
idaho
National

Engineering
Laboratory

INEL-96/125

May, 1996

Scalability of
Preconditioners as a
Strategy for Parallel
Computation
Compressible Fluid
Flow

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor

any of their empbyees, make any warm@, expm OT implied, or assumes any legal iiabili-

ty or responsibility for the acumcy, completeness, or usefulness of any i n f o d o n , appa-

ratus, product, or process disclosed, or represents that its use would not infringe privately

owned rights. Refeteme herein to any specific commerdal product, pmces, or service by

trade name, trademark, manufhcturer, or otherwise does not necessarily constitute or

imply its endorsement, mmmenda6 ‘on, or favoring by the United States Government or
any agency t b e d . The views and opinions of authors expressed herein do not wcessar-

ily state or reflect those of the United States Government or any agency thereof.

//!/EL-- 9 / 2 5
INEL-96/ 125

Scalability of Preconditioners as a Strategy for Parallel
Computation of Compressible Fluid Flow

Glen A. Hansen

Published May 1996

Idaho National Engineering Laboratory

Lockheed Martin Idaho Technologies

Idaho Falls, Idaho 83415

Supported by the

U.S. Department of Energy

through DOE Idaho Operations Office

Contract DE-AC07-94ID13223

SCALABILITY OF PRECONDITIONERS AS A

STRATEGY FOR PARALLEL COMPUTATION

OF COMPRESSIBLE FLUID FLOW

A Dissertation

Presented in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

with a

Major in Computer Science

in the

College of Graduate Studies

University of Idaho

bY

Glen A. Hansen

April 5,1996

Major Professors: John W. Dickinson, Ph.D.

Eugene Saghi, Ph.D.

ii

AUTHORIZATION TO SUBMIT

DISSERTATION

This dissertation of Glen A. Hansen, submitted for the degree of Doctor of Philosophy and

titled “Scalability of Preconditioners its a Strategy for Parallel Computation of Compressible

Fluid Flow,” has been reviewed in final form, as indicated by the signatures and dates given

below. Permission is now granted to submit final copies to the College of Graduate Studies

for approval.

Major Professor r&- b& bpL, Date /46
John W. Dickinson

C @Advisor

Department
Administrator

Engineering
College Dean

Date Vh(A’6

Committee Members Date 4$‘!/74

Date 4/ / / /PG
Dan,a A. Knoll

M i c h d a r n e t t

Date
Richard T Jacobsen

Final Approval and Acceptance by the College of Graduate Studies

Date
Jean’ne M. Shreeve

iii

Abstract

Parallel implementations of a Newton-Krylov-Schwarz algorithm are used to solve a model

problem representing low Mach number compressible fluid flow over a backward-facing step.

The Mach number is specifically selected to result in a numerically “stiff” matrix problem,

based on an implicit finite volume discretization of the compressible 2D Navier-Stokes/energy

equations using primitive variables. Newton’s method is used to linearize the discrete sys-

tem, and a preconditioned Krylov projection technique is used to solve the resulting linear

system. Domain decomposition enables the development of a global preconditioner via the

parallel construction of contributions derived from subdomains. Formation of the global pre-

conditioner is based upon additive and multiplicative Schwarz algorithms, with and without

subdomain overlap. The degree of parallelism of this technique is further enhanced with the

use of a matrix-free approximation for the Jacobian used in the Krylov technique (in this

case, GMRES(k)).

Of paramount interest to this study is the implementation and optimization of these

techniques on parallel shared-memory hardware, namely the Cray C90 and SGI Challenge

architectures. These architectures were chosen as representative and commonly available to

researchers interested in the solution of problems of this type. The Newton-Krylov-Schwarz

solution technique is increasingly being investigated for computational fluid dynamics (CFD)

applications due to the advantages of full coupling of all variables and equations, rapid non-

linear convergence, and moderate memory requirements. A parallel version of this method

that scales effectively on the above architectures would be extremely attractive to practi-

tioners, resulting in efficient, cost-effective, parallel solutions exhibiting the benefits of the

solution technique.

iv

The multiplicative Schwarz preconditioner did not yield performance advantages over the

additive Schwarz version due to the coloring technique mandated for parallelism. Subdomain

overlap also was not effective in providing solution scalability due to the extreme memory

requirements of the method. A solution technique based on a parallel Jacobian formation

algorithm, additive Schwarz preconditioning, and a matrix-free implementation did provide

excellent performance on 8 C90 processors and 4 SGI processors when pseudo-transient con-

tinuation was employed as a check on the increase of linear iterations with the number of

subdomains.

DISCLAIMER

This report was prepared as an account of work’ sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,

, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views

and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

V

Acknowledgments

I wish to thank the many people that were involved in the development of this work.

Dr. Michael Barnett of Microsoft, Inc. acted as my advisor throughout the first half of

this research while he was on the faculty of the University of Idaho. For the latter half of this

work, Drs. Eugene Saghi and John Dickinson of the University of Idaho shared the advising

duties.

I am grateful to the remaining members of my committee, Drs. Dana Knoll and Rod

Douglass of the Idaho National Engineering Laboratory (INEL). Dr. Knoll provided the

inspiration and considerable technical guidance toward this work; this task would have been

impossible without his pioneering research in Newton-Krylov-Schwarz methods. I greatly

appreciate Dr. Douglass’ efforts in the review of several preliminary drafts of this thesis,

suggestions for improvements, and countless hours of discussions about how a dissertation

should be constructed.

I wish to thank several people at the INEL, Drs. Paul McHugh and Paul Jacobs, and

Mr. Vince Mousseau, for all the technical help that they provided towards this work. I also

wish to thank Dr. John Ramshaw, Science and Engineering Fellow at the INEL, for his many

suggestions and support.

I am indebted to the INEL Long Term Research Initiative in Computational Mechanics

(LTRJ-CM), headed by Dr. Rod Douglass, for the financial support of this effort and many

of the facilities used for this research. Cray Research, Inc. (Mr. Steve Baumann, Dr. Tom

Ashbrook, and Dr. James Karcourt) provided the Cray time for development and countless

hours of parallel execution at their facilities in Minneapolis. Without the support of the

INEL LTRI and Cray, a study of this magnitude could not have-been attempted.

Vii

Contents

Authorization Form

Abstract

Acknowledgements

Table of Contents

List of Figures

List of Tables

List of Symbols

1 Introduction

1.1 Solution of the Navier-Stokes Equations .

1.2 Research Overview .

1.2.1 History and Related Work .

1.2.2 Mathematical Overview .

ii

iii

V

vii

xi

xiv

xvii

1

3

9

10

15

1.2.3 Research Outline . 22

1.2.4 Alternatives.. 24

Viii

1.3 Summary of Procedures and Results . 26

2 The Mathematical Basis 29

2.1 The Backward-Facing Step Problem . 29

2.2 The Governing Equations .

2.2.1 Non-Dimensionalization of the Governing Equations

2.2.2 Discretization of the Governing Equations

2.2.3 The Finite Volume Approximation of the Governing Equations

2.3 Boundary Conditions . 63

2.4 The Non-linea Algebraic System of Equations 67

3 Solution of the Non-linear Algebraic System 71

3.1 Newton’s Method . 72

3.2 The Inexact Newton’s Method . 75

3.3 Preconditioning . 77

3.3.1 Additive Schwarz Preconditioning . 81

3.3.2 Multiplicative Schwarz Preconditioning 85

3.3.3 Preconditioning of the Model Problem 91

3.4 Krylov Subspace Algorithms . 96

3.4.1 Transpose-Free Quasi-Minimal Residual Method (TFQMR) 100

3.4.2 Generalized Minimal Residual Method (GMRES) 110

3.5 The Matrix-Free Technique . 112

3.6 Mechanics . 114

3.7 Summary . 117

34

38

40

42

ix

4 The Additive Schwarz Preconditioner 120

4.1 Architecture Overview . 121

4.1.1 Cray Optimization . 122

4.1.2 SGI Optimization . 124

4.2 Initial Results . 125

4.2.1 The Jacobian Algorithm . 131

4.2.2 The Preconditioner . 133

4.3 Jacobian Granularity and Contention . 139

4.4 Subdomain Overlap with Additive Schwarz 148

4.5 Summary . 156

5 The Multiplicative Schwarz Preconditioner 159

5.1 Results . 162

5.2 Summary . 165

6 The Matrix-Free Technique 167

6.1 Robustness Concerns . 171

6.2 Performance of the Matrix-Free Technique . 172

6.3 Summary . 182

7 Conclusions 184

7.1 Optimal Architecture . 186

7.2 Summary of Results and Future Research Topics 193

A Some Mechanics of Shared Memory Parallel Computation 200

A.1 Applied Pardel Computation . 201

X

A.2

A.3

A.4

Hardware Selection for Applied Parallel Computation 203

A.2.1 Requirements . 205

A.2.2 The Optimal Architecture . 210

A.2.3 The Comparison . 211

A.2.4 Final Thoughts . 215

Shared Memory Hardware Programming Basics 216

A.3.1 Cray Optimization Process . 218

A.3.2 SGI Optimization Process . 230

Parallel Processing In A Production Environment 235

B Sample Cray FLOWTRACE Output 238

Bibliography 242

xi

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

The problem domain . 17

The backward-facing step .

Flow velocity .

Mach number contours .

Pictorial representation of a finite volume. st.. assuming a rectilinear two-

dimensional discretization .

The computational cell used for the development of the mass conservation

equation approximation .

The computational cell modified for coincident velocity and density

The 2-momentum stencil .

The y-momentum stencil .

The energy stencil .

30

30

31

44

45

47

52

56

60

2.10 The problem domain .

2.11 No-slip y-momentum condition along an east wall

2.12 Adiabatic temperature condition along an east wall

3.1 The structure of the Jacobian matrix .

64

66

66

75

xii

3.2 Simplified Jacobian matrix . 79

3.3 Partitioned Jacobian matrix. four subdomains 80

3.4 Magnified subdomain . 80

3.5 Partitioned Jacobian matrix. 16 subdomains 82

3.6 Partitioned Jacobian matrix. four subdomains with overlap 83

3.7 Overlap of Subdomain 3 . 84

3.8 Normal block numbering . 88

3.9 Renumbered blocking . 89

3.10 “Checkerboard” domain decomposition . 91

3.11 Flowchart for Newton-Krylov-Schwarz solution technique 118

4.1 64 x 320 domain solution time . 127

4.2 Majority of execution time devoted to Jacobian formation and TFQMR iter-

ations on the C90 . 128

4.3 Convergence behavior of the Newton-Krylov-Schwarz algorithm 130

4.4 Jacobian CPU time, speedup, and &ciency on the C90 132

4.5 Partitioned Jacobian matrix, four subdomains with overlap 148

4.6 Plot of overlap behavior versus number of subdomains 149

4.7 Plot of overlap behavior versus number of subdomains for Cray 96 x 480 sim-

ulation . 153

5.1 Red-black coloring on stripwise. RBGb coloring on “checkerboard” decompo-

sition . 161

A.l An array stored in Cray banked memory . 229

A.2 Single processor memory access . 234

xiii

A.3 Two processor memory access. 234

XiV

List of Tables

2.1 Parameter d u e s .

2.2 Dimensionless Parameters .

32

38

3.1 ILU memory requirements (adapted from McHugh [l]) 93

3.2 Schwarz memory requirements (from McHugh [l]) 93

3.3 Iterative behavior of several preconditioners (from McHugh El]) 94

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Contributions towards total CPU time .

Memory requirements for Cray 64 x 320 simulation

Parallel speedup of the linear solution routine on the C90

Solution algorithm performance data .

Overall code performance .

Overall performance .

New Jacobian performance .

TFQMR routine performance .

Speedup of the additive Schwarz preconditioner formation routine

4.10 32 x 160 Onyx simulation iteration behavior

4.11 SGI Onyx overall performance .

129

130

132

133

138

139

140

140

141

143

144

xv

4.12 SGI Onyx Jacobian performance .

4.13 SGI Onyx TFQMR performance .

4.14 Speedup of the additive Schwarz preconditioner formation routine

4.15 64 x 320 Onyx Run (4 Blocks) .

4.16 Memory requirements for SGI 32 x 160 simulation

4.17 32 x 160 Onyx simulation iteration behavior comparing overlap values

4.18 Additive Schwarz, 4 domain case, showing effect of overlap on TFQMR itera-

tions and CPU time .

4.19 Speedup d u e s for 8 cell overlap problem .

4.20 Memory requirements for SGI 32 x 160 simulation with various overlap d u e s .

4.21 Additive Schwarz, 16 domain case, showing effect of overlap on TFQMR iter-

ations and CPU time for a 96 x 480 simulation

4.22 Speedup values for 12 cell overlap, 96 x 480 problem using 8 processors

4.23 Speedup values for 12 cell overlap, 96 x 480 problem using 16 processors . . .

4.24 Memory requirements of 12 cell subdomain overlap on 96 x 480 16 domain

problem .

145

145

145

146

148

149

150

150

151

152

153

154

155

5.1 32 x 160 Onyx simulation iteration behavior comparing additive Schwarz (AS)

and multiplicative Schwarz (MS) preconditioning 162

5.2 32 x 160 iteration behavior comparing additive Schwarz (AS) and multiplicative

Schwarz (MS) preconditioning on the basis of DOP 162

Overall code performance for 32 x 160 stripwise problem on 4 processor Onyx

(* 8 block run on 4 processors) . 163

Speedup in the Jacobian routine (* 8 block run on 4 processors) 164

5.3

5.4

5.5

5.6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Speedup of the TFQMR routine (* 8 block run on 4 processors)

Iteration behavior with multiplicative Schwarz preconditioning

Matrix-free results using ‘‘stale% additive Schwarz preconditioning on a 4 sub-

domain. 32 x 160 problem on the Onyx .

Parameters for the Cray 32 x 160 runs .

32 x 160 matrix-free simulation iteration behavior on the Cray (I x n stripwise

blocking) .

Speedup values for 32 x 160 problem .

Parameters for the Cray 64 x 320 runs .

64 x 320 matrix-free simulation iteration behavior (n x 1 stripwise blocking) .

Speedup values for 64 x 320 problem .

Parameters for the SGI 32 x 160 runs .

32 x 160 matrix-free simulation iteration behavior (n x 1 stripwise blocking) .

xvi

164

165

171

173

173

174

176

177

177

180

181

6.10 Speedup values for 32 x 160 problem on the SGI 181

A.l LINPACK benchmark results for machines under (or near) $300K and over

100 Mflops performance (1/1/96) . 207

A.2 LINPACK benchmark results for top four machines under (or near) $300K and

over 100 Mflops performance considering other imposed requirements 209

A.3 NAS parallel benchmark results [2] . 209

A.4 Speedups within a production environment (Table from Cray Research [3]) . . 236

xvii

List of Symbols

Math Operators:

s

I

V

D

a

S

Integration operator

Line integration operator

Del operator

Material derivative operator

Partial derivative operator

Discrete cell equation set assembly operator

Governing Equation Derivation:

A Area of a surface

CP

e

F

Fr

Specific heat at constant volume

Specific heat at constant pressure

Fluid energy

Body force vector

Froude number (F r -"-)
6

Gravity body force vector ([gs, gy] components)

direction gravity component

y-direction gravity component

GT

k

Mi

ii

P

Pe

PT

P

R

Ra

Re

S

T

t

U

21

V

V

X

X

Y

) Grashof number (Gr 9p(Tw-T0)Ls

Thermal conductivity of the fluid

Flow inlet Mach number (Mi

Unit normal vector ([nz, n,] components)

Pressure

Peclet number (Pe = RePr)

Prandtl number (PT G y)

Heat flux vector

Gas constant

Rayleigh number (Ra GTPT)

Reynolds number (Re E e)

A general surface

Fluid temperature

Time

Fluid velocity vector ([u, v] components)

x-direction velocity

A general volume

y-direction velocity

Cartesian coordinate vector ([x, g] components)

Horizontal Cartesian coordinate variable

Vertical Cartesian coordinate variable

Ut

$59

PO

Numerical Methods:

b Right hand side

X

Greek Symbols:

P

as1

6X

E

7

x

P

s1

P

Diagonal matrix block

Newton damping coefficient

Discrete governing equations vector

i-th component of F

Jacobian matrix

Krylov subspace of dimension m

Lower diagonal matrix block

Matrix dimension

Right preconditioning matrix

Left preconditioning matrix

Upper Diagonal matrix block

Krylov vector

State variable vector

Coefficient of thermal expansion

Boundary of the domain of computation

Newton update vector

Tolerance parameter for Krylov iteration

Ratio of specific heats (7 = cp/c,,)

Fluid second viscosity

Fluid viscosity

Domain of computation

Fluid density

T Stress tensor

Subscripts:

0

i

j

m

R,

L I

Superscripts:

0

i

n

Operators;

[I'

Starting value for Krylov iteration

Column number

Block number, row number

Dimension of Krylov subspace

Right preconditioner

Left preconditioner

Initial preconditioner iteration value

Iteration level

Newton iteration level

Transpose of []

1

Chapter 1

Introduction

The efficient solution of large two- and three-dimensional Navier-Stokes problems has recently

become quite important to many researchers. These simulations arise from the desire to

understand the fluid dynamics, convective heat transfer, and mass transfer for ever more

realistic situations. Typically, equations similar to those describing the Navier-Stokes problem

arise in many fields of science, including:

0 atmospheric modeling (weather, pollution tracking, etc.),

0 aerospace,

0 energy (powerplants, waste, etc.),

0 electronics (cooling),

0 groundwater modeling (contaminant transport, oil & gas production),

0 materials processing (molding, spraying, etc.), and

0 transportation (automotive).

2

For the remainder of this work, the solution of the Navier-Stokes equations (or similar equa-

tions) using computational techniques will be defined as computational fluid dynamics (CFD).

To simulate fluid dynamics phenomena computationdy, one generally begins with the

Navier-Stokes equations [4]

a P
z + V . (p u) = 0

a
-(Pu) at + V*(~UU) = -Vp+ V - T + pF

where

p = fluid density,

t = time,

u = fluid velocity vector, u = (u, v, tu), with u, v, and w,

corresponding to the 2 , y, and z direction velocity components,

p = fluid pressure,

T = viscous stress tensor, and

F = body force term.
,,

Additional equations are often used to describe the phenomena of energy transfer in the h i d

if the specific application warrants it

d
-(pe) + V (pue) = -pV - u + T : Vu - V - q at

where

3

e = fluid internal energy, and

q = heat flux vector.

These equations are general in nature, and may be applied to practically any flow problem

conceivable. However, it is often possible to simplify the equations to describe a specific class

of flow and yield a less computationally challenging equation set.

For a few specific problems, the Navier-Stokes equations can be simplified sufficiently

to obtain an exact mathematical solution. Usually, however, these equations cannot be

simplified to this extent and still yield useful data about the flow regime of interest. It is

desirable to simplify the equations as much as possible to facilitate the construction and

execution of the simulation code, while retaining the desired physical accuracy of the results.

This is clearly a balancing act.

Historically, CFD has focused on the solution of one- and two-dimensional versions of the

Navier-Stokes equations to model the physical phenomena of interest. In most cases, however,

the approximation of three-dimensional phenomena by a lesser dimensional space yields less

than desirable results. Additionally, the drive for complete and accurate two-dimensional

simulations often results in a complex computational model that may not yield acceptable

solution times. In summary? the desire to develop better, more accurate models is driving

the interest in large scale two- and true three-dimensional simulations. The direct result is,

however, lengthy solution times.

1.1 Solution of the Navier-Stokes Equations

Above, an argument was made for the simplification of the general Navier-Stokes equations

to describe only the phenomena required for the accurate solution of the specific problem

5

These discrete approximations are usually based on the subdivision of the problem domain

into a computation domain consisting of a mesh of computational cells (elements, volumes)

that faithfully discretize the problem domain. In each of these cells, the governing equations

are approximated by a set of non-linear algebraic equations. The method used to obtain this

discretization and set of algebraic equations over the computational domain depends on the

specifics of the problem and other factors. Several methods are commonly used,

0 the finite difference method,

0 the finite volume method,

0 the finite element method, and

0 spectral methods.

AU these methods have advantages and disadvantages; some are better suited than others for

given classes of problems or problem geometries.

Further complicating the choice of discretization method (that may impact the details of

the method chosen) is the choice of the method used to solve the algebraic system resulting

from the discretization process and initial/boundary conditions. The algebraic system may

be solved ezpZicitly (the unknown term in each algebraic equation is evaluated based on the

known values of the other variables), or implicitly (the algebraic system requires simultaneous

solution of the equations involving the unknowns), or some combination of the two.

Given an appropriate choice of governing equations, initial and boundary conditions,

discretization technique, and algebraic solution method, a computer program (code) may

be constructed to calculate the approximate solution to the desired problem. The accuracy

of this solution is clearly dependent on the approximations performed. In general terms,

accuracy may be improved by one (or a combination) of the following.

6

0 Retaining more terms in the governing equations. Often, terms are removed in the sim-

plification process that affect the details of the solution in favor of reasonable execution

time.

0 Adding problem dimensions. One- and two-dimensional approximations may not yield

acceptable results if the phenomena of interest is three-dimensional in nature.

0 Use of a more accurate discretization method. Low-order methods often yield quicker,

but less accurate, solutions.

0 Use of a finer discretizing mesh. Problems that have steep gradients often benefit with

the use of a finer mesh. Direct simulation of fluid turbulence requires a fine mesh to

resolve the small wavelength phenomena inherent in such a calculation.

However, all of these approaches lead to an increase in the time required to obtain a solution,

occasionally drastically so. Again, the accuracy of the solution must be delicately balanced

with the time required to obtain a solution to the problem.

The solution of complex two- and three-dimensional CFD problems are often called

“Grand Challenges,” with good reason. To best illustrate the magnitude of achieving a

solution of a typical problem of this type, consider a two-dimensional solution to obtain a

velocity field, with simple governing equations consisting of the mass conservation equation

and u and D momentum equations (3 total). Consider use of the popular finite volume tech-

nique on a computation domain consisting of 200 discrete volumes per side (a large problem

by current solution standards, realisticdy still too small for any detailed resolution of physi-

cal phenomena in complex domains and for turbulence simulation). Furthermore, consider a

simultaneous solution of the algebraic equations using an exact direct technique. A domain

with 200 volumes per side or 2002 = 40,000 total volumes in the discretization. For each

7

of these volumes, three algebraic equations are used to describe the flow within the volume

(one algebraic equation for each of the governing equations to be approximated), resulting in

120,000 total equations to be solved. Using an implicit technique, these non-linear algebraic

equations may be linearized and placed in a matrix form, Ax = b, where A is a matrix

containing the equation coefficients, x is the vector of unknowns, and b is the right-hand-

side vector containing constants. In this configuration, the number of equations (120,000)

maps directly to the number of rows in the coefficient matrix. To obtain the solution of

the matrix equation requires that the coefficient matrix A be inverted. Several techniques

exist to perform the inversion. Current practices indicate that O(n3) operations are required

to obtain an exact inverse for a dense matrix A (counting both addition and multiplication

operations, the Gaussian elimination used in LINPACK [7] requires 2n3/3 + 2n2 operations).

Realistically, an efficient iterative technique on a sparse matrix should easily be more efficient

than O(n3), but certainly cannot require less than O(n2) operations (recall, O(n2) operations

are required to store the result alone). This example will assume that the inversion can be

accomplished in O(n3) operations. Thus, a total of 1.73 x 1015 floating point operations will

be required for one matrix inversion

(120, 000)3 = 1.73 x 1015 operations (flops, assuming matrix solution z O(n3) operations).

To perform this number of floating point calculations on a personal computer class machine

would require 2.9 years (1.73 x 1015/19 Mflops (Pentium 133MHz [7]) = 2.9 years) of contin-

hous computation (24 hours per day, 365 days per year). For more efficient processors, the

execution time decreases:

0 an HP 735/99 workstation (120 Mflops) requires = 167 days for the calculation, and

8

0 a Cray T90 (one processor, vector code, 1.6 Gflops) needs % 13 days to perform the

work.

These times are for one matrix inversion; transient and iterative solutions require many such

inversions over the solution of the problem. The use of full Gaussian elimination is a bit

pessimistic and unnecessarily inflates the results for this example. However, this example

may not always represent an extreme case. In fact, the governing equations used were overly

simplistic. The problem was two-dimensional rather than the often more desirable three-

dimensional domain, and a direct steady-state result was assumed. ReaListicaUy, a useful

simulation would require more operations per inversion, with a corresponding increase in

solution time. It is evident that the solution of 3D problems of this size may not be feasible

due to the extremely long computation times required.

Given the necessity of the solution of larger and more complex two- and three-dimensional

problems, CFD researchers and developers have only a few strategies to reduce the time

required for a simulation.

Wait until hardware advances yield acceptable solution times.

0 Improve the 0(n3) matrix solution efficiency. For the usual sparse matrices encoun-

tered, it is often possible to find algorithms with better efficiencies. However, solution

efficiency cannot be improved beyond O(n2), the number of operations required to store

the inverse in memory. Furthermore, due to the maturity of many simulation applica-

tions, it may be reasonable to assume that the optimal solution algorithm is already

implemented. As such, improvements here may not be possible.

Use parallel algorithms that d o w concurrent matrix inversion. Ideally, these algorithms

would s d e to a large number of processors to dlow the timely solution of an arbitrarily

9

complex simulation.

1.2 Research Overview

Given the above options, this research will concentrate on the third strategy: concurrent ma-

trix inversion, or more generally, solution of the linear system. As an ideal goal, this research

would result in a reformulation of the relationship between simulation complexity and solution

time; as accuracy increases, the time required for solution also increases, often drastically.

Practically, the aim is to exploit parallel computation for the implicit, fully-coupled solution

of CFD problems. Specifically, parallelism will be employed in the concomitant non-linear

algebra problem such that the number of processors used for the solution will increase with in-

creasing problem (simulation) complexity to yield a constant amount of “work” per processor

and an overall code execution time that remains roughly constant. For the purposes of this

study, performance of this nature will be considered “ideally scalable.” However, in practice,

if an overall speedup approaches the number of processors used to achieve that speedup (see

Appendix A)? the performance will be termed “scalable.” Given that an inversion technique

is scalable, as the accuracy of a solution is increased, more processors are required for a given

solution time. In effect, the limiting condition would be the number of processors available

for use by the simulation, not the simulation time required for a solution.

The existence of a true scalable linear solution technique for general sparse matrices is

unlikely. Realistically, it may be sufficient to develop methods that scale “well” up to n

processors, where n is determined by available hardware. Currently, the majority of CFD

analysis is performed on low-end hardware for economic reasons. Algorithm scalability to

a large number of processors on high-end hardware will not generally benefit the intended

alysts; shared-memory multiprocessors such as conventional vector/parallel supercomputers

and SMP (Symmetric Multiprocessor) workstation class machines. For this class of hard-

ware, scalability to n = 32 is presently a realistic upper bound. In fact, as of this writing,

only Silicon Graphics sells a machine with n > 16 processors (for a related discussion, see

Appendix A).

Within these limits, the primary goal of this research is the implementation of an n 5 16

scalable parallel linear system solution technique for use with a Newton-Krylov non-hear

solution method [8,9,10,11,12] applied to a compressible flow model using a two-dimensional

backward-facing step problem as a means of testing the results. Other aspects of this problem

(mesh refinement, physical properties, etc) are not studied as a part of this research.

1.2.1 History and Related Work

The motivation for this work may be traced to research in the two-dimensional solution of

the Tokamak edge (Le., boundary layer) plasma fluid equations [13]. The Tokamak is a

promising design for a nuclear fusion reactor that is based on magnetic confinement of the

fusion plasma. Superconducting magnets are used to create a magnetic field of sufficient

strength to confine the fusion reaction in the core of the Tokamak. The edge plasma is

the boundary layer between the magnetic confinement field and the walls of the vessel. An

accurate model of the edge plasma is critical for the proper design of a Tokamak.

Solution of the edge plasma flow is computationally very challenging. In addition to

the fluid equations described previously, equations accounting for the atomic reactions are

necessary. The result is a much larger, more complicated equation set to be solved. These

equations have transport coefficients that are strong non-linear functions of the dependent

11

variables, and incorporate difficult boundary conditions. The Newton solver implemented

by Knoll [13] proved to be a robust and efficient non-linear solution technique. Newton’s

method generally results in better coupling between the equations of the simulation than

other common methods [14, 151, which manifests itself in faster and more robust solutions.

Given this initial success with Newton’s method on complex simulations, research pro-

gressed towards the use of the method to solve more complete edge plasma flows, combustion

problems, and difficult flow domains. Knoll [8] developed two benchmark problems to further

refine the Newton technique, adding a numerical Jacobian evaluation, convergence enhance-

ment features, and increasing the algorithm’s efficiency. McHugh [9] extended this work using

an inexact Newton’s method, differing governing equations, and conjugate-gradient- “like” al-

gorithms for the linear solution process. McHugh [lo] further refined his earlier work on the

linear solution algorithms, and implemented a matrix-free solution technique. Jacobs [12]

studied the use of domain decomposition to develop a preconditioner for the transpose-free

quasi-minimal residual (TFQMR) conjugate-gradient- “like” algorithm, and investigated the

additive and multiplicative Schwarz methods. Johnson [16] examined the use of higher-order

methods to improve solution accuracy. McHugh [17] developed a simulation of the ASME

benchmark problems using many of the above methods. Finally, Knoll [18] has summarized

much of this work. Progress on these techniques and their application continues unabated;

from the recent literature these techniques are a fertile research area with interest within

both academia and the various research laboratories.

Related Work

Idelsohn [19] presents an excellent comparison between finite volume and finite element meth-

ods for assorted problems. He stresses the advantages of each technique for the solution of

12

Navier-Stokes problems, and concludes that a hybrid of the two techniques (the finite element

method is superior for the solution of symmetric terms, the finite volume technique is better

suited to solve the non-self-adjoint terms) may provide more efficient solutions.

This work also capitalizes on the wide body of published research performed on Newton’s

method, Krylov techniques, and Schwarz methods. McHugh [20] provides an excellent de-

scription of several Krylov solution techniques. Golub [21] provides a history and overview

of various Krylov techniques, and the Lanczos method. Axelsson [22] shows the develop-

ment of the conjugate-gradient method for symmetric positive-definite matrices and extends

this result via the Lanczos biorthogonalization procedure to obtain the biconjugate-gradient

method (BCG) for the solution of non-symmetric indefinite problems. Freund [23] presents

the TFQMR method. Saad [24] developed the restarted generalized minimal residual (GM-

RES) algorithm. Several other Krylov techniques have been developed (but not used in this

study); the Bi-CGSTAB algorithm [25], CGS [26], and hybrid techniques [27], to name a few.

Chronopoulos [28] discusses biorthogonal Lanczos methods and compares a restarted squared

Lanczos method to restarted GMRES.

McHugh [l] provides a comparison and contrast of Schwarz, ILU, and some matrix-

splitting preconditioning methods, focusing on issues of serial performance, memory require-

ments, and robustness of algorithms on compressible 2D flow on a backward-facing step

problem. Cai provides an overview of Schwarz preconditioning [29] and a discussion of addi-

tive and multiplicative Schwarz algorithms (including coloring schemes) [30]. Pavarino [3 11

presents an additive Schwarz preconditioned method applied to petroleum reservoir simula-

tion on an elliptic problem. Bramble [32] discusses additive and multiplicative preconditioning

on elliptic problems.

Finally, several examples of directly related work appear in the literature. This study fo-

13

cuses on extending work by McHugh, Knoll, Jacobs, Mousseau, and Johnson [l, 8,9,10,12,

16, 17, 18, 20, 33, 34,351 to parallel architectures, based on preliminary work performed by

this author [I, 361. In [l], McHugh provides a comparison between ILU and Schwarz precon-

ditioning on a low Mach number backward-facing step problem. He concludes that Schwarz

preconditioning is generally more robust than ILU for small Mach number simulations. Work

by Venkatakrishnan [37, 381 suggests that ILU preconditioning tends to perform better than

other matrix-splitting techniques. These results indicate that Schwarz preconditioning may

possess certain advantages for poorly conditioned problems such as the one considered in this

study (see Chapter 3).

Bjarstad [39] employs decoupling of the PDE system (using pressure and saturation equa-

tions) in conjunction with additive Schwarz preconditioned Krylov techniques for the par-

allel solution of petroleum reservoir equations. Bjarstad solves the pressure equation using

a preconditioned conjugate-gradient algorithm (the pressure equation results in a symmet-

ric positive-definite linear system), and employs a preconditioned Bi-CGSTAB algorithm to

solve the non-symmetric saturation equation. He also adds that "ASM preconditioning is

very robust with respect to large variations in permeability," (ASM is an acronym for the

additive Schwarz method). Venkatakrishnan [40] implements a modified-Newton-Krylov-TLU

pardel solution of an aerodynamics problem at Mach 0.2. He compares the implicit modified-

Newton-Krylov scheme with an explicit technique (usually trivially parallelizeable) and finds

that the iterative technique provides superior performance due to superior convergence behav-

ior. Venkatakrishnan simplifies certain Jacobian terms (hence the nomen modified-Newton)

and thus is not guaranteed the full Newton quadratic convergence behavior.

Cai [41] provides results of Newton-Krylov-Schwarz and matrix-free solutions to an in-

viscid compressible flow problem. Shadid [42] examines a parallel implementation of several

14

Krylov solution techniques on an nCUBE 2 architecture. However, Shadid does not investi-

gate Schwarz preconditioning or matrix-free methods, the set of model problems he studies

are not closely related to this work. His efficiency results show that ParaJleIization of the

Krylov technique is feasible on certain architectures and would be an obvious extension to

this study. Ajmani [43] solves a compressible two-dimensional backward-facing step prob-

lem using preconditioned Krylov techniques. He does not examine Schwarz preconditioning

or matrix-free techniques and employs larger Mach and Reynolds numbers for the solution.

Choquet [44] examines a parallel Newton-Krylov finite element solution to compressible flow.

Choquet concentrates on aerodynamics problems and uses diagonal or ILU preconditioning.

Of particular interest is Choquet’s comparison of the convergence of the Newton linearization

step using both exact and numerical Jacobian derivations. For his example problem, use of

an exact implementation decreases the number of iterations required for convergence by ap-

proximately 14%. This small improvement may not justify the use of exact implementations,

especidy considering the complexity of these expressions.

In summary, the work reported herein provides several contributions to the field of the par-

allel implicit solution of Navier-Stokes problems (specifically low Mach number compressible

flow on a backward-facing step domain) using Newton-Krylov-Schwarz solution techniques.

The overall goal of this study is an efficient mapping of the Newton-Krylov-Schwarz solu-

tion procedure to selected parallel architectures while preserving the robustness, convergence

behavior, and generality of the technique that was demonstrated on a single processor [l].

Specific goals are listed below.

1. Provide robust, parallel solutions to steady-state viscous compressible flow on a backward-

facing step at a Reynolds number of 100 and inlet Mach number of 0.0025. This problem

15

is numerically extremely challenging due to the large off-diagonal terms in the Jacobian

and is an excellent test of the robustness of the solution algorithm. Serial solution of

this problem has been achieved by McHugh [l]. This study is the first to tackle such a

problem focusing on parallel solution efficiency.
1

2. Investigate the mapping of implementations of this Newton-Krylov-Schwarz solution

algorithm on the Cray C90 and SGI Onyx. While there have been several investigations

of subsets and variations of these techniques, this is the first to analyze the parallel

behavior of the full inexact Newton algorithm with a global Krylov linear solution

using Schwarz preconditioning methods on a mapping problem of this type.

