., array addressing), all elements in

Main Memory

Figure A.2: Single processor memory access.

Main Memory

t
[Cache] [Cache J

— e—

Figure A.3: Two processor memory access.

the array from 1,...,n will eventually occupy the cache. For simplicity sake, consider this
range to be divided into two sets, the first consisting of 1,...,n/2 elements, with the second

spanning (#/2 + 1),...,n elements. Assuming a sequential access model, the processor will

operate first on set 1, then on set 2 (as seen in Figure A.2). Furthermore, consider the case

where sets 1 and 2 are sufficiently large that only one may be resident in cache. In this
case, the first set is read to cache, operated on, written back, followed by an identical set of

operations on the second set of data, each Jacobian update operation.

Now, consider the identical arrangement, but with two processors and private caches (see

235

Figure A.3). With this example, each of the two sets may occupy a processor cache throughout
the entire update operation. I the entire Jacobian formation consists of many such loops
over the same data ranges accessing the same data elements, the increase in efficiency in
using two processors is clearly much greater than simply a factor of two greater processing
capability as all cache migration is eliminated. This idealized example is oversimplified, but

nicely explains how a superlinear speedup may be achieved on a cache-based multiprocessor.

A.4 Parallel Processing In A Production Environment

This study has presented a large amount of experimental results on the performance and
scalability of parallel algorithms on shared-memory parallel architectures. In theory, one
hopes for a speedup qf m from a parallel code executed on m processors. Realistically, without
superlinear cache effects, it will never be possible to achieve this level of performance. To
best gauge the effectiveness of mapping a parallel algorithm onto a particular architecture,
it is necessary to have an upper bound on the maximum realistic performance that may be
expected.

For the remainder of this discussion, the only architecture considered will be based on real
addressing (like the Cray), for simplicity. An expression for Amdahl’s law may be developed

that better describes effective speedup in a realistic environment {3]

Sr : Wprodutiﬂn (A.l)

= 40) ¢
fo + s

where

236

S, maximum realistic speedup,

fo parallel fraction of program,

fs serial portion of program (1 — f,),

0 paraliel overhead,

W roduction weighting factor for a production environment,

N, avg. number of processors available from the system, and
N avg. number of processors usable by the code.

Avg. processors 80% parallel code 20% paraliel code

8 247 112
§ 247 1.12
4 2.21 - 111
2 1.44 1.04
1.5 1.17 - 1.00
1.25 1.01 -1.04
1.1 -1.09 -1.06
1 -1.18 -1.08

Table A.4: Speedups within a production environment (Table from Cray Research [3]).

Experimental evidence has shown that for a particular workload that can make use of
5 processors (N,,, = 5), that W oauction = 0.95 and O = 0.15. These values for various
numbers of processors available and different parallel percentages is indicated in Table A.4
for this workload.. To provide an upper bound on a machine with 8 processors available, an
application DOP of 8 processors, 180% parallel code, and the above efficiencies, the realistic
speedup is 6.6 using the Amdahl formula. Comparing this result to the findings of this
study quickly indicates that scalable performance of the pseudo-transient matrix-free model
problem solution was achieved.

This section briefly touches on one reasonable scalability metric that can be employed

in a production environment. There are many others equally satisfactory metrics. In a

237

production environment, the best metric is often performanoe per dollar. In the limit, the best
application to perform a simulation (be it serial or parallel) achieves the highest performance
for the lowest cost within the time scale and accuracy requirements of the task. This study,
aside from the above discussion on hardware selection for computational needs, considered

only performance scalability.

Appendix B

Sample Cray FLOWTRACE

Output

*

Flowtrace Statistics Report
Showing Routines Sorted by CPU Time (Descending)
{CPU Times are Shown in Seconds)

Routine Name Multi? Tot Time # Calls Avg Time Percentage Accumy,
MIVMLDD | 2.83E+01 5632 5.02E-03 20.87 20.87 #sxex
YMOM T 2.60E+01 6 4.33E+00 18.17 40.05 #*sx
UMOM N 2.37E+01 6 3,95E+00 i17.48 57.52 s#xax
TEMP Y 1.39E+01 6 2.32E+00 10.29 67.82 »=
ELDBLE2 .| 8.94E+00 48 1.86E-01 6.60 T4.42 =»
CONT Y &.TOE+00 § 1.45E+00 6.42 80.84 =
PRECNDD] 5.26E+00 48 1.10E-01 3.88 84.72
MATHMUL N 4., 15E+00 1035 4.01E-03 3.07 87.79

PRNT] 3.23E+00 2 1.61E+00 2.38 80.17

DIAG N 3.01E+00 1 3.01E+00 2.22 82.39
EXTRCY N 2.49E+00 5632 4.42E-04 1.84 94.23
ASSMBY N 2.47E+00 5632 4.38E-04 1.82 96.05

PRINT] 1.79E+00 11 1.63E-01 1.32 97.37

aur N 1.40E+00 1 1.40E+00 ©1.03 98.40
STRMBFS N 6.50E-01 1 6,55E-01 0.48 98.89
VECADD N 5.75E~01 3779 1.52E-04 0.42 89.31
PRECORD N 1.78E-01 6 2.96E-02 0.13 99.44
COMPRS) ¢ 1.72E-01 i 1.72E-01 0.13 99.57
MINVMAS B 1.55E-01 704 2.21E-04 0.11 89.68
ORDER E 1.22E-01 1 1.228-01 0.09 99.77
PQMRCGSL K 99.85

1.07E-01 6 1.78E-02 0.08

238

239

SOLY | 8.40E-02 6 1.40E-02 0.06 99,91
YECMUL N 7.35E-02 686 1.07TE-04 0.05 99,97
UPDAT) | 1.548-02 6 2.57E-03 0.01 99.98
ANULL X 1.14E-02 6 1.89E-03 0.01 99,99
IEPUT N 8.585E-03 1 8.55E-03 0.01 95,99
MIRVMUL] 3.36E-03 704 4 .77E-06 0.00 100.00
ANULL¢$5 Y 1.36E-03 5 2.T2E-04 0.00 100.00
SETCONST N 1.12E-03 1 1.12E-03 0.00 100,00
ROWL N §.13E-04 8 6.41E-05 0.00 100.00
SOLve27Y8 Y 2.52E-04 2 1.26E-04 0.00 100,00
PRECORDAT10 Y 2.47E-04 18 1.548-0% 0.00 100.00
ETIME X 1.77E-04 31 5.72E-06 0.00 100.00
INITLZ X 1.40E-04 1 1.40E-04 0.00 100.00
ROW N 1.01E-04 1 1.01E-04 0.00 100.00
COMPNS€270 Y 1.00E-04 18 5.56E-06 0.00 100.00
UPDAT®187 Y 9.44E-0% 1 9.44E-05 0.00 100.00
ILOCSET K 1.90E-05 1 1.90E-05 0.00 100.00
SETIFAC K 1.24E-0% 6 2.07TE-08 0.00 100.00
GRID] 4.07E-06 1 4.07E-06 .00 100.00
Totals 1.35E+02 24065

Flowirace Statistics Report
Showing Routines Sorted by Inline Factor
(CPU Times are Shown in Seconds)

InLine Factors Greater Than 1 May Indicate Candidates for Ialining.

Routine Name Multi? Tot Time # Calls Avg Time Percentage - Accum¥ InLine Factor

NOTE: Bo routines had an inline factor greater than 1.

MIKRVMUL N 3.36E-023 704 4.77E-06 - 0.00 0.00 0.61
YECADD N S.75E-01 3779 1.52E-04 0.42 0.43 0.10
ASSHBY N 2.47TE+00 5632 4.38E-04 1.82 2,25 0.05
EXTRCY K 2.49E+00 5632 4.42E-04 1.84 4.08 0.05
VECMUL] 7.35E-02 686 1.07E-04 0.08 4.14 0.03
ETIME] 1.77E-04 31 5,7T2E-06 0.00 4.14 ¢.02
COMPNSR270 Y 1.00E-04 18 5,56E-06 0.00 4.14 0.01
MINVMAS | 1.85E-01 704 2.21E-04 0.11 4.26 ¢.01
SETIFAC | 1.24E-05 6 2.07E-06 0.00 4.26 0.01
MIVMLDD] 2.83E+01 5632 5.02E-03 20.87 25.13 0.00 sxdxs
VMOK Y 2.6Q0E+01 6 4.33E+00 18,17 44,30 0.00 =exx
UMOM | 2.37E+01 6 3.95E+00 17.48 §1.78 0,00 =%»x
TEWP Y 1.39E+01 6§ 2.32E+00 10.29 72.07 0.00 w»x
BLDBLK2 | 8.94E+00 48 1.86E-01 6.60 78.67 0.00 =
CONT Y 8.70E+00 6 1.45E+00 6.42 85.09 0.00 =
PRECKDD ¥ 5.26E+00 48 1.10E-01 3.88 88.97 ¢.00
MATMUL B 4. 1SE+00¢ 1035 4.01E-03 3.07 92.04 0.00