3. Examine a parallel matrix-free implementation of the above methods, using pseudo-

transient relaxation in conjunction with a lagged Jacobian and preconditioner forma-

tion strategy to reduce the influence of the preconditioner formation on the algorithm

execution time.

4. Finally, suggest the “ideal” hardware configuration for parallel Newton-Krylov-Schwarz

Navier-Stokes solutions for problems similar to the model problem.

1.2.2 Mathematical Overview

The efficiency of various methods used for the linear solution process and the suitability of

a given method for a particular problem is somewhat dependent on the governing equations,

boundary and initial conditions, and discretization technique employed in the solution. The

linear solution method may also be strongly affected by the details of the specific application.

It is tempting to select a simple problem with simple equations to allow concentration on the

parallel aspects of the solution process. Unfortunately, this approach is of little interest as the

Moment urn:

17

Energy:

State:

Figure 1.1: The problem domain.

apuu +- apv2 = -- ap + '(" [p (E+ E)]
ax by dy Re ax

P

and subject to conditions on p, u, u, T, p on the boundary 00, with the nomenclature

u - z velocity component,

v - y velocity component,

p - pressure,

T - temperature,

p - fluid density,

Re - flow Reynolds number,

Pe - flow Peclet number,

7 - ratio of specific heat capacities,

Mi - inlet flow Mach number, and

FT - Froudenumber.

The Newton-Krylov method is a fully implicit scheme used for the solution of the non-

linear algebraic equations that result from the discretization of the governing partial differ-

ential equations. The finite volume discretization of the governing equations results in a

non-linear system,

{s1(x) ,sz(x) ,g3(x) , g4(x>, !75(x)} 7 (1.10)

for each discrete volume cell (Q,) composing the physical domain. The state variable, x, can

be expressed as

x = [X1,X2,X3,X4,X5JT = (P, U,V,P,T). (1.11)

The system of equations (1.10) in each cell may be re-written in the following form:

The contributions of each of the above equations in each cell may then be assembled together

to form the global non-linear system over the computational domain

F(x) = 0.

Application of Newton's method requires the iterative solution of the linear system,

J" SX" = -F(x"),

where n is the iteration number and the elements of the Jacobian are defined by

and the new solution approximation is obtained from

xn+l = X" + d Sx".

19

(1.13)

(1.14)

(1.15)

(1.16)

The constant, d E (OJ], in Equation 1.16 is used to damp the Newton updates. The damping

strategy is designed to prevent the calculation of non-physical variable values (i.e., negative

temperature), and to scale large variable updates when the solution is far from the true

solution. This iteration is continued until the Euclidean norm of either Sx or F(x) is below

some suitable tolerance level.

Newton's method is attractive because it converges quite rapidly when given an appro-

priate initial estimate. In fact, Newton's method is the standard used to compare rapidly

convergent methods for solving the non-linear system (Equation 1.13) [46].

The application of Newton's method results in a linear algebraic system (Equation 1.14) to

20

be solved each Newton iteration. This system may be solved directly (with banded Gaussian

amination, for example). Direct methods are generally difficult to pardelize and require

an excessive amount of computation especially as an exact solution to the linear system is

not needed until the final Newton iteration. The use of an iterative Krylov technique (ie.,

a conjugate-gradient- "like" method), such as the transpose-fiee quasi-minimal residual tech-

nique (TFQMR) 1461, to solve Equation 1.14 gives rise to an "inexact" Newton's method.

Inexact methods can be used to prevent excessive computation by the linear solution algo-

rithm when the non-linear iteration is far from convergence. In this technique, the tolerance

level for the iterative linear solution process is tightened as the Newton residual decreases

according to

(1.17)

where E is a user-specified tolerance parameter.

For realistic, complex problems, solution of the linear system may be quite difficult (or

impossible). Often this system is poorly conditioned (ie., the Jacobian matrix contains a

wide disparity in eigenvalues). Preconditioning is- used to improve the condition number of

the system to facilitate solution. A preconditioner (Pl) may be applied to the left' of the

Jacobian, resulting in the expression

PFIJ" SX" = -PTIF(x"). (1.18)

Effective preconditioning requires that the preconditioner be a reasonable approximation of

J and that systems of the form Pp = b, which arise within the TFQMR iteration, can be

solved efficiently. One popular class of preconditioners is based upon incomplete factorizations

'Wht preconditioning is also a valid approach (see Section 3.3) and results in a slightly difkrent expression.

21

(ILU) of the Jacobian matrix [47]. However, ILU preconditioners often do not scale well with

problem size [48] and exhibit data dependencies that hinder parallel implementations.

The formation and inversion of the preconditioner may quickly dominate the Newton-

Krylov solution time on larger problems. This task potentially requires O(n3) operations (if

LTNPACK Gaussian elimination is used to invert the preconditioner, a total of 2n3/3 + 2n2

operations are needed for the inversion task [7]). Two possibilities exist that may improve

the efficiency of this task.

0 The formation and inversion of the preconditioner can be performed concurrently

on multiple processors. Beyond the concept of a linear execution time decrease as

a function of the number of processors employed, this technique typically creates a

preconditioner by assembly of several preconditioner subblocks obtained in parallel

(e.g., domain-based preconditioning). Construction of the preconditioner using multi-

ple smaller subblocks theoretically provides much greater efficiency than a simple work

division among several processors would indicate (using four subblocks decreases the

number of operations to 4 x (2[n/4I3/3 + 2[n/4I2) x 1/16 x (2n3/3), a factor of nearly

64 for large n).

0 It is likely possible to improve the overall O(n3) inversion time for a sparse linear system

significantly, as discussed previously. However, for the remainder of this study it will

be assumed that the optimal inversion algorithm is insufficient to provide the desired

performance increase.

The additive and multiplicative Schwarz algorithms [30] are examples of domain-based pre-

conditioners that lend themselves to parallel implementations.

1.2.3 Research Outline

The thesis begins by providing the theoretical development of the governing equations in

two dimensions, followed by a finite volume approximation of the equations as background

material. Given the approximate equations, Newton’s Method is then applied to linearize

the approximations, followed by the application of Krylov-subspace-based algorithms to solve

the resulting linear system.

A preconditioner is usually employed to accelerate the convergence of the Krylov method.

Indeed, for stiff, poorly-conditioned matrices, preconditioning is often required to obtain a

solution. The quality of the preconditioner strongly influences the convergence behavior of

the Krylov technique. The optimal preconditioner is one that balances the minimization of

the number of Krylov iterations with the number of operations required to develop the pre-

conditioner, resulting in a preconditioner that minimizes the time spent in the linear solution

procedure. Based on operation count (approximately O(n3)), the formation of the precon-

ditioner is possibly the dominant task in the solution procedure for large two-dimensional

problems. As the remainder of the process requires 0(n3) operations, large problem sizes

increase the importance of obtaining a quality preconditioner.

Given this background information, the research presented here concentrates on obtaining

a quality preconditioner based on parallel algorithms. Ideally, the preconditioner will not

only minimize the number of Krylov iterations required per Newton step, but will also be

amenable to parallel construction that is scalable beyond a small number of subblocks (or

processors, assuming each processor is dedicated to obtaining its respective subblock of the

preconditioner). This research examines the additive Schwarz method in detail and considers

the feasibility of algorithm modifications that exhibit scalability without degradation of the

23

global preconditioner. Additionally, the multiplicative Schwarz algorithm (while not parallel

in the base form) may be modified for parallel execution, forming a second candidate for

study. Depending on the outcome of these efforts, further study of other algorithms (such as

a matrix-free approach) may be appropriate in the search for a scalable preconditioner.

Previous research [12] examines the additive and multiplicative Schwarz methods used

towards the development of a linear solve preconditioner using domain decomposition tech-

niques. Of the algorithms studied, only additive Schwarz with no domain overlap is parallel

without subblock dependencies in base form. At some reduced level of efficiency, additive

Schwarz methods with overlap can be parallelized. Multiplicative Schwarz techniques require

a renumbering (coloring) operation to resolve data dependencies. Jacobs [12] compares and

contrasts serial implementations of additive and multiplicative Schwarz preconditioners on a

24 x 96 cell backward-facing step problem.

With this background research, it is clear that parallel implementations of the additive

and multiplicative Schwarz method should be examined. To study the feasibility of these ap-

proaches, the author performed preliminary work on a parallel implementation of the additive

Schwarz algorithm on a Cray C90 [36]. The additive Schwarz algorithm was successfully im-

plemented in parallel and demonstrated scalability to four processors. The eight-processor

case, however, was disappointing. This loss of scalability was largely due to an increase in

the number of Krylov iterations required to solve the eight-block case. This behavior indi-

cates that for the additive Schwarz algorithm with no subdomain overlap, the quality of the

resultant preconditioner decreases rapidly as the number of subblocks (processors) increases.

To achieve the primary goal of this research, further work should be invested in the study

of subdomain overlap and how it affects the behavior of the additive Schwarz method. As

of this date, overlap is not expected to result in an acceptable scalable preconditioner (even

24

s m d values of subdomain overlap may result in extreme memory requirements). Beyond the

study of overlap with the additive Schwarz method, this research will examine the parallel

implementation of a renumbered (colored) multiplicative Schwarz method. Study of these

algorithms will proceed as outlined below.

1. Implementation of a parallel, shared-memory version of the algorithm.

2. Testing and optimization of the algorithm.

3. Benchmarking of the algorithm.

1.2.4 Alternatives

Many alternatives to the path outlined for this research exist. The selection of a physical

problem defines the governing equations to use in the development of the simulation. Along

the path chosen for this study (the governing equations, finite volume discretization, and

Newton-Krylov-Schwarz techniques), several decision points were encountered where alter-

native decisions were possible:

0 selection of the discretization technique (finite difference, finite volume, or finite ele-

ment),

0 selection of the method to linearize the non-linear algebraic system resulting from the

discretization process,

0 solution of the linear system resulting from the previous step, and

0 the use of preconditioning, if necessary.

Recall that the motivation for the selection of the discretization method and the use of

Newton’s method for a linearization technique serves to narrow the field of alternatives. The

25

previous development assumes the use of a Jacobian matrix as part of the Newton-Krylov

solution scheme. An alternative, the matrix-free implementation, shows much promise in

comparison to conventional techniques. With most Krylov projection methods , the Jacobian

matrix appears as matrix-vector products of the form Jw, where w is an intermediate vector

used internally in the Krylov technique. For an inexact Newton’s method, the actual Jacobian

matrix need not be calculated, because only the product,

F(x + .w) - F(x)
Jw x

E
7 (1.19)

is needed for the solution. For the matrix-free technique, only the matrix-vector products

Jw are stored and manipulated; the Jacobian J is never actually calculated.

Alternatives also exist in the selection of algorithms for the development of the precondi-

tioner. Additive and multiplicative Schwarz allow the development of a preconditioner with

the use of subblocks. Given appropriate modifications to the algorithms, the construction

of a global preconditioner based on the assembly of these subblocks can be performed in

parallel.

It is clear that many alternatives to the research outlined in this opening exist and some

of the alternatives have the potential to yield useful results. Based on the knowledge and

background information to date, the finite volume discretized Newton-Krylov-Schwarz solu-

tion of the 2D compressible Navier-Stokes equations is competitive with, and in many aspects

superior to, other usable techniques to solve this problem. Given the robustness and suit:

ability of Newton-Krylov techniques for the solution of this problem and the computational

complexity of the preconditioner formation in comparison with the remainder of the solution

algorithm, concentration of this research on the preconditioner formation algorithm is clearly

26

justified.

1.3 Summary of Procedures and Results

In this introduction, motivation was provided for the efficient solution of compressible Navier-

Stokes-based problems on two- and three-dimensional domains, using approximate compu-

tational methods. It was argued that as discretization refinement, problem dimension, and

the complexity of the governing equations increases, the construction of a quality Newton-

Krylov preconditioner may quickly overwhelm the other routines in the simulation in terms

of operation count and, proportionately, execution time. With this being the case, solution of

these types of problems (at least in a meaningful time frame) will require an algorithm that

constructs a quality preconditioner in a minimum of time. Current research suggests that

the most promising approach to this end would involve a scalable preconditioner construction

method based on subblocks.

To obtain a scalable preconditioner, further research on the additive Schwarz method tar-

geted towards maintaining preconditioner quality as the number of preconditioner subblocks

is increased is clearly warranted. Additionally; a parallel implementation of the multiplicative

Schwarz method should be examined. Most likely, other algorithms and variations should be

reviewed for applicability towards providing an efficient and robust parallel preconditioner.

To summarize this work, addressing the above arguments, two pardel implementations

of Newton-Krylov-Schwarz algorithms were used to solve the low Mach number compressible

fluid flow model problem. The first technique involved a direct Newton-Krylov-Schwarz so-

lution, with the second using a pseudo-transient relaxed matrix-free implementation of the

technique. In both cases, Newton’s method was used to linearize the discrete system, and

27

a preconditioned Krylov projection technique was used to solve the resulting linear system.

Domain decomposition enabled the development of a global preconditioner via the pardel

construction of contributions derived from subdomains (by assigning each subdomain contri-

bution to an independent processor). Formation of the global preconditioner was based upon

additive and multiplicative Schwarz algorithms, with and without subdomain overlap. For

the second case, the degree of parallelism of the technique was further enhanced with the use

of a matrix-free approximation for the Jacobian used in the Krylov technique. Furthermore,

with the use of the pseudo-transient algorithm, additional robustness was added by enhancing

the sphere of convergence within the Newton algorithm. Relaxation also allowed a reduction

in the influence of the preconditioner on the overall solution time by "lagging" the formation

of the preconditioner, amortizing this penalty over several Newton iterations.

The multiplicative Schwarz preconditioner did not yield performance advantages over the

additive Schwarz version, because the superior convergence behavior was effectively offset

by the required coloring technique used to address data dependencies within the method.

The Schwarz preconditioner quickly degraded in quality as the number of subdomains were

increased, resulting in a sharp increase in the number of Krylov iterations required for the

simulation. This behavior severly limited the degree of parallelism that could be employed

within the preconditioner. Subdomain overlap was somewhat successful in reducing this effect

and resulted in some degree of scalability to 16 C90 processors. However, overlap values that

provided the best performance resulted in extreme memory requirements. Additionally, even

with overlap, preconditioner degradation with an increase in the number of subdomains,

along with remaining serial code within the Krylov solve, continued to limit scalability.

A solution technique based on a parallel Jacobian formation algorithm, additive Schwarz

preconditioning without overlap, and a matrix-free implement ation did provide excellent per-

28 28

formance on 8 C90 processors and 4 SGI processors when pseudo-transient continuation was

employed as a check on the increase of linear iterations with the number of subdomains. Fur-

thermore, this study concluded that further work on the algorithms and hardware mapping

concerns along with additional hardware features would likely result in scalability to larger

machines.

To place this result in perspective, the model problem studied requires a very powerful

preconditioning technique due to the low Mach number inlet condition. If this were not

the case, better scalability results could certainly have been achieved. As such, the model

problem selected demonstrates the "worst-case" scalability that would be obtained with these

techniques. It is evident that the results and conclusions of this study are specific to the model

problem. However, these results may be applicable to a much wider variety of situations if the

results are viewed as a lower-bound to the performance that may be achieved on a "general"

simulation.

formance on 8 C90 processors and 4 SGI processors when pseudo-transient continuation was

employed as a check on the increase of linear iterations with the number of subdomains. Fur-

thermore, this study concluded that further work on the algorithms and hardware mapping

concerns along with additional hardware features would likely result in scalability to larger

machines.

To place this result in perspective, the model problem studied requires a very powerful

preconditioning technique due to the low Mach number inlet condition. If this were not

the case, better scalability results could certainly have been achieved. As such, the model

problem selected demonstrates the "worst-case" scalability that would be obtained with these

techniques. It is evident that the results and conclusions of this study are specific to the model

problem. However, these results may be applicable to a much wider variety of situations if the

results are viewed as a lower-bound to the performance that may be achieved on a "general"

simulation.

29

Chapter 2

The Mathematical Basis

This chapter outlines the theoretical development of the governing equations for two-dimensional,

compressible fluid flow including energy effects ffom the Navier-Stokes and energy equations.

Given the governing equation set, a finite volume discretized form is developed to obtain the

non-linear set of algebraic equations that represent the flow on the computational domain. To

complete the basis, the Newton-Krylov technique is developed and applied to the non-linear

system to obtain a linear algebraic system for solution.

2.1 The Backward-Facing Step Problem

Prior to the derivation of the governing system and solution technique, it is necessary to

define the model problem to be examined. As discussed in the introduction of this study, the

two-dimensional steady-state solution of low Mach number compressible flow over a backward-

facing step provides a non-trivial test case for the Newton-Krylov-Schwarz method.

Consider the physical layout of a two-dimensional backward-facing step domain (see Fig-

ure 2.1). This figure illustrates the domain, where the reference y axis is horizontal pardel

30

Upper Flow Boundary

Idet -
Outlet -

Lower Flow Boundary

step

X

____)

Y

X

Figure 2.1: The backward-facing step.

" " ~ " " ~ " " ~ " ~ ' " " " " " " " "
-2 0 2 4 6 8 10 12

Y

Figure 2.2 Flow velocity.

31

adiabatic, no-slip
0 -

. ti=O,v=T=l

. ap/ay=o

1 -

. adiabatic

x . no-slip

2 -
adiabatic, no-slip

Fixed p

Fully Developed

Figure 2.3: Mach number contours.

to the major fluid flow direction, and the x axis is vertical perpendicular to the flow. The

flow enters the domain at the left boundary, proceeds horizontally, and exits at the right of

the figure. Figure 2.2 shows the results of an actual flow simulation on this domain, indicat-

ing both the fluid velocity field and a set of streaklines to indicate the flow path. Finally,

Figure 2.3 displays a contour plot of Mach number on the domain (again, from an actual

simulation).

To complete the definition of the model problem requires specifying the independent

parameters in the governing equations (such as 7, p, Re, etc.). The majority of the results

in this study will be based on a default problem; if a particular set of results deviates from

the default parameters this will be noted in the section where the results are presented. The

default problem uses the parameter values shown in Table 2.1.

The domain physically extends 10 units along the y direction, 2 units in the x direction.

The channel walls along with the step are adiabatic, with the no-slip condition applied. Inlet

conditions are u = 0, v = T = 1, and = 0, with outlet conditions of fixed pressure and

fully developed flow. The inlet Mach number is 0.0025, and a flow Reynolds number of 100

is used for all simulations unless otherwise noted.

x = 2

k = l

p = l

Mi = 0.0025

Re = 100

Pe = 70

y = 10

7 = 1.4

A = - - 2
3

f i = w

A. = 0.70

Table 2.1: Parameter values.

In the introduction, the case for parallel Navier-Stokes solutions was presented. It was

argued that scientists and engineers need to solve ever larger and more complex problems.

An example was presented indicating the computational difficulty involved in solving mod-

erately sized two-dimensional problems. Additionally, the solution of compressible flow over

a backward-facing step was selected as a non-trivial benchmark problem (an ASME “more

realistic and difficult problem” [45]). In computational solutions there are two categories of

difficulty; problems may be difficult to solve due to limited resources and/or they may be

difficult due to characteristics that result in a poorly conditioned solution procedure. Recall

that the best solution procedure is applicable to a wide variety of problems.

0 The solution technique should be robust. It should yield a converged, accurate solution

to a wide variety of problems without extensive user interaction. Numerically “stiff”

solutions should be accommodated.

0 The technique should be computationally efficient. It should enable the solution of

large problems in a reasonable time.

0 The technique should also be memory efficient to enable solutions to the desired problem

33

on available hardware.

This backward-facing step model problem is potentially challenging due to its “size” (a

fine level of discretization will result in a large number of unknowns), and its numerical com-

plexity (the algebraic system is difficult to solve due to its mathematical characteristics).

One technique to enhance the spacial accuracy of a discrete solution relies on a refinement

of the discretization of the domain to achieve the desired level of accuracy (resulting in in-

creased memory requirements and longer execution times). For this study, the “size” of the

model problem will be selected primarily to adequately challenge the hardware platform of

interest, with accuracy being of peripheral interest. However, in all cases examined here, the

base discretization refinement is sufficient that further refinement only produces marginal

accuracy improvements. Achieving a numerically challenging model problem is accomplished

by concentrating on the low Mach number compressible flow regime. The solution of the

compressible flow equations in this regime requires a robust numerical technique to obtain a

result. In general, this model problem becomes progressively more difficult to solve (numeri-

cally) as the Mach number is decreased below 0.2.

The low Mach number compressible flow problem is computationally challenging because

very stiff Jacobians arise due to the appearance of large off-diagonal terms associated with

the pressure dependencies in the momentum equation (proportional to l/M?). These terms

result in a poorly conditioned Jacobian (Le., a wide disparity in eigenvalues). Consequently,

effective preconditioning is an extremely important consideration in these flow regimes. A-

though normally considered incompressible, compressible flow simulations of this flow regime

are still important in situations where significant density variations occur f i e . , flow with

significant heat transfer effects).

In summary, the backward-facing step model problem provides a challenging test for

the solution technique. It is scalable, providing an adequate growth of computation and

memory requirements with problem size. Additionally, the model mandates a robust solution

algorithm due to the wide disparity of eigenvalues (physically corresponding to multiple length

scales) inherent in the problem definition. To further illustrate the difficulty of this model

problem, popular iterative solution techniques employing ILU preconditioning do not yield

convergence on this problem [l]. The remainder of this study will be devoted to efficient

solutions of this model problem on various architectures of interest, focusing on the pardel

aspects of the Newton-Krylov-Schwarz solution techniques.

2.2 The Governing Equations

In differential form, the general fluid mechanics equations of interest are r41

g+v.(p.) = 0

d
- (~ u) + V * (~ U U) = - V I , + V . T + ~ F
at

All simulations performed in this research are targeted towards a steady-state solution

to the flow equations. With this in mind, none of the transient terms are required in the I

35

governing equations. This restriction simplifies the mass continuity equation (Equation 2.1)

to

v * (pu) = 0.

For two-dimensional rectilinear analysis, the viscous stress tensor assumes the form

The vector expression V - T may be expressed as

The Stokes hypothesis [49],

2 x = -p,

(2.10)

(2.11)

is used to further simplify the viscous stress tensor. The Stokes hypothesis is only rigorously

valid for monatomic gases, but is widely assumed to hold for other fluids [4].

Finally, the form of the body force vector F must be determined. For this model problem,

F = g. (2.12)

36

With the above assumptions and simplifications, the momentum equation becomes

v * (puu) = - v p + v . T + pg , (2.13)

or in x and y component form

apu2 apuv ap a au av -+--
a x ay - -dz + dy [p (a, + Z>l

a au 2 au av
+% [2.az - gc” (& + &)] + P S Z

apuv +-- apv2 a p a au av

ax a y - -ay+ dz [p (a,+%)]

The energy equation (Equation 2.3),

a
- (pe) + V.(pue) = -pV u + T : V u - V - q,
at

(2.14)

(2.15)

(2.16)

may be simplified with the use of the mass continuity equation (Equation 2.6). Additionally,

if the viscous dissipation term (7 : Vu) is neglected, and Fourier’s Law [49] is used to

represent q,

Q = -kVT, (2.17)

and the energy equation becomes

De

Dt
p - = - p V . u + V - (k V T) . (2.18)

37

Further simplification requires an equation of state.

This study will be restricted to the compressible flow of ideal (perfect) gases. Thus, the

characteristics of an ideal gas may be applied to establish an equation of state for the fluid.

For ideal gases, the following relationships describe the thermodynamic behavior [49].

p = pRT

e = e(p,T) = c,T

With these relationships, the energy equation may be expressed as

cVV. (PUT) z= -pV - u + V - (IcVT).

(2.19)

(2.20)

(2.21)

(2.22)

This completes the derivation of the governing equations, which can be summarized with

the following set.

V-(pu) = 0

- apu2 apuv
ax +- ay = ax ay ay ax

-- ap + d [. (E + E)]

- apuv +- apv2 = --+-[.(E+E)] aP a
ax ay I ay ax

GV (PUT) = -pv - u + v 0 (kVT)

p = pRT

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28) e = GT

38

(2.29)

2.2.1 Non-Dimensionahation of the Governing Equations

To non-dimensionalize the governing equations, the dimensionless parameters given in Ta-

ble 2.2 are used [5].

Table 2.2: Dimensionless Parameters.

Using these parameters, the continuity equation is unchanged. This equation assumes

the form (after dropping the primes)

v * (pu) = 0. (2.30)

A similar process results in the dimensionless momentum equations, which take the form

(after dropping the primes)

ap.2 apuv
-*+'(a [P (a , + S)] au av

- + - = dX aY a x R e &

(2.31)

apuv apv= -- ap + 1 (" [. (E + ")I
d X +- dY = ay Re ax dy ax

39

(2.32)

The energy equation becomes (again, after dropping the primes)

7 V * (PUT) = E V - (LVT) - 7 (7 - 1) MfpV - U .

Finally, the equation of state becomes

(2.33)

P T p = -
7Mf'

(2.34)

This result completes the non-dimensionalization process of the governing equations for

the two-dimensional backward-facing step problem. At this point, it is useful to summarize

the assumptions made in the theoretical development process before moving on to the finite

volume approximations.

1. The development assumed a two-dimensional rectangular coordinate system (right-

handed).

2. Only steady-state solutions were desired.

3. Thermal buoyancy effects were ignored (I+= = I+# = 00).

4. Heat generation within the fluid (by chemical reactions, etc.), is ignored.

5. The equations are only valid for ideal (perfect) gases. The following simplifications

were used as a result of this limitation.

p = pRT (2.35)

40

e = c,T

6. The Stokes hypothesis (A = -$p) applies.

7. Fourier’s Law applies (q = -IcVT).

8. Viscous energy dissipation (T : Vu) is ignored.

2.2.2 Discretization of the Governing Equations

(2.36)

(2.37)

(2.38)

In the introduction to this study, the problem of efficient and robust computational solutions

to the Navier-Stokes equations was presented. Several solution techniques were discussed,

all originated with the full Navier-Stokes equations. It was argued that these equations

were too complex (and computationdy challenging) to solve directly. The previous section

discussed a sequence of simplification operations that may be performed on the base Navier-

Stokes equations to reduce the complexity of the equations without significantly degrading

the accuracy of the solution for a specific problem set (in this case, compressible fluid flow

,*

over a backward-facing step domain). However, at this point, the governing equations are

still in the form of non-linear partial differential equations (PDEs). In general, the resulting

governing equations cannot be simplified sufficiently to enable solution in functional form.

To employ a digital computer for the solution of a system of PDEs, the problem must

be mapped into an equivalent discrete problem. For this specific case, the simplified non-

linear partial differential equations developed in the previous section must be transformed to

discrete expressions to enable a computational solution.

41

Discrete approximations are usually based on the subdivision of the problem domain

into a computation domain consisting of a mesh of discrete computational cells (elements

or volumes) that faithfully cover the problem domain. In each of these cells, the governing

equations are approximated by a set of non-linear algebraic equations. The method used to

obtain the discretization and the set of algebraic equations over the computational domain

depends on the specifics of the problem and other factors. Several methods commody used

include:

0 the finite difference method,

the finite volume method,

0 the finite element method, and

spectral methods.

Each method has advantages and disadvantages; some are better suited than others for

given classes of problems. Further complicating the choice of discretization method is the

choice of the method used to solve the algebraic system resulting from the discretization

process and initial/boundary conditions. The algebraic system may be cast and solved ez-

plicitly, implicitly, or using some combination of the two. Implicit techniques are based on a

fully-coupled solution of the cell equations, where a system of algebraic equations are solved

each time step or iteration level. Explicit methods are generally simpler than implicit meth-

ods. The discrete approximation of the governing equation is cast such that only one term

of each cell equation is unknown. A semi-implicit technique casts some terms at the new

time (or iterate), and others at the old time; as such it falls between implicit and explicit

and exhibits solution characteristics of both techniques. In common with implicit techniques,

semi-implicit methods require simultaneous solution of the system.

42

Implicit techniques are of interest as they allow a fully-coupled solution of the equations

and are not stability limited to a Courant (or similar) wavespeed criterion. Explicit techniques

do not lend themselves to the solution of problems with a wide disparity of time (length)

scales, because the shortest wavelength phenomena must be resolved during the solution for

stability. While the advantage of a fully-coupled solution is of peripheral interest to this

study, basing this work on implicit methods allows the application of its contributions to

problems of this type. Implicit methods, and more specifically, Newton-Krylov techniques

are increasingly being investigated for computational fluid dynamics (CFD) applications due

to the advantages of full coupling of all variables and equations, rapid non-linear convergence,

and moderate memory requirements [ll, 50, 51, 521.

Given the complete representation of the governing equations in dimensionless form, an

implicit form of the finite volume technique can be selected to approximate the equations on

the computational domain.

2.2.3 The Finite Volume Approximation of the Governing Equations

The finite volume approximation method is based on the concept that the physical domain,

R, can be subdivided into E finite sized subdomains Re, such that

(2.39)

The method requires that there are neither spacial overlaps between the !le subdomains (Le.,

for any two sub-volumes and Rj, Ri n Rj = 0), or holes in $2 (ie., R is compos2d of

disjoint closed subsets, Re). Then, if each of the five equations describing the flow can be

represented as Ci(x) = 0, where x is a vector of the dependent variables, the subdomain

method of weighted residuals [53] leads to the expression

,Cj(x) dQ = u] ,Cj(x) dQ = 0, i = 1, ..., 5.
e=l n e

(2.40)

Thus, for each O,,

Le ,Ci(x) d~ = 0, i = 1, ..., 5. (2.41)

From each of these equations, an algebraic expression is then obtained describing the rela-

tionship between the dependent variables, x, in the sub-volume 0,. As an example of this

process, consider the continuity equation

apu apv
C,(X) = 7&- + ay = 0.

This expression may be cast in divergence form

,C,(x) = v - pu = 0.

(2.42)

(2.43)

For sub-volume Qe, the finite volume expression for the continuity equation becomes

*

(2.44)

The application of Gauss’ Theorem for a given vector v contained within a volume V having

a bounding surface S with outward unit normal fi gives the identity

V - Y dV i (f i . v) dS. (2.45)

44

Thus,

l e v . pu dSZ = 4 ii .putts = 0,
s=aS2.

(2.46)

where dR, denotes the boundary (surface) of element Re.

=A,

Figure 2.4: Pictorial representation of a finite volume, Re, assuming a rectilinear two-

dimensional discretization.

By inspection (see Figure 2.4), Equation 2.46 may be expressed in the algebraic form

(2.47)

In a similar manner, the remaining governing equations (2.30-2.34) may be cast into algebraic

form. The resulting non-linear algebraic system, when assembled for all E values, forms the

system that is the input to the Newton-Krylov algorithm.

Given the theory of the subdomain method of weighted residuals (Le., the “finite vol-

ume technique”), it is now possible to rigorously derive the discrete approximations to the

45

Figure 2.5: The computational cell used for the development of the mass conservation equa-

tion approximation.

simplified non-linear partial differential governing equation set previously developed.

The Mass Conservation Equation

The mass conservation equation is straightforward to develop from the dimensionless govern-

ing equation

v - (pu) = 0. (2.48)

The finite volume process begins with integrating this equation over a finite volume con-

sisting of a computational cell (shown in Figure 2.5)

I , v +u) &Tr = 0. (2.49)

46

With the use of Gauss’ Theorem, this volume integra3 can be converted to a surface integral

gdspu.5 dS = 0 . (2.50)

Evaluating this integral on the computational cell results in the equation

(PuIeAe - (pu),AW + (~ v) ~ A , , - (P O) ~ A ~ = 0. (2.51)

At this point, it is necessary to examine the (pu)k terms, above. At first glance, one is

tempted to simplify these to PkUk. If this simplification is performed, the computational cell

assumes the form shown in Figure 2.6. Furthermore, for the purpose of illustration, consider

only the x component of the variables and assume A, = A,. Thus, on the grid shown, the

expression

(2.52)

describes the continuity equation in the x direction for cell (i , j) . At this point, imagine

defining a new cell that is offset 4 cell width in the positive i direction. The vertices of this

cell lie on the points p., pn and the points PSee, Pnee (not shown in in Figure 2.6 for simplicity).

For the purposes of this discussion, this new offset cell will be named cell (i + $,j). For cell

(i + $,j), the equivalent expression to (2.52) is

(2.53)

As an example, consider a uniform flow-field where the quantity Pk?& equals 100 over the

domain. This statement satisfies Equations 2.52 and 2.53 for all cells on the domain. Also

47

Figure 2.6: The computational cell modified for coincident velocity and density.

48

consider a flow-field where the quantity PkUk equak 100 for just the cek of (i , j) form,

and let Pk?& equd -50 for the cells of (i + 3, j) form. Again, the continuity equations are

satisfied exactly. However, this result is clearly non-physical and an obvious error. The

difficulty with this scheme is the lack of coupling between the (i , j) cells and the (i + $,j)

cells in the discrete approximation. This difficulty (often coined the 2Az instability, because

the wavelength of the anomaly is 2A2) can be eliminated with the use of a higher-order

discretization technique of the governing system or the staggered velocity-density grid shown

in Figure 2.5. The staggered grid will be employed in this study because the higher-order

discretization techniques are somewhat more complex to implement. For further study of

this difficulty, Patankar [54] provides an excellent presentation of coincident versus staggered

grid discretizations.

Consulting the staggered grid shown in Figure 2.5, it is obvious that the velocities ‘tit are

located on the “cell” faces, with P k located in the cell centers. As these quantities are not

located coincidently, special treatment is necessary. Considering cell (i , j) , the u k values are

correctly located at the cell boundaries. However, the P k values are not (the only p value

that actually “belongs” to cell (i , j) is p p , at the center of the cell). As a first attempt, one

may simply “average” the P k appropriately. To express (pu), , a linear average of p, and pp

could be used

(2.54)

With convective terms, such as (p u) k , it is possible to encounter another non-physical

result similar to that encountered in the previous example. Again, consider a simplified

49

one-dimensional form of the above continuity equation with A, = A,

(Pu)e = (PU),. (2.55)

Furthermore, employing Equation 2.54 to express the density results in

Consider a flow in a cell where u, = 2, u, = 1, pp = 3, and p, = 1. For the continuity

equation on this cell to be satisfied, p, must equal -1. Clearly a negative density is a non-

physical result. Furthermore, pp must fall between p, and p,. n o m this result, a simple linear

interpolation of density (such as Equation 2.54) is clearly insufficient. Several techniques may

be employed to remedy this behavior [54], an upwind scheme was chosen for this study due

to its simplicity.

The upwind scheme is based on the “upwinding,” or bachad difleerencing, of the con-

vected variable. Physically, in cell (i , j) , the velocity u, is “convecting” a density. Consider

the velocity u,, as shown in Figure 2.5. This velocity signifies that a volume of fluid in cell

(i - 1,j) is moving into cell (i , j) , with a velocity u,. This volume of fluid has a density

p,, not some averaged value. Thus, the correct form of (pu), is p,u, (for uw moving from

(i - 1,j) to (i , j)) . One must also allow for a negative u,, which complicates the expression

The notation [u,b]l denotes the maximum value of (a,b). This expression clearly results

in the correct interpretation of (pu),, independent of the direction of u,. Comparing this

50

result with the previous example using interpolated density on the cell faces, it is clear that

non-physical densities are prevented.

Upwinding the convective terms results in

This result may be further simplified by realizing that for an arbitrary cell (i,j),

resulting in the simplified form

(&me - cfluw)Ayj + (cfluxn - cflus)Axi = 0.