FRAET K 3.23E+00 2 1.61E+00 2.38 94.43 0.00

DIAG] 3.01E+00 1 3.01E+00 2.22 96.64 0.00
PRINT |] 1.7T9E+Q0 11 1.63E-01 1.32 97.96 0.00

out b | 1.40E+00 1 1.40E+00 1.03 £9.00 0.00
STRMBFS). §.55E-01 1 6.55E-01 0.48 99.48 0.00
PRECORD | { 1.78E-01 6 2.96E-02 0.13 99.61 0.00
COMPNS N 1 1.72E-01 0.13 99.74 _0.00

1.72E-01

240

ORDER N 1.22E-01 1 1.22E-01 0.09 99.83 0.00
PQMRCGSL N 1.07E-01 6 1.78E-02 0.08 99.51 0.00
SOLY N 8.40E-02 § 1.40E-02 0.06 99,97 0.00
UPDAT N 1.54B-02 6 2.57E-03 0.01 99.98 0.00
ANULL K 1.14E-02 6 1.89E-03 0.01 99.99 0.00
~ INPUT N 8.55E-03 1 8,55E-03 0.01 100.00 0.00
ANULLe35 Y 1.36E-03 5 2,72E-04 0.00 100.00 0.00
SETCONST ¥ 1.12E-03 1 1.12E-03 0.00 100.00 0.00
ROWL N 5.13E-04 8 6.41E-05 0.00 100.00 0.00
SOLVe278 Y 2.52E-04 2 1.26E-04 0.00 100.00 0.00
PRECONDR710 Y 2.47E-04 16 1,54E-05 0.00 100.00 0.00
INTTLZ N 1.40E-04 1 1.40E~04 0.00 100.00 0.00
ROW X 1.01E-04 1 1.01E-04 0.00 100.00 0.00
UPDAT@197 Y 9.44E-05 1 9.44E-05 0.00 100.00 0.00
ILOCSET N 1.90E-05 1 1.90E-05 0.00 100.00 0.00
GRID N 4.07E-06 1 4.07E-06 0.00 100.00 0.00
Totals _ 1.35E402 24065

Flowtrace Environment Report

ORIGINAL USER EXECUTIOR

User Program Run on 11/04/94, at 15:19:22
Machine Serial Nuwber 4809, a CRAY Y-MP C90,
#ith a Clock Speed of 4167 Picoseconds
Program was running in C90 meode.
Program was running MULTI-TASKED.
High-water mark for the stack vas 113322130 (octal words)
or 19768408 (decimal words).
Original Executable Filename = ./Newt.x
Timestamp for this File: Fri Nov 4 15:1B:54 1894

FLOWTRACE STATISTICS

Hashing Efficiancy = 90.90%, using 40 Haghing Points
To store 44 Routine Names.
Hash Points with .gt. 1 name = 3. :
Flowtrace Heap Usage was 1750 (octal words)
or 1000 (decimal worads).
The size of the heap was increased once as Flowtrace was executing.

Flowtrace overhead for:

* ALL processing was 93451584 (clocks)
. or 3.89E-01 (seconds).
Clocks/call was 3882
Seconds/call was 3 .62E-05. -
+ ENTER processing was 62306242 (clocks)
or 2.60E-01 (seconds).
EXIT processing was 31145342 {elocks)

241

or 1.30E-01 (seconds).
* First-Time ENTER processing vas 77222 (clocks)
or 3.22E-04 (seconds).

THIS FLOWVIEW EXECUTION

Flowview version = 80.8
Raw File Being Processed by flowview Now = flow.data

242

Bibliography

[1] P. R. McHugh, D. A. Knoll, V. A. Mousseau, and G. A. Hansen. An investigation of
Newton-Krylov solution techniques for low Mach number compressible flow. ASME FED
Summer Meeting, Hilton Head Island, S.C., August 1995.

[2] S. Saini and D. H. Bailey. NAS parallel benchmark results 12-95. Technical Report
NAS-95-021, NASA Ames Research Center, Dec 1995.