The x-Momentum Equation

The momentum equations developed previously

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)

(2.63)

a " - " (E+"] }+ P +&k% 3 a x ay f i Y 2 '

may be written in vector form

Integrating over a finite volume results in

1 P
V.(puu) d V = - V - (p i> d V + z ~ V . r d V + ~ ~ . f d v -

Gauss' Theorem allows this result to be rewritten as

k (p u u) . I d S = - A r -ii dS + J, si P dv,

or for the z-component

(p u) ~ . ii dS = - ps-ii dS + - 1 9',rs - fi dS + J, P m-
Re

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

The derivation of the first term is rather complicated. Several steps are required to achieve

an appropriate approximation; these steps will be discussed in detail. The first term may be

approximated as

(2.69)

52

Figure 2.7: The z-momentum stencil.

where the areas of the cells are

Upwinding is used to develop the convection approximations

up + u w
where (P U) ~ = pw

2

(2.70)

(2.71)

53

where the notation [a, b] represents max(a, b). This result may be further simplified by noting

that

The pressure term takes the form

(2.74)

(2.75)

(2.76)

54

An expression for r was developed previously

au 2 au a v

r x = { 2 P z - V ’ (z + By) 9 P (E + 2) }
ry = { p (E + By) J’& - SC” (& + &)} , aU av 2 au av

resulting in

or using differencing for the discrete approximation of the differential terms

This can be expressed over a general momentum cell as

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

55

Ayj + AYj-1 + AX^ + A~i-1 11
-

(2.87)

This result is easiiy verified to be identical to a normal incompressible central difference

V - u representation when a uniform mesh (Axi = Axi+l,Ayj = Ayj+l Vi, j E O), and

p = constant is used

Finally? the body force term can be expressed as

With the above approximations, the x-momentum equation assumes the form

(2.88)

(2.89)

(2.90)

The y-Momentum Equation

Using a similar process to that illustrated for the x-momentum equation? the y-momentum

equation can .be developed. In component form, the y-momentum equation can be expressed

as (see Equation 2.67)

i (p u) v . B dS = - f pj-d dS + - i r y 1 s i i dS + dv.
s Re

(2.91)

56

Figure 2.8: The y-momentum stencil.

Each of the terms in the above equation will be examined in a similar manner to the

process followed for the %-momentum equation. The convective term is slightly different

than the %-momentum representation

(pu)v . ii dS =

(2.92)

The areas of the cells are

57

An = Aa = AX^.

Upwinding is again used to develop the convection approximations

where

The pressure term takes the form

(2.93);

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

The viscous term can be expressed in the form

An expression for ry was developed previously (Equation 2.78)

resulting in

or using differencing for the discrete approximation of the differential terms

58

(2.99)

(2.100)

(2.101)

(2.1 02)

(2.103)

(2.104)

(2.105)

(2.106)

This can be expressed over a general momentum cell as

59

(2.107)

(2.108)

(2.109)

Again, as was seen from the x-momentum development, this result is easily verified to be

identical to a normal incompressible central difference V u representation when a uniform

mesh (Axi = Axi+l, Ayj = Ayj+l V i , j E Q), and p = constant is used

(2.1 10)

Finally, the body force term can be expressed as

(2.111)

With the above approximations, the y-momentum equation assumes the form

60

Figure 2.9: The energy stencil.

(2.112)

The Energy Equation

Using a similar process to that illustrated for the z-momentum equation, the discrete energy

equation may be developed. Consider the general form of the energy equation developed

earlier

7
Pe

v * (P U T) = -v * (IcVT) - 7 (7 - 1) M?pV - u. (2.11 3)

Integrating this equation over a cell volume, and using Gauss' Theorem, results in

ii . (PUT) dS = 2- ii . (IcVT) dS - 7 (7 - 1) M? pv . u dv.
Pe V

(2.1 14)

Examining each of the terms in the above equation in a similar manner to the process fol-

61

lowed for the x-momentum equation, results in the following approximations. The convective

term is slightly different than the 2-momentum representation

where

The areas of the cells are

(2.115)

(2.116)

(2.117)

(2.118)

(2.11 9)

A,, = A, = AX^.

The gradient term can be expressed in the form

ii- (ICVT) dS x

(2.120)

where

62

This result (Equation 2.120) is easily verified to be identical to a normal central difference

(V2T) representation when a uniform mesh is used

Tn - 2Tp + Tsl
*

AY2
+ Te - 2Tp + T w

Ax2

Finally, the remaining term is

where

and

(2.121)

(2.122)

(2.123)

(2.124)

With the above approximations, the energy equation assumes the form

Pe [(dflxe)A, - (d b) A , + (d h) A , - (&)A,] +

7 (7 - 1) M:pp (V * u) ~ AnA, = 0.

The State Equation

63

(2.125)

Expressing the equation of state in discrete form is the final step of the discretization of the

governing equations. The form of the state equation was developed earlier (Equation 2.34)

(2.126)

This result may be expressed in discrete form as

PPTP
Pp = - - (2.127)

In effect, this equation allows the calculation of a given cells pressure based on the density

and temperature of the cell. The simplicity of the derivation aside, this equation is necessary

to form a well-posed system and enable a solution to the problem.

2.3 Boundary Conditions

In general, a set of PDEs having space and time as independent variables requires both

boundary and initial conditions to be well-posed. For the particular case of steady-state flow

considered, initial conditions will not be required as the transient terms have been eliminated

through the simplification process discussed in Section 2.2.

Boundary conditions are simply requirements placed on the dependent variables (for this

(see Figure 2.10) of the domain in which the governing study, p, u, v,p, 2') at the boundary

64

Figure 2.10: The problem domain.

equations are defined (Le., in a). That is, the governing equations describe the physical

process in the domain Cl

L(u, 0, P,P,T) = 0 x E 0, (2.128)

however, they do not apply outside or at the boundary of the domain. The conditions at the

boundary must be specified to obtain a well-gosed system

Boundary conditions may be of three classical forms, Dirichlet, Neumann, and mized.

Dirichlet conditions specify a boundary d u e as a constant or algebraic function, like the

no-slip fluid condition on solid boundaries

Z(U) = u = 0 (2.130)

E(v) = v = 0

or a parabolic velocity inlet condition

Z(u) = u = --Re-(y)(l- 1 dP y)
2 dx

x 60.

65

(2.131)

(2.132)

I Neumann conditions are derivative conditions that specify a gradient as a constant or dge-

braic expression on dQ, similar to an adiabatic boundary

dT

dX
Z(T) = Q = -k- = 0

Mixed conditions are a combination of the above

I(T)= kVT-ii+h(T-T,.)=O

x c 80.

x,y c an.

(2.133)

(2.134)

Specification of discrete forms of these conditions is related to the discretization of the

governing equations. Consider the application of the no-slip velocity equation for the y-

momentum equation along an east boundary (Figure 2.11). In discrete terms, the formulation

of the no-slip condition would be

(2.135)

As an example of a Neumann condition, consider the energy equation with an adiabatic east

wall (Figure 2.12). To specify $$ = 0 along this wall,

Te = Tp. (2.136)

66

,,-- East Wall

Figure 2.11: No-slip y-momentum condition along an east wall.

4 t I-- East Wall

Figure 2.12: Adiabatic temperature condition along an east wall.

67

Consulting Equation 2.120, setting Te = Tp results in satisfying the heat flux derivative

condition

dT
qe = -ke (z)e = 2ke (Tp - Te) = 0.

Azi +Azi+i
(2.137)

These concepts may be extended in a similar manner to describe all three types of bound-

ary conditions in discrete form.

2.4 The Non-linear Algebraic System of Equations

The previous development transforms the continuous PDEs of the Navier-Stokes equations

into (discrete) algebraic equations that illustrate the relationships between the variables lo-

cated in each computational cell in the domain of interest ($2 U an). In effect, each of the

four PDEs, in conjunction with the equation of state, are expressed as five algebraic repre-

sentations per computational cell. To summarize, let x be defined as the state vector

(2.138)

in the continuous space of the problem domain. This definition results in the following

equation set.

g1(x) = V.(pu)=O

fl(x) = (cfluxe - cfluxw)Ayj + (cfluxn - cfiuxs)Azi = 0

g2(x) = apuz apuv a p -+-+---{E[.(”.””)] 1

- & a kP,- au &+$)]} 2

ax ay ax ~e a y ay ax
- - P = 0

f i z 2

(2.139)

68

f 2 (4 =

a a v 2 au a v P
- by k p b y - zp (z+ by)]} - I;lr,2 = O

(2.140)

(2.141)

(2.143)

One immediately recognizes that g k (x) corresponds to the dimensionless form of the

governing equations, with k an index 1 k 5 5 signifying the continuity, 2-momentum,

y-momentum, energy, and state equations, respectively. The second function representation,

fk(x), is the corresponding discrete form of gb(x).

69

The discrete equation set for each discrete cell, fl(x), . . . , fS(x), may be collapsed into a

shorthand notation. Clearly, a set of these algebraic equations exists for each and every cell

(i, j) in $2. Let q i , j) denote this equation set for the arbitrary cell (i, j)

Note that this expression is valid for every cell (i , j) in R U d42, for 0 5 i 5 I and

0 5 j 5 J, with the boundaries a42 corresponding to i = 0, i = I , j = 0, and j = J.

These cell contributions qi,j)(x) may be assembled over the domain SZ U dst via the use of an

assembly operator S, forming a non-linear algebraic system

(2.145)

To summarize, use of the assembly operator S over the two-dimensional domain 51 U ds1

on the cell contribution equations (Equation 2.144) results in the non-linear algebraic system

F(x) = 0. (2.146)

This result completes the derivation of the discrete system to be solved. The system has

been cast into an implicit form to enable a simultaneous, fully-coupled solution. This solution

is typicaUy achieved in two steps.

1. An iterative linearization operation that results in a linear system to be solved each

iteration.

2. Solution of the “inner” linear system. This may be accomplished directly, or via the

70

use of an iterative algorithm.

For this study, an inexact Newton technique will be employed as the linearization operator,

with an iterative preconditioned Krylov technique used to solve the resulting linear system.

This results in an outer Newton iteration loop for linearization, and an inner Krylov loop for

the iterative solution of the linear system resulting from the Newton technique. This process

will be explained in detail in the following chapter.

Chapter 3

Solution of the Non-linear

Algebraic System

In the previous section, the discretized form of the governing equations were shown to assume

the form of a non-linear system

F(x) = [fi(X), f2(x), f3(x), ., fN(X)IT = 0,

with the state vector x expressed as

T
x = [%I, Z2123, - - * 9 ZN] -

To obtain a solution of this non-linear system, it is important to examine it's characteristics.

The system

F(x) = 0,

71

(3.3)

may be defined as the non-linear mapping F : R" -+ R" with the properties:

72

1. 3 z* E R" with F(x*) = 0,

2. F is continuously differentiable in the neighborhood of x* (it is generdy sufficient that

the Jacobian exists and is continuous at x*), and

3. F'(x*) is non-singular.

Given an F(x) = 0 that meets this criterion, Newton's method is attractive as it converges

qGte rapidly given an appropriate initial estimate x, [46]. In fact, Newton's method is

the standard used to compare rapidly convergent methods for solving the non-linear system

(Equation 3.1); a way of characterizing superlinear convergence is that each convergence step

should asymptotically approach the Newton step in both magnitude and direction [55].

3.1 Newton's Method

Newton's method is an iterative technique used to linearize the algebraic system of equations.

To obtain an approximation (x:) of the root f(zo) = 0 using Newton's method [56]

or

or

73

Given a system of N equations, Newton's method may be expressed as

a ...
asp as; as;;

Ax:

Ax!

Ax;

= - (3.7)

With the application of this method using consistent notation, the resultant linear system is

obtained

J"6x" = -F(x").

The elements of the Jacobian (J) for this system can be defined as

(3-8)

Sx is the Newton iteration update vector, and the n superscript ({s)") refers to the Newton

iteration number. The Jacobian for this system is calculated numericdy [SI. The new

solution approximation in the Newton step is-obtained by

Xn+l = xn + dSx", (3.10)

where the constant d (0 < d 5 1) is used to damp the Newton updates. Selection of this

constant employs a strategy to prevent the Newton update from being driven into the non-

physical domain (Le., the calculation of negative temperatures), and to scale large variable

updates when the trial solution is far from the correct solution. This is accomplished by

setting the parameter d based on the ratio of the thermodynamic variables and the Newton

74

update vector on the domain

d = min [l,min (E)] , (3.11)

where Q is a user specified damping value. The Newton iteration process continues until the

trial solution is "sufficiently close" to the actual solution. In this context, "sufficiently close"

is the point where the norm of the difference between the approximate solution and the exact

solution is below a suitable tolerance level q

(3.12)

Using Equation 3.9, the Jacobian matrix may be readily calculated from the non-linear

algebraic system (Equation 3.1). The Jacobian has a sparse, banded, pentadiagonal structure

(Figure 3.1), and is generally non-symmetric and indefinite.

This discussion has lightly touched on the fact that the linear system J"6x" = -F(x")

must be solved to obtain 6x" at each Newton iteration. A direct solve, such as Gaussian

elimination, could be used to find the solution. However, for most applications of interest in

this area (especially the large two-dimensional problems of interest), such a technique would

be prohibitively CPU and memory intensive. At this point, some observations may be made

which are directed at overcoming this dilemma.

0 Is an exact direct solution of the linear system really necessary when the Newton trial

solution is far from the correct solution? Would a less intensive, less accurate, but more

efficient method suffice?

0 Given a more efficient method, could it's accuracy be improved as the Newton trial

solution approaches the actual solution, thereby completely eliminating the need to

Figure 3.1: The structure of the Jacobian matrix.

perform a direct solve of the linear system?

The inexact Newton’s method coupled with a Krylov-based iterative linear solution technique

does indeed allow the accuracy of the solution to increase as the solution approaches conver-

gence, reducing the work required when the solution is far from convergence. Additionally,

Krylov methods are sufficiently accurate to completely dispense with a direct solution method

in most cases.

75

3.2 The Inexact Newton’s Method

The inexact Newton’s method was developed to decrease the computational requirements of

the linear solution for Newton iterations far from the solution of the system. This technique

capitalizes on the behavior of iterative linear solution techniques. A desirable iterative linear

76

system solution scheme requires I iterations to converge on a solution to the linear system.

As the number of iterations of the technique approach I, the approximate linear solution

progressively approaches the true solution of the linear system. If the iteration procedure

is interrupted, say at iteration i, where 0 < i < I, the current result lies somewhere on the

path from the initial "guess" (i = 0) to the true solution (i = I). This approximate result

at i may be sufficiently accurate to allow progress toward the solution in the next enclosing

Newt on iteration.

Initially, this process appears to shift some of the work in achieving a solution from the

solution of the linear system to the Newton iteration process. If the linear system iteration

is interrupted too early, this may certainly occur. In fact, the linear system update to the

Newton iteration may be of such low quality that the Newton iteration is shifted further from

convergence than the previous iteration. However, if the linear system iteration is interrupted

near convergence, the solution is often "sufficiently close" to a converged solution that the

enclosing Newton iteration is negligibly affected. In many cases, the last few linear iterations,

while significantly increasing runtime of the solution, do not contribute much to the overall

solution efficiency. Experience has shown that a linear solution tolerance based on the norm

of Sx and the norm of F(x) is effective [9]

(3.13)

The above expression indicates that the inner iteration process is truncated when the norm

of the solution is less than the norm of the residual (F(x")) multiplied by a tolerance crite-

rion (e). As the Newton iteration process approaches convergence, the residual approaches

zero, tightening the tolerance on the linear solution process. In effect, the linear solution

77

process "automatically" becomes more accurate as the Newton solution process approaches

convergence.

In summary, the inexact Newton method relaxes the tolerance on the linear iterative

solution process when the Newton iterate is far from convergence. This tolerance parameter

is automatically tightened as the Newton process approaches convergence, thus reducing

unnecessary linear solution iterations and increasing computational efficiency.

3.3 Preconditioning

The inexact Newton method described previously is a very powerful technique. The New-

ton iteration process has the potential to achieve quadratic (superlinear) convergence, the

iterative linear solution technique is more efficient (and requires less memory) than a direct

inversion method, and the dynamic tolerance facility increases the computational efficiency

of the method. However, this method is based on the solution of the linear system

J"6x" = -F(x"). (3.14)

The speed of convergence of an algorithm depends on the condition number, 1d2(J), of the

Jacobian matrix J and the distribution of the eigenvalues of J. tc2(J) is the ratio of the

maximum to minimum eigenvalues of J. If K~(J) is large or the spectrum of the eigenvalues

of J is scattered and wide, J is called poorly conditioned and the convergence rate may be

quite slow. In fact, is not difficult to encounter problems where the solution technique will

not yield convergence [43]. As this study is directed at large, challenging solutions, it is

mandatory that the techniques employed work on a wide variety of difficult problems.

Preconditioning is a technique used to improve the condition number of the Jacobian

78

matrix. Ideally, the goal of preconditioning is to "force" the Jacobian towards the behavior

of the identity matrix (I). This may be facilitated by multiplying both sides of the linear

system by a preconditioning matrix (in this case, the inverse of the preconditioning matrix

PI).

Pr1J"6x" = -PrlF(x") (3.15)

Equation 3.15 is called the "left preconditioned form" of the linear system. It is also possible

to use right preconditioning.

J"PTIP,Sx" = -F(x") (3.16)

In the remainder of this study, left preconditioning is assumed unless specified otherwise.

Ideally, one would desire the product Pr1J" to form the identity matrix. In this case,

it is obvious that once one computes -PrlF(x"), the solution 6x" is immediately known.

This result, P,'Jn = I, occurs when P1 = J. However, inverting P1 requires an appreciable

amount of work (as large as O(d) operations for dense Gaussian elimination). Effective

preconditioning requires that the preconditioner reasonably approximate J and that systems

of the form Plv = b, which arise within the linear solution iteration, can be solved efficiently.

Thus, it is reasonable to begin with PI = J, and use an approximate technique to invert P1.

A popular class of preconditioners is based upon incomplete factorizations (ILU) of the

Jacobian matrix [47]. However, ILU preconditioners often do not scale well with problem

size [48], and are difficult to paralldize. As an attempt to overcome these difficulties, this

study will examine domain-based preconditioning such as the additive and multiplicative

Schwarz algorithms [48, 571.

Domain-based preconditioning is a method of partitioning the global Jacobian matrix to

form a global preconditioner. Figure 3.2 depicts a simplified representation of the pentadi-

79

Figure 3.2: Simplified Jacobian matrix.

agonal Jacobian matrix. Domain-based preconditioning considers the sparsity of the matrix

to partition it into subdomains, as shown in Figure 3.3. For sparse, diagonally-dominant

systems, this method captures the majority of the Jacobian data in subdomains that occur

along the main diagonal of the Jacobian matrix. Subdomains constructed in this manner are

essentially independent and may be inverted individually and re-assembled back into a global

pr econditioner .

To better understand this mapping from the global Jacobian matrix to the subdomains,

examine Figure 3.3. This figure shows the Jacobian matrix partitioned into four subdomains.

The data for subdomains 1 and 3 are obtained from the upper-left rectangular quadrant

of the Jacobian, while the data for subdomains 2 and 4 are obtained from the lower right

quadrant. Figure 3.4 shows a magnified image of the upper-right quadrant (subdomains 1

and 3). This quadrant is divided into horizontal rectangular strips; subdomain 3 consists of

the data falling in the shaded regions, while subdomain 1 consists of the data in the remaining

80

Figure 3.3: Partitioned Jacobian matrix, four subdomains.

Subdomain 1,3

Subdomain 1

Subdomain 3

Figure 3.4: Magnified subdomain.

81

regions. Clearly, the data for the subdomains 1,3 and 2,4 are obtained from distinct, non-

overlapping regions of the Jacobian. Additionally, in each quadrant, the data composing

the individual subdomains originate from non-overlapping regions. These figures reflect the

decomposition of the Jacobian matrix based on a four block physical decomposition of the

problem in a two-dimensional grid (with two blocks in the x extent and two blocks in the y).

A stripwise decomposition (with one block in the x extent and four blocks in the y extent)

results in a different matrix decomposition (similar to that shown in Figure 3.4 extended over

the entire Jacobian matrix). In this case, there are no quadrants, and the strips alternate in

the subdomain sequence [l, 2,3,4,1,. . .].

3.3.1 Additive Schwarz Preconditioning

The additive Schwarz method specifies the global preconditioner in terms of adding the

preconditioner subdomains to obtain the preconditioner '

D

i=l

(3.17)

where Jf' is the inverse of the subdomains of the Jacobian shown in Figures 3.3 and 3.4.

Four subdomains are shown in the figures, but p subdomains are possible (Figure 3.5 shows

16 subdomains). Again, in Figure 3.5, each of the four rectangular regions shown is further

subdivided into a four subdomain strip sequence similar to that shown in Figure 3.4. For

example, the rectangular region corresponding to subdomains 1,5,9,13 would consist of the

alternating strip sequence [l, 5,9,13,1,. . .I.

It is interesting to note the effects of increasing the number of subdomains on the amount

of data captured from the Jacobian for use in the preconditioner. Only the data on the

82

Subdomain 1.5.9.13

Subdomain 2.6.10.14

Subdomain 3.7.11.15

Subdomain 4.8.12.16

Figure 3.5: Partitioned Jacobian matrix, 16 subdomains.

subdomain interior is inverted for use in the preconditioner (in the figures, the data outside

the subdomains was deliberately excluded from the diagrams to better visualize the data

that constitutes the preconditioner). The data on the exterior of the subdomain is effectively

discarded and does not contribute to the preconditioner. It is clear that more data is discarded

in the 16 subdomain case than in the 4 subdomain case. As the number of subdomains is

increased, less data from the Jacobian is inverted to form the preconditioner. Thus, the

expected quality of the preconditioner degrades as the number of subblocks is increased.

To mitigate this degradation, subdomain overlap may be employed. For example, in

Figure 3.6, all the Jacobian data is now part of the subdomains and will be inverted to form

the preconditioner. However, increasing the amount of overlap increases the size of each of

the subdomains, which in turn increases the number of operations required to invert each

subdomain. In Figure 3.6, the regions corresponding to subdomains (1,3) and (2,4) overlap

at the subdomain boundaries. Additionally, the rectangular strips in Figure 3.4 also overlap

83

Figure 3.6: Partitioned Jacobian matrix, four subdomains with overlap.

the subdomains above and below. This is illustrated in Figure 3.7.

The additive Schwarz preconditioning technique (in common with the multiplicative tech-

nique) requires inversion of each of the preconditioner subdomains to form the inverse of the

preconditioner. In this study, an exact direct technique (LINPACK banded Gaussian elim-

ination) is used to perform this task. It is also possible to implement an inexact method

(such as ILU(0)). The use of an approximate technique will generally decrease the memory

requirements of the solution technique and could (depending on the method chosen) decrease

the overall solution time. However, an inexact technique may decrease the quality of the

overall preconditioner and negatively affect the scalability of the solution algorithm. For this

reason, inexact subdomain inversion methods were not examined in this study.

Domain-based preconditioning has an algorithmic efFiciency advantage beyond any par-

allelism concerns. Brute force inversion of the complete Jacobian (a non-domain technique)

using a direct method requires 0(n3) operations (the matrix is n x n). With p subdomains,

YY"U"~.Y. s

Subdmam 3

Subdomaio 1

I Subdomain 3 I
Subdomain 1

Subdomain 3

84

Figure 3.7: Overlap of Subdomain 3.

the effort required to invert each subdomain is 0 ($) operations. If the subdomains were

inverted serially, p - 0 (5) or 0 ($) total operations would be required. All else being equal,

the subdomain scheme would provide a speedup of pz due to algorithmic efficiency done.

full inversion 0 (n") - (p21 =-- S =
0 ($) blocked inversion

(3.18)

The additive Schwarz method is of central interest to the present research because it

allows concurrent formation of the preconditioner. The subdomain inversion and assembly

processes are completely independent from a subdomain perspective, and may be performed

on p processors, where p is the number of subdomains. Subdomain overlap, while increasing

the quality of the preconditioner, reduces the portion of the preconditioner formation that

may be performed in parallel. This follows from the fact that the assembly operation that

forms the global preconditioner requires serialization when the overlapped region is updated.

85

Additive Schwarz preconditioning without subdomain overlap is analogous to block Jacobi

preconditioning. To best visualize this equivalence and to better understand the function of

additive Schwarz preconditioning, consider the following block-tridiagonal system

(3.19)

A solution of this system based on additive Schwarz preconditioning with no overlap begins

with an initial "guess"

x; = x; = x: = 0, (3.20)

followed by an iterative procedure using the following algorithm.

X;'' = DT1(K - 0 - ITZX;)

(3.21)

To compare this result with Equation 3.17 (without overlap), DF1 = Ji'. This scheme is

clearly identical to a block Jacobi technique. Additionally, the parallel nature of the algorithm

is apparent, each of the expressions in Equation 3.21 is clearly independent of the others, and

the results are independent of evaluation order.

3.3.2 Multiplicative Schwarz Preconditioning

The multiplicative Schwarz method is similar to the additive Schwarz technique. The blocking

strategy and degradation of the preconditioner are identical. However, the preconditioner is

formed by using the multiplicative algorithm

Understanding the behavior of this algorithm requires some background on the Krylov

iterative linear solution algorithm. The Krylov techniques used herein do not explicitly

require the formation of the matrix-matrix product PF'J". In fact, to solve the linear system

using these methods only requires the formation of matrix-vector products of the form Pr'v,

where v is a vector iterate produced within the Krylov solution procedure (see Section 3.6).

This product results in the vector w = Pr'v and may be computed by

VI = JT'v

vj = vj-' + J;'(V - Jvj-'), for j = 2,. . .,n

w = v,,

(3.23)

where n corresponds to the total number of subdomains employed in the preconditioner.

Clearly, this is no longer a parallel algorithm. Multiplicative Schwarz without subdomain

overlap is analogous to block Gauss-Seidel preconditioning. Again, consider the block-

tridiagonal system of Equation 3.19 with the initial "guess" of

(3.24)

87

followed by an iterative procedure using the algorithm

(3.25)

Again, the above result correlates with Equation 3.22 when Dyl = JY'.

In Equation 3.25, the dependency of the equation for Xi+' on X;+l found in the previous

equation (a similar dependency exists between Xi+' and Xi+') makes this iterative process

sequential. However, the algorithm may yield a more efficient solution due to the the use of

recently computed values in the serial sweep. It is possible to achieve a level of parallelism

in this algorithm with the use of a subdomain renumbering operation

CoZo<wi) = min{k > 0 I k # CoZo<wj),Vwj E Adj(wi)}. (3.26)

A blocking strategy is really nothing more than a subdomain numbering technique. Re-

ferring to the previous figures explaining the subdomain relationships with the Jacobian data,

these subdomains were numbered for convenience. Given a particular problem, it may not

,,

always be desirable to perform computation on the subdomains in serial order. In fact, it may

be advantageous to handle the subdomains by skipping every other one, forward, backward,

or inside out. The blocking strategy is an abstraction that allows the "naming" of each of the

subdomains. For example, with a four subdomain problem, it may be expedient to number

the first subdomain with a "l", the second with a "2", and so on. For another problem,

better results may be achieved by numbering the subdomains in reverse order. Block (subdo-

main) numbering becomes quite important when using coloring techniques. To best explain

88

1 2 3 4 5 6 7 8

Figure 3.8: Normal block numbering.

coloring techniques, consider the single-dirnensional blocking strategy shown in Figure 3.8

(in this case, each block corresponds to a distinct subdomain, “1” to subdomain 1, “2” to

subdomain 2, and so on). This numbering results in the matrix form seen in the previous

examples and shown below.

(3.27)

The structure of this matrix is easily derived. In this expression, D represents a diagonal

matrix block, U and L represent blocks located above and below the diagonal, respectively.

The subscript (i in Di) denotes the origin of the matrix block from the numbering scheme

(the ith numbered data is inserted into the ith column). This simple representation assumes

a physical stripwise decomposition and assumes the discrete stenci l incorporates only local

block data. For example, consider the block numbered “5” (D5) above. The discrete stencil

89

Red Black Red Black Red Black Red Black

1 5 2 6 3 7 4 8

Figure 3.9: Renumbered blocking.

only requires data from block “4” (L4) to the left, and block “6” (u6) to the right, to fully

construct the coefficient matrix contribution for block “5.”

Figure 3.9 illustrates a renumbered blocking scheme based on Equation 3.26. This renum-

bering operation vastly changes the structure of the matrix.

Dl 0 0

0 0 2 0

0 0 0 3

0 0

0 0

(3.28)

As an example of this new structure, consider the new domain blocking shown in Figure 3.9.

Block “5” (0 5) is now bordered on the left by block “1” (L51 in the fifth row, first column)

and on the right by block “2” (L52 in the the fifth row, second column).

From Figure 3.9 and Equation 3.28, it can be seen that the blocks colored “Red” are placed

in the upper half of the new matrix and the “Black” blocks placed in the lower half of the

I followed by an inversion of the “Black” blocks

(3.29)

(3.30)

I
(3.31)

I
The above results assume a stripwise decomposition of the solution domain.

It is possible to employ a “checkerboard” style of colored domain decomposition in the I

91

Green Blue Green Blue

Red Black Red Black

Green Blue Green Blue

Red Black Red Black

Figure 3.10: "Checkerboard" domain decomposition.

preconditioner (Figure 3.10). With the four colors shown in the figure ("Red," "Black,"

"Green," and "Blue"), the DOP is one-fourth the additive Schwarz result. Due to the low

DOP, this scheme will likely provide lower parallel efficiencies than the additive Schwarz

algorithm. However, there may be cases where the checkerboard scheme provides a precondi-

tioner that maps to a given problem better than that provided by additive Schwarz, in effect

recouping some of the lost efficiency.

3.3.3 Preconditioning of the Model Problem

In this study, it has been suggested that Schwarz preconditioning may have certain advan-

tages over the popular incomplete LU factorization methods (ILU) for the formation of a

preconditioner .

0 Schwarz methods (particularly additive Schwarz) contain inherent parallelism. It is

possible to pardelize ILU methods. However, the need for pivoting to remove diagonal

zeros makes parallelization of these techniques difficult and limits the DOP that can

be achieved. It may also be difficult to obtain sufficient granularity in the parallel ILU

methods to provide efficient execution on contemporary shared-memory hardware. The

large subblock granularity of the Schwarz techniques is readily apparent.

0 ILU methods may not be sufficiently robust to provide reliable solutions to the model

problem.

However, because solutions to large model problems of the configuration described in Chap-

ter 2 are apt to be memory constrained, there is the added requirement that the selected

preconditioning method be competitive in memory requirements with ILU techniques. An

increase in memory required may be tolerable if the added robustness is significant, however,

large increases in required memoq over the ILU techniques (say an order of magnitude)

are generally unacceptable. To examine the memory requirements of the methods, consider a

study of serial Schwarz and ILU techniques with various levels of fill-in (ILU(lc)) as performed

by McHugh [l]. Table 3.1 illustrates the memory and fill-in for the global ILU technique for

fill-in values of k = 0, 1, and 2 on a 16 x 80 backward-facing step model problem similar to

the problem in this study. Table 3.2 shows the memory requirements of additive and mul-

tiplicative Schwarz preconditioning for various subdomain strategies on the same problem.

Clearly, the Schwarz techniques require more memory, but as the number of subblocks are

increased these methods become competitive with ILU techniques.

The row labeled 1 x 1 in Table 3.2 requires further explanation. For this data, a Schwarz

technique with only one block was examined. This solution is simply a direct inversion of the

complete Jacobian matrix using LINPACK banded Gaussian elimination.

93

ILU(k) Preconditioning
(reverse row ordering)

non-zero Memory

k diagonals (Mbytes)
0 35 1.4

1 59 2.4
2 94 3.9

Table 3.1: ILU memory requirements (adapted from McHugh [l]).

Domain-Based Preconditioning

(Additive Schwarz (AS) and Multiplicative Schwarz (MS))

blocks in I #-blocks in 1 # overlap 1 Reference I Memory
%-direction y-direction cells name (Mbyt es)

4 20 0 4x20-0-AS & 4x20-0-MS 2.4

2 10
4 20
2 10
1 5
1 1
1 5

0 2xlO-O-AS & 2xlO-O-MS

2 4~20-2-AS & k20-2-MS
2 2~10-2-AS & 2~10-2-MS
0 Ix5-O-AS & Ix5-O-MS
0 1x1
2 1~5-2-AS & 1~5-2-MS

Table 3.2: Schwarz memory requirements (from McHugh [l]).

94

Precond.
Selection

ILU(0)

ILU(1)
ILU(2)

4x20-0-AS
4x20-0-MS

2x10-O-AS
2x10-O-MS
4x20-2-AS
4x20-2-MS
2x10-2-AS
2~10-2-MS
lx5-O-AS

lx5-O-MS

1x1

1~5-2-AS
1~5-2-MS

EU(0)

ILU(1)
ILU(2)

4x20-0- AS
4x20-0-MS

2x1 0-0-AS
2x10-O-MS

4x20-2-AS
4x20-2-MS
2~10-2-AS

2x10-2-MS
lx5-O-AS
lx5-O-MS

1x1
1~5-2-AS
1~5-2-MS

Mach = 0.25

CPU
n wz (sec)

NS NS NS
8 93 178
7 50 124

NS NS NS
8 39 431

8 41 120
7 21 81
8 82 251
7 28 132
7 40 134
7 18 93
8 19 106

7 9 70
7 0 43
7 18 96
7 7 70

9 109 319

7 85 145
7 48 121
7 6 71
7 2 105

7 38 101
7 22 85

7 58 179
7 22 115
6 30 96
6 14 69

7 15 86
6 8 63
6 0 38
7 13 82

6 5 56

Mach = 0.025

CPU
n TE (sec)

NS NS NS
7 140 222

7 73 168

NS NS NS
NS NS NS
7 62 145
7 30 103
7 109 305
7 44 188
7 54 169
7 26 120
7 26 114

7 11 76

7 0 43
7 21 107

7 8 72

NS NS NS
6 140 191
6 64 131

NS NS NS
NS NS NS

6 58 120
7 22 85

6 73 184
7 25 125

6 39 114
6 15 74

6 21 89
5 9 56
4 0 26
6 11 67
6 5 54

Mach = 0.0025

CPU
n ET (sec)

NS NS NS
7 184 325

NS NS NS

NS NS NS
NS NS NS
7 110 235

NS NS NS
8 141 435
7 72 286
7 71 210
7 47 188
7 39 151
7 19 103

7 0 43

7 33 142
7 12 147

NS NS NS
6 166 222

NS NS NS
NS NS NS
NS NS NS

6 86 164
NS NS NS
5 97 197
5 40 126
5 49 115

5 28 92

5 23 79
6 12 73
5 0 32
4 16 55
5 7 51

Table 3.3: Iterative behavior of several preconditioners (from McHugh [l]).

95

To best illustrate the solution robustness property, consider a comparison of selected

Schwarz preconditioning techniques with ILU preconditioning (Table 3.3). This table com-

pares the methods for the model problem at selected Reynolds (Re) and Mach numbers where

n is the number of Newton iterations and f i is the average number of inner (Krylov) iterations

required per Newton iteration for a converged solution. Entries of NS in a column indicate a

solution was not obtained.

It is clear from these results that ILU techniques do not provide robust solutions to

low Mach number flow problems. The performance of the 1 x 1 "direct" solve is somewhat

surprising, considering the number of operations performed (O(n3)). The direct solve pro-

vided the minimal execution time of all the simulations, which may be partially attributed

to elimination of the Krylov solve operations (with the true inverse of the Jacobian for a

preconditioner, only a matrix-vector multiply is needed for the linear system solution each

Newton iteration). Additionally, the LINPACK Gaussian elimination routine used for the in-

version is highly optimized, while little scalar optimization has been performed in the Krylov

solution code. Finally, the small size of this model problem (16 x 80) may skew the results

in favor of the direct method. For larger problem sizes the difference in operation count

between the direct method and the preconditioned Krylov techniques should result in bet-

ter relative performance of the Krylov techniques, especially when the operations are spread

over multiple processors. Of further note, the direct solve is quite memory intensive (see

Table 3.2), surpassed only by a Schwarz method using subdomain overlap. These extreme

memory requirements render the direct method infeasible for large problems.

96

3.4 Krylov Subspace Algorithms

The discussion of the solution of the non-linear algebraic system began with the use of New-

ton’s method to linearize the system. Within each Newton iteration, a new linear system

is formed and solved. The use of a suitable iterative linear solution technique in combina-

tion with the inexact Newton’s method was previously explained as a strategy to reduce the

computational effort and memory requirements for the linear system solution. Additionally,

preconditioning was introduced as a method to improve the condition number of the Ja-

cobian matrix to further decrease the computational effort required for a solution. In the

development of the preconditioner, parallelism of the algorithms was discussed as an im-

portant requirement of an efficient linear solution process. This section on Krylov subspace

algorithms will examine possible choices for the actual algorithm(s) used in the iterative

solution of the preconditioned linear system.

Recall the form of the preconditioned linear system developed earlier

(3.32)

This system is of the form

Ax = b, (3.33)

where, in general, the matrix A (and J> is a non-symmetric indefinite matrix, and of sparse

banded structure. Banded Gaussian elimination and other direct methods such as LU decom-

position were discounted as solution techniques due to extreme computational requirements.

Furthermore, the inexact Newton’s method requires an iterative technique to be effective as

described previously. Several approximate methods are available that may be useful on a

97

system of this form. Examples of these methods include:

0 incomplete LU factorization methods (ILU),

0 QR decomposition techniques,

0 Jacobi related techniques,

0 Gauss-Seidel-based techniques, and

0 conjugate-gradient- “like” methods (Krylov techniques).

Of these methods, only the conjugate-gradient-”like” methods (Krylov techniques) possess

all of the qualities desired for this study.

Matrix-splitting methods such as Gauss-Seidel and Jacobi often yield poor rates of con-

vergence [20, 431. The convergence rate of these and other relaxation techniques depends

strongly on the spacial discretization adopted for the implicit operator. ILU techniques and

QR decomposition also may exhibit slow convergence. These types of methods are not gen-

erally robust. To handle a wide diversity of problems and numerically challenging problems,

a robust technique is desired for the solution of Equation 3.32.

A robust technique should have the following properties.

1. The solution technique is guaranteed to converge in n iterations or less (the solution

ef€ort is bounded).

2. The technique exhibits a finite termination property.

Krylov subspace methods are robust techniques for the solution of linear systems such

as Equation 3.32. These methods (using exact precision mathematics) will converge within

n iterations, and often yield satisfactory convergence in much less than n iterations (they

98

typically converge rapidly). These techniques compute approximations to x in the affine

space

X O + Kn, (3.34)

where x, is the initial guess to the solution and K,,, is the Krylov subspace of dimension m

1581,

Km(ro,A) --= span(ro,Ar,,A2r,,. . ., Am%,), (3.35)

with

r, = b - Ax,. (3.36)

Conjugate-gradient- “like” algorithms are Krylov algorithms that are derived by relaxing one

or both of the two properties that define a true conjugate-gradient method, namely optimality

(error reduction) and short vector recurrences (constant work and storage requirements per

iteration). Economical vector recurrences can be obtained, at the expense of optimality,

via the Lanczos biorthogonalization procedure. Other methods, such as the Arnoldi-based

GMRES (the non-restarted version), sacrifice short vector recurrences to achieve optimality.

Examples of each will be examined in this study.

Several candidate Krylov techniques exist: the generalized minimal residual method (GM-

RES) [24], the transpose-free quasi-minimal residual method (TFQMR) [59], the conjugate-

gradient-squared algorithm (CGS) [26], and the Bi-CGSTAB algorithm [25], to name a few.

Of this set, the GMRES and TFQMR algorithms will be used in this study, due to thier

excellent performance on related problems [l].

Krylov techniques remain afertile research area [21,60,61,62,63,64,65,66]. McHugh [20]

presents an excellent summary of these techniques, and an overview of the mathematical basis

99

and development of the various methods.

These algorithms were developed to solve the system

Ax= b,

or

0 = b - AX.

(3.37)

(3.38)

A direct inversion method is based on an exact solution (within machine accuracy) to Equa-

tion 3.38. With an iterative technique we do not expect an exact solution, only a solution

‘‘sufficiently accurate” for our needs. In effect, we may select the number of iterations of the

technique, m, to provide a desired level of accuracy

Em (b - Ax”} = 0,
m+a,

(3.39)

or, more practically, develop the algorithm to halt when a certain level of accuracy has been

achieved. Thus, for a given iteration m, there is an error in the solution, defined as the

residual

rm z b -Ax“. (3.40)

Minimal residual approaches are often based on the concept of minimizing the &-norm of

the residual

(3.41)

100

This step is equivalent to the minimizing the functional

g(xm) = (b - Axm)T(b - Axm) = xmTATAxm - 2bTAxm + bTb.

At this point, we desire a solution of the form

(3.42)

(3.43)

where (Y) is a s d n g factor and Pk is a search direction. Substituting Equation 3.43 into

Equation 3.42, and minimizing the resub with respect to (Yk (& (x k + l) / a (Y k = 0) results in

the expression

At this point, search directions are computed (p k) by selecting the appropriate Krylov sub-

space L k [20] and then using either the Lanczos biorthogonalization procedure as defined in

the following section, or the Arnoldi process as outlined in Section 3.4.2.

3.4.1 Transpose-bee Quasi-Minimal Residual Method (TFQMR)

The TFQMR solution technique is based on the Lanczos biorthogonalization procedure ap-

plicable to general non-symmetric matrices. This class of methods sacrifice optimality (min-

imizing the residual with respect to a fixed norm) to obtain short vector recurrences. It is

not possible, in general, to satisfy an optimality condition with non-symmetric systems using

short vector recurrences [67].

As an introduction to the TFQMR algorithm, consider a development of the biconjugate-

gradient method (BCG) for the solution of non-symmetric indefinite problems [22,25,26,62,

101

64, 68,691. The BCG method uses recurrence relations developed for the conjugate-gradient

algorithm extended with the use of the Lanczos method. This algorithm is developed to solve

the system

Ax= b, (3.45)

by the use of an auxiliary system

A’% = b, (3.46)

where A* is the adjoint of A with respect to the inner product.

For the conjugate-gradient method, Equation 3.45 may be represented by the functional

1
f(x) = 5 [(AX - br(x - A-lb)] ,

or

(3.47)

(3.48)

where r = Ax- b and (-, e) denotes an inner product. To minimize the residual of the calcula-

tion, one must minimize this functional. Clearly, the direct solution x = A’lb minimizes the

functional, but is expensive to obtain as discussed previously. As a potentially less-expensive

method to obtain the minima of the functional, the Krylov vector space

(3.49)

spanned by the mutually conjugate orthogonal vectors vo, vl, v2, . . . , vk, is iteratively searched

to obtain the vector that minimizes the residual [22]. As the residuals (gradients) correspond-

ing to each of the search vectors are orthogonal, an iterative update x k + l = xk + v,Vv € Kk

will "spiral" towards the x k + l resulting in a minimum residual.

To minimize the functional, iterates of the form

are desired. This result may also be expressed in terms of the residual

To minimize the functional f (x) , the derivative with respect to a is performed

or

1

a+O cy
lim - [f(x +$x) - f(x)] = 0,

where

f(x + 6x) - f(x) = f(x + av) - f(x)

= - 1 [r + aAv,A"(r + aAv)] - $r, 1 A-lv)

2

1
= - [(r + aAv) (A-lr + av) - r . A-lr]

2

2 2

= - a (r - v + v - r) + - a 2 A v . v 1 1

102

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

1
= a(r, v) + -a2(v, Av).

2

Minimizing this result with respect to cr results in

This result may be further simplified by letting

so that

In addition,

because the current residual is orthogonal to the previous search direction. Thus,

which simplifies Equation 3.56 to

Equation 3.57 may be used to determine P

103

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)

(3.62)

104

Again, (~ h + ~ , AVk) = 0 because the current and previous search directions are orthogonal.

Thus,

This expression may be further simplified by noting

and

resulting in

(3.63)

(3.64)

(3.65)

(3.66)

The previous sequence of steps outline the conjugate-gradient method for symmetric positive-

definite matrices. To extend this result to non-symmetric indefinite matrices, the Lanczos

method is used. This technique employs the auxiliary system (Equation 3.46), choosing the

parameters a) and P k such that the residual vectors of each of the systems (r,, rl, . . . and

I,, El,. . .) are biorthogonal. That is,

(q,Fj) = 0 i # j . (3.67)

To complete this process, it is necessary to define a series of expressions for the auxiliary

system (identical to the process used for the conjugate-gradient method) and develop a) and

105

p k to satisfy the biorthogonality condition. This results in the definitions

By inspection, the terms a k and that satisfy the biorthogonality condition are

(f k + l , r k + l)
p k =

(f k , r k) '

This development results in the following expression of the BCG algorithm.

(3.68)

(3.69)

(3.70)

Algorithm 1 (BCG)

r, = b - Axo,vo = ro,

P - 1 = 1);

The BCG algorithm is attractive due to the short vector recurrence relationships used in

its development. In the absence of round-off errors and algorithm breakdowns, this method

exhibits the finite termination property described in the introduction. However, BCG is

susceptable to breakdown if the term (f k , r k) equals or approaches zero. AdditionaUy, the

conjugate A* is often replaced by the matrix transpose AT.

The desire to eliminate the cdculation of the matrix transpose and minimize the severity

of algorithm breakdown has fueled the development of many transpose-free techniques. The

technique employed in this study is the TFQMR algorithm. This algorithm has much in

common with the BCG algorithm, but differs in a number of significant aspects. For the sake

of brevity, a rigorous development of the TFQMR algorithm (similar to the explanation of

the BCG algorithm) will not be presented. A few of the differences will be highlighted to

provide an outline of the operation of the algorithm.

In the TFQMR algorithm, the residuals and search directions of the BCG method are

replaced by the expressions

107

where Rk and Sk are polynomials of maximum degree L. Using the definition

r:Gs = [Rp(A)l2r0,

allows p to be expressed as

(3.71)

(3.72) -T COS
P k = [Rk(AT)FolT Pk(A)r,] = 5: [Rk(A)j2 io = ro r k .

The TFQMR algorithm is not developed using orthogonal residual representations as was the

BCG method. The TFQMR method relies on the minimization of the coefficient of llPk+1112

in the expression

l l rkl l , 5 11 (l l ~ O 1 l 2 el - %Yk) I[z IIPk+lII, 7

where

0 ...
a1 P2 0

1 a 2

0 P k

1 Qk

0 ... 0 0 1

(3.73)

9 (3.74)

el is a unit vector with a “1” in the first component, Yk is a vector of the minimization

conditions

(3.75)
T

Yk = b k l , Qk2, * - *?%I ?

108

and P k and w k are vectors of search directions

(3.76)

(3.77)

The TFQMR algorithm does not minimize the residual in L2, or any other fixed norm.

The residual is minimized in a norm that changes with iteration number [64, 701

where

The TFQMR algorithm is presented below.

Algorithm 2 (TFQMR)

v81 (X 0 , f O # 0,

rEGs = b - Ax,,

(3.78)

(3.79)

109

- do m = 2k + 1,2k + 2,. . .

1

r, = rm-lumcm;

; m even

d,-l ; m even
a k

if llrmIIz < cow criteria then exit; fi

The TFQMR algorithm eliminates the need to calculate the matrix transpose (it is

transpose-free). Algorithms based on QMR (including TFQMR) do not suffer the same forms

of breakdown as seen with BCG. However, QMR algorithms may still fail due to breakdowns

in the Lanczos process. Thus, the TFQMR algorithm is clearly superior to BCG, but may

not achieve a solution to all problems. The TFQMR algorithm is applicable to a wide class

110

of problems, and often provides excellent performance (as demonstrated in the following

chapters).

3.4.2 Generalized Minimal Residual Method (GMRES)

Due to the remaining breakdown weaknesses in the TFQMR algorithm, a second algorithm,

GMRES, was examined to provide an alternative to the cases where the TFQMR algorithm

fails. The GMRES method also provides other advantages that may be important for certain

conditions.

Use of the Arnoldi process to generate search directions, instead of a Lanczos biorthog-

onalization method, makes the GMRES algorithm considerably different from the TFQMR

algorithm. The Arnoldi method uses a Gram-Schmidt orthogonalization procedure [71] to

generate an orthonormal basis for the Krylov subspace. This process seeks to minimize

where
r -

hl k
hll h l 2 h 1 3 ...

h 2 1 h 2 2

f i k = 0 h k - 1 , k * (3.81)

I 0 ... 0 0 h k + l , k hkk I h k , k - l

Use of the Arnoldi technique

111

results in the residual expression

(3.83)

GMRES is based on a least squares minimization, thus an iterate for Equation 3.83 can

always be found. This property makes a breakdown of the GMRES algorithm unlikely. The

GMRES algorithm is presented below.

Algorithm 3 (GMRES)

- var (x,,r, = b - Ax,,

r0
p1= -);

l lrol12

- do k = O , 1 , 2 ,..., n

comment: Arnoldi Process

Update f i k and QR factorization t o solve

then Calculate solution from x k = x, + P k y k ; exit; S

TFQMR relaxes the optimality condition in favor of achieving short vector recurrence rela-

tionships and GMRES seeks to minimize the residual while allowing the storage requirements

112

and computational effort to grow with the iteration count. This behavior is a significant dis-

advantage of the GMRES method, however it may be addressed by using a restarted version

of the algorithm, GMR,ES(k), where k is the dimension of the Krylov subspace [24]. With the

restarted version, the algorithm is only optimal during each iteration cycle, not throughout

the entire solution process. Multiple restarts may result in slow convergence or algorithm

stall.

In summary, an overview of four Krylov techniques was presented to provide a flavor of

the mechanics of these techniques. Of these four, the derivation of the conjugate-gradient

method for symmetric positive-definite matrices was examined in detail for use as a basis for

the derivation of the BCG method. The final two algorithms, TFQMR and GMR,ES, were

presented as useful generalizations of the BCG technique and as examples of two Krylov

techniques that show much promise for this study. Detailed developments and analyses of

these Krylov techniques are available in the literature [20,24,64,72,73]. Finally, the solution

of linear systems using Krylov subspace techniques is an active area of research with new

algorithms and modifications to current algorithms becoming available at a rapid rate.

3.5 The Matrix-Free Technique

One may argue that work on a matrix-free technique that “eliminates” the formation of the

Jacobian matrix really does not belong in a research effort targeted at obtaining scalable

preconditioners for a Newton-Krylov solution procedure. Clearly, the elimination of the

need to form the Jacobian matrix decreases the operations and memory required to achieve a

solution. In earlier chapters, it was argued that concentration of this effort on preconditioning

would likely yield the most efficient implementation of a simulation code to solve the model

113

problem, since obtaining the preconditioner requires 0(n3) operations. Because the Jacobian

formation complexity is less (likely much less) than the preconditioner complexity, it was

argued that the Jacobian formation time would become negligible for large domain, fine grid

solutions.

The above arguments are true, but neglect a portion of the attractiveness of the matrix-

free technique. It is clear that preconditioning is still required for the matrix-free technique;

to improve the condition number of the system and thus lead to improved convergence behav-

ior (and possibly enabling convergence on poorly conditioned systems). In order to obtain a

preconditioner, the Jacobian matrix must be formed. This appears to be a dilemma; forma-

tion of the Jacobian is not necessary for the solution of the system, but is necessary to obtain

the preconditioner. If this were truly the case for each Newton iteration, the matrix-free

method would be nothing more than a curiosity, limited to the set of problems that do not

require preconditioning.

However, it may be possible to form the Jacobian and develop a preconditioner on a subset

of the Newton iterations rather than on every Newton iteration. Perhaps it is sufficient to

form the Jacobian and develop a preconditioner once every other Newton iteration, or maybe

once every five or ten Newton iterations. Clearly, the limiting case here is the quality of

the preconditioner and how well it conditions the Jacobian for a given Krylov iteration. As

a minimum, a preconditioner must be obtained for the first Newton iteration (the "stale"

preconditioner is employed in the subsequent Newton iterations). Furthermore, the number

of Newton iterations that can be performed before a new preconditioner is developed will

depend on a balance between the convergence efficiency of the current preconditioner and

the computational penalty of forming a new preconditioner. This balance is expected to be

problem specific.

3.6 Mechanics

Recall that the inexact Newton method described previously linearizes the algebraic system

F(x) = 0. (3.84)

The linearization process results in a linear system of the form

or

or

J"SX" = -F(x"),

PFIJ"Gx" = -PIIF(x") (left preconditioned form),

(3.85)

Ax = b (generalized form), (3.87)

to solve for each Newton iteration n. Furthermore, recall that in the TFQMR and GMRES

algorithms, the coefficient matrix (A in the notation used in the Krylov section) never ap-

peared done but always as a matrix-vector product (Apk and A(uk t q k + l) in the TFQMR

115

case, Apl and Apk in the GMRES case). This observation may be interpreted to mean that

the matrix A would not be required if some other manner was available to calculate the

matrix-vector product.

The matrix-free technique is simply an algorithm that may be employed to calculate these

matrix vector products, Aw, or in Jacobian notation, Jw, for a given general vector w. The

matrix-vector product may be expressed by finitedifference approximations of the form

(3.88)

where < is a perturbation parameter

and

(3.89)

ti = EX^ + e. (3.90)

In the above development, N is the dimension of the state vector x, xi is the ith component

of the state vector, E is a perturbation constant (x O(machine round-off2)), and e is a user-

specified perturbation parameter (1.0 x for this study) [20].

The matrix-free technique requires the following form of a linear system (inexact Newton)

convergence criteria

(3.91)

The utility of this approximation is immediately obvious. Matrix-vector products are

116

notoriously computationally expensive to construct, while the above products may be con-

structed with the relatively inexpensive difference relation (Equation 3.88) in the matrix-free

technique. Additionally, all of the operations to form the Jacobian matrix are now unneces-

sary. Preconditioning complicates the advantage, because as the Jacobian is required for the

preconditioner. However, as discussed above, this complication may be mitigated for certain

problems.

Finally, the matrix-free technique influences the reasoning employed to obtain a solution.

Consider the use of the Newton-Krylov-Schwarz algorithms to obtain a steady-state solution

to a problem from a given initial “guess.” With the background discussed thus far, an

analysis of operation counts would suggest that the number of Newton iterations should

be minimized during the solution process. Each Newton iteration entails formation of the

Jacobian (0 (n2)), and development and application of the preconditioner (0(n3)). The

Krylov linear solution method is very inexpensive, comparatively. With the matrix-free

technique, a situation may exist whereby the Newton iterations are less expensive than the

Krylov iterations if one considers the potential of lagging the Jacobian and preconditioner

formation operations to amortize this penalty over several Newton iterations. In this case,

one would desire a minimization of the Krylov iterations. Realistically, it would be helpful

to “tune” the number of Newton and Krylov iterations for a particular problem to maximize

solution efficiency. One method that provides a tuning parameter for the number of Newton

and Krylov iterations is called pseudo-tmnsient relaxation.

Pseudo-transient relaxation applied to the Newton algorithm adds artificial transient

terms (&) to the main diagonal of the Jacobian matrix in order to create a d agonally-

dominant matrix and thereby improve the Newton convergence behavior. This technique

117

modifies the original linear algebra problem to one of the form

{ -& + J") 6x" = -F(x"). (3.92)

This artificial diagonal dominance allows user control over the ratio of Newton to Krylov

iterations. Additionally, the pseudo-transient representation provides the welcome benefit of

increasing the Newton radius of convergence for difficult solutions.

The effectiveness of this method (matrix-free with pseudo-transient relaxation) is likely

problem dependent. Depending on the characteristics of the model problem, this method may

be more or less computationally efficient than the direct Newton-Krylov-Schwarz technique

described earlier. However, the matrix-free, pseudo-transient (MFPT) method is more robust

overall, due to the increase in the radius of convergence of the Newton technique. The

methods described to this point are clearly not capable of solving all non-linear algebraic

systems. For solution convergence, it is necessary but not sufficient that the initial iteration

of the Newton technique (the initial "guess") fall within the Newton radius of convergence.

As this initial point may not be easily specified, it is highly desirable that the radius of

convergence be as large as possible.

3.7 Summary

This chapter was devoted to an explanation of the inexact Newton-Krylov-Schwarz solution

technique, beginning with the non-linear algebraic system and proceeding through all phases

of solution. Preconditioning of the linear system was outlined in detail, along with a discussion

of the matrix-free approximation and pseudo-transient relaxation of the Jacobian. Figure 3.11

presents a flowchart of the implementation of the solution techniques employed.

118

I--

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
1

Newton Loop I

L -

I ReadInput I
Initialize Problem

-4
I

I

I

I

I

I

Build Jacobian I

m I

I DoGMRES
1
I Krylov Loop

CI Update Pseudo-

Print Data

I

I
, J

I

I

I

I

I

I

I

1

I

I

I

I

I

I

I

I

I

Pseudo-Time Loop I

- -

Figure 3.11: Flowchart for Newton-Krylov-Schwarz solution technique.

119

This discussion completes the specification of the theory, approach, and model problem

specifics. The remainder of this study is devoted to an analysis of the mapping of these

procedures onto various shared-memory multiprocessors. The primary goal is to develop and

optimize the machine-algorithm mapping to result in minimal runtime, while focusing on

the scalability of the preconditioning operation. However, this goal must be accomplished

without a reduction in the robustness of the algorithm and within reasonable memory bounds.

Chapter 4

The Additive Schwarz

Precondit ioner

This chapter on the begins the analysis and optimization of a code that employs the Newton-

Krylov-Schwarz algorithms described previously. As such, this chapter is not limited solely

to a discussion of the preconditioner and its scalability; other topics that affect the precondi-

tioner and the overall code efficiency will also be addressed. Information gathered from the

study of these topics is in many cases uniformly applicable to the following chapters on the

multiplicative Schwarz preconditioner and matrix-free methods.

Recall the purpose of this study; obtaining scalable performance in the construction and

application of a preconditioner to provide efficient solutions to the model problem. In theory,

given a scalable preconditioner, one may select the number of processors required to provide

a solution of a problem of a particular size in the desired amount of time.

This chapter begins with an effort to obtain efficient pardel/vector solutions to the model

problem on two different architectures; a Cray C90 supercomputer and a multiprocessor SGI

121

Challenge machine (Onyx model). Two sizes of the model problem were initially attempted

e a 64 x 320 finite volume discretization (81,920 unknowns) on the Cray C90, and

a similar 32 x 160 problem (20,480 unknowns) on the SGI Onyx.

4.1 Architecture Overview

For this study, the model problem was mapped to two different machine architectures. The

first was an example of a traditional supercomputer, the Cray C90. Three Cray C90 machines

were available for this research; the first was a four processor machine equipped with 256

Mwords (2.048 Gbytes) of main memory, the second had eight processors and 512 Mwords

of memory? and the third was equipped with 16 processors and 512 Mwords of memory.

Architecturally, the Cray machines implement 256 banks of S U M memory connected to

the processors through a crossbar network. Pipelined access may be employed for efficient

memory access. Memory is implemented using a "real" (physical) addressing mode into the

banks, virtual memory and caching is not available. The processors operate at a clock speed

of 4.2 ns, and contain two vector pipes and two functional units per processor. Thus, with

eight processors 8 x 2 x 2 = 32-way parallelism is possible.

The SGI Challenge machine has four processors. This machine is equipped with 1 Gbyte

of conventional DRAM main memory connected to the four processors by a proprietary bus.

Each processor is a MIPS R4400, containing 1 Mbyte of SRAM cache (512 K data, 512 K

instruction), and is of superpipelined superscalar design. The cache controllers implement

a snoopy bus protocol for coherence. This machine implements a demand-paged virtual

memory scheme.

The simulation code for this study was implemented in well-structured FORTRAN 77.

122

The base version was developed to be quite portable, using an "elementary" style (see Ap-

pendix A). No attempts were made within the original code to increase its suitability toward

any particular architecture; the development platform that preceded this work was a unipro-

cessor UNIX workstation.

Finally, the study was performed during multiuser operation on all hardware examined.

The results on dedicated machines could ~ a r y significantly. Cray warns that dedicated access

to their machines is necessary to fully evaluate the performance aspects.

4.1.1 Cray Optimization

The initial development work was performed on the four processor C90 and was limited to

routine compilation tasks and verification of correct operation and results. The vectorization

and parallelization passes and all optimization were disabled for the initial porting phase.

Following the initial porting phase, scalar optimization parameters were investigated to

obtain an optimal configuration in preparation for a flow analysis of the code. For the

flow analysis, the Cray utility FLOWTRACE was used to identify code blocks that warrant

optimization. Additionally, Cray library calls corresponding to the LINPACK routines used

in the original code were substituted to provide better efficiency. FLOWTRACE results indicated

that several functions and subprograms were suitable for inlining (for sample FLOWTRACE

output, see Appendix B). These routines were explicitly inlined with the use of compiler

directives and the requisite compile options. Following this work, FLOWTRACE was again used

to find that several routines comprised the bulk of the execution time for the simulation code.

These routines were those involved in forming the Jacobian matrix, mainly:

0 the u-momentum contribution routine urnorn,

123

0 the v-momentum routine m o m ,

0 the routine for the mass-conservation contribution cont, and

0 the temperature routine temp.

Additionally, the routine that forms and factors the preconditioner, precond, required an

appreciable amount of computation time. Following these routines in percentage of execution

time were several utility routines, matmul - general matrix-vector multiply, mivmldd - a

banded linear equation solution routine, and eztmv - a data extraction routine.

Following this analysis, the vectorizing phase of the compilation system was invoked.

Vectorization proved quite effective in reducing the overall runtime of the code. Reductions

of over an order of magnitude were seen ‘in some loops, resulting in nearly a factor of ten

speedup overall. However, in a nested looping construct, only the innermost loops may

be vectorized. The Jacobian and preconditioner formation routines contained many such

structures and continued to dominate the execution time despite vectorized inner loops.

The logical progression of this study suggested that the enclosing loops in these routines

should be uniformly divided and executed on multiple processors. However, the Cray C90

series machines have an appreciable amount of parallel overhead, attributable to the following

sources.

0 Semaphore wait time. At the end of a parallel region, all threads must synchronize

prior to the main thread continuing. If the main thread finishes last, this time is zero.

However, if not, the main thread must wait (for a time that depends on the load balance

among the threads) until all child threads synchronize at the exit point.

0 Extra autotasking code. Executable code is added by the autotasking mechanism to

124

create and manage the multiple threads. Some of this is executed by the master thread

prior to forking the child threads and leads to additional serial overhead.

0 Increase in memory bank contention. If contention exists on a single processor, it will

be generally be greatly compounded with multiple CPU’s.

0 Decrease in vector performance. If parallelism is implemented in a manner such that

the vector length is shortened or chaining is prevented, the vector efficiency is reduced.

On average, autotasking startup and executing the extra autotasking code on a dedicated

machine requires 3600 clock cycles on the C90 [3]. Appendix A details many of the challenges

of mapping an algorithm to the Cray architecture for best performance, and explains the

memory contention problem in more detail.

4.1.2 SGI Optimization

The SGI Onyx optimization process was initiated near the end of the Cray study. A quick

examination of the scalar behavior of the code using prof -pixie verified that the same

routines that required significant CPU time on the Cray also required significant CPU time

on the SGI. It was quickly concluded that any work to enhance pardelization on the Cray

also benefited the SGI implementation.

The SGI is a cached, superscalar superpipelined architecture in contrast to the vector-

based Cray architecture. As such, user-level vectorization was not possible on the SGI. In fact,

for most efficient use of the SGI architecture, programs should be written to preserve data

locality rather than vector efficiency. An extensive study to best match the serial behavior of

the code to the d e b a s e d SGI was not performed. Additionally, it was desirable to maintain

excellent performance with a single copy of the code executable on either architecture. Thus,

125

SGI scalar optimizations that would severely impact the Cray vector performance of the code

were avoided. However, a cursory study with the base code versus the Cray vectorized version

on the SGI showed few differences that could be attributed to efforts to better vectorize the

Cray version. Thus, this version was used “as is” on the SGI.

Aside from those issues specific to vectorization, the SGI suffers from the same parallel

overhead concerns that afflict the Cray. The SGI uses a similar interleaved memory design.

However, all memory accesses are via a local processor cache. The Cray uses a crossbar

switch for memory bank access, while the SGI uses a proprietary bus. It is conceivable that

fewer memory contention difficulties are encountered on the SGI due to the fewer processors,

local processor cache, and the slower processor speed of the machine.

4.2 Initial Results

The backward-facing step model problem with an inlet Mach number of 0.0025 and a Reynolds

number of 100 was selected to investigate the efficiency of the numerical solution algorithm

described previously. Specifically, the vector/parallel aspects of this solution algorithm are

highlighted.

An HP 735/125 workstation with 36Mwords (288Mbytes) of RAM was used as the baseline

machine. The Cray runs were performed on an 8 processor C90 with 512Mwords of memory.

All runs were performed in double precision on the workstation (64 bit, 52 bit mantissa)

and single precision on the Cray (64 bit, 48 bit mantissa). Simulation results were identical

to machine precision (the Cray has slightly less precision than the HP in the comparison,

however this difference is not significant), and were verified for aJl comparisons. No attempts

were made to achieve dedicated access to either machine, they were both operating in a

126

production, multi-user mode. Little effort was devoted to create an optimized version of the

code for the HP platform. In fact, ignoring Cray vectorization and autotasking directives

(that appear as comments to the HP compiler) the same version of the code was run on both

the Cray and the HP. The HP run was compiled under full optimization and employed the HP

LINPACK libraries where possible. The single processor Cray run used the Cray LINPACK

library, inlining, and vectorized routines where prudent (based on FLOWTRACE results and

the labor, cost, and feasibility of vectorizing various routines). The multiple CPU run also

employed autotasking directives in order to distribute the formation of the Jacobian and the

preconditioner across the available CPU’s.

In base form, the Jacobian formation algorithm consisted of calls to four subroutines;

cont, temp, umom, and vmom. Each of these routines contained three distinct sections.

1. The first section computes the residual for the interior finite volume cells (in a).

2. The second region formally creates the Jacobian matrix by sweeping over the matrix

in an element by element fashion.

3. The last section initializes unused values in the Jacobian to zero, along with corre-
,,

sponding positions in the residual array.

FLOUTRACE indicated that only the first two sections warranted parallelization. Thus, for

each of the subroutines, two pardel regions were created (8 total parallel regions executed

for each Jacobian update).

For the initial runs, the additive Schwarz preconditioner formation and application tasks

were also pardelized, because these routines directly followed the Jacobian formation rou-

tines in computational cost for this size of the model problem. The formation of the precondi-

tioner was separated into two parallel sections; the first factors each of the subdomains while

127

the second performs a direct inversion of each factored subdomain followed by a solution of

the resulting system

V J) x = Y, (44

for x (where LU is the result of the factorization procedure).

The following results do not isolate the effectiveness of the pardelization of the precon-

ditioner for simplicity. The preconditioner operations add to the time required to obtain

a solution to the linear system (Le., perform the Krylov iterations). Although execution

times are presented for the entire linear solution process, the preconditioner is expected to

overwhelm the remaining operations for larger problem sizes.

"OO[HP7351125

Y .

COO (One Proc)

CQO (Eight Procs)

Figure 4.1: 64 x 320 domain solution time.

Figure 4.1 illustrates the CPU time required to obtain a solution for this model problem

using a 64 x 320 grid (81,920 unknowns) with an 8 block additive Schwarz preconditioner.

The HP required 3017 sec., the C90 using a single processor needed 424 sec., and the C90

with 8 processors spent 118 sec. to obtain a converged steady-state solution. In comparison

with the baseline machine, the Cray C90 architecture clearly yields a significant performance

advantage and is a'viable platform for this study.

128

3

0
n

200

Total Run Time

150

+
A

_-----___---__________________
100

Jacobian Contribution

8 '..

inner I teratio n Con tr ibu tio n

2 3 4 5 6 7 8

N urn ber of Processors/S u bdo main s

Figure 4.2: Majority of execution time devoted to Jacobian formation and TFQMR iterations
on the C90.

Figure 4.2 illustrates the parallel performance on the C90 for two, four, and eight sub-

blocks (mapping to an equal number of processors) for this simulation. This figure reinforces

the FLOUTRACE results that indicate that the formation of the Jacobian and performing the

inner (Krylov) iterations comprise the bulk of the execution time of the simulation. For the

two-processor case, the inner iterations require 120 of 240 total seconds for execution. The

combination of the Jacobian and inner iterations contribute 230 seconds of the total time

(96%). Several other interesting phenomenon are apparent from this graph.

0 The Jacobian routine displays a consistent decrease in execution time as the number of

processors are increased.

0 An increase in processors from two to four substantially decreased the inner iteration

time. However, a further increase to eight processors resulted in an increase in execution

time for this region. Recall that only the preconditioner portion of the inner iteration

129

time is parallel.

0 As the number of processors was increased, the effect on the remaining code execution

time was negligible. Because the remaining code is serial, changes in the runtime

behavior of these routines with an increase in processors was not expected.

Num.
of

Subdomains

2
4
8

Linear Jacobian Total

Solve Formation CPU
CPU Time CPU Time Time

(% of Total) (% of Total) (sec.)

50.0 46.5 242.30
47.0 46.0 120.24
56.9 34.3 117.67

Table 4.1: Contributions towards total CPU time.

Table 4.1 presents the percentage of Cray CPU time spent forming the Jacobian and the

percentage of CPU time required to solve the linear system arising on each Newton step (the

sum of the time required to form the preconditioner and to perform the TFQMR iterations)

for 2, 4, and 8 processors. This data indicates that the formation of the Jacobian and the

solution of the linear system continue to dominate the solution time when executed in parallel.

Figure 4.3 illustrates the convergence behavior of the Newton-TFQMR solution algorithm

for this sequence of results. Clearly, on this model problem, monotonic Newton convergence

has been achieved. This result further reinforces the selection of the Newton-Krylov-Schwarz

solution technique as a viable solution technique for numerically challenging non-linear prob-

lems with a similar character to that of the model problem.

Table 4.2 illustrates the memory requirements for the solution of the 64 x 320 problem

(no subdomain overlap). Memory usage for the solution is a function of the problem size,

the number of subdomains in the preconditioner, subdomain overlap (if present), and the

130

Eight Subdomains

Four Subdomains

Two Subdomains

- - - - - -
................