[3] Cray Research, Inc. CF77 Opts‘mz'zats'on’ Guide, SG-3773 6.0 edition, 1993.
[4] Ronald L. Panton. Incompressible Flow. John Wiley & Sons, 1984.
[5] F. M. White. Viscous Fluid Flow. McGraw-Hill, Inc., New York, 1974.

{6] R. B. Guenther and J. W. Lee. Partial Differential Equations of Mathematical Physics
and Integral Equations. Prentice-Hall, 1988.

{7] J. B. Dongarra. Performance of various computers using standard linear equations soft-
ware. Technical report, University of Tennessee/Qak Ridge National Laboratory, Dec
1995. '

[8] D. A. Knoll and P. B. McHugh. A fully implicit direct Newton solver for the Navier-
Stokes equations. Int. J. Num. Meth. Fluids, 17:449-461, 1993.

'{9] P. R. McHugh and D. A. Knoll. Fully coupled finite volume solutions of the incompress-
ible Navier Stokes and energy equations using inexact Newton’s method. Int. J. Numer.
Meth. Fluids, 19:439--455, 1994,

[10] P. R. McHugh and D. A. Knoll. Inexact Newton’s method solutions to the incompressible
Navier-Stokes and energy equations using standard and matrix-free implementations. In
Proc. of 11th ATAA Computational Fluid Dynamics Conference, pages 385-393, Orlando,
FL., July 1993. ATAA-93-3332.

[11] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri. Newton-Krylov-Schwarz meth-
ods in CFD. In F. Hebeker, R. Rannacher, and G. Wittum, editors, Numerical Methods
for the Navier-Stokes Equations, volume 47 of Noies on Numerical Fluid Mechanics,
pages 17-30, Brainishwig, 1994. Vieweg Verlag.

[12] P. G. Jacobs, V. A. Mousseau, P. R. McHugh, and D. A. Knoll. Domain decomposi-
tion based preconditioning strategies for Newton-Krylov solutions of the incompressible
Navier-Stokes equations. In D. E. Keyes and J. Xu, editors, Domain Decomposition
Methods in Science and Engineering Computing (Proc. of the 7th Int. Conf. on Domain

243

Decomposition Methods in Scientific and Prgineering Computing), Providence,. RE, Oc-
tober 1993. American Mathematical Society.

| [13] D. A. Knoll, A. X. Prinja, and R. B. Campbell. A direct Newton solver for the two-
dimensional Tokamak edge plasma fluid equations. J. Compui. Phys., 104:418-428,
1993.

[14] S. P. Vanka. Block-implicit calculation of steady turbulent recirculating flows. Int. J.
Heat Mass Transfer, 28(11):2093-2103, 1985.

[15] J. W. MacArthur and S. V. Patankar. Robust semidirect finite difference methods for
solving the Navier-Stokes and energy equations. Inf. J. Num. Meth. Fluids, 9:325-340,
1984.

[16] R. W. Johnsoil, P. R. McHugh, and D. A. Knoll. Defect correction with a fully coupled
inexact Newton method. Numer. Heat Transfer., Part B, 26:173-188, 1994.

[17) P. R. McHugh and D. A. Knoll. Fully implicit solution of the benchmark backward
facing step problem using finite velume differencing and inexact Newton’s method. In
B. Blackwell and D. W. Pepper, editors, Benchmark Problems for Heat Transfer Codes,

pages 77-87, Anaheim CA., November 1992. ASME Winter Annual Meeting. ASME
HTD-Vol. 222.

[18] D. A. Knoll, P. R. McHugh, and V. A. Mousseau. Newton-Krylov-Schwarz methods ap-
plied to the Tokamak edge plasma fluid equations. In D. Keyes, Y. Saad, and D. Truhlar,
editors, Domain-Based Parallelism and Problem Decomposition Methods in Computa-
tional Science and Engineering, pages 75-95, Philadelphia, 1995. STAM.

[19] S. R. Idelsohn and E. Ofiate. Finite volumes and finite elements: Two ‘good friends’.
International Journal for Numerical Methods in Engineering, 37:3323-3341, 1994.

[20] P. R. McHugh. An Investigation of Newton-Krylov Algorithms for Solving Incompressible
and Low Mach Number Compressible Fiuid Flow and Heat Transfer Problems Using
Finite Volume Discretization. PhD thesis, University of Idaho, 1995.