10' -
1 2 8 4 s 6 7

Number of Newton Iterations

Figure 4.3: Convergence behavior of the Newton-Krylov-Schwarz algorithm.

decomposition strategy. The problem size dependence is easily seen; as the problem size

is increased, the Jacobian contains more cell entries. As the Jacobian becomes larger, the

memory required for the preconditioner increases along with the memory required to invert

each preconditioner subdomain. If the number of subdomains is increased, each subdomain

is smaller and the memory required for inversion decreases. Overlap makes the subdomains

larger, requiring more memory as overlap is increased. The larger subdomains also increase

Num. Memory

of Required

Subdomains (Mbytes)
2 259
4 133
8 70

Table 4.2: Memory requirements for Cray 64 x 320 simulation.

131

the amount of work performed within a parallel region while the serial sections in the re-

minder of the code are basically unchanged; thus increasing the pmllel gmnulurity of the

code. Finally, the decomposition strategy (stripwise in the x direction, stripwise in the y

direction, or checkerboard) changes the amount memory required for each of the subdomain

matrices. As an example, the 8 x 1 blocking strategy (above) requires 70 Mbytes, a 1 x 8

strategy requires 510 Mbytes. From this data, it is easily seen that increasing the number of

subdomains results in higher DOPs, decreased memory requirements, and greater algorithmic

efficiency (due to a lower operation count to invert each subdomain). Thus, the focus of this

study on achieving a scalable solution is clearly warranted.

4.2.1 The Jacobian Algorithm

The formation of the Jacobian parallelizes trivially, and exhibits excellent performance on

two and four processors (see Figure 4.4). The two-processor speedup is 1.94, while the

four-processor speedup is 3.96 (the ideal speedups are 2.0 and 4.0, respectively). The eight-

processor speedup is 5.42, which is notably lower than the ideal value of 8. The decrease in

parallel efficiency for the eight-processor case is most likely due to a combination of memory

contention as the processors update the Jacobian matrix and reduced pardel granularity for

this section of the code.

Parallel granularity is an important consideration when mapping parallel algorithms to

a given architecture. To achieve optimal parallel performance, one should strive to maxi-

mize the time spent in parallel execution in proportion to the time spent in serial execution

(for a constant amount of work to be performed). Clearly, this concept will maximize the

speedup achieved within the simulation code (see Appendix A). Although this requirement

is necessary for optimal execution, it is not sufficient. If the code is constructed using many

132

small parallel regions separated by synchronization operations, barriers, or serial regions, the

overhead required to enter and leave parallel execution may overwhelm any speed increases

obtained from the parallel code sections. As such, the parallel regions must form the bulk of

the simulation operations and be "sufficiently large" to prevent parallel overhead from seri-

ously degrading the performance of the execution. Clearly, suficient parallel granularity is

subjective, and dependent on the implementation and design of the algorithm and the design

of the architecture of interest.

. -
Parallel Speedup+ : e

: a
. = I
- s u
: a
. a
- P
1 2 u)

. a

. -

2 4 I

Number of Processors

Figure 4.4: Jacobian CPU time, speedup, and efficiency on the C90.

Num. Serial Parallel

of CPU CPU Parallel
Sub- Time Time Parallel Efficiency

domains (sec.) (sec.) Speedup (%)
2 198.48 121.35 1.64 82
4 130.49 56.56 2.31 58
8 196.82 66.94 2.94 37

Table 4.3: Parallel speedup of the linear solution routine on the C90.

133

4.2.2 The Preconditioner

The routines that form and apply the preconditioner also parallelize trivially. Parallel

speedups of 1.64, 2.31, and 2.94 were obtained for the linear solution routine on two, four,

and eight processors, respectively (see Table 4.3). Recall that the preconditioner formulation

contributes to the time required in the linear solution routine (in the 8 CPU pardel case,

only 14% of the linear solution time is spent in forming the preconditioner). Unfortunately,

for the problem size considered, most of the remainder of this routine is serial. The large dif-

ferences in parallel efficiency between the ideal and actual case are attributed to the decrease

in global preconditioner effectiveness as the number of subdomains (processors) increases.

Table 4.4: Solution algorithm performance data.

Table 4.4 illustrates the performance of the solution algorithm for the different subdomain

blocking strategies employed. The number of Newton iterations is independent of the number

of subdomains chosen. The discrepancy between 7 iterations for the two and eight block case

and 6 for the four block case is due to the selection of the Newton convergence criteria. For

this problem, the convergence criteria in conjunction with slightly different inner iteration

results between the runs allowed the four block case to converge in only 6 iterations. This

selection of the criteria was not planned; with a discrete process, such as iteration using a

continuous convergence criterion, it is always possible to encounter situations where slight

(often very slight) differences in the solution path can result in convergence behavior that

134

is on the “ragged edge” between two iteration counts. In this case, the convergence criteria

could be tightened slightly to result in 7 iterations for all runs, or loosened slightly resulting

in a uniform 6 iterations.

This table also illustrates an interesting trend of an increase in the number of TFQMR

iterations with an increase in the number of subdomains. The increased number of iterations

results from the lack of coupling information between subdomains in the global precondi-

tioner. Thus, the study is presented with a dilemma; a large number of subdomains is

desired from an operation count standpoint and for mapping to a large number of processors,

but results in the undesirable effect of increasing the number of Krylov iterations to achieve

convergence. To better illustrate this problem, let the inner iteration time r be a combina-

tion of the time s required to execute the serial code in the Krylov algorithm and the time p

required to execute the pardel preconditioner on a single processor, such that

r = s + p , (4-2)

Furthermore, assume that the serial code time is a constant (does not vary with the number

of subdomains or processors), that the number of Krylov iterations are directly proportional

to the number of subdomains (and processors) n, and that 100% parallel efficiency can be

achieved. Then, rp, the pardel execution time is

r p = n r = n s + - = n s + p . (4.3) (3
This result indicates that even if the amount of serial code in the Krylov solution routine

was driven to zero, pardelization of the preconditioner is not a feasible method of reducing

i

135

the execution time of the code. Fortunately, this result is overly pessimistic; it ignores

algorithmic efficiency improvements due to the inversion of progressively smder subdomains

as the number of subdomains increases. Furthermore, the results in Table 4.3 indicate that

pardelization of the preconditioner does indeed reduce the inner iteration time, for up to at

least to eight subdomains. One may quickly conclude that Equation 4.3 does not capture the

true complexity of the inner iteration algorithm. However, this equation does suggest several

topics that should be considered.

0 Traditional techniques used to enhance pardelism (maximizing granulkity, minimizing

serial code, etc.) may not yield the desired results and/or may not perform as expected.

0 Expectations of scalability of the inner iteration routine to large numbers of processors

may not be warranted. In fact, these results suggest that there is a point of maximum

efficiency corresponding to n processors (possibly eight processors in this case). Adding

processors beyond this figure may not result in a further decrease in inner iteration time

and could likely increase execution time.

0 The increase in Krylov iterations as the number of subdomains is increased will prevent

a truly scalable h e a r solution routine. Under ideal conditions, if the number of Krylov

iterations did not increase with the number of subdomains, scalability could be achieved.

However, it may be possible to obtain useful performance increases if the number of

iterations increases at a slower rate than the number of subdomains

~d = kn k < 1, (4.4)

where tc is the number of Krylov iterations, n is the number of subdomains, and k

136

is a proportionality function. Efforts should be directed at decreasing the value of k

initially, followed by an attempt to increase the parallel efficiency of the preconditioner

formation, and finally by an effort to decrease the serial component of the remaining

inner iteration routines.

0 For a given simulation, the value of k in Equation 4.4 will likely be problem specific.

0 Speedup concerns aside, a secondary benefit of increasing the number of subdomains

may be realized on distributed memory architectures. As the bulk of the memory re-

quired in a simulation is confined to the preconditioner, distributing this requirement to

multiple processors in a distributed memory configuration dramatically decreases the

memory required on the “master” process. Additionally, the number of subdomains

(processors) employed for a solution could be determined by the memory requirements

of the solution; large memory requirements could be spread over many processors en-

abling solution of problems too large to be attempted on a single processor or a shared-

memory machine.

Finally, as a potential mitigating factor to large values of k, note that the use of sub-

domain overlap can be used to improve the effectiveness of the global preconditioner as the

number of subdomains increases, because more of the Jacobian data is captured in each of

the subdomains. However, as discussed previously, the larger subdomains associated with

increased overlap result in higher operation counts for the subdomain inversion process and

increased memory requirements for the solution algorithm. Lastly, the use of subdomain

overlap decreases the parallelism of the additive Schwarz method, because access to mem-

ory must be serialized when the global preconditioner is updated with information from the

subdomains in the overlap areas. Other alternatives that may show promise are listed below.

137

e The use of a "coarse grain/fine grain preconditioner." A "coarse grain" solution is

employed to encapsulate the communication between the nearly decoupled local sub-

domains [30].

e Use of a different preconditioning strategy such as multiplicative Schwarz may provide

better inner iteration behavior as the number of subdomains are increased.

e Use of the matrix-free technique may allow an amortization of the preconditioner and

Jacobian formation penalty over several Newton iterations.

The coarse grain/fine grain approach is based on adding additional information to the

additive Schwarz expression

or expressing the global preconditioner space in terms of the subspaces (subdomains)

To encapsdate the coarse grid information on the subspace V,, this subspace is simply added

to the above expression

v = v, +v, + vz + ...+K::. (4.7)

The space V, contains the information concerning the communication of information between

the remaining subspaces V,, . .) . , x. To construct this information, a coarse grid operator is

developed based on the governing equations and satisfying the boundary conditions on d o .

This approach is very effective at minimizing the degradation of the solution as the number

138

Num. Serial Parallel
of CPU CPU Parallel

Sub- Time Time Parallel Efficiency
domains (sec.) (sec.) Speedup (%)

2 x 1 426 242 1.8 88

4 x 1 326 120 2.7 68

8 x 1 424 118 3.6 45
i

Table 4.5: Overall code performance.

of subdomains is increased for certain problems [31, 32, 74, 751. However, for the governing

system used in this study, a suitable coarse grid operator has yet to be developed (this general

concept is currently an active research topic).

The investigation of multiplicative Schwarz preconditioning will be performed in the fol-

lowing chapter. This technique shows promise in decreasing the Krylov iterations required

for convergence [11.

Finally, matrix-free techniques do not directly impact the preconditioner (and linear so-

lution) scalability. However, these techniques may reduce the frequency of preconditioner

formation by the use of one preconditioner (a "stale" preconditioner) for several Newton

iterations. If the matrix-free technique is scalable and the preconditioner formation may be

relaxed sufficiently, useful runtime efficiency improvements may be obtained.

In summary, Table 4.5 illustrates the overall solution performance of the code on the

C90 for 2, 4, and 8 processors, respectively. Clearly, excellent performance is achieved using

two processors but the parallel efficiency quickly decreases as the number of processors is

increased. This behavior is attributed to poor granularity and memory contention in the

Jacobian routine, and the increase in Krylov iterations with subdomains discussed earlier.

Additionally, granularity and contention problems may also exist with the preconditioner

routines. The relative importance of these potentid problems requires further study.

139

4.3 Jacobian Granularity and Contention

It was previously noted that the Jacobian formation routine is “enwarrassingly paralle

leading to a concern about the low pardel speedup on 8 Cray processors (5.4). In an

attempt to investigate this result, the Jacobian routine was re-structured to maximize the

parallel granularity by encapsulating all of the Jacobian formation routine in a single pardel

loop (the base routine had three parallel regions). Additionally, an attempt was made to

decrease memory contention in the routine by changing the location and spacing of arrays

relative to the memory banks. These efforts resulted in the overall code performance indicated

in Table 4.6. In this table, the row labeled 8 x 1 is the previous data for the 8 block case,

the 8 x 1* row is an identical run using the new Jacobian routine.

Parallel

8 x 1 424 118 3.6 45

8 x 1’ 294 113 2.6 33

Table 4.6: Overall performance.

execution tim Table 4.6 clearly indicates that the reformulated Jacobian reduces th of

the code. In fact, a 30% reduction in serial time was observed. The parallel version was

also faster, but the 4% decrease was less than expected, in fact the opposite (large parallel

reduction, small or zero serial reduction) was anticipated. To better understand this result,

Table 4.7 isolates just the Jacobian formation routine performance.

The new Jacobian reduced execution time by 55% and the parallel time by 45%. As

the serial performance increased by a greater percentage than the parallel performance, the

speedup decreased from 5.5 to 4.5. Recall that the serial runs on the C90 were using full

Num. Serial Parallel
of Jacobian Jacobian Parallel

Sub- Time Time Pardel Efficiencv
domains (sec.) (sec.) Speedup (%)

8 x 1 219 40 5.5 68

I 8 x 1' 11 99 I 22 I 4.5 I 56

Table 4.7: New Jacobian performance.

vectorization. The parallel runs also used full vectorization and in addition, autotasking.

Because the amount, type, and ordering of the work performed was not changed from the

original routine, the increase in serial performance is attributed to decreased memory con-

tention and increased vectorization performance due to the increased granularity. The parallel

performance also increased due to these efforts, however, the memory contention caused by

the multiple processors lessened the rate of increase in comparison to the serial results.

NUlIl. Serial Parallel

of TFQMR TFQMR Parallel
Sub- Time Time Parallel Efficiency

domains (sec.) (sec.) Speedup (%)
8 x 1 197 67 2.9 37

8 x 1' 187 83 2.3 28

Table 4.8: TFQMR routine performance.

For completeness, the effect of the new Jacobian algorithm on the TFQMR iteration

routine is shown in Table 4.8. Because this algorithm was not modified for this Jacobian

study, one would expect the results here to be identical. This was not the case. The serial

results improved by 5% and the parallel results were 24% slower with the new Jacobian

routine. This may also be explained by considering memory contention. For the serial run,

decreasing contention in the Jacobian routine also decreased the contention in the TFQMR

routine (some of the newly spaced arrays used in the Jacobian are also referenced in the

141

Num. Serial Parallel
of Precond. Precond. Parallel

Sub- Time Time Parallel Efficiency

domains (sec.) (sec.) Speedup (%)
8 x 1' 50 15 3.3 42

Table 4.9: Speedup of the additive Schwarz preconditioner formation routine.

TFQMR routine). However, in parallel mode, the new Jacobian access pattern increased the

memory contention in the TFQMR routine.

Table 4.9 isolates the parallel preconditioner factorization from the TFQMR routine.

From these results, the preconditioner factorization comprises 27% of the serial time and

18% of the parallel TFQMR algorithm for this problem size. Again, the speedup for this

routine on 8 processors is not ideal. This section of code cannot be grain-packed further

without pardelization of sections of the TFQMR algorithm itself. As discussed earlier, it is

unlikely that paralleking the TFQMR algorithm would be effective without first solving the

preconditioner degradation problem. Furthermore, memory contention is also a concern in

this routine.

The new Jacobian routine is near optimal in terms of pardel (and vector) granularity.

It does not appear likely that further granularity improvements can be achieved at least

for this problem size (recall that increasing problem size increases the parallel granularity

inside the Jacobian algorithm as more operations are performed in parallel). Additionally,

the complex memory access pattern of the Jacobian formation routine makes further gains in

reducing memory contention by simple modifications of the FORTRAN common blocks in the

code unlikely. Although incremental improvements are possible, approaching the theoretical

speedup figure of eight using 8 processors is probably not feasible. Further work along this

path has not resulted in any significant improvement in the 4.5 speedup noted in Table 4.7.

142

Furthermore, the remainder of the code appears sensitive to memory access optimization

in the Jacobian routine. Clearly, the scalability of these methods with the current memory

structure on the Cray architecture appears unlikely (at this problem size). The best approach

would be a complete re-work of the memory structures and perhaps the code for the Jacobian

formation that may be specific to the Cray architecture. This approach is considered later

in this chapter.

The use of local processor data caching may also be an attractive method to reduce the

penalty of memory contention. If the bulk of memory accesses could be directed at a lo-

cal cache instead of a main memory pool, contention among processors for data items on a

common bank may be significantly reduced. A good caching scheme would also implement

a virtual memory mapping that would transparently locate often-used data in a particular

processor cache. Given this scheme, less expensive DRAM memory could possibly be em-

ployed without a significant performance degradation, because the majority of accesses will

be to cache instead of main memory. Unfortunately, a Cray-class machine implementing this

arrangement is not available.

To consider this approach, an SGI Onyx multiprocessor was used to investigate the fea-

sibility of implementing the Newton-Krylov-Schwarz scheme on a cache-based architecture.

The SGI Onyx differs in many ways from the Cray C90. They are both shared-memory ar-

chitectures, but they differ in processor speed and performance, vector versus superpipelined

superscalar design, number of available processors, and memory access methods. Due to these

many differences, it is impossible to isolate any performance variations to just the cached ver-

sus banked memory design. Based on algorithm scalability, however, it may be possible to

state that the Newton-Krylov-Schwarz method employed in this study maps better to a given

architecture.

143

Table 4.10: 32 x 160 Onyx simulation iteration behavior.

To perform this analysis, the code employing the coarse-grained Jacobian routine was ex-

amined. All memory access optimization developed for the Cray was replaced by a straight-

forward storage model that optimizes the use of available memory. As the SGI was limited

in memory (lGbyte), little leeway existed for memory access optimization. Additionally, be-

cause the memory access methods varied greatly between the Cray and SGI, techniques that

optimized access on the Cray would likely have a reverse effect on the SGI. Finally, due to

the reduced number of processors and slower execution speed of the SGI, a smaller problem

(32 x 160) with only 4 subdomains was initially considered.

For the 32 x 160 simulation on the Onyx, again the Jacobian formation and TFQMR

iteration routines comprised the bulk of the execution time. The Jacobian and preconditioner

formation and application algorithms were parallelized. Unlike for the C90 case, a benefit was

also gained by the pardelization of the algorithm that computes the matrix-vector products

(this algorithm also contributes to the TFQMR iteration time). Two versions of this matrix-

vector product algorithm were used in this study; a vector version with data dependencies that

inhibited pardelhation, and a parallel version with a branch that inhibited vectorization.

The parallel version provided much better performance in parallel on the SGI, the vector

version provided nearly a 10-fold performance improvement versus a 6-fold improvement of

the parallel version on 8 processors on the C90. As such, the most appropriate version for

the machine in question was employed.

144

Num.

of
Sub-

Table 4.10 illustrates the iteration behavior of the model problem on the Onyx. This table

Serial Parallel

CPU CPU Parallel
Time Time Parallel Efficiency

confirms the nearly identical algorithm behavior on the machines; the increase in TFQMR

domains

2 x 1

iterations with subdomains may be noted along with the difference in Newton iterations be-

(sec.) (sec.) Speedup (%)
422 188 2.2 112

tween two and four subdomains due to the convergence criteria. Additionally, fewer TFQMR

iterations are required on the Onyx. This difference is not due to machine differences, but

to the different problem sizes run on the machines (the number of iterations and the rate of

increase is likely problem specific).

3.2

Table 4.11: SGI Onyx overall performance.

Table 4.11 displays the initial performance obtained on the SGI. The two- and four-

processor speedup values are 2.2 and 3.2, respectively. Recall that these results are for the

overall code execution, and that a significant portion of the solution consists of serial code.

F’urthermore, the superlinear 2.2 speedup on two processors is noteworthy. Clearly, caching

of the working set of data in each of the two processor caches is sufficient to overwhelm

parallel overhead, contention, and any Amdahl’s law effect for this case, and results in an

improved cache “hit ratio” over the single-processor case. Appendix A further explains how

caching may result in larger than expected performance increases when the cache-size and

problem-size combine for optimal performance.

In an effort to further examine the performance degradation in the four-processor case,

each pardel section of the code was examined in further detail, beginning with the Jacobian

145

Num. Serial Parallel

of Jacobian Jacobian Parallel

Sub- Time Time Parallel Efficiency
domains (sec.) (sec.) Speedup (%)

2 x 1 96 42 2.3 114

4 x 1 77 21 3.7 92

Table 4.12: SGI Onyx Jacobian performance.

formation routine (Table 4.12). For the Jacobian routine, superlinear speedup (2.3) was seen

for the two-processor case, and a respectable speedup of 3.7 was seen for the four-processor

trial.

Num. Serial Pardel
of TFQMR TFQMR Parallel

Sub- Time Time Parallel Efficiency
domains (sec.) (sec.) Speedup (%)

2 x 1 321 141 2.3 114

4 x 1 294 92 3.2 80

Table 4.13: SGI Onyx TFQMR performance.

Finally, because the Jacobian formation and TFQMR solution routines comprise the bulk

of the execution time of the code, the TFQMR routine was further examined (Table 4.13).

Unlike the Jacobian routine, much of the TFQMR routine remains serial (only the precon-

ditioner formation, application, and matrix-vector multiply routines are pardel). Again, it

Num. Serial Parallel
of Precond. Precond. Parallel

Sub- Time Time Pardel Efficiency
domains (sec.) (sec.) Speedup (%)

2 x 1 11 94 I 42 I 2.2 I 112 I
4 x 1 II 30 8 3.8 94

Table 4.14: Speedup of the additive Schwarz preconditioner formation routine.

146

is noteworthy that even with this handicap, a pardel speedup of 2.3 was achieved in the

TFQMR routine on two processors.

The superlinear pardel speedups in the parallel sections of the code using two processors

result in an overall superlinear speedup for the simulation. However, this effect does not scale

to four processors. This behavior may be due to several factors.

0 Four processors may increase bus contention to the point that any superlinear effects

disappear.

0 Parallel overhead with a larger number of processors may overwhelm any improvements

due to an increase in cache hit efficiency.

0 For the problem size selected, the cache hit efficiency for the two-processor case may

be near optimal. Adding another two processors (and caches) in this case may not

improve the hit ratio sufficiently to overcome the additional overhead of two additional

processors.

To eliminate the last item from consideration, one may scale the problem size to reduce the

cache hit ratio for the two-processor case. As an initid attempt, the simulation grid was

doubled in each direction, forming a 64 x 320 grid (the identical problem run on the Cray).

Total Jacobian TFQMR Precond.
Time Portion Portion Portion

Mode (sec.) (sec.) (sec.) (sec.)

Serial 3426 488 2918 341
Parallel 1212 109 1083 92

Speed-up 2.8 4.5 2.7 3.7

Table 4.15: 64 x 320 Onyx Run (4 Blocks).

Table 4.15 presents the execution data for this larger problem. The Jacobian routine

147

indeed exhibited a superlinear speedup on four processors. However, an overall superlinear

improvement was not seen, and neither the TFQMR nor the preconditioner formation routines

were overly efficient. Recall that the granularity in the Jacobian routine is near optimal. This

is not the case for the TFQMR routine and the preconditioner formation routine. Further

work to increase the granularity in these routines (and minimize the serial portion of the

TFQMR routine) may result in the achievement of superlinear speedups in these routines and

in the overall simulation for the four-processor runs. However, it is not clear that superlinear

effects will scale beyond two (or four) processors without further data.

The apparent improvement in scalability of the SGI over the C90 architecture is primarily

due to cache effects. However, this benefit could disappear as the number of processors are

increased. Note that when comparing the 64 x 320 problem on four processors, the Cray is

an order of magnitude faster.

Further work on the Jacobian algorithm is probably,not warranted. On the 32 x 160

problem (4 block parallel), the Jacobian amounts to 18% of the total execution time. This

decreases to 9% on the larger problem. The TFQMR routine amounts to 89% of the total

execution time on the larger problem. Clearly, as problem size increases further, the Krylov

algorithm will dominate. This data suggests that further efforts should be focused on the

scalability of the Krylov solution. Given a solution to the increase in inner iterations that

accompanies an increase in the number of subdomains, parallelization of the TFQMR routine

may be warranted.

Finally, Table 4.16 shows the memory requirements for the smaller SGI run. A similar

decrease in the memory requirements with an increase in the number of subdomains is evident.

The requirements for the 64 x 320 SGI run are identical to the requirements presented for

the Cray data (Table 4.2), because the problems are identical.

148

Subdomains (Mbytes) kll-7-i
Table 4.16: Memory requirements for SGI 32 x 160 simulation.

4.4

Figure 4.5: Partitioned Jacobian matrix, four subdomains with overlap.

Subdomain Overlap with Additive Schwarz

As an initial effort to investigate methods to mitigate the increase in Krylov iterations as

the number of subdomains is increased, the additive Schwarz method employing subdomain

overlap was examined. Recall that subdomain overlap includes a portion of the data from

the Jacobian matrix adjacent to each of the subdomain regions in an attempt to increase the

quality of the preconditioner by providing a better approximation to the Jacobian prior to

the inversion of the subdomains (Figure 4.5).

Table 4.17 compares the effects of no subdomain overlap versus an 8 cell overlap (for each

149

Num. Avg. TFQMR Iterations
Subdomains 0 cell overlap 8 cell overlap

2 11 7

4 24 14
8 51 23
16 108 32

Table 4.17: 32 x 160 Onyx simulation iteration behavior comparing overlap values.

4 6 8 10 12

Number of Subdomainr

14 16

Figure 4.6: Plot of overlap behavior versus number of subdomains.

8 cell subdomain, the upper and lower 4 cells are solved as part of the neighboring domains)

on a 32 x 160 run. Eight cells of subdomain overlap using additive Schwarz substantially

decreases the number of TFQMR iterations for a given number of subdomains. Figure 4.6

is a plot of the data in Table 4.17. It is clear that there is a reduction in the slope of the

increase over the zero overlap case. Furthermore, the slope of this line appears to decrease

further as the number of subdomains is increased.

Table 4.18 illustrates the effect of overlap on pardel CPU time for a constant four sub-

domains on the 32 x 160 Onyx run. Recall that overlap requires serialization when the global

150

12
16 6

Avg. TFQMR Para. CPU

Iterations Time

19 119

14 117
13 135
11 140

Table 4.18: Additive Schwarz, 4 domain case, showing effect of overlap on TFQMR iterations
and CPU time.

preconditioner is assembled, resulting in the slightly poorer performance for all these runs

(this result is clear when the 119 sec. 4 cell overlap run is compared to the 118 sec. run with

no overlap). From the table, the minimum runtime is achieved with an 8 cell overlap. Over-

lap did not appear to significantly decrease the parallel CPU time. As overlap is increased

beyond 8 cells, the CPU time increases as the solution on each subdomain approaches a direct

solve of the entire Jacobian (from Figure 4.5, it is apparent that as each subdomain increases

in size, it contains more of the Jacobian data).

Total Jacobian TFQMR Precond.
Time Portion Portion Portion

Mode (sec.) (sec.) (sec.) (sec.)

Serial 364 77 28 1 62
Pardel 117 21 91 18

Speed-up 3.1 3.7 3.1 3.4

Table 4.19: Speedup d u e s for 8 cell overlap problem.

Finally, Table 4.19 illustrates thesspeedup figures for the above 8 cell overlap run using

four subdomains. Contrasting this data with Tables 4.11,4.12,4.13, and 4.14, overlap appears

to increase the serial performance of the TFQMR algorithm to a greater extent than for the

parallel performance. The speedup in this routine drops from 3.2 to 3.1, which decreases the

overall speedup from 3.2 to 3.1. Further, the speedup decreases from 3.8 to 3.4 in the Schwarz

151

preconditioner formation routine. Considering speedup values alone, it does not appear that

overlap enhances the para.llel scalability of the method, at least with this limited data.

Table 4.20: Memory requirements for SGI 32 x 160 simulation with various overlap values.

Table 4.20 presents the memory requirements for various levels of subdomain overlap on

the 32 x 160 problem. Clearly, even small values of overlap significantly increase the memory

requirements over the non-overlap case (Table 4.16). For example, on the 4 subdomain

problem, eight cells of overlap increase the memory requirements from 17 Mbytes to 48

Mbytes. Furthermore, increasing overlap beyond a certain extent erases the advantage of

a reduction in memory requirements with an increase in the number of subdomains. This

is expected. Once the overlap value approaches the condition where the entire Jacobian is

contained in each subdomain, the solution memory requirements will approach a value equal

to the number of subdomains multiplied by the amount of memory required for a direct

Jacobian inversion.

From this data, it appears that while subdomain overlap is effective in reducing the

number of TFQMR iterations, it is only minimally effective in reducing runtime. However,

it may be possible to compensate for the increased work performed in the subdomain solves

152

Overlap Newton Avg. TFQMR Para. CPU

(cells) Iterations Iterations Time
4 7 125 273

II 7 59 238

Table 4.21: Additive Schwarz, 16 domain case, showing effect of overlap on TFQMR iterations

and CPU time for a 96 x 480 simulation.

by increasing the number of subdomains, provided the TFQMR iteration growth does not

overwhelm any runtime improvements. Unfortunately, this effect cannot be studied on the

Onyx due to the limit of four processors (the local machine had only a total of four processors

installed). Furthermore, the memory demands of an overlap solution appear quite severe for

even small values of overlap. Because many moderate to large simulations may be memory

limited, employing overlap may not be an option. For the problem size considered, overlap

does not provide any significant advantages on the four processor SGI architecture.

A 16 processor Cray C90 was used for the overlap study employing greater than four

subdomains. Initially, a 16 processor parallel run was analyzed on the machine to obtain

algorithm scalability data similar to that shown in Table 4.18 (see Table 4.21). Due to the

superior performance of the Cray and the expected overhead in scaling to 16 processors, the

problem discretization was increased to 96 x 480. Figure 4.7 shows that, for this problem

size, subdomain overlap again decreases the number of TFQMR iterations. The decrease in

required iterations is quite substantial. For example, a comparison of the two tables reveals

that with 12 cells of overlap on the 16 block problem, 59 iterations are required versus 70

for the 8 block case with no overlap. Provided the increase of subdomain size with overlap

may be mitigated by increasing the number of subdomains, it may be possible to achieve

reasonable scalability for the overall solution.

153

160 -

140 -

120 -

. I -
C .

0 1 0 0 -
f : - .
> .

80 -
Y .

EO -

40 -

20 . . ' . l . ' ' ' l ' . ' . r . ' . . l . . ' "

E 8 10 12 14 15

Number 01 Subdom.int

Figure 4.7: Plot of overlap behavior versus number of subdomains for Cray 96 x 480 simula-

tion.

Serial

Parallel
II I I

Speed-up 11 4.6 I 7.8 4.6 I 7.5

Table 4.22: Speedup values for 12 cell overlap, 96 x 480 problem using 8 processors.

Table 4.22 and Table 4.23 illustrate the actual runtime performance on 8 and 16 C90

processors, respectively. These tables show a noticeable performance gain over the earlier

Cray data (at least in the Jacobian and preconditioner algorithms), however, several changes

in the simulation were made between the two datasets.

0 The parallel granularity in each of the parallel sections of the code was increased sub-

stantially by scaling the problem to 96 x 480 over the previous 64 x 320 simulation.

0 Dynamic memory allocation was added to the code. Any arrays involved in the pre-

http://Subdom.int

Total Jacobian TFQMR Precond.
Time Portion Portion Portion

Mode (sec.) (sec.) (sec.) (sec.)

Serial 993 186 777 216
Parallel 202 13 159 16

Speed-up 4.9 14.3 4.9 13.5

Table 4.23: Speedup values for 12 cell overlap, 96 x 480 problem using 16 processors.

conditioner were removed from the common data structure and dynamically allocated

via malloc (1 in the main program.

0 These results employ subdomain overlap and attempt to mitigate the increase in sub-

domain complexity by employing more subdomains, thus increasing the degree of par-

allelism of the preconditioner and Jacobian routines.

Clearly, these changes significantly enhance the performance of both the Jacobian and

preconditioner routines. In fact, these two algorithms scale quite nicely, at least to 16 proces-

sors. The overall simulation performance does not reflect this increased efficiency, however.

For example, a speedup of only 4.9 was achieved on 16 processors. Also noteworthy is the

fact that the eight-processor run provided a minimum runtime for this problem (194 sec.

versus 202 sec. for the 16 processor-case). From Table 4.23, the serial portion of the TFQMR

time dominates the overall solution performance (159 sec. - 16 sec. = 143 sec. of the total 202

sec. runtime). The overall code performance and overall scalability are not likely to improve

further without increasing the parallelism in the TFQMR routine.

To examine the potential of a parallel TFQMR routine with this problem, assume a

speedup of 14 could be attained. This figure results in an overall runtime of approximately

98.5 sec. on 16 processors, all else being equal. A similar exercise on the eight-processor

solution results in 139 sec. for a TFQMR speedup of 7.5. For this scenario, doubling the

155

number of processors results in a factor of 1.4 decrease in runtime. From this analysis, it is

obvious that parallelization of the TFQMR routine will not likely provide true overall solution

scalability from eight to 16 processors. The 16-processor result would, however, result in the

minimal execution time seen thus far on this problem.

From these results, the benefits of subdomain overlap are apparent. The number of

TFQMR iterations are drastically reduced using this technique. The reduction appears to

allow an increase in subdomains to partially compensate for the additional work required in

each subdomain inversion, leading to an increased degree of parallelism. The combination

of overlap, a larger simulation, and a new memory structure clearly resulted in scalability

of the Jacobian and preconditioner algorithms on the Cray architecture. However, even

assuming that the TFQMR algorithm could be parallelized with the efficiencies denoted

above, overall scalability cannot not be achieved due to the remaining increase in TFQMR

iterations between eight and 16 subdomains.

Table 4.24: Memory requirements of 12 cell subdomain overlap on 96 x 480 16 domain
problem.

There is one large drawback to an overlap scheme; the greatly increased memory require-

ments. Table 4.24 indicates the memory requirements of the above problem, both with and

without overlap. The order of magnitude increase in memory requirements for this problem

is clearly an unacceptable tradeoff for solution scalability. This example problem (96 x 480)

is still quite small from a simulation standpoint, yet 1.6 Gbytes of memory are required

for a scalable solution. Very few circumstances can be envisioned where these extreme re-

156

q~rements could be accommodated on available hardware for a realistic three-dimensional

simulation.

4.5 Summary

This chapter on the additive Schwarz preconditioner began with an overview of the mapping

of a code employing the additive Schwarz scheme onto the two architectures of interest; a

Cray C90 and SGI Challenge multiprocessor. Following this discussion, results were compared

with a baseline HP platform to illustrate that significant performance increases were possible

with the use of a parallel supercomputer. Additionally, the performance of the base code was

analyzed to focus the parallel (and vector in the case of the C90) optimization effort.

It was discovered that the Jacobian and preconditioner routines indeed warranted further

study. F’urthermore, the preconditioner and Krylov iterations appeared to dominate the

computation time as the problem size was increased. For small problems, the C90 did not

provide outstanding results due to low parallel granularity in the parallel sections of the code

and problems with memory contention that could not be easily overcome without significant

code changes. Additionally, as the number of subdomains (processors) were increased, the

increase in Krylov iterations due to a reduction in preconditioner effectiveness quickly limited

the overall efficiency of the code.

The Onyx machine appeared to perform significantly better on the smaller problems due

to cache effects. However, this could not be verified beyond four processors on the machine

available for this study. Reasonable scalability of the algorithms was seen on both architec-

tures if the number of processors was limited to four. This result should be quite encouraging

to users that are limited to inexpensive hardware or provided with limited resources. It is

157

indeed possible to achieve worthwhile reductions in simulation runtime on workstation class

shared-memory multiprocessors using the additive Schwarz preconditioner.

For those applications demanding scalability beyond four processors, the increase in

Krylov iterations driven by preconditioner degradation was addressed. Several options were

discussed and subdomain overlap was studied in detail. For smaller problems on the Onyx,

overlap significantly reduced preconditioner degradation as the number of subdomains was

increased. However, due to the increase in the number of subdomain operations, the runtime

of the simulation was not improved significantly. A hypothesis was suggested concluding

that it may be possible to increase the number of subdomains (and processors) to mitigate

the increase in operations, allowing overlap to check the increase in Krylov iterations. A

larger study employing a 16 processor Cray was performed to examine this possibility. Addi-

tionally, the memory structures in the code were reworked and dynamic memory allocation

was employed for convenience. This larger study confirmed that scalability of the Jacobian

and preconditioner algorithms had been achieved. However, an overall scalability was not

observed, and it was argued that even with a parallel Krylov solve, true overall scalabil-

ity would remain elusive. This success was further diminished due to the extreme memory

requirements of the overlapped subdomains and the necessity of pardelizing the Krylov

algorithm to approach scalability of the overall solution procedure.

With these results, it appears unlikely that a simple Newton-Krylov procedure using

additive Schwarz preconditioning as outlined in this study will result in a truly scalable

parallel solution algorithm within reasonable memory bounds. Of the options presented

previously, neglecting the use of a coarse grid operator (a possible but premature technique

to reduce the Krylov iteration increase with the number of subdomains), the following two

topics remain:

158

1. multiplicative Schwarz preconditioning, and

2. matrix-free techniques employing pseudo-transient relaxation.

The following chapters discuss these two methods in detail.

159

Chapter 5

The Multiplicative Schwarz

Preconditioner

The multiplicative Schwarz preconditioner was examined as a possible remedy for the in-

crease in Krylov iterations due to a degradation in the global preconditioner as the number

of subdomains in the simulation is increased. Previous work by McHugh [l] suggests that the

multiplicative Schwarz preconditioning technique results in a higher-quality global precon-

ditioner than the additive method in base, non-overlapping form. Additionally? the overlap

version of the technique also appears superior to the additive algorithm, at least for the Val-

ues of cell overlap studied. However, the multiplicative algorithm results in identical memory

requirements to the additive routine for comparable overlap Values; thus overlap will again

prove intractable due to its memory requirements.

The implementation of a parallel multiplicative Schwarz method followed the additive

Schwarz process detailed in the preceding chapter. In fact, the simulation code was structured

such that one may select the desired preconditioner via an input value. As such, the code

160

is largely unchanged from the version used to obtain the previous results; only the routines

specific to the differences between the additive and multiplicative algorithms are distinct.

The major structural difference between the two algorithms is the degree of pardelism

inherent in the preconditioner. Data dependencies in the base multiplicative Schwarz algo-

rithm prohibit the direct parallelization that was employed in the additive form. Recall that

w = Pf’v is computed by

160

is largely unchanged from the version used to obtain the previous results; only the routines

specific to the differences between the additive and multiplicative algorithms are distinct.

The major structural difference between the two algorithms is the degree of pardelism

inherent in the preconditioner. Data dependencies in the base multiplicative Schwarz algo-

rithm prohibit the direct parallelization that was employed in the additive form. Recall that

w = Pf’v is computed by

vj = vj-l + J;’(v - Jvj-l), for j = 2,. . .,n

w = v,,

and n corresponds to the total number of subdomains employed in the preconditioner (see

Section 3.3.2). It is clear that the factor v, is dependent on the formation of the term vi-’.

If a coloring scheme

is employed to renumber the subdomains in the solution, it is possible to arrange the pre-

conditioner algorithm such that the values of vj-l are either vl, or can be obtained from a

previous pardel calculation. This mathematical explanation can be easily visualized by con-

sidering a stripwise domain decomposition (as was used in this study). Figure 5.1 illustrates

a stripwise, 4 subdomain problem (4 x 1) where the subdomains are colored in a red-black

scheme. This figure also shows an 8 subdomain problem in a “checkerboard” decomposition

(4 x 4), colored red-black-green-blue (RBGb).

161

Figure 5.1: Red-black coloring on stripwise, RBGb coloring on “checkerboard” decomposition.

In the stripwise scheme, the two red subdomains may be calculated immediately and

in parallel, because = VI. Following this operation, a synchronization step is needed

followed by a parallel calculation of all the black subdomains (~ j - ~ for each black subdomain is

now known from the results of the previous red subdomain calculation). This concept (slightly

extended) also holds for the two-dimensional blocking in the “checkerboard” decomposition.

However, from the discussion in Section 3.3.2, the degree of parallelism is now less than that

observed with the additive Schwarz method. A stripwise decomposed multiplicative Schwarz

algorithm using two colors has half the available parallelism

number of blocks

2
DOP = (5.3)

This loss of parallelism is a concern. For the stripwise case, twice as many preconditioner

blocks would be required for performance similar to that of the additive algorithm. Thus,

for the multiplicative algorithm to be useful for this study, it must provide fewer Krylov

iterations and a reduction in the increase of iterations with subdomains at a two-for-one

disadvantage to the additive algorithm.

162

AS MS
Num. Newton Avg. TFQMR Avg. TFQMR

Subdomains Iterations Iterations Iterations

2 7 11 5
4 6 24 13
8 7 51 23
16 6 106 53

Table 5.1: 32 x 160 Onyx simulation iteration behavior comparing additive Schwarz (AS)
and multiplicative Schwarz (MS) preconditioning.

AS MS
Num. Avg. TFQMR Avg. TFQMR

Processors Iterations Iterations

2 11 13
4 24 23

8 51 53

Table 5.2: 32 x 160 iteration behavior comparing additive Schwarz (AS) and multiplicative
Schwarz (MS) preconditioning on the basis of DOP.

5.1 Results

The investigation of the multiplicative Schwarz preconditioner was restricted to the Onyx

platform and used identical model problems to those previously considered to d o w for corre-

lation of the results to the additive Schwarz data. Table 5.1 contrasts the iteration behavior of

the two algorithms using a 32 x 160 domain with stripwise decomposition. The multiplicative

results employed red-black coloring. Clearly, multiplicative Schwarz preconditioning reduces

the number of Krylov iterations required for a given number of subdomains for this problem

size.

Table 5.2 provides the same information, but normalized on the basis of the degree of

parallelism of the two algorithms (the number of processors that may be effectively employed

for each of the algorithms). This result indicates that, given a constant operation count

163

Num. Serial Pardel
of CPU CPU Parallel

Sub- Time Time Parallel EiXciency
domains (sec.) (sec.) Speedup (%)

2 x 1 318 240 1.3 66

4 x 1 315 147 2.1 54

8 x 1* 514 162 3.2 79

Table 5.3: Overall code performance for 32 x 160 stripwise problem on 4 processor Onyx
(* 8 block run on 4 processors)

between the two algorithms, multiplicative Schwarz does not provide any advantages of de-

creasing Krylov iteration count when based on the available parallelism. At this point, it

appears doubtful that the multiplicative algorithm will provide any benefit over the addi-

tive version unless the parallel performance is markedly improved (Le., the multiplicative

algorithm results in a significantly lower operation count).

Table 5.3 illustrates the performance of the colored multiplicative Schwarz preconditioner

based on the overall solution time. Since the Onyx was equipped with only four processors,

the 8 x 1 run employed eight subdomains in the preconditioner to allow full effectiveness

(recall, with this algorithm eight subdomains are required to achieve a DOP of four within

the preconditioner). The two other runs, 2 x 1 and 4 x 1, employed two and four processors,

respectively. Contrasting this result with the additive Schwarz data, it appears that the

multiplicative algorithm displayed better overall serial performance (executed on a single

processor) than the additive method, but worse parallel performance (serial; 315 sec. versus

375 sec. for the 4 block case, parall+ 147 sec. versus 118 sec.). Table 5.4 reveals slight

differences in the performance of the Jacobian algorithm, which is likely due to different

cache utilization. Findy, Table 5.5 shows that the performance of the TFQMR algorithm is

superior in regard to serial time, but inferior in regard to pardel time.

Num. Serial Parallel
of Jacobian Jacobian Parallel

Sub- Time Time Parallel Efficiency
domains (sec.) (sec.) Speedup (%)

2 x 1 79 34 2.3 116

4 x 1 66 21 3.1 79

8 x 1* 82 24 3.4 85

Table 5.4: Speedup in the Jacobian routine (* 8 block run on 4 processors).

Num. Serial Parallel

of TFQMR TFQMR Parallel
Sub- Time Time Parallel Efficiency

domains (sec.) (sec.) Speedup (%)
2 x 1 234 195 1.2 60

4 x 1 245 122 2.0 50

8 x 1* 427 134 3.2 80

Table 5.5: Speedup of the TFQMR routine (* 8 block run on 4 processors).

Clearly, these results paint a bleak picture for the multiplicative Schwarz algorithm. The

overall performance results in conjunction with the TFQMR results indicate that the multi-

plicative algorithm has appreciably more overhead (in parallel execution) than the additive

routine. Due to data dependence constraints, colored multiplicative Schwarz must serialize

between parallel solves of colors. This synchronization step not only adds operations to the

algorithm, it also decreases the parallel granularity of the algorithm by one-half. This result,

coupled with (1) the loss of degree of parallelism, and (2) comparable Krylov iteration behav-

ior, demonstrates that additive Schwarz is superior to multiplicative Schwarz for problems

such as those examined in this study.

For completeness, a simplified overlap study was performed using the multiplicative

Schwarz algorithm in a similar manner to the earlier additive results. Table 5.6 presents

these results.

165

Overlap ((blks-censi
4-0
4-2
4-4

8-0
8-2
8-4

L

Newton Avg. TFQMR Para. CPU

6 13 147

6 10 138
6 9 140
6 23 162

6 19 138

6 19 162

Iterations Iterations Time

Table 5.6: Iteration behavior with multiplicative Schwarz preconditioning.

As with the additive Schwarz study, subdomain overlap decreased the number of TFQMR

iterations as the overlap was increased. Two cells of overlap significantly decreased the parallel

CPU time for both the four and eight subdomain cases (particularly in the 8 block case).

Again, as the overlap was increased beyond 2 cells, the CPU time increased. Using two cells

I of overlap and comparing the four domain case (only two processors are effectively used) to

I the eight domain case (all four processors used effectively), the increased Krylov iteration

I count in conjunction with the higher overhead and lower granularity completely neutralized

I the addition of the two processors. For this problem, the minimum runtime was obtained
I

with the additive Schwarz algorithm.

5.2 Summary

The multiplicative Schwarz preconditioner does not appear to provide any advantages to

the additive Schwarz method examined previously. In fact, several disadvantages exist that

suggest that the additive method is more practical as a basis for a scalable solution procedure.

The multiplicative results indicate that any decrease in the Krylov iterations are offset by

a lower degree of parallelism when solutions comparing the same number of subdomains

are considered. If the number of subdomains are increased to provide a similar degree of

166

parallelism, the multiplicative algorithm does not provide any decrease in the number of

Krylov iterations over the additive method (for the model problem examined). Additionally,

the synchronization overhead and reduced parallel granularity inherent in the multiplicative

algorithm suggests that it would be impossible to approach the parallel results of the additive

technique with the operation count of the two algorithms held constant. Subdomain overlap

does not provide any benefits that would mitigate these disadvantages, and suffers from the

same extreme memory requirements seen with the additive algorithm with overlap.

167

Chapter 6 .

The Matrix-Free Technique

The matrix-free technique is the third, and last algorithm considered as a strategy to obtain a

scalable algorithm for the solution of the model problem under study. Unlike the previous two

methods, this technique does not directly affect the preconditioning operation (the additive

and multiplicative Schwarz algorithms form the preconditioner). In the ideal case, where

preconditioning is not required, the matrix-free technique could be used to eliminate the

necessity of forming the Jacobian to obtain a solution to the linear system.

The Jacobian matrix appears in the form of matrix-vector products (Jw) in most Krylov

projection methods (including the TFQMR and GMRES algorithms). As such, in the ideal

case, these methods do not require the formation of the complete Jacobian matrix. Only the

product

appears in the linear solution algorithms. The need for preconditioning, however, complicates

the scheme greatly as the Jacobian is required for the development of the preconditioner.

In the previous solution results, a new Jacobian and preconditioner were formed for each

168

Newton iteration. Using this preconditioner, the linear (Krylov) solve iterates to obtain

an approximate solution to the system. If the Newton solution results in the need for an

appreciably different preconditioner each Newton iteration, the only option is to form one.

However, if the preconditioner only changes slightly between Newton iterations, it may be

feasible to form the preconditioner every n iterations, using the latest existing preconditioner

for those iterations that fall between preconditioner formation steps. In effect, a “stale”

preconditioner is used for several iterations, greatly reducing the impact of preconditioner

formation operations on the overall solution behavior.

It is not sufficient to simply amortize the preconditioner over several Newton iterations

using the base Krylov algorithms. These algorithms rely on matrix-vector products based on

the Jacobian used to form the preconditioner to solve the linear system. If the preconditioner

(and Jacobian) formation is lagged, the Krylov algorithms will also use a stale Jacobian to

solve the linear system. This practice may significantly compromise the convergence behavior

of the overall technique (likely much more so than by the use of stale preconditioning alone).

To eliminate the need to use the stale Jacobian within the Krylov algorithm, the matrix-

vector product terms in these algorithms may be replaced with an equivalent expression

(Equation 6.1) that includes the convergence contribution of previous Krylov iterates. Re-

placement of the matrix-vector products with this expression results in a matrix-free Krylov

algorithm that removes the requirement for the Jacobian in the solution procedure. Thus, the

Jacobian is only required for the preconditioner, not for the solution of the linear system. The

matrix-free technique may also reduce total operation count, and is largely parallel. Given

a suitable implementation of the technique, it may also be possible to increase the degree of

pardelism contained in the Krylov solution algorithm.

The Jacobian-based Krylov routine forms the preconditioner at the beginning of the first

A

169

iteration. The remainder of the routine (at least in the cases of TFQMR and GMRES) con-

sists of small sections of code that are amenable to puallelization. Abstractly, these sections

are analogous to basic blocks in conventional terms, however in this case a basic block is

defined as the largest sequence of statements that may be encapsulated into a parallel region.

’ To further this analogy, these basic blocks are usually separated from one another by a length

of serial code or a synchronization operation (often a barrier or mutex section). Furthermore,

the degree of parallelism of these basic blocks is often quite high, perhaps even as large as a

measure of the Jacobian. As an example, recall the parallelization of the matrix-vector prod-

uct routine performed on the SGI and described in the earlier discussion of the results for the

additive Schwarz preconditioner. Unfortunately, the parallel granularity of the other basic

blocks is relatively small. On any parallel architecture, the granularity of each parallel region

should be kept as high as possible to reduce the influence of serialization before and after the

basic block. This is of utmost importance on both the Cray and SGI machines. The overhead

of entry and exit from parallel regions, barriers, and other serialization techniques is appre-

ciable. To study the feasibility of pardelization of the Krylov iteration, pardel execution

of the basic blocks (beyond the existing concurrent matrix-vector product routine) within

the TFQMR algorithm was attempted on the SGI Onyx. This effort was abandoned when

it became obvious that, with the exception of the matrix-vector product routine, granularity

in the remaining basic blocks was not sufficient to yield an appreciable performance increase

on the Onyx. A similar task was not attempted on the C90, however experience with the

additive Schwarz work performed earlier suggested that, due to the speed of each processor

without a corresponding decrease in overhead, this large granularity requirement would be

more significant than on the Onyx. Due to these results, it appears that achieving a useful

performance increase within the Krylov routine through parallelism (on these architectures)

170

would require a significant re-work of the algorithm.

The matrix-free routine (mfmatmuZ) replaces the existing matrix-vector product algo-

rithm, and has a similar degree of parallelism. However, the granularity of this routine

is much larger (more operations are performed within mfmatmul than the matrix-vector

product routine). Furthermore, the structure of mfmatmul is quite similar to the Jacobian

formation algorithm, making it possible to capitalize on the knowledge obtained from paral-

lelization of the Jacobian. Finally, in a given simulation, if a sufficient number of Jacobian

and preconditioner formation steps (with the attendant lower degree of parallelism caused

by preconditioner degradation) are replaced by matrix-free operations, it may be possible to

achieve a solution with a net savings in operation count (recall, the preconditioner is roughly

O(n3) and the Jacobian and matrix-free algorithms are roughly O(n2)). Additionally, due

to the high granularity and degree of paraslelism within mfmatmul, these added matrix-free

steps have the potential for efficient parallel execution on the architectures of interest.

Table 6.1 shows some initial results of the matrix-free algorithm on i ~ n Onyx model prob-

lem. A restarted version of the GMRES Krylov algorithm (GMRES(k)) was used in favor

of the TFQMR method- used previously, because this algorithm appears to provide better

convergence behavior when the matrix-free technique is used. This 32 x 160 result used a

stripwise decomposition employing four subdomains and processors on the SGI Onyx. The

matrix-free aigorithm formed a new Jacobian and additive Schwarz preconditioner only on

the first and second Newton iterations. The remaining iterations used a stale form of the

second preconditioner.

From these results, it is clear that the matrix-free technique shows promise as a solution

method. This scheme resulted in the minimum runtime achieved thus far in the study (93

sec., 21% better than the best additive Schwarz results at 117 sec.)

171

CPU Time Serial Parallel

Total (sec.) 258 93

Precond (sec.) 12 3

Jacobian (sec.) 26 6
GMRES (sec.) 227 82

mfmatmul (sec.) 104 31

Table 6.1: Matrix-free results using “stale” additive Schwarz preconditioning on a 4 subdo-

main, 32 x 160 problem on the Onyx.

6.1 Robustness Concerns

The previous results on the matrix-free technique are based on a specialized, simplistic prob-

lem. Generally, a true Newton iteration path to a steady-state solution results in appreciable

preconditioner changes each Newton iteration; the use of a stale preconditioner in the manner

shown above would not generally provide a converged solution. Additionally, it may not be

possible to obtain a starting point (or initial “guess”) for the Newton algorithm that lies

within the radius of convergence of Newton’s method. This latter difficulty is not unique

to the matrix-free method, the previous results shown for the additive and multiplicative

Schwarz algorithms are likewise highly dependent on the initial “guess.”

A technique labeled ”pseudo-transient relaxation” (see Section 3.6) may be employed to

increase the diagonal dominance of the system, which effectively increases the Newton radius

of convergence. Additionally, this technique also provides user control of the “damping” of

the Newton updates. This capability allows the change in the preconditioner each Newton

iteration to be reduced to better accommodate lagging of the preconditioner. Through this

mechanism, the “time step” may be selected to vary the number of Newton and Krylov

iterations required to obtain a solution. In effect, for a particular subdomain strategy, the

number of Krylov iterations per Newton iteration may be directly controlled. Independent

172

of the number of subdomains employed, the number of Krylov iterations may be bounded

below some arbitrary value 6 by the appropriate selection of the time step. This scheme has

the drawback of increasing the number of Newton iterations required for solution, in essence

“shifting” the work required for a solution from the Krylov algorithms into the Newton

algorithm. This will negatively affect the quadratic convergence of the Newton algorithm

seen in the previous results.

The results beyond this point should not be expected to correlate and, aside from scala-

bility, should not be compared to the previous work. The pseudo-transient relaxation scheme

cannot always effectively compete with a direct Newton-Krylov steady-state solution on a

problem where the direct method results in an efficient solution. However, the technique is

generally applicable, while the direct steady-state solution is not. Direct solutions may only

be achieved for simple, specialized problems. Additionally, without overlap or a coarse grid

operator, scalability of the direct methods cannot be achieved, as evidenced in the previous

two chapters.

6.2 Performance of the Matrix-Free Technique

Due to the excellent performance seen on the Cray C90 with the overlapped additive Schwarz

method, the initial examination of the performance of the matrix-free technique was limited

to this architecture. The Cray study commenced with an examination of a relatively small

problem, 32 x 160, with general parameters as listed in Table 6.2. This set of data difFers in

many ways from the earlier steady-state results in that a pseudo-transient technique was used

at a time step size of 1.0. Furthermore, a potential advantage of the matrix free technique

was used; the Jacobian and preconditioner were formed every five Newton iterations instead

Problem Description
Problem Size 32 x 160
Jacobian Updated 5 Newton Iter.

Pseudo Time Step Size 1.0
Inlet Mach Number
Residual Tolerance 1.0 x

1.0 x 10-1

Table 6.2: Parameters for the Cray 32 x 160 runs.

Num. Newton Avg. GMRES(L)

Subdomains Iterations Iterations

4 177 12

173

Table 6.3: 32 x 160 matrix-free simulation iteration behavior on the Cray (1 x n stripwise
blocking).

of for each iteration, as was previously required. Finally, the inlet Mach number was relaxed

to 0.1 for expediency.

Table 6.3 illustrates the Newton and Krylov iteration behavior for this new problem as

a function of the number of subdomains used in the preconditioner (with 1 x n stripwise

blocking). Again, this data suggests a decrease in preconditioner effectiveness as seen earlier,

and is evidenced by the increase in Krylov iterations with the number of subdomains.

Table 6.4 shows the performance data of this problem with the 1 x n blocking, on four,

eight, and 16 processors, respectively. Note the use of eight processors with only four pre-

conditioner blocks. For the matrix-free technique as implemented, possibly contrary to one’s

initial impression, the use of more processors than preconditioner subdomains may be jus-

tified and results in performance advantages. Recall that the degree of parallelism for the

additive Schwarz preconditioner formation and application routines is identical to the num-

ber of distinct subdomains used to construct the preconditioner. The Jacobian possesses a

174

Total Jacobian GMR.ES(L) Precond. mfmatmul
Time Portion Portion Portion Portion

1 x 4 blocking - Mem. req. 65 Mbytes

Mode (sec.) (sec.) (sec.) (sec.) (sec.)

Serial 1120 157 960 187 613
4 proc/Speed-up 38312.9 4313.7 33712.8 5913.2 19313.2
8 proc/Speed-up 50412.2 21/7.5 48012.0 5913.2 36511.7

1 x 8 blocking - Mem. req. 65 Mbytes

Serial 1495 I 157 I 1335 I 106 I 1025
8proc/Speed-up 29115.1 I 22/7.1 I 26615.0 I 1517.1 I 18315.6

1 x 16 blockintz - Mem. rea. 65 Mbvtes
v A "

Serial 2940 157 2780 76 2334

16 proc/Speed-up 49815.9 2117.5 47515.9 918.4 35416.6

Table 6.4: Speedup values for 32 x 160 problem.

higher degree of parallelism, usually equal to the number of discretization cells along the 2

or y axis of the problem (z or y due to the nested loop structure of the Jacobian routine that

consists of an indexed traversal over the two-dimensional domain). The matrix-free routine is

structured quite similarly to the Jacobian formation routine. As such it has a similar degree

of parallelism.

Previously, only the Jacobian and preconditioner routines were parallelized (the SGI re-

sults included parallelization of the matrix-vector product routine also). It was argued that

as the preconditioner came to dominate execution time with growing problem size (the pre-

conditioner requires roughly O(n3) operations versus roughly O(n2) for the Jacobian), the

parallel performance of the code would approach the degree of parallelism of the precondi-

tioner (with infinite problem size). Clearly, if this is the case, the preconditioner limits the

scalability of the simulation code. The sole addition of the matrix-free technique does not

change this behavior, because the number of operations is polynomially less than for the pre-

conditioner (similar to the Jacobian). However, as discussed previously, it may be possible

175

to forgo the Jacobian and preconditioner formation each and every Newton iteration. This

concept suggests that under certain conditions it is conceivable that the number of precon-

ditioner formations may be reduced to the point that this routine no longer dominates the

simulation.

Returning to the data, the four-processor run resulted in the minimal runtime and the

greatest parallel speedup overall (2.9). The use of four additional processors (again, only used

to full effect in the Jacobian and matrix-free routines) slowed execution time. Considering

the Jacobian time alone, a respectable speedup was obtained when moving from four to eight

processors. The time spent on the preconditioner did not change (the degree of parallelism did

not change and only four processors were used to full effect). However, the time spent in the

GMRES routine (r e d that mfmatmul is contained within GMRES) increased substantially

with the increase in processors. Because the mfmatmul algorithm is the only parallel section

contained within GMRES, it is quite likely that this algorithm alone is responsible for the

decrease in efficiency inside GMRES. Finally, as the mfmatmul algorithm has a degree of

parallelism similar to the Jacobian routine, this efficiency decrease is surprising.

The lower sections of Table 6.4 illustrate the performance on this problem using 8 and

16 block preconditioners on 8 and 16 processors. Again, the serial time increases due to

the degradation of the preconditioner requiring more Krylov iterations as the number of

subdomains increases. As the number of Krylov iterations is increased, the number of caJls

to mfmatmul increases, translating to increased time in this routine. The decrease in the

total preconditioner time is not unexpected due to the decrease in the size of each subdomain

with increasing decomposition. Because the number of Newton iterations is independent of

the number of subdomains, the preconditioner routine is called a constant 177 times for each

blocking strategy.

176

Problem Description

Problem Size 64 x 320

Jacobian Updated 10 Newton Iter.
Pseudo Time Step Size 0.5

Inlet Mach Number 1.0 x 10-1
Residual Tolerance 1.0 x 10-4

Table 6.5: Parameters for the Cray 64 x 320 runs.

From the parallel results on this problem, it is evident that the Jacobian and precondi-

tioner routines scale quite well to eight processors, but not beyond. The mfmatmul routine

offers a reasonable performance boost for up to eight processors (a speedup of 5.6). Because

the GMRES portion consists of the preconditioner time plus the mfmatmul time and some

serial time, the overall GMRES time reflects a bit lower performance than mfmatmul alone.

However, mfmutmul appears to dominate this algorithm at this problem size.

Table 6.4 indicates that further work in mapping the mfmatmul algorithm to the Cray

should be performed. The degree of parallelism of mfmatmul is limited only by the problem

size. Thus, it is quite likely that a memory contention problem is negatively affecting the

results, especially for 16 processors. The eight-processor, four-subdomain case clearly indi-

cates a mapping problem within the algorithm that appears to be strongly influenced by the

number of subdomains within the preconditioner.

To summarize this smder problem, the eight-processor parallel run using 1 x 8 precon-

ditioner blocking resulted in the minimal solution time. Furthermore, this particular dataset

indicates that a level of scalability is achieved for up to eight processors, but not beyond.

Table 6.5 specifies the input parameters to a similar 64 x 320 C90 run using the matrix-

free techniques. The iteration behavior of the larger problem is shown in Table 6.6. Note

that distinctly fewer Newton iterations are required for this larger problem. This behavior

177

92 30
16 92 76

Table 6.6: 64 x 320 matrix-free simulation iteration behavior (n x 1 stripwise blocking).

is due to a “larger” convergence criterion for the overall solution, 1.0 x for this larger

problem in contrast to 1.0 x for the smaller. The convergence criterion was modified not

for algorithmic, mapping, or performance reasons, but to decrease the execution time of each

of the simulations (the monthly Cray time available for this work was limited). Furthermore,

the blocking was changed from 1 x n to n x 1 to reduce the memory requirements of the

larger problem. These tolerance and blocking differences between datasets prevents detailed

comparisons between the two problem sizes. However, some general comments may be made.

Total Jacobian GMRES(k) Precond. mfmatmul

Time Portion Portion Portion Portion

4 x 1 blocking - Mem. req. 133 Mbytes

Mode (see.) (see.) (see.) (sec.) (see.)

Serial 2353 215 2128 103 1712
8 proc/Speed-up 117512.0 2817.7 113711.9 2713.8 1009/1.7

8 x 1 blocking - Mem. req. 70 Mbytes

Serial 3756 216 3530 79 3010
8 proc/Speed-up 61516.1 31/7.0 574/6.1 1017.9 440/6.8

16 x 1 blocking - Mem. req. 38 Mbytes
Serial 8586 216 8360 66 7300

16 proc/Speed-up 178114.8 38/5.7 173414.8 10/6.6 138815.3

Table 6.7: Speedup d u e s for 64 x 320 problem.

Table 6.7 shows the execution data for this larger problem. With the larger problem,

the trends and subsequent interpretation are quite similar to the smaller problem. Again,

the eight-processor, eight-block case resulted in a minimd execution time. The scalability

178

to eight processors on this larger-grained problem improved somewhat (a speedup of 6.1 was

achieved on eight processors).

From the above data, it is apparent that the matrix-free technique in conjunction with

pseudo-transient relaxation results in a better performing, more robust solution method than

the direct method.

1. The pseudo-transient technique increases the Newton sphere of convergence, allowing

the use of the Newton-Krylov solution on a wide variety of challenging problems.

2. The matrix-free method may eliminate the need to form the Jacobian and precondi-

tioner each Newton iteration. Judicious use of this capability has the potential to reduce

the influence of the preconditioner and Jacobian formation on the execution time of the

overall solution.

3. The use of matrix-free techniques in conjunction with pseudo-transient relaxation d-

lows "tuning" of the number of Krylov iterations per Newton step, at the expense of

increasing the total number of Newton iterations and the loss of superlinear conver-

gence.

4. Overall solution scalability has clearly improved; the 64 x 320 problem using 8 blocks

and 8 processors yielded a speedup of 6.1, the best results to date. Scalability to 16

blocks on 16 processors, however, appears unlikely.

With these points in mind, the matrix-free solution performs quite well on up to eight

processors. At this point, considering the above data and the scalability difficulties that were

observed with the additive Schwarz preconditioner, efforts to enhance the scalability of this

method should be directed along two paths: (1) mapping of the mfmatmul algorithm to the

hardware and (2) examination of the preconditioner scalability issue.

179

The mfmatmul algorithm has a high degree of parallelism. This routine should scale

well beyond the current eight-processor limit. Again, this is a mapping problem of the

algorithm to the hardware; the memory access patterns and granularity of the algorithm

currently prevent scalability. A similar problem was addressed earlier in this study within

the Jacobian construction routines. mfnaatmul has a very similar character to the Jacobian

construction routine but accesses the banked memory of the Cray in a very different manner.

Due to the complexity of this algorithm, rework to effectively reduce this contention problem

is non-trivial and will require a significant amount of further research.

The scalability of the additive Schwarz preconditioner (manifested by the increase in

Krylov iterations with the number of subdomains) must also be addressed at some level.

Three potential possibilities are apparent.

1. Use of the matrix-free technique in conjunction with pseudo-transient relaxation to

reduce the number of preconditioner formation steps to a minimum. From the results,

this is clearly a promising option. However, it is not clear if it will be effective on every

problem. Furthermore, it is very likely that an optimal formation strategy exists (it may

be quite difficult to compute, however). If the preconditioner is formed more often than

necessary, the increased convergence rate of the overall solution does not offset the work

required to form the preconditioner and the result is below optimal performance. If a

new preconditioner is formed too seldom, the deterioration of the overall convergence

rate will quickly overcome any savings of preconditioner formation time (if the solution

converges at all). Realistically, an algorithm to compute the optimal preconditioner

formation frequency will likely be strongly problem and method dependent. Currently,

an attempt to approach this ideal amounts to an iterative optimization problem over

180

Problem Description
Problem Size 32 x 160
Jacobian Updated 5 Newton Iter.
Pseudo Time Step Size 1.0
Inlet Mach Number

Residual Tolerance 1.0 x
1.0 x 10-1

Table 6.8: Parameters for the SGI 32 x 160 runs.

a multidimensional computational surface. Finally, it is certainly not clear that the

influence of preconditioner formation can be reduced sufficiently to achieve scalability

for a given (or arbitrary) problem.

2. As mentioned earlier, it is not necessary to capitalize on the available processors by

selecting a preconditioner that uses an equivalent number of subdomains. In fact, one

of the above data points illustrated the use of 8 processors on a 4 block preconditioned

simulation (recall that the Jacobian and matrix-free algorithms can use all the available

processors to full advantage, but during the preconditioner stage only a number of

processors equal to the number of subdomains can be used). This attempt did not

appear to provide any advantage for the single case considered, largely due to the poor

performance of the mfmatmul algorithm. Lf this problem can be corrected, the reduced

block concept has some potential (especially if it is combined with the first item, above).

3. Again, as mentioned in the direct solution results previously, the preconditioner degra-

dation problem can be addressed directly with the use of a coarse grid/fine grid tech-

nique.

The performance of the Newton-Krylov additive Schwarz matrix-free techniques were next

studied on the SGI Onyx. Table 6.8 lists the parameters for the 32 x 160 simulation. Note

that the convergence tolerance has been returned to 1.0 x and that the preconditioner

181

Newton Avg. GMR.ES(k)
Subdomains Iterations Iterations

177

Table 6.9: 32 x 160 matrix-free simulation iteration behavior (n x 1 stripwise blocking).

Total Jacobian GMRES(L) Precond. mfmatmul
Time Portion Portion Portion Portion

2 x 1 blocking - Mem. req. 33 Mbytes

Mode (sec.) (sec.) (sec.) (sec.) (sec.)

Serial 3646 467 3169 427 1094
2 proc/Speed-up 187211.9 19512.4 1667/1.9 22011.9 57411.9
4 proc/Speed-up 1746/2.1 103/4.5 163311.9 299/1.4 312/3.5

4 x 1 blocking - Mem. req. 17 Mbytes
Serial 5044 651 4384 178 2508

4 proc/Speed-up 139213.6 18013.6 119813.7 4613.9 492/5.1

Table 6.10: Speedup values for 32 x 160 problem on the SGI.

is updated every 5 Newton iterations. In a similar vein to the Cray results, Table 6.9 reports

the iteration behavior of the Newton-Krylov technique. The increase in Krylov iterations

with the number of subdomains is again clearly evident.

Table 6.10 illustrates the solution execution times for variants of the model problem. In

this case, 2 x 1 preconditioner blocking was examined using both two and four processors.

Finally, a solution was achieved using a four block preconditioner with four processors em-

ployed. In this case, the four block, four-processor configuration minimized runtime at 1392

sec. (a speedup of 3.6). A major portion of this result is probably due to the superlinear cache

performance exhibited in mfmatmul for this execution (a speedup of 5.1 on four processors).

Similar to the direct additive Schwarz steady-state solution considered early in this study,

these algorithms are scalable to four processors on this architecture.

Unlike the behavior exhibited by the Cray results, the two-block, four-processor results

182

indicated that it may be useful to consider this execution mode on cached architectures (recall

though that the Cray results compared 4 blocks on 4 and 8 processors). However, this mode

did not result in the minimal runtime nor maximal speedup. The Jacobian routine scaled

well, and the mfmatmul algorithm did not exhibit the mapping problems to the degree seen

on the C90. However, on this problem, the preconditioner time is a major portion of the

overall runtime (also unlike the C90). The speedup reduction from 1.9 to 1.4 on this routine

(likely due to cache behavior) was a factor in the overall performance; the mfmatmorl speedup

of 262 sec. was partially offset by the 79 sec. increase in preconditioner time, resulting in a

GMRES improvement of only 34 sec. A meaningful comparison of this concept between the

SGI and Cray is not possible with the available data. It is quite likely that an examination of

this mode on a larger (in number of processors) SGI would result in the same behavior seen on

the Cray. It is clear that this mixed block/processor mode would not currently be of interest

in comparison with the four-block, four-processor results without further work on mapping

the preconditioner and mfnaatmul algorithms to the hardware under these conditions.

6.3 Summary

Recall that the matrix-free technique, in conjunction with pseudo-transient relaxation, was of

interest to both increase the robustness of the overall solution technique and provide better

overall solution scalability than the direct additive Schwarz solution examined previously.

Pseudo-transient relaxation offers an increased sphere of Newton convergence (to provide a

more general solution method) and allows user control of the Newton convergence behavior.

The matrix-free method enables a linear solution without explicitly forming the Jacobian

matrix. However, it was immediately obvious that the Jacobian was required to form the

183

preconditioner. It was also evident that it may not be necessary to form the preconditioner

for each and every Newton iteration. In fact, depending on the problem, one can use a

“stale” preconditioner judiciously to decrease the influence of preconditioner scalability on

the solution algorithm.