[21] G. H. Golub and D. P. O’Leary. Some history of the conjugate grad.lent and Lanczos
algorithms: 1948-1976. STAM Review, 31:50-102, 1989.

[22] O. Axelsson. Herative Solution Methods. Cambridge University Press, New York, 1994,

[23] R. W. Freund. Transpose-free quasi-minimal residual methods for non-Hermitian linear
systems. Numerical Analysis Manuscript 92-7, AT&T Bell Laboratories, Murray Hill,
NJ., July 1992.

[24] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. STAM J Sci. Stat. Comput., 7:856-869, 1986.

[25] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems. STAM J. Sei. Stat. Comput., 13:631-644,
1992.

244

26] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM
J. Sei, Stat. Comput., 10:36-52, 1989.

[27] P. N. Brown and Y. Saad. Convergence theory of nonlinear Newton-Krylov algorithms.
Technical Report UCRL-102434 R 1, Lawrence Livermore National Laboratory, April
1992,

[28] A. T. Chronopoulos. On the squared unsymmetric Lanczos method. J. Comput. and
Appl. Math., 54:65-78, 1994,

[29] X.-C. Cai. A family of overlapping Schwarz algorithms for nonsymmetric and indefinite
elliptic problems. In D. E. Keyes, Y. Saad, and D. G. Truhlar, editors, Domain-Based
Parallelism and Problem Decomposition Methods in Computational Science and Engi-
neering, chapter 1, pages 1-19. STAM, 1895.

{30} X.-C. Cai and Y. Saad. Overlapping domain decomposition algorithms for general sparse
matrices. Preprint 93-027 93-27, Army High Performance Computing Research Center,
University of Minnesota, 1993.

[31] L. F. Pavarino and M. Ramé. Numerical experiments with an overlapping additive
Schwarz solver for 3-D parallel reservoir simulation. Int. J. Super. App., 9:3-17, 1995.

[32] J. H. Bramble, R. E. Ewing, R. R. Parashkevov, and J. E. Pasciak. Domain decom-
position methods for problems with partial refinement. SIAM J. Sci. Stat. Comput.,
13(1):397-410, January 1992.

{33] D. A, Knoll and P. R. McHugh. Newton-Krylov methods for low Mach number combus-
tion. 12th ATAA CFD Conference, San Diego, CA., June 1995.

[34] P. R. McHugh, D. A. Knoll, and R. W. Johnson. Fully implicit sclutions of the bench-
mark problem using inexact Newton’s method. In B. F. Blackwell and B. F. Armaly,
editors, Computational Aspects of Heal Transfer Benchmark Problems, pages 83-91, New
Orleans, LA., November 1993. ASME Winter Annual Meeting. HTD-Vol. 258.

[35] P. R. McHugh and D. A. Knoll. Comparison of standard and matrix-free implementations
of several Newton-Krylov solvers. AIA4 J., 32(12):2394-2400, December 1994,

[36] G. A. Hansen, V. A. Mousseau, D. A. Knoll, and P. R. McHugh. Performance of a 2-
D Navier-Stokes solution algorithm using Newton-Krylov techniques on shared-memory
parallel/vector hardware. In High Performance Computing 1995. The Society for Com-
puter Simulation, April 1995,

[37] V. Venkatakrishnan. Preconditioned conjugate gradient methods for the compre351b1e
Navier-Stokes equations. AJAA J., 20: 1092 1100, 1991.

[38] V. Venkatakrishnan and D. J. Mavriplis. Imphclt solvers for unstructured meshes. J.
Comput. Phys., 105:83-91, 1993.

{39] P. E. Bjgrstad and T. Kirstad. Domain decomposition, parallel computing and
petroleum engineering. In D. E. Keyes, Y. Saad, and D. G. Truhlar, editors, Domain-
Based Paralleliszn and Problem Decomposition Methods in Computational Science and

Engineering, chapter 3, pages 39-56. SIAM, 1995.

245

{40] V. Venkatakrishnan. Parallel implicit methods for aerodynamic applications on unstruc-
tured grids. In D. E. Keyes, Y. Saad, and D. G. Truhlar, editors, Domain-Based Paral-
lelism and Problem Decomposition Methods in Computational Science and Engmeeﬂng,
chapter 4, pages 57-74. STAM, 1995.

[41] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri. Parallel implicit methods
for aerodynamics. In Proc. of the 7th Int. Conf. on Domain Decomposition Methods
in Scientific and Engineering Computing, The Pennsylvania State University, October
1993.

[42] J. N. Shadid and R. S. Tuminaro. A comparison of preconditioned noﬁsymmetric Krylov
methods on a large-scale MIMD machine. SIAM J. Sci. Comput., 15(2):440~459, March
1994.

[43] Kumud Ajmani, Wing-Fai Ng, and Meng-Sing Liou. Preconditioned conjugate gradient
methods for the Navier-Stokes equations. Journal of Computational Physics, 110:68-81,
1994.

j44] R. Choquet, P. Leyland, and T. Tefy. GMRES acceleration of iterative implicit finite el-
ement solvers for compressible Euler and Navier-Stokes equations. International Journal
for Numerical Methods in Fluids, 20:957-967, 1995,

[45] B. F. Blackwell and D. W. Pepper, editors. Benchmark Problems for Heat Transfer
Codes, volume HTD-Vol. 222, Anaheim, CA., November 1992. 1992 ASME Winter An-
nual Meeting.

[46] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. iuexa,ct Newton methods. SIAM J.
* Numer. Anal., 19:400-408, 1982.

[47] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix. Mathematics of Computation,
31(137):148-162, 1977.

(48] X.-C. Cai, W. D. Gropp, and D. E. Keyes. A comparison of some domain decomposition
and ILU preconditioned iterative methods for nonsymmetric elliptic problems. J. Numer.
Lin. Alg. Applic., 19%4.

[49] Pau-Chang Lu. Introduction to the Mechanics of Viscous Fluids. Hemisphere Publishing
Corporation, 1977.

[50] K. Ajmani, M. 8. Liou, and R. W. Dyson. Preconditioned implicit solvers for the Navier-
Stokes equations on distribated-memory machines. Technical Report NASA Technical
Memorandum 106449, NASA, National Aeronautics and Space Administration, Lewis
Research Center, Cleveland,QH, 44135-3191, January 1994. ATAA-94-0408 : ICOMP-
93-49.

[61] L. C. Dutto, W. G. Habashi, M. Robichaud, and M. Fortin. A parallel strategy for the
solution of the fully-coupled compressible Navier-Stokes equations. In M. N, Dhaubhadel,
M. S. Engelman, and W. G. Habashi, editors, Advances in Finite Element Analysis in
Fluid Dynamics. American Society of Mechanijcal Engineers, 1993. FED-Vol 171.

246

{52] W. D. Gropp and D. E. Keyes. Domain decomposition methods in computational fluid
dynamics. Iniernational Journal for Numerical Methods in Fluids, 14:147-165, 1992.

{53] B. A. Finlayson. The Method of Weighted Residuals and Variational Principles. Aca-
demic Press, 1972.

(54] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, New York, 1980.

[55] J. E. Dennis, Jr. and Jorge J. Moré. Quasi-Newton methods, motivation and theory.
STAM Rev., 19:46-89, 1977,

(56] A. Mizrahi and M. Sullivan. Calculus and Analytic Geometry. Wadsworth Publishing
Company, 1982,

[57] M. Dryja and O. B. Widlund. Domain decomposition algorithms with small overlap.
SIAM Journal of Scientific Computing, 15:604-620, 1994.

[58] Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving non-symetric
Bnear systems. Mathematics of Computation, 44:417-424, 1985.

[59] R. W. Freund. A transpose-free quasi-minimal residual. algorithm for non-Hermitian
linear systems. SIAM J. Seci. Comput., 14:470-482, 1993.

{60] S. F. Ashby, T. Manteuffel, and P. Saylor. A taxonomy for conjugate gradient methods.
SIAM J. Numer. Anal., 27:1542-1568, 1990.

[61] T. Barth and T. Manteuffel. Variable metric conjugate gradient methods. Center for
Nonlinear Studies Newsletter LALP- 94—003 Los Alamos National Lab., 1994.

[62] L. V. Curfman. Solution of Convective-Diffusive Flow Problems with Newton-Like Meth-
ods. PhD thesis, University of Virginia, 1993.

[63] J. H. Bramble, Z. Leyk, and J. E. Pasciak. Iterative schemes for nonsymmetric and
indefinite elliptic boundary value problems. Mathematics of Computation, 60:1-22, 1993.