The use of the matrix-free method resulted in scalable solutions on up to eight processors

on the Cray C90, and four processors (all that were available) on the SGI Onyx. The Cray so-

lution clearly did not scale to sixteen processors, both due to the increase in Krylov iterations

with increasing number of subdomains and mapping problems (likely memory contention) of

the mfmatmvl routine to the C90 processors. It is clear from these results, however, that con-

sidering robustness, memory requirements, and scalability issues, the matrix-free technique

as implemented is superior to the direct additive Schwarz solution described previously.

184

Chapter 7

Conclusions

This dissertation is logically divisible into two parts; a theoretical outline of the methods and

model problem followed by results and discussion of the mapping of the employed techniques

on the pardel machines studied. In this final chapter it is valuable to examine a summary

of this study and how successfully the results addressed the goals of this research. Most

importantly, it is necessary to examine the theoretical development and results with a critical

eye towards the goals of the research, address any shortcomings, and suggest a path (or paths)

for further research. I

The introduction of this work provided an overview of the importance of the efficient

solution of the Navier-Stokes equations to many industries and areas of science. Given this

information, the process of obtaining a solution to these equations using discrete techniques

was examined. It was argued that an implementation of an inexact Newton-Krylov-Schwarz

technique could be a promising path for the solution of equations of this type. As stated

in the introduction, the memory requirements and CPU time needed for the computation

of Navier-Stokes discrete solutions limit the utility of the techniques (including the Newton-

Krylov-Schwarz method). Finally, the use of parallelism to decrease the severity of these limits

185

(particularly the clock time required per solution) was suggested as a potential technology

to allow larger, more complex, and more accurate simulations.

The target of this research was the development and study of an “n 5 16 scalable parallel

linear system solution technique for use with a Newton-Krylov non-linear algebraic solution

method.” More specifically, the following goals were listed in the introduction:

1. provide robust, parallel solutions to steady-state viscous compressible flow on a backward-

facing step at a Reynolds number of 100 and inlet Mach number of 0.0025,

2. investigate the mapping of various implementations of Newton-Krylov-Schwarz solution

algorithms on the Cray C90 and SGI Onyx,

3. examine a parallel matrix-free implementation of the above methods, using pseudo-

transient relaxation in conjunction with a lagged Jacobian and preconditioner forma-

tion strategy to reduce the influence of the preconditioner formation on the algorithm

execution time, and

4. suggest an “optimal” hardware configuration for parallel Newton-Krylov-Schwarz Navier-

Stokes solutions of this type.

With the exception of the final topic (to be discussed later), this work remained faithful

to the goals initially posed in the introduction. First, model problem was developed and

the discrete representation of the governing equations was derived. The action of the in-

exact Newton technique on the resulting non-linear system was investigated next, followed

by the derivation of the Schwarz preconditioning methods and a detailed explanation of the

Krylov linear system solution process. Finally, the concepts of pseudo-transient relaxation

and the matrix-free technique were examined in detail. These analyses form the theoretical

component of this study.

186

The second component of this work was devoted to an experimental examination of the

pardel performance of implementations of the aforementioned concepts. Numerous simu-

lations on the architectures of interest were presented along with discussions of the results.

To remain faithful to the goals of this work, all that remains is a summary of the results,

a discussion of further study topics, and a qualitative discussion of hardware features that

could be useful for future simulations of this type.

7.1 Optimal Architecture

The results of this work indicate a solution scalability to four processors on the SGI Onyx

(recall however that only four processors were available) and eight processors on the Cray C90.

Most, if not all, of the suggestions on how scalability could be extended to more processors on

each architecture were couched in terms of, algorithm and algorithmic mapping improvements.

This is a very reasonable approach, as scalability beyond this point was negatively affected

by preconditioner degradation, inefficient memory access behavior, and a lack of available

parallelism within the Krylov technique. Furthermore, the software (and algorithms) is the

only area within the control of the computational scientist. On the other hand, it may be

possible to add hardware features or modifications that assist with algorithmic efficiency and

mapping issues or &ow the scientist more latitude with algorithm modifications. This section

suggests possible hardware changes, additions, or improvements that could prove helpful in

achieving scalable performance of CFD solutions based on Newton-Krylov-Schwarz methods

or similar techniques.

Architecturally speaking, several general facts became apparent during this study.

0 The Cray C90 ardhitecture performed very well, overall, on this problem. Its archi-

187

tectural features, vector processing capability, memory access latency and bandwidth,

and development tools combined to result in a very satisfactory environment for the

simulation research. The Cray ran larger problems and achieved much faster rates than

the SGI. For the computational scientist or developer, the compilers, analysis tools,

and development environment on the Cray are second to none.

0 Cache-based architectures may yield better than expected performance if the cache size,

problem size, and number of processors can be selected to optimize cache hit ratios.

The superlinear speedup obtained on particular problems due to cache effects on the

SGI certainly provided an interesting result. It is an open question if these effects could

be utilized to achieve better scalability in a system with greater parallelism, perhaps

mitigating a portion of the algorithmic and mapping difficulties encountered.

0 Efforts to increase granularity and decrease memory contention on banked vector ma-

chines increased vectorization effectiveness and parallel performance, often in unpre-

dictable ways. Significant decreases in execution time appear possible by considering

architectural details.

0 The decline in popularity of vector processors suggests to many that modern superscalar

processors may be approaching a performance parity with vector capable hardware.

This conclusion may be true for certain applications, however it did not appear to hold

for this study. Early work on vectorizing the code for the Cray quickly reaped significant

performance benefits with this loop-laden, indexed array intensive simulation code.

This result suggests that symmetric multiprocessor (SMP) vendors may be premature

in dismissing vector capability for large scientific codes of a similar nature.

0 Extreme memory capacities may be necessary to run larger problems.

188

0 Throughout this study, the importance of dedicated access to both machines was ob-

vious. It became difficult to obtain consistent results (and likely meaningful results)

as the multiuser workloads grew heavy. It is likely not realistic to expect acceptable

parallel application performance on heavily loaded machines.

It is also apparent that, given the Newton-Krylov-Schwarz algorithms as implemented

in this study, neither of the two architectures were optimal for the solution of the model

problem.

a The SGI was limited by the number of available processors (four). It was not possible

to assess its performance in comparison to the Cray with 8 or 16 processors, or examine

in detail the scalability of the cache effect.

0 The R4400 processors employed on the SGI had a significant performance disadvantage

when compared to a Cray processor. The Cray had a clock cycle advantage over the

SGI, 4.2 ns. versus 6.6 ns., but the vector units and memory systems in combination with

other effects allowed the Cray to perform much better than the clock cycle difference

would seem to indicate.

0 Efficient memory access was difficult to achieve on the Cray. The memory contention

problems initially encountered in parallelizing the Jacobian appeared time and again

at greater levels of severity as the scdability study increased in number of processors

considered. These contention problems, while relatively easy to visualize in a simple

loop construct, become very difficult to mitigate in this application due to access pattern

complexity.

0 In comparison to Cray’s offering, the programming tools and compilers available on

the SGI were lacking features and usability. The Cray compilation system supported

189

a large number of modes, options, and directives that allowed user specification of

minute details of the optimization process. The SGI system was not nearly as flexible.

Methods that would allow the user to greatly increase the system performance, such

as filling the delay slot on branches and explicit inlining of particular routines, could

not be easily specified to the compiler. Analogous operations on the Cray system were

easily accomplished. Of particular interest was Cray’s vectorization analyzer. This

tool provided a listing that indicated the loops that vectorized, and more importantly,

which did not. The reasons why vectorization was inhibited were explained, typically

listing the offending variable on the offending line. Throughout the entire analysis (and

barring user enthusiasm), the compiler never vectorized a routine incorrectly to produce

a logic error.

0 Both machines were limited by the quantity of main memory.

Any comparison of this type quickly becomes somewhat subjective. To determine, beyond

a certain margin of error, the optimal architecture relies on a qualitative interpretation of the

phenomenon encountered, the correct understanding of the phenomenon, and the derivation

of a reasonable solution to correct the observed behavior. With this process in mind, one could

quickly surmise that a combination of two technologies, a data caching mechanism similar to

that seen on the SGI and the Cray hardware/software system, has a strong potential to yield

a near optimal scenario.

All of the data seemed to suggest that the Cray hardware was near optimal, except

when granularity (Le. pardel overhead) or memory contention issues were encountered.

The memory access system and its performance on this machine was quite impressive, even

considering the access problems encountered. The mfmatmul algorithm would not scale to 16

190

processors due to memory access difficulties. This is a very complex algorithm that accesses

all of the state variables in each of the discretization cells and all the corresponding "Jacobian-

vector" locations each Krylov iteration. Considering this amount of data being accessed by

two vector units on each of 16 processors with a cycle time of 4.2 ns. in a concurrent fashion

is a bit overwhelming. The SGI system was not tested under conditions even remotely

comparable (recall that the SGI uses a banked memory system on a proprietary bus accessed

by four superpipelined superscalar processors running at a rate of 6.6 ns. through a distributed

cache system).

It is quite likely that the addition of a local processor cache to each Cray processor could be

used to good effect on scalar memory accesses, even on the SRAM-based C90. These scalar

accesses cannot be accomplished efficiently using vector memory access; experience with

workstations (and SMPs) indicate that data locality (optionally with a pre-fetch capability)

best addresses these types of loads and stores. A distributed cache capability on the Cray

should behave similarly. Additionally, this hardware could potentially reduce bank contention

and provide more bandwidth for vector accesses.

It is not immediately obvious that it would be beneficial to use cache for vector accesses.

Vector accesses can be accomplished at the rate of a single location per clock cycle on the

C90 architecture (ignoring start-up time and contention). In the ideal case, the access time

for a vector element cannot be improved further with cache. However, if vector accesses can

be limited to the local processor cache, bus traffic will substantially decrease along with the

vector load and store bank contention problem (see Appendix A). An overall efficiency gain

with vector caching would require the decrease in contention and bus traffic to overwhelm the

overhead of implementing a vector-based cache coherency mechanism. Vector (array) accesses

&o tend to migrate large amounts of data, especially in scientific applications. Experience

191

with workstations indicates that large accesses of this type, especially with non-unit stride, do

not map well onto small (or even moderately sized) caches [76]. The Cray system, however,

functions quite well under this sort of access. It is possible that an effective cached-vector

memory system would require a large amount of cache per processor. Clearly, there appears to

be justification in the further examination of a cached-vector memory capability for scientific

applications.

It may be valuable to construct some form of “virtual” vector memory system on the

Cray. To minimize contention, the arrays must be arranged in memory so that access to a

given bank is not attempted more than once per c clock periods (see Appendix A). This

can be accomplished by hand reasonably well for small applications. The Cray compilation

system can perform array and common manipulation as an attempt to mitigate contention at

compile time. This feature would likely be effective on small to mid-sized applications, as long

as the application is limited to one source file. The simulation code employed for this study

had multiple source files, with an include file containing the shared common definitions. With

this structure, the contention analyzer was ineffective and created useless code (because the

common definitions were included in each source file, the analyzer optimized each inclusion

for each particular source file, resulting in a loss of consistency on the common “memory

image” of the data). A more complete tool of this type, however, could prove effective in

addressing contention statically. It may be possible to employ specialized hardware to address

the contention problem dynamically, using an analysis of the memory access patterns to

move arrays around within memory. Clearly, this technique resembles a conventional virtual

memory system, as dynamic address translation would be required for memory access. The

dynamic system would incur some runtime overhead, but the efficiency improvement due to

a reduction in contention should easily offset this overhead. As a last point, extending this

192

dynamic translation may also evolve into a physically distributed, logically shared-memory

system. For hardware scalability much beyond the current Cray system, bus traffic will

mandate a distributed memory system. From an ease of programming standpoint, a shared-

memory programming model is desirable. Extension of the translation concept to a true

physically distributed system would be a logical path to address these concerns.

To summarize these ideas, consider the well-known “triangle” balance concept: processing

power, memory access, and 1/0 must be balanced to provide the optimal general-purpose

computer. The Cray system clearly provides more processing power in comparison to the

SGI (although for this application, more would be welcome). The memory system on the

Cray was designed to provide data to this aggregate processing power t o keep the CPUs

busy. However, for these algorithms as implemented, the effective memory access efficiency

was not sufficient to sustain scalable performance beyond eight processors. Clearly, the

hardware provided sufficient memory to CPU bandwidth with adequately low latencies, but

the algorithms as implemented could not take full advantage of the Cray hardware (due to

complex memory access patterns). It was discussed that software changes may not be the

optimal method to increase the scalability of the algorithms; hardware assistance along the

lines of s d a r caching and/or virtual vector addressing may prove helpful. Additionally,

virtual addressing may allow hardware scalability significantly beyond the level presently

implemented by facilitating a physically distributed, logically shared-memory system.

Finally, distributed memory machines (including massively parallel machines) have not

been examined in this study. Clearly, memory contention concerns will be significantly re-

duced on these machines, but communication time among processors (effectively ignored on

the shared-memory machines) will be significant considering the amount and distribution of

serial code remaining in the Newton-Krylov-Schware solution as currently implemented. In

193

fact, to achieve any level of meaningful performance on these architectures would require an

overall redesign of the simulation code. Additionally, a large number of processors cannot

be used for the preconditioner formation and application due to the degradation of the pre

conditioner quality as the number of subdomains is increased (recall the increase in Krylov

iterations as the number of subdomains increases). However, it is likely possible to implement

a matrix-free pseudo-transient solution that minimizes the importance of a scalable precon-

ditioner in conjunction with a parallel Krylov technique [42] on an architecture of this type.

Furthermore, work on a coarse grid preconditioner could mitigate or eliminate any scalability

problems along these lines at some point in the future. As such, barring the development

time of a distributed memory version of the simulation code, these type of architectures

could provide real benefits without many of the disadvantages seen with the hardware (more

correctly algorithm/hardware mapping) employed in this study.

This discussion is clearly hypothetical at this point. Much work (and a study similar

to this one) would need to be performed on a representative architecture of this type to

determine the feasibility of the approach, particularly in the area of preconditioning.

7.2 Summary of Results and Future Research Topics

The results were presented beginning with a study of additive Schwarz preconditioning, with

and without subdomain overlap. Multiplicative Schwarz preconditioning was investigated in

a similar manner. The final results examined were based on the matrix-free technique using

additive Schwarz preconditioning and pseudo-transient relaxation. This discussion will not

reiterate the material found in the previous chapters; only the salient points directly related

to the overall goals will be summarized.

194

Newton-Krylov-Schwarz algorithms were used to solve a model problem of compress-

ible 2D flow past a backward-facing step. Par&el/vector aspects of the solution algorithm

were exploited on a 16 vector processor Cray C90 computer and a 4 processor cache-based

SGI Onyx. The first results examined a direct steady-state solution using additive Schwarz

preconditioning. A study of the algorithms indicated that the Jacobian formation and pre-

conditioner formation and application routines were readily pardelized.

Observations indicated that the Jacobian formation routine performed well in parallel

for two and four processors on the C90. However, this routine did not scale well beyond

four processors, and exhibited poor performance on eight processors. Because the Jacobian

formation algorithm is inherently parallel, the poor scalability beyond four processors was

attributed to memory contention during the Jacobian update operations. The linear solution

operation time (the preconditioner formation and TFQMR iterations) increased as the num-

ber of preconditioner subdomains was increased beyond four on the 64 x 320 volume model

problem (81,920 unknowns). Two factors were identified to explain this behavior.

0 On the 8-processor C90 test case, the formation of the preconditioner contributes 14%

to the total linear solution time. Clearly, the bulk of the linear solution routine remains

serial.

0 As the number of subdomains increases, the number of TFQMR iterations required to

solve the system (Equation 1.18) increases substantially. This behavior indicates that

as the number of subdomains used to construct the preconditioner is increased, the

effectiveness of the preconditioner decreases, requiring more iterations for solution. It

was postulated that this problem may be partially alleviated with the use of subdomain

overlap.

195

The second factor will quickly limit scalability of the solution beyond a small number

of processors. It was also suggested that it may be possible to obtain preconditioners that

scale more effectively with the number of subdomains, perhaps with: (1) an additive Schwarz

scheme with overlap, or (2) a multiplicative Schwarz implementation incorporating a col-

oring scheme to allow concurrent preconditioner formation. It was also suggested that the

use of a matrix-free pseudo-transient simulation may achieve scalability by allowing fewer

preconditioner formation operations per full simulation.

The SGI Onyx 32 x 160 simulation exhibited superlinear speedup due to cache effects on

the two-processor runs. It was verified that this superlinear effect could be achieved with four

processors in the Jacobian formation if the problem was scaled to 64 x 320. Scaling alone

did not provide a superlinear speedup in the TFQMR routine or the overall results on four

processors, however. It was acknowledged that the TFQMR routine had not been optimized

for maximum granularity, cache hit efficiency, or to minimize the serial code currently in the

routine. With these changes, it is not clear that overall superlinear speedup can be achieved

with four (or more) processors.

In comparison with the two and four processor Cray results, it appeared that the SGI pro-

vided better scalability with additive Schwarz techniques. It is possible that these techniques

map better to a cache-based architecture. However, it is not possible to firmly conclude this

point with this limited data and using the SGI Onyx due to the multitude of other differences

(primarily processor speed and lack of vector capabiities) between the Onyx and the C90.

The data certainly suggests that when minimal runtime (ignoring pardel scalability) is of

concern, the Cray is the ideal platform. For the 64 x 320 four-processor run, the Cray is an

order of magnitude faster.

Several additive Schwarz simulations were performed using overlap. Furthermore, signif-

196

icant code and algorithm changes were performed on both the Jacobian and preconditioner

routines in an attempt to increase the parallel granularity of these algorithms on both archi-

tectures and to decrease memory contention on the Cray. These changes were quite effective.

Subdomain overlap decreased the total number of TFQMR iterations and the rate of

growth in iterations with an increase in the number of subdomains.

0 The combination of code modifications and higher granularity due to larger overlapped

subdomains resulted in a speedup of 14.3 in the Jacobian section and 13.5 in the pre-

conditioner on 16 C90 processors.

Clearly, this data shows that the both the Jacobian and preconditioner scale with reasonable

efficiency to 16 processors. However, the overall solution did not scale well, a speedup of only

4.9 was achieved. The significant amount of serial time remaining within the TFQMR routine

overwhelms the parallel preconditioner time. Furthermore, it was also obvious that due to

the severe memory requirements of overlapped subdomains, this technique is likely only of

interest when memory requirements are not an issue. As such, overlap was abandoned as a

method to ensure precocditioner quality with additive Schwarz.

A similar study of multiplicative Schwarz with and without overlap was performed. It

was quickly determined that on a degree of parallelism basis, multiplicative Schwarz offered

no advantages over additive Schwarz on the model problem. Again, overlap resulted in ex-

treme memory requirements, and was abandoned. Due to this result, multiplicative Schwarz

preconditioning was not addressed further within this study.

At this point in the study it was apparent that scalability could not be achieved effectively

by concentrating on the preconditioner routines done. Furthermore, the model problem,

while numerically challenging to solve, was very simplistic in comparison to those problems

197

of current research interest. As such, a method combining a matrix-free solution technique

in conjunction with pseudo-transient relaxation was developed to address both issues.

The effect of the preconditioner on the overall solution algorithm was decreased by Yag-

ging” preconditioner formation operations, i. e., the preconditioner was updated every rn

Newton iterations instead of each iteration. This method was successful and effectively ad-

dressed both the robustness concern for more complex problems and provided an overall

speedup of 6.1 on 8 C90 processors. This results in an overall scalability to eight processors1,

with a parallel efficiency of 76% overall. Clearly, this result appears quite promising. An

attempt to examine Scalability to 16 processors was not successful, largely due to a marked

mapping difficulty with the matrix-free algorithm on the C90 architecture. It was postulated

that this is again due to memory contention (similar to the problem experienced earlier with

the Jacobian algorithm). However, due to the memory access complexity of this routine, it

is not likely that the contention problems can be easily solved.

The goal of achieving scalability to n 5 16 processors remains somewhat elusive. Clearly,

despite the fact that access to the C90 was not dedicated, scalability to 8 processors was

demonstrated (these results were not corrected in any way for the multiuser workload). The

results also indicate that scalability beyond this point is very unlikely. As of this date, this

issue may not be of paramount importance to the practicing computational scientist solving

these problems; Crays over 8 processors are quite expensive both from an initial expense

perspective and a usage/maintenance viewpoint (CPU time is often charged as a multiple of

the number of processors employed) and SMP workstations beyond 8 processors are very rare.

In the future, however, scalability beyond 8 processors will likely become quite important.

Again, computational scientists wish to perform simulations in a minimal amount of time

‘Appendix A discusses the Scalability metric used.

198

within the resources available. This work has concentrated on the first desire, but has not

neglected the second (overlap was abandoned due to memory requirements). Simulations are

usually constrained both by memory and time limits. In fact, this study quickly found that

it is not possible to solve problems of any interesting size while being limited to 256 Mwords

(2 Gbytes) of Cray memory. As the model problem was scaled in size, the memory limit

was reached long before the simulation time for the solution became an issue (an analogous

problem was encountered on the SGI with its 1 Gbyte of main memory). Furthermore, on

the Onyx, a configuration parameter or operating system limit did not allow access of the

total main memory fkom a single process on the benchmark machine.

Unfortunately, this study appears to have posed more questions than it has answered.

There are many opportunities for future research in this area; ranging from the physics of

the problem to specialized hardware tailored for these techniques. Along the theme of this

work, three areas of paramount interest are immediately evident.

0 Reduction of the memory requirements of this solution technique for a given problem.

The use of an inexact subdomain linear solution technique (perhaps ILU versus the

implemented LINPACK Gaussian elimination) would be a promising initial candidate.

a Modification of the preconditioner algorithm to prevent (or decrease) the decay in

preconditioner quality as the number of subdomains is increased. The use of a coarse

gridlfine grid scheme may be an initial approach.

a Hardware or algorithm changes to enhance the scalability of the matrix-free routine.

a Development of a parallel Krylov solution technique for this architecture class.

0 Mapping these techniques to a distributed memory architecture with significant per-

199

processor performance (the IBM SP2, Convex Exemplar, Cray T3E, etc.).

Finally, to provide a closing perspective, the model problem studied requires a very pow-

erful preconditioning technique due to the low Mach number inlet condition. If this were

not the case, better scalability results could certainly have been achieved. As such, the

model problem selected demonstrates the "worst-case" scalability that would be obtained

with these techniques. It is evident that the results and conclusions of this study are specific

to the model problem. However, these results may be applicable to a much wider variety of

situations if the results are viewed as a lower-bound to the performance that may be achieved

on a "general" simulation.

In any event, this area of research appears quite promising and is fertile for further

work and discoveries, especially as hardware improvements in conjunction with improved

parallel preconditioner algorithms are developed over time. This author has only been further

stimulated by this study to pursue future work in this area.

200

Appendix A

Some Mechanics of Shared Memory

Parallel Computation

This study has focused on the shared-memory parallel solution of a specific problem using

parallel algorithms. The research on this problem has resulted in the collection of a substantial

amount of material addressing this topic.

In essence, this work has reinforced the concept that the development of efficient parallel

algorithms is an integral portion of obtaining efficient parallel execution on hardware of in-

terest. Clearly, the concentration of this work on the algorithmic theory and the presentation

of the performance results has not adequately addressed the many implementation and ar-

chitectural issues that proved important in this study. This appendix seeks to summarize the

implementation and architectural issues encountered in the implementation of the solution

algorithms on the various architectures examined.

This appendix is intended to present a general implementation and architectural overview

based on the empirical data obtained from this study and the experiences therein. As such,

201

an attempt was made to generalize problem specific behavior observed in this study to a

general form. As much of this information is based on observations under particular condi-

tions, they may not be generally applicable to all conceivable problems under all conditions.

Furthermore, proofs or theorems based on these observations are left for future research.

This appendix is organized as a set of notes, with the intention of providing a reference on

shared-memory pardel computation. Within this framework, this appendix is a summary

of some of the experiences of this author to date on applied parallel computation.

A.1 Applied Parallel Computation

In this context, applied parallel computation is the efficient parallel solution of large-scale

problems in a production shared-memory environment. To date, there is a growing body of

knowledge of the parallel solution of large-scale problems in a research environment. Many

of these efforts have been very successful and have clearly advanced the understanding of

specific problems under certain conditions. These successes have provided strong motivation

for further research in parallel computation, algorithms, and hardware in order to migrate

from research towards application/production.

Unfortunately, very little of this work has migrated from the research environment to

provide any significant impact in analysis tools. Engineering analysis is largely still accom-

plished using serial methods, as in the past. Although parallel computation is a popular

area, it cannot remain popular without clear analysis benefits. There are several reasons for

the lack of parallel analysis tools (and interest in pardel execution in general) outside the

research establishment.

1. Research has been focused on maximizing the performance of a particular problem

202

using the optimal algorithms to solve this problem. This is clearly very important,

as this work drives algorithm and hardware advances. However, the analysts do not

directly and immediately benefit. Analysis requires robust parallel algorithms capable

of solving a large variety of problems with little operator training. Research efforts

often solve a particular problem using finely tuned algorithms. These problems may be

less complicated or of a Werent nature than those of analysis interest. Additionally,

tuned solution algorithms often require significant changes for use on different problems,

requiring a high level of operator training.

2. Parallel capable hardware remains quite expensive. The very recent popularity of SMP

workstations indicates that this problem may not remain significant in the future. How-

ever, in the recent past, hardware that supports parallel execution of any kind (even

inefficient network interconnected resources) has been too expensive to make any impact

on engineering analysis.

3. Software supporting parallel execution is extremely expensive. The development of

seria3 software is very expensive and often beyond the reach of many engineering groups.

Even simple shared-memory capable software is many times more expensive to develop

and requires specially-trained personnel for development. Distributed memory parallel

software is yet more difficult and expensive (and is still mainly limited to pure research

areas).

4. Many analysts (and more importantly, engineering managers) do not entertain the

adkntages of parallel execution due to a lack of understanding of the process. In

some environments, computer simulation is not yet accepted as being a precursor to

prototyping as part of the engineering design process, let alone pardel execution of

203

simulation tools.

5. Clearly, some areas, tasks, and applications cannot use parallel simulation for a benefit.

If multiple executions of a tool are required to obtain a set of data (e.g., for a parametric

study), it is much more effective to run multiple serial executions on the available

processors rather than one parallel execution for each data point serially. In this case,

the multiple serial executions effectively maximize throughput, providing a “parallel

efficiency” of 100%.

These topics (and likely several more) must be adequately addressed for parallel processing

and simulation to achieve widespread popularity within engineering analysis.

A.2 Hardware Selection for Applied Parallel Computation

The performance of a particular code on a given platform is strongly dependent on the

structure, size, memory access patterns, layout, and style of the program, to name but a few

factors. Additionally, the performance of the code on a particular architecture is strongly

dependent on the design of the machine, and on how well the program exploits the available

performance Characteristics of the computer (i e . , how well the code mups to the architecture

of interest). As an example, it is often possible to construct two computer programs that

perform similar (or identical) tasks, yet execute quite differently on a given machine (consider

a program that exploits data l o d t y and has a very large cache hit ratio versus another

program that achieves virtually no cache hits). hrthermore, it is also usually possible to

construct a program that maps well to a particular machine design, but executes poorly

on a different architecture. In fact, one may concede that a machine with certain features

(machine “A”) is considerably faster than a machine with different features (machine “B”)

204

on a particular set of programs, yet encounter a particular program performing a similar

function that executes much faster on machine "B."

Clearly, the only way to select an optimal machine to run a particular code is a compar-

ative process of timing the execution of the code on all architectures that may be applicable

(i.e., "benchmarking"). This obvious technique, however, leaves much to be desired. Bench-

marking identifies the fastest machine for the given program on the input data examined on

the set of machines with the configurations tested. This result leads to several questions.

1. If the input data to the program is changed to double the memory requirements of the

execution, is the selected machine still the fastest of the group examined?

2. If the program is updated to a new, more effcient version with different memory access

patterns, is the machine still the fastest of the lot?

3. If the program is designed to model fluid flow and heat transfer in a piping system

using explicit solution techniques, will the selected machine be the fastest with another

program solving the identical problem using implicit techniques?

This set of questions clearly suggest that a general purpose computer system should be

selected by benchmarking the complete set of codes that will be run on the machine, usually

weighting the results based upon order of importance, selecting the machine that consistently

out-performs all others. This technique may be quickly dismissed due to the obvious cost of

performing an analysis of this magnitude. Is there some technique that may be employed to

select an optimal, or near optimal, general purpose machine for the workload of interest?

It is often elementary to construct a list of absolute requirements that must be met by the

system. This step allows the elimination of clearly unacceptable machines from consideration.

As an example, given a highly parallel program performing a Monte-Carlo technique or an

205

explicit fluid-flow calculation, a massively parallel system with thousands of processors would

likely be the fastest architecture by a significant margin. However, such a machine would

likely be very costly, possibly tens of millions of dollars. Additionally, the costs of executing a

program on the machine should be considered, as it would likely require a significant number

of man-hours of effort to manually modify a particular program to execute efficiently on the

machine. As of this date, machines of this type are generally only applicable to strongly

research-oriented environments; the ability of an ordinary user to develop and execute a

“production” application efficiently and cost-effectively on such an architecture should not

be assumed. As such, for most installations, the consideration of this architecture makes

little sense.

Toward the other extreme, the consideration of a PC or “workstation” class machine can

be quickly dismissed due to the limited processing capability and data throughput capacity of

the system. For example, consider a large number of simultaneous scientific applications with

a highly optimistic data requirement for each application; this scenario mandates a system

with a processor and bus capacity many times that exhibited by workstation class machines.

A.2.1 Requirements

The ability to handle a true multiuser scientific workload requires a machine (or an aggregate,

“cluster”) that can handle the processor needs of the applications and service input/output

(including memory access) requests without a significant degradation of “per application

level” performance. This capability must be accomplished for a reasonable cost (acquisition

cost plus maintenance costs plus any costs involved in moving applications to the machine

and modifications required for efficient execution). With this summary of needs, several

specific requirements are obvious.

206

0 Multiprocessor Capability. It is well known that in a batch, throughput environment,

matching available tasks with an equivalent number of processors maximizes throughput

(for a given application assuming no bus or resource contention). Some applications

may also be designed to support task-level parallelism; the use of multiple processors

to complete a task in less time than required for a single processor.

0 Large main memory. As a minimum, the system must contain memory sufficient to

execute the largest program. On a shared-memory system additional memory is usually

added to minimize memory contention under timesharing conditions. In their favor,

shared-memory systems also achieve better memory utilization for a given workload,

often maximizing the time between system upgrades and minimizing the system cost

by decreasing the aggregate memory requirements.

0 Upgradeability and expandability. The system should be readily (and inexpensively)

upgraded to newer, faster processors, more processors, and larger memory than the

base system.

0 Software development environment. Given an appropriately constructed application in

general form, the development environment (e.g., compilers) should generally create an

image that executes at peak efficiency on the hardware. As an example, given a parallel

application, the compiler must recognize the parallelism and construct an image that

executes efficiently on the available processors in pardel without user intervention or

manual code restructuring.

0 Reasonable costs. The system must be affordable in the initial purchase, later upgrades,

maintenance, licensing, and administration.

207

Machine
IBM RS/6OOO-R24 (71.5 MHz)

IBM POWER2-990 (71.5 MHz)
DEC 8400 5/300 (4 proc 300 MHz)

IBM POWER2 model 590 (66 MHz)
SGI POWER CHALLENGE (90 MHz, 4 proc)
Cray J916 (4 proc. 10 ns)
DEC 2100 5/250 (4 proc 250 MHz)
IBM POWER2 model 58H (55 MHz)

SGI POWER CHALLENGE (75 MHz, 4 proc)

IBM RS/6000-59H (66 MHz)

N = 100 (Mflops)
142

140

140

132

130

126

121

119

101

104

N = 1000 (Mflops)
246

254

1351

230

236

2045

743

317

197

993

Table A.l: LINPACK benchmark results for machines under (or near) $300K and over 100

Mflops performance (1/1/96).

For a general purpose scientific system, it makes little sense to consider any system that

is not competitive on a per-processor performance level with other machines in the price

range allowable. Ideally, one would immediately narrow down the machines that would be

considered to a set of the most desirable (say, the top 10 performers on the set of programs

of interest). As this difficulty of comparison has previously been discussed, perhaps the

machines could be ranked on performance based on a widely accepted (or at least understood)

benchmark that has some meaning to the scientific workload envisioned. Furthermore, this

technique may be quite valuable if it is used only to eliminate the consideration of clearly

unacceptable machines, not as a technique to select the “best” machine from a group.

Many scientific applications involve solving dense systems of linear equations. Many of

these applications employ calls to the LINPACK linear solution library. As such, a bench-

mark based on this library [7] may have some meaning to provide a rough comparison of

hardware. Table A.1 lists the machines within (and close) to the $300K purchase window,

with LINPACK N = 100 performance above 100 Mflops. The N = 100 level column is for

a small solution of order 100, allowing no changes to the benchmark program beyond what

208

the compiler itself recognizes and performs. As a side note, a problem of this size will almost

always fit in a moderate workstation cache. Additionally, as the LINPACK benchmark is not

explicitly pardel, a compiler is not likely to recognize any pardelism within the code; as

such these figures likely indicate performance on a single processor. The N = 1000 column

is a larger problem of order 1000 (may still result in a high cache hit ratio in a well designed

system). F’urthermore, unlimited changes to the code are allowed for this benchmark, as long

as the accuracy of the solution is retained. In the case of a multiprocessor machine, ven-

dor modification of the benchmark typically guarantees optimal performance in an efficient

parallel execution mode.

Discarding all machines below 100 Mflops single processor performance may at first seem

arbitrary; considering that the fastest machine in the group is capable of 142 Mflops, any

machines below 100 Mflops are then at least 30% slower than the fastest machine in the

range on the LINPACK single processor results. The line must be drawn somewhere, it

is not likely a very defensible position to purchase hardware that is 30% (or more) slower

than a competitor considering the importance of single processor performance in a scientific

environment. Based on this statement of requirements and a multiuser (30-50 users) scientific

workload, a minimal entry level system would likely consist of 4 processors, 40 Gbytes disk

storage, and 512 Mbytes main memory. Further enforcing the requirement that the initial

cost be under (or near) $300K, very few systems remain for consideration. As a side note,

the SGI machines with this configuration are somewhat above the $300K limit but aggressive

vendor discounting could allow them to meet the cost requirements; as such they will continue

to be considered at this time. The top four machines in parallel performance on the larger

benchmark are consequently the 90 MHz SGI, the DEC 8400, the 75 MHz SGI, and finally

the Cray (Table A.2). Of note, with modifications to the benchmark code allowed, the 90

209

Machine N = 100 (Mflops) N = 1000 (Mflops)
SGI POWER CHALLENGE (90 MRz, 4 proc) 126 2045
DEC 8400 5/300 (4 proc 300 MHz) 140 1351
SGI POWER CHALLENGE (75 MHz, 4 proc) 104 993
Cray J916 (4 proc. 10 ns) 121 743

Table A.2: LINPACK benchmark results for top four machines under (or near) $300K and
over 100 Mflops performance considering other imposed requirements.

Benchmark A - Multiples Faster than Y-MP/l

Machine EP MG CG FT IS LU SP BT Avg.