[64] R. W. Freund, G. H Golub, and N. Nachtigal. Fterative solution of linear systems Acta
Numerica, pages 57-100, 1991,

[65] G. Golub and J. M. Ortega. Scientific Computing, An Introduction with Parallel Com-
puting. Academic Press, Inc., New York, 1993.

[66] L. Zhou. Krylov Subspace Methods for Linear and Nonlinear Systems, PhD thesis, Utah
State University, 1993.

[67] V. Faber and 'T. Manteuffel. Necessary and safficient conditions for the existence of a
conjugate gradient method. SIAM J. Numer. Anal., 21:352-362, 1984,

[68] R. Fletcher. Conjugate Gradient Methods for Indefinite Systems, volume 506, pages
73-89. Springer-Verlag, Berlin, 19786.

{69) C. H. Tong. A comparative study of preconditioned Lanczos methods for nonsymmetric
linear systems. Technical Report SAND91-8240, UC-404, Sandia National Laboratories
Report, January 1992.

247

[70] S. Ashby, T. Manteuffel, and P. Saylor. Preconditioned Polynomial Iterative Methods, A
Tutorial. University of Colorado, Denver, CQ., April 1992.

[71] K. Hoffmar and R. Kunze. Linear Algebra. Prentice-Hall Inc., Englewood Cliffs, New
Jersey, 2nd edition, 1971.

{72] R. W. Freund and N. M. Nachtigal. QMR: A quasi-minimal residual method for non-
Hermitian linear systems. Numer. Math., 60:315-339, 1991.

[73] R. W. Freund and N. M. Nachtigal. An implementation of the QMR method based on
coupled two-term recurrences. STAM J. Sei. Comput., 15:313-337, 1994.

[74] M. Dryja and O. B. Widlund. Schwarz methods of Neumann-Neumann type for
three-dimensional elliptic finite element problems. Comm. on Pure and Appl. Math.,
XLVII:121-155, 1895.

[75] R. E, Ewing, O. P. Leiv, S. D. Margenov, and P. 8. Vassilevski. Numerical study of three
multilevel preconditioners for solving 2D unsteady Navier-Stokes equations. Comput.
Methods Appl. Mech. Engrg., 121:177-186, 1995.

[76] J. L. Hennessy and D. A. Patterson. Computer Architecture, A Quantitative Approach.
Morgan Kaufmann, San Francisco, CA, Second edition, 1996.

	Authorization Form
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	1.1 Solution of the Navier-Stokes Equations
	1.2 Research Overview
	History and Related Work
	1.2.2 Mathematical Overview
	1.2.3 Research Outline
	1.2.4 Alternatives

	1.3 Summary of Procedures and Results

	2 The Mathematical Basis
	2.1 The Backward-Facing Step Problem
	2.2 The Governing Equations
	2.2.1 Non-Dimensionalization of the Governing Equations
	Discretization of the Governing Equations
	2.2.3 The Finite Volume Approximation of the Governing Equations

	2.3 Boundary Conditions
	2.4 The Non-linea Algebraic System of Equations

	3 Solution of the Non-linear Algebraic System
	3.1 Newton™s Method
	3.2 The Inexact Newton™s Method
	3.3 Preconditioning
	3.3.1 Additive Schwarz Preconditioning
	3.3.2 Multiplicative Schwarz Preconditioning
	3.3.3 Preconditioning of the Model Problem

	3.4 Krylov Subspace Algorithms
	3.4.1 Transpose-Free Quasi-Minimal Residual Method (TFQMR)
	3.4.2 Generalized Minimal Residual Method (GMRES)

	3.5 The Matrix-Free Technique
	3.6 Mechanics
	3.7 Summary

	4 The Additive Schwarz Preconditioner
	4.1 Architecture Overview
	4.1.1 Cray Optimization
	4.1.2 SGI Optimization

	4.2 Initial Results
	4.2.1 The Jacobian Algorithm
	4.2.2 The Preconditioner

	4.3 Jacobian Granularity and Contention
	4.4 Subdomain Overlap with Additive Schwarz
	4.5 Summary

	5 The Multiplicative Schwarz Preconditioner
	5.1 Results
	5.2 Summary

	6 The Matrix-Free Technique
	6.1 Robustness Concerns
	6.2 Performance of the Matrix-Free Technique
	6.3 Summary

	7 Conclusions
	7.1 Optimal Architecture
	7.2 Summary of Results and Future Research Topics

	A Some Mechanics of Shared Memory Parallel Computation
	A.1 Applied Pardel Computation
	Hardware Selection for Applied Parallel Computation
	A.2.1 Requirements
	A.2.2 The Optimal Architecture
	A.2.3 The Comparison
	A.2.4 Final Thoughts

	Shared Memory Hardware Programming Basics
	A.3.1 Cray Optimization Process
	A.3.2 SGI Optimization Process

	Parallel Processing In A Production Environment

	B Sample Cray FLOWTRACE Output
	Bibliography
	The problem domain
	The backward-facing step
	Flow velocity
	Mach number contours
	dimensional discretization
	equation approximation
	The computational cell modified for coincident velocity and density
	The 2-momentum stencil
	The y-momentum stencil
	The energy stencil
	2.10 The problem domain
	2.11 No-slip y-momentum condition along an east wall
	2.12 Adiabatic temperature condition along an east wall
	The structure of the Jacobian matrix
	3.2 Simplified Jacobian matrix
	3.3 Partitioned Jacobian matrix four subdomains
	3.4 Magnified subdomain
	3.5 Partitioned Jacobian matrix 16 subdomains
	3.6 Partitioned Jacobian matrix four subdomains with overlap
	3.7 Overlap of Subdomain
	3.8 Normal block numbering
	3.9 Renumbered blocking
	3.10 ﬁCheckerboardﬂ domain decomposition
	3.11 Flowchart for Newton-Krylov-Schwarz solution technique
	4.1 64 x 320 domain solution time

	ations on the C90
	4.3 Convergence behavior of the Newton-Krylov-Schwarz algorithm
	Jacobian CPU time speedup and &ciency on the C90
	4.5 Partitioned Jacobian matrix four subdomains with overlap
	Plot of overlap behavior versus number of subdomains
	ulation
	sition
	A.l An array stored in Cray banked memory
	A.2 Single processor memory access
	2.1 Parameter dues
	2.2 Dimensionless Parameters
	3.1 ILU memory requirements (adapted from McHugh [l])
	3.2 Schwarz memory requirements (from McHugh [l])
	Iterative behavior of several preconditioners (from McHugh El])
	Contributions towards total CPU time
	Memory requirements for Cray 64 x 320 simulation
	Parallel speedup of the linear solution routine on the C90
	Solution algorithm performance data
	Overall code performance
	Overall performance
	New Jacobian performance
	TFQMR routine performance
	Speedup of the additive Schwarz preconditioner formation routine
	4.10 32 x 160 Onyx simulation iteration behavior

	4.11 SGI Onyx overall performance
	4.12 SGI Onyx Jacobian performance
	4.13 SGI Onyx TFQMR performance
	4.14 Speedup of the additive Schwarz preconditioner formation routine
	4.15 64 x 320 Onyx Run (4 Blocks)

	4.16 Memory requirements for SGI 32 x 160 simulation
	4.17 32 x 160 Onyx simulation iteration behavior comparing overlap values

	tions and CPU time
	4.19 Speedup dues for 8 cell overlap problem
	4.20 Memory requirements for SGI 32 x 160 simulation with various overlap dues
	ations and CPU time for a 96 x 480 simulation
	4.22 Speedup values for 12 cell overlap 96 x 480 problem using 8 processors
	4.23 Speedup values for 12 cell overlap 96 x 480 problem using 16 processors
	problem
	and multiplicative Schwarz (MS) preconditioning
	Schwarz (MS) preconditioning on the basis of DOP
	(* 8 block run on 4 processors)
	Speedup in the Jacobian routine (* 8 block run on 4 processors)
	Speedup of the TFQMR routine (* 8 block run on 4 processors)
	Iteration behavior with multiplicative Schwarz preconditioning
	domain 32 x 160 problem on the Onyx
	Parameters for the Cray 32 x 160 runs
	blocking)
	Speedup values for 32 x 160 problem
	Parameters for the Cray 64 x 320 runs
	64 x 320 matrix-free simulation iteration behavior (n x 1 stripwise blocking)

	Speedup values for 64 x 320 problem
	Parameters for the SGI 32 x 160 runs
	32 x 160 matrix-free simulation iteration behavior (n x 1 stripwise blocking)

	6.10 Speedup values for 32 x 160 problem on the SGI
	100 Mflops performance (1/1/96)

	over 100 Mflops performance considering other imposed requirements

	A.3 NAS parallel benchmark results [2]
	Speedups within a production environment (Table from Cray Research [3])