SGIP. CHAL. (90 MHz, 4proc) 2.88 2.09 1.35 1.73 1.61 1.77 2.35 2.65 2.05
Cray J916 (4 proc. 10 ns) 2.93 2.07 2.70 2.57 3.00 2-47 2.08 2.49 2.54

DEC 8400 5/300 (4 proc 300 MHz) 3.23 - - - - 2.10 2.37 2.92 2.66

Benchmark B - Multiples Faster than C90/1

Machine EP MG CG FT IS LU SP BT Avg.

SGIP. CHAL. (90 MHz, 4proc) 0.83 0.68 - 0.61 - 0.58 0.81 0.80 0.72
Cray J916 (4 proc. 10 ns) 0.86 0.69 0.81 0.82 0.93 0.85 0.73 0.72 0.80

DEC 8400 5/300 (4 proc 300 MHz) 0.93 - - - 0.65 0.76 0.80 0.79

Table A.3: NAS parallel benchmark results [2].

MHz SGI is fully 2.75 times faster than the Cray.

A similar exercise performed by consulting the NAS Parallel Benchmark [2] results in

the selection of basically the same set of machines, but different levels of performance and

rankings result (see Table A.3).

From this exercise, one becomes quite comfortable with the machines composing this

group likely being the optimal set for scientific computation of similar workloads, as the

benchmarks considered result in the selection of the same group. However, it is also quickly

apparent that differentiation between the machines based on benchmarks is a futile effort.

As such, can the benchmark results be combined with a knowledge of each architecture to

reason which machine would be most applicable to the scientific workload?

A.2.2 The Optimal Architecture

Clearly, the architectures of the Cray, DEC, and SGI fall into two categories. The Cray is

a shared-memory multiprocessor that directly accesses main memory via a bus without an

intervening cache subsystem. Due to the design of the interleaved memory system, the bus,

and the processors, the Cray can also pipeline memory accesses under certain conditions.

Each Cray processor, in addition to the usual pipelined scalar processing capability, has a

deep pipeline processing unit able to operate on multiple registers during a single operation

without encountering data hazards (Le., a “vector” unit) for those applications that can use

it. Based on this design, the Cray may be called a real memory multiprocessor.

The DEC and SGI machines place a local processor cache at each processor to attempt

to mitigate the usual main memory access penalty. In theory, given a suitable cache design,

the requested memory item will be found in the fast cache memory, eliminating the need

to access the item from the relatively slower main memory. Also, the processors implement

an instruction pipeline capability to perform scalar instructions in a minimum number of

clock cycles per instruction (similar to the scalar unit on the Cray). Additionally, this design

also implements the capability to issue multiple instructions each clock cycle (superscalar

operation), in contrast with the Cray’s vector pipelining. In theory, superscalar and vector

processing provides an equivalent execution efficiency, all things being equal. Due to the

experience with vector processing, compiler design, and the vector memory access system,

current superscalar designs may not always be competitive, performance wise (for evidence

of this, see the NAS Benchmarks in Table A.3). Because these machines implement a vir-

tual memory model (each memory transaction is translated to a physical address prior to

reference), these systems are often termed virtwzl memory multiprocessors.

211

Before considering the intricate details of each system and reasoning about the perfor-

mance aspects of the two designs, it is necessary to stipulate what is meant by the term

"scientific computation." Clearly, this category is strongly open to interpretation. In the

context of this report, scientific computation will be interpreted to involve simulation, mod-

eling, engineering analysis, solution of equations, numerical analysis, etc. This type of work is

often computed with the use of large, indexed data structures in the form of arrays. Depend-

ing on the application, of course, these arrays range widely in size. However, as simulation

needs become more detailed and precise, one increasingly encounters arrays greater than 100

Mbytes in size and complete executable images nearing 500 Mbytes. To summarize, it can

likely be conceded that the efficient processing of large array data types is a very important

aspect of scientific computation (perhaps the most important in many cases). Furthermore,

the expectation of a polynomial growth in the size of these data types in the immediate future

is also a defensible position, considering the move to three-dimensional analysis.

A.2.3 The Comparison

At the processor design level, it is easy to enter a discussion about the strengths and weak-

nesses of the Cray real memory approach versus the cached virtual memory approach. There

are dearly many significant operational details that may be exploited by an application to

provide a certain level of performance. However, these differences tend to be very application

specific; the advantages of one design on an application often is a disadvantage for a different

application. Reasoning about a general purpose azchitecture using a suite of dynamically

changing codes using these details is likely not overly productive, in general terms.

As of this writing, the vector real memory approach has one clear and substantial advan-

tage over the cached approach for large scientific codes, the memory access system. Vector

unit stride [76]. Furthermore, if the array access patterns or array size is such that the work-

ing set of cache lines do not fit within the cache, scheduled direct bank memory accesses are

clearly superior. Again, for the larger and more realistic benchmarks in the NAS suite, the

direct memory access of the Cray machine is largely responsible for its performance on the

tests.

To explore this concept in more detail, consider the earlier UNPACK results. These

benchmarks are small enough that the working set of data will likely fit within the cache on

the two cache-based machines. Furthermore, the array sizes are quite small and the overhead

of accessing the Cray memory system is large in comparison to the time spent processing

the data. Clearly, with this scenario, the cache machines perform at their best and the real

memory machines are at their worst. This is not really an interesting comparison, especially

considering that the LIN'PACK benchmark runs to completion in a matter of seconds on

machines with this level of performance! Of much more interest to scientific users are the

codes that run for hours, days, or even weeks. The NAS benchmarks are more realistic; not

all of the benchmarks are likely to reside in cache on that architecture and the Cray memory

overhead has fallen significantly as a fraction of total workload for problems of this average

size. The realism is still limited. For example, benchmark A for LU decomposition executes

in 135 seconds on the Cray. Clearly, this is still a very small problem.

A cachebased architecture reads a large array beginning with the processor requesting a

memory fetch of an array element (often the first or last element of the array). Fetches are

always directed at the cache. If the requested item is not resident in the cache, the cache

controller fetches a cache line containing the item from main memory, with the processor

(and pipelines) stalling until the request is satisfied. The time required for main memory

213

to return the line depends on the memory

other factors. Once the data arrives in the

and bus speeds, bus width, cache line size, and

cache, the requested item may then be supplied

to the processor, allowing it to resume processing. Because a cache line usually consists

of several adjacent array elements, further requests for elements "close" to the first will be

subsequently found in cache. The length of a cache line and the number of lines that may

be contained within the cache are functions of the total cache size. Clearly, within a loop

structure accessing arrays, one desires a 100% cache hit efficiency for each element access

(Le., every array element requested by the processor will be resident in the cache prior to

the request). This cannot be achieved, as the processor must initially fill the cache with the

array, but if the cache is physically large enough to contain the array the cache hit efficiency

will approach 100% as the work (and time spent) within the loop increases.

This behavior of cache-based machines has a very strong effect on application perfor-

mance, often overwhelming any other considerations. If the array size is large in comparison

to cache size, the cache hit efficiency in a loop construct will be low. If array-based loop

constructs dominate the workload in an application (they often dominate in scientific appli-

cations), the memory subsystem cannot service the processor data requests without stalling

the processor. As an example, consider a machine with a main memory system that can sup-

ply a request for a cache line in 100 ns., and a processor with a 10 ns. clock. hr ther assume

a loop structure that accesses successive array elements one each processor clock cycle. If

the element is found within cache each request, the processor is not delayed and runs at full

speed. However, for every cache miss, the processor must s t d for 10 cycles waiting for mem-

ory to supply the data. This discussion invites a question. If only 10% of the array accesses

miss the cache (a 90% cache hit efficiency), what is the resultant processing efficiency?

To ignore overhead, assume that the loop is infinite in size. If the cache hit efficiency were

214

loo%, the system would clearly require one processor cycle to process each array element.

For an efficiency of 90%, the system requires 1.9 cycles per array element (on average)

= 1.9 cycles/item.
(1 cycle)(9 items) + (10 cycles)(l item)

10 items

Assuming the loop is infinite yields the system efficiency

Eff = 1.0/1.9 = 53%.

In effect, this system runs at 53% of full speed.

Now, consider the same simple example on a banked real memory system. With this

arrangement, the access of the fist array element by the processor proceeds at memory

speed, staling the processor. However, the processor does not request data one element at

a time with this design, it requests a vector of data. The memory system, upon receipt of

this request, supplies the first element, say from the first bank of memory, in 10 processor

cycles as one would expect. As the memory system knows that the processor has requested a

vector of data, it immediately supplies the successor array element from the second memory

bank on the next processor cycle without the processor’s intervention. This process continues

essentially independent of the processor for a very large array of data. Looking at the above

example, it is Clear that after the initial 10 cycles of stall overhead for the first item, every

subsequent item may be accessed each processor cycle. As such, for large arrays in infinite

loops (as the above example) the processor runs at near 100% of design speed and does not

stall waiting for memory.

It may not be apparent from this simple example, but many details intercede that may

215

narrow this performance advantage in real situations. Furthermore, the example is a drasti-

cally simplified model of each architecture; the example was designed to illustrate the basic

operation of each system and foster an understanding of the general behavior of each system

for large array constructs.

A.2.4 Final Thoughts

This section was written to illustrate pitfalls of using benchmark data to select a general-

purpose computer system. However, an “approximate” method was described on how bench-

marks could be combined with clear system requirements to narrow the search space of

available systems. For the requirements deemed important in this section, two general archi-

tectures dominated the final set of machines; the real memory and virtual memory multipro-

cessors from Cray, DEC, and SGI.

The second major topic discussed the memory systems of each architecture in the form

of a simplified model. This exercise suggested that vector real memory systems, such as

implemented in the Cray system, has a potential performance advantage for the scientific

problems of interest due to a vector memory accessing capability.

In closing, selection of a system must consider the issues discussed herein along with many

other specific requirements such as porting costs, binary compatibility concerns, amortized

system costs, etc. Above all, the final system can only be successful if the requirements of

the users drive the selection process to the exclusion of all other perceived criteria.

216

A.3 Shared Memory Hardware Programming Basics

The simulation code for this study was implemented in well-structured FORTRAN 77. The

base version was developed to be quite portable, using an “elementary” style (only basic,

textbook optimizations were used). Ideally, from this base, a compiler could recognize pard-

lelism implicit in the code and include the necessary structure in the intermediate or assembly

language to execute the requisite sections (possibly “basic blocks”) in parallel.

The compilers for both the Cray and SGI are capable of performing this task, at least

to some extent. However, this method is limited, as the compiler does not have intelligence,

so to speak. It is only capable of performing a sequence of analysis steps to determine if

a particular sequence of code may be safely executed in parallel (these compilers typically

consider only loop constructs at a high level). Loops are typically parallelized if analysis

indicates that there are no data dependencies that will affect the result and that the loop

contains sufficient work to overcome overhead inherent in the parallelization process. It is

clear that this is a sufficient condition for safe parallelism of a construct, however it is not

necessary in many cases. Performing analysis in this manner may “miss” a significant amount

of parallelism.

0 The loop construct may not contain dependencies, but it may obfuscate the compiler

due to its complexity, use of indirect addressing, or as a result of the “author’s style.”

e The compiler skips loops containing function and subroutine calls due to the difficulty

of dependency analysis (especially with global data, commons, aliasing, and equivalenc-

ing). As such, the highest level of parallelism often available is completely ignored.

A perfectly acceptable method to address these problems is to allow the programmer to

“instruct” the compiler of the available parallelism, where it occurs, and how the compiler

217

can best handle real and imagined dependencies. These instructions (directives) are often

implemented as comment lines, but with a special syntax recognized by the compiler. Di-

rectives are often used (they are really mandatory) in shared-memory compilers to allow the

explicit specification of parallelism.

The second compiler-based parallelism opportunity is instruction level parallelism (ILP).

Lately, ILP has become important to pipelined and superscalar processors. Parallelism at

this level can often be analyzed effectively for data dependencies by either hardware, compil-

ers, or both. This fine-grained parallelism is currently very important in achieving modern

microprocessor performance levels, but is often dismissed for scientific computing due to the

low degree of parallelism (DOP) inherent in ILP. It is often stated that, on average, a branch

occurs every seven instructions. This limits the effectiveness of ILP to a DOP of roughly

seven. This ”rule of thumb” clearly does not hold for loop-intensive scientific computation,

however. One may interpret vector processing as a parallel operation over a series of identi-

cal serial instructions (perhaps as many as 128) operating on different data streams (SIMD).

One could envision a new generation of a superscalar processor that could accommodate a

large DOP for scientific-codes in the same manner. This processor could be designed as a

“vector processor” that operated on different data streams using optionally different instruc-

tions (MIMD). In this context, the “new” superscalar processor embodies all the advantages

of existing superscalar technology with the addition of the ability to handle many parallel

instructions, and existing vector technology with the ability to handle different instructions

over different data values. This capability may be further enhanced with the vector memory

systems often used in vector machines.

The above discussion outlines the essential points of the differences between parallel and

vector processing on machines like the Cray, and parallel and superscalar processing on the

218

SGI. In summary, the differences are conceptually that parallelism is a large-grained MIMD

concept, and vectorization (superscalar) is an instruction level SIMD (MIMD) operation. It

is important to note, however, that independent hardware exists that mirrors this hierarchy.

The large-grained parallel contexts are concurrent across multiple CPUs on the machine, while

the vector parallel (ILP) contexts are concurrent across elements of a vector unit (superscalar

pipelines) on a given CPU. As such, combining these two "forms" of pardelism may result

in a surprisingly high level of concurrency in a scientific application that can make use of the

hardware.

At this point, it is most instructive to consider the programming details of each of these

architectures.

A.3.1 Cray Optimization Process

The initial development work was performed on the four processor C90, and was limited to

routine compilation tasks and verification of correct operation and results. The vectorization

(cft77) and parallelization (fmp) passes and all optimization were disabled for the initial

porting phase.

Following the initial porting phase, scalar optimization parameters were investigated to

obtain an optimal configuration in preparation for a flow analysis of the code. For the flow

analysis, a Cray utility, FLOWTRACE, was used to identify code blocks that warrant optimiza-

tion. Additionally, all LINPACK routines used in the code were replaced with Cray library

calls to provide better efficiency.

FLOWTRACE results indicated that several functions and subprograms were suitable for

inlining. These routines were explicitly inlined with the use of compiler directives and the

requisite compile options. Additionally, an examination of the available compiler options

219

resulted in a set that minimized execution time,

cf77 -Ufl#-dp -I inliner -0 aggress -A fu l l "

where

cf t77 invokes the FORTRAN compilation system,

-Wf" 11 passes the enclosed options to the cft77 phase,

-dP converts double-precision code to single precision,

-I inl iner forces inlining of files found in the . /inliner subdirectory,

-0 aggress turns on aggressive optimizations, and

-A f u l l uses a full addressing model (enables indirect addressing into extended

memory).

Following this work, FLOWTRACE indicated that several routines comprised the bulk of the

execution time for the simulation code. These routines were involved in forming the Jacobian

matrix, mainly:

0 the u-momentum contribution routine umom,

0 the v-momentum routine mom,

0 the routine for the mass-conservation contribution cont, and

e the temperature routine temp.

Additionally, the routine that forms and factors the preconditioner, precond, required an

appreciable amount of computation time. Following these routines in percentage of execution

220

time were several utility routines, rnatmul - general matrix-vector multiply, mivmldd - a

banded linear equation solution routine, eztrce, - a data extraction routine, and several others.

Following this analysis, the vectorizing phase of the compilation system was invoked, with

diagnostic output directed to intermediate files. This output was studied, with particular at-

tention to the routines listed above, to determine the success of the "automatic" vectorization

abilities of the compiler. Using this information, the routines that did not vectorize were mod-

ified by hand to enable vectorization if feasible. In many cases, a particular routine that did

not vectorize was not significant in the overall runtime of the code. Obviously, spending time

vectorizing these routines (or blocks) would lead to minimal improvements in runtime. Also,

a few routines had dependencies that could not be easily addressed and were likewise ignored.

However, in most cases, it was possible to vectorize important code segments. Automatic

vectorization is enabled by specifying the additional compile option, -ZV, in conjunction with

the above scalar optimization flags.

The Cray vectorizing stage provided very informative output that assisted greatly with the

vectorization step. In most cases, the compiler provided diagnostic information that directed

the user to the exact statement that inhibited vectorization. Additiondy, for routines where

vectorization overhead would surpass the benefits, information was provided indicating this

result. In general, the following conditions inhibit vectorization [3]:

0 obsolete conditionals (three branch if's, assigned and computed GOTO'S),

0 backward branches (besides the loop itself),

0 directives or command line options that suppress vectorization,

0 branches into the loop from outside (also violates the ANSI standard),

221

0 dependencies (recurrence and ambiguous subscripting).

Also, references to external code (functions, intrinsics, or subroutines) often cannot be vec-

torized, including

0 1/0 statements (generate library calls),

0 references to functions without vector versions,

0 references to external functions or subroutines that are not expanded inline, and

0 RETURN, STOP, or PAUSE statements, as library calls are generated.

Overall, vectorizing the code proved to be nearly trivial due to this vectorizing diagnostic

output. To best explain this process, consider the following example.

do i = 1,n

a(i) = b(i) + c (i)

end do

Most of the loop constructs in the code matched this example. It is obvious that this fragment

has no data dependencies between loop iterations, and may be easily vectorized. The cft77

pass recognizes this, and inserts a directive automatically that informs the code generator to

replace the loop with the appropriate vector constructs.

CDIRQ IVDEP

do i = 1,n

a(i) = b(i) + c (i)

end do

This entire process was accomplished without user intervention or directives. However, situ-

ations were encountered where vectorization was possible, but cft77 was unable to analyze

the dependencies.

do i = 1,n

a (i * 4, j) = a(i * 4, k - 1)

t + b (j)

end do

In this fragment, there is a potential dependency on the a array. Depending on the values of

the variables j and k, an unknown dependency may exist (flow, antidependence, output, or

no dependencies may exist depending on the values of the variables j and k). The automatic

vectorization skips this loop, indicating the line number of the problem, and that there is a

recurrence on a. Again, given proper values of the variables j and k, it may be completely

safe to vectorize the loop. In this case, the user may insert a directive to indicate to cft77

that the loop may be safely vectorized.

CDIR$ IVDEP

do i = 1,n

a(i * 4, j) = a (i * 4, k - I)
% + Mj)

end do

It is very important to thoroughly analyze these cases, blindly inserting the CDIR$ IVDEP

directive on loops that truly contain dependencies will negatively affect the results of the

operation.

223

Of the remaining unvectorized loops, a portion could be rewritten to eliminate dependen-

cies and the remainder were deemed either insignificant in the overall execution time of the

code or had recurrences that were not possible to address and were thus ignored.

Vectorization proved quite effective in reducing the overall runtime of the code. Reduc-

tions of over an order of magnitude were seen in some loops, resulting in nearly a factor of

five reduction overall. However, in a nested looping construct, only the innermost loops may

be vectorized. The Jacobian and preconditioner formation routines contained many such

structures, and continued to dominate the execution time with vectorized inner loops.

The logical progression of this study suggested that the enclosing loops in these routines

should be uniformly divided and executed on multiple processors. The fmp compilation pass

recognizes Cray autotasking directives. In the absence of dependencies this pass will trans-

parently execute multiple threads of the outer loop on multiple processors. A dependency

analyzer, fpp, will insert the directives in a similar manner to the vectorizing pass. The

fpp pass is invoked using the -ZP compile option; this option also invokes full vectorization

(making the -ZV option redundant).

It was quickly discovered that very few of the code’s outer loops were parallelized auto-

matically. This automatic feature is defeated by potential dependencies in a similar manner

to vectorization. Similarly, function and subroutine calls inhibited parallelkation (the loops

that were vectorized seldom contained user calls, the outer loops that could benefit by par-

allelization often called user routines). In cases in which it was apparent that potential

dependencies were not of concern, directives were employed to force parallelkation. The

following example illustrates use of the autotasking directives.

do i = 1,n

224

call routine(args)

call another(args)

C multiple vector loops

end do

Given that there are no dependencies between successive i values in the loop construct above

(either in ordering or data dependencies), CHIC$ directives may be used to pardelize the

loop.

CMIC8 DO ALL SHARED(args)

CMIC$l PRIVATE (a r g s)

CMIC$2 NUMCHTRJKS(arg)

do i = 1,n

call routine(args)

call another(args1

C multiple vector loops

end do

The directive is more complicated than those used for vectorization. The CHIC$ segment

informs the compiler that the line is an autotasking directive, where CMIC$l-CMIC$n siSniry

continuation lines. The DO ALL construct informs the compiler to execute the following

loop in pardel, dividing the n loop iterations into threads on multiple processors. The

SHARED(args) statement informs the compiler that the variables args are shared among

threads (and the serial region above and below the pardel loop). The argument args is a

comma separated list of the variables (and arrays). The P R I V A T E (a r g s) keyword denotes

those variables that are local to each thread (each thread has variables args that do not

225

share common locations in memory between threads). Finally, the NUMCHUNKS (a rg) keyword

determines the subdivision of the loop span 1,n. The compiler attempts to break the span

into arg portions of roughly equal size, assigning each contiguous chunk to a processor.

The above example illustrates (or suggests) the use of subroutines and functions inside

of parallel regions. This can be dangerous, depending on how the called routines are im-

plemented. In fact, the Cray CF77 Optimization Guide [3] warns against calling user-level

routines from inside parallel regions, but does not thoroughly explain the dilemma. When

calling routines, the arguments to the function (or subroutine) are scoped according to the

PRIVATE or SHARED declarations in the autotasking directive. This remains the case inside the

function (recall that FORTRAN variables are passed via reference). Inside the function, all

data scoped internal to the function is treated as local to the thread. All data in common is

scoped as SHARED unless the common declaration is explicitly declared TASKCOMMON, meaning

the data is local to the thread of execution. In reality, well written modular code should be

safe to call from within parallel regions. Given that the call arguments are typed correctly

(SHARED or PRIVATE, as applicable), the only possible problem that could be encountered is

using local variables in a common data block. The converse of this argument, the use of

locally scoped globally shared variables, may only be accomodated by passing a reference

to the global data through a call argument. This method is perfectly safe assuming correct

scoping in the calling routine. The first case may occasionally be encountered in some ap-

plications, however, one would not typically use local variables in common as it is a poor

programming practice, regardless of whether the code is destined for a parallel or for a serial

environment. Furthermore, the use of common data is no longer necessary, as FORTRAN

90, C, and enhancements to FORTRAN 77 support structure-based data storage. Thus, if

the original serial code was written properly (as was the compressible flow code used for this

226

study), parallelization across function and subroutine calls should be trivial.

The Cray C90 series machines have an appreciable amount of parallel overhead. This

overhead is attributable to several sources.

0 Semaphore wait time. At the end of a parallel region, dl threads must synchronize

prior to the main thread continuing. If the main thread finishes last, this time is zero.

However, if not, the main thread must wait (depending on the load balance among the

threads) an amount of time for all child threads to synchronize at the exit point.

0 Extra autotasking code. Executable code is added by the autotasking mechanism to

create and manage the multiple threads. Some of this is executed by the master thread

prior to forking the child threads and leads to additional serial overhead.

0 Increase or creation of memory bank contention among processors and vector units.

Clearly, if a contention situation exists on a single processor, it will be greatly com-

pounded with multiple CPUs.

0 Decrease in vector performance. If parallelism is implemented in a manner such that

the vector length is shortened or chaining is prevented, the vector unit(s) efficiency is

reduced.

On average, autotasking startup and executing the extra autotasking code on a dedicated

machine requires 3600 clock periods on the Y-MP C90 [3].

Memory contention generally will significantly reduce the performance of a pardel code

region. Consider a simplified example of a hypothetical code on the Cray architecture ex-

amined. The C90 has 256 banks of memory most efficiently addressed in FORTRAN using

column-major indexing. Given the segment,

227

do i = 1, n

do j = 1, m

a (i , j) = ...

end do

end do

the rightmost index of the a array (j) varies faster than the leftmost (ie., row ordering).

In this case, memory accesses occur sequentially along ("down") a single memory bank.

However, due to the electrical characteristics of memory on the C90, access to a location in

a memory bank causes that bank to be unavailable for further access for some number of

clock periods. Cray [3] states that a vector load or without memory contention runs from 5

to 8 times faster than the same vector load or store with the greatest memory contention.

For the above example, it is obvious that this method adds a delay of c cycles per inner loop

iteration (where c depends on the bank-busy time of the system), significantly slowing the

execution of the code. This problem can be easily solved by arranging the loops so that a is

addressed by column.

do j = 1, m

do i = 1, n

a (i , j > = ...

end do

end do

In this case, memory is accessed by spanning the banks. Each successive element access

is to the next bank, eliminating the access delay. In fact on the Cray, these accesses may

often be pipelined by the compiler, further improving memory access efficiency. As a side

228

note, arrays in the C language are addressed in row-major order instead of column-major for

greatest efficiency (the mechanics are the same, the languages just define addressing models

differently). The equivalent to the first example would be the correct method (i.e., most

efficient) to nest the loops in C.

The above example oversimplifies the problems encountered by a large code with complex

memory access patterns. To achieve highest performance, memory is often accessed via a

vector load/store command that fetches data from multiple banks through a single command.

This type of access also maps very well to large scientific applications that manipulate data

stored in indexed arrays inside a loop construct. Consider the following algorithm.

do i = 1,1000

a(i) = b (i) * c(i)

end do

The Cray compiler converts this construct to a sequence of vector operations (in pseudocode).

VLOAD V1,B

W O A D V2,C

VHULT V3,Vl,V2

VSTOR A,V3

For this particular loop, a vector load requires 17 clock cycles, a multiply requires 12 cycles,

and a store requires 17 cycles. However, these operations may be "chained," or overlapped

in time. Using chaining, a total of 41 clock periods are required to perform this loop [3].

Clearly, one can envision a situation where the load/store operations are such that chain-

ing cannot be accomplished and no overlap between the loads may be tolerated. Consider an

array stored in the Cray memory banks, as shown in Figure A.1. Note that the first element

229

A l l A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29

B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29

C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29

Dl l D12 Dl3 D14 D15 D16 D17 Dl8 D19 D20 D21 D22 D23 024 D25 D26 D27 D28 D29

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Bank Number

Figure A.l: An array stored in Cray banked memory.

of the array “A” is stored in the first memory location in bank 1, the second element in

the first location in bank 2, and so on. A vector load on the Cray allows loading of all (or

part, depending on the size) of an array with a single command. For a vector load of “A,”

a request is made for the array, giving the starting and ending element to load. Loading

the first element physically may require multiple clock periods (depending on the memory

and CPU speed). Hypothetically, assume that 10 cycles are required to access memory. To

load the first element then requires 10 cycles. However, each subsequent element follows the

first from memory each clock cycle (recall, a significant portion of the array was requested

through the vector load command). Now, further assume that a vector load of “B” imme-

diately follows “A.” In theory, these two loads could be chained such that the first element

of “B” is delivered to its register the same clock cycle as the second element of ”A,” and so

forth. As explained earlier, each bank may be accessed only once per c clock periods. As

such, the loading of the element of “B” that corresponds to the same element of “A” must

be delayed until c cycles have passed.

For this simple example, assuming that the array lengths of “A” and “B” are large in

comparision, this overhead appears negligible. Furthermore, chaining may still occur with

just a slight loss of efficiency. To consider a more complicated example, if “A” had a length

230

of 300 elements, the first and 257th element would both fall in the first bank. The first

element of “B” would follow the last element of “A” in bank 45 (if it immediately follows

“A” in the FORTRAN common declaration), and so on. To add further realism, re-name

“A” to “U”, “B” to “V”, and further include arrays to hold the remaining state variables of

the Jacobian formation problem. Finally, the storage to contain the Jacobian must also fall

across the bank structure. At this point, imagine the complexity involved in performing vector

loads from the state variable arrays, through the sliding stencil access function, followed by

stores into the Jacobian memory locations while maintaining acceptable chaining efficiency.

To further place this in perspective, recall that there are two vector units per processor,

and potentially 16 processors being used on the C90, all attempting to access this memory

structure concurrently. Clearly, in a realistic simulation code, relaxing memory contention

for vector loads and stores to a particular bank is a very difficult problem, indeed.

A.3.2 SGI Optimization Process

The SGI Onyx optimization process was initiated near the end of the Cray study. A quick

examination of the scalar behavoir of the code using prof -pixie verified that the same

routines significant in CPU usage on the Cray were also significant on the SGI. It was quickly

concluded that any work to enhance parallelization on the Cray also benefited the SGI.

The SGI is a cached, superscalar superpipelined architecture in contrast to the Cray’s

vector-based architecture. As such, user level vectorization was not possible on the SGI. In

fact, to best use the SGI architecture, programs should not be based on vector efficiency,

but on data locality methods. An extensive study to best match the serial behavior of the

code to the cache-based SGI was not performed. Additionally, it was desireable to maintain

excellent performance with a single copy of the code on both the SGI and Cray; any SGI scalar

23 1

optimizations could potentially impact the Cray vector performance of the code. However,

a cursory study with the base code versus the Cray vectorized version on the SGI showed

few differences that could be attributed to efforts to better vectorize the Cray version. Thus,

this version was used “as is” on the SGI. The compiler options that provided best serial

performance on the SGI were,

f77 -non,shared -jmpopt -02 l i p s 2 -0limit 2000 -W0~-l00punr0ll,8

where

f77

-nonshared

-jmpopt

-02

-mips2

invokes the FORTRAN compilation system,

links to the system archive libraries instead of shared dynamic libraries,

attempts to load the delay slot with instructions,

invokes full scalar optimization,

uses the MIPS2 instruction set (this set matches the Onyx hardware),

-0l imit 2000 increases optimization limit to 2000 basic blocks (at this level, all routines

were fully optimized),

-wo passes the following comma separated option to the optimizer, and

-loopunroll $8 allows recursive inlining to eight levels. This level included all routines

that benefited from inlining in the code.

SGI provides a similar parallel analyzer to the fpp tool on the Cray. This tool allegedly

detects parallel regions and inserts the proper directives to multitask the code. However,

this claim could not be substantiated as the analysis tool pf a was not available on the Onyx

232

chosen for this study. However, use of the -mp option in addition to those specified above

allowed directive assisted parallelization in a similar manner to that employed on the Cray.

C$DOACROSS SHARE(args) ,

C$& LOCAL (args) ,

C$& MP,SCHEDTYPE=SIHPLE

do i = 1,n

call routine(args)

call another(args1

multiple vector loops

end do

C

The C$ segment informs the compiler that the line is a parallel directive, where C$& signifies

a continuation line. The DOACROSS construct informs the compiler to execute the following

loop in parallel, dividing the n loop iterations into threads on multiple processors. The

SHARE(arg8) statement informs the compiler of the variables that are shared among threads

(and the serial region above and below the parallel loop). The argument args is a comma

separated list of the variables (and arrays) that are shared. The LOCAL(args1 keyword

denotes those variables that are local to each thread (each thread has variables args that do

not share common locations in memory among threads). On the SGI, the SHARE and LOCAL

directives behave identically in form and function to the SHARED and PRIVATE declarations on

the C90. Finally, the HPSCHEDTYPE=SIMPLE keyword determines the subdivision of the loop

span 1, n. The compiler attempts to break the span into portions of roughly equal size (based

on the number of processors available), assigning each contiguous chunk to a processor. There

are other options provided (in addition to SIMPLE), but they incur greater parallel overhead

233

and were not useful for any of the parallel regions studied. Other than the directive syntax,

the behavior of the directives were very similar between the SGI and Cray.

Aside from those issues specific to vectorization, the SGI suffers from the same parallel

overhead concerns that afflicted the Cray. The SGI uses a similar interleaved memory design,

however, all memory accesses are via a local processor cache. The Cray uses a crossbar switch

for memory bank access, while the SGI uses a proprietary bus. It is conceivable that fewer

memory contention difficulties would be encountered on the SGI due to the fewer processors,

local processor cache, and the slower processor speed of the machine.

One must access array data in a column-major form on the SGI as was performed on

the Cray to minimize memory contention, but for a different reason. On the SGI (and likely

most RISC cache-based machines), column addressing addresses along a cache line, where

row addressing addresses across cache lines. Clearly, the column addressing along a cache

line results in much better data locality and will likely increase the cache hit ratio for a given

loop (unless all data accessed fits in the cache).

Again, the above example illustrates but one consideration that must be examined for

optimal performance. There appears to be a strong potential that caching of the working

set of data in each of two processor caches is sufficient to overwhelm parallel overhead and

contention, and results in an improved cache hit ratio over the single processor case provided

the cache hit effectiveness in the single cache is less than optimal. To better illustrate this

behavior, consider the idealized example shown in Figures A.2 and A.3. .

Consider the Jacobian formation routine used in this study. To form the Jacobian in

a single processor environment, all data read from or written to main memory must pass

through the processor cache. Given a Jacobian update that accesses memory locations based

on a loop index covering the values from 1,. . ., n (Le., array addressing), all elements in

234

Main Memorv

Processor

Figure A.2: Single processor memory access.

Main Memory

17

Figure A.3: Two processor memory access.

the array from 1,. . . , n will eventually occupy the cache. For simplicity sake, consider this

range to be divided into two sets, the first consisting of 1,. . . , n / 2 elements, with the second

spanning (n / 2 + l), . . . , n elements. Assuming a sequential access model, the processor will

operate first on set 1, then on set 2 (as seen in Figure A.2). Furthermore, consider the case

where sets 1 and 2 are sufficiently large that only one may be resident in cache. In this

case, the first set is read to cache, operated on, written back, followed by an identical set of

operations on the second set of data, each Jacobian update operation.

Now, consider the identical arrangement, but with two processors and private caches (see

I

235

Figure A.3). With this example, each of the two sets may occupy a processor cache throughout

the entire update operation. If the entire Jacobian formation consists of many such loops

over the same data ranges accessing the same data elements, the increase in efficiency in

using two processors is clearly much greater than simply a factor of two greater processing

capability as all cache migration is eliminated. This idealized example is oversimplified, but

nicely explains how a superlinear speedup may be achieved on a cache-based multiprocessor.

A.4 Parallel Processing In A Production Environment

This study has presented a large amount of experimental results on the performance and

scalability of parallel algorithms on shared-memory pardel architectures. In theory, one

hopes for a speedup of m from a pardel code executed on m processors. Realistidy, without

superlinear cache effects, it will never be possible to achieve this level of performance. To

best gauge the effectiveness of mapping a pardel algorithm onto a particular architecture,

it is necessary to have an upper bound on the maximum realistic performance that may be

expected.

For the remainder of this discussion, the ody architecture considered will be based on real

addressing (like the Cray), for simplicity. An expression for Amdahl’s law may be developed

that better describes effective speedup in a realistic environment [3]

where

236

maximum realistic speedup,

parallel fraction of program,

serial portion of program (1 - fp),

parallel overhead,

weighting factor for a production environment,

avg. number of processors available from the system, and

avg. number of processors usable by the code.

Avg. processors 80% parallel code 20% pardel code

8 2.47 1.12
6 2.47 1.12

4 2.21 1.11

2 1.44 1.04

1.5 1.17 1-00
1.25 1.01 -1.04

1.1 -1.09 -1.06

1 -1.18 -1.08

Table A.4: Speedups ,within a production environment (Table from Cray Research [3]).

Experimental evidence has shown that for a particular workload that can make use of

5 processors (N,,, = 5), that Wproduction x 0.95 and 0 x 0.15. These values for various

numbers of processors available and different parallel percentages is indicated in Table A.4

for this workload. To provide an upper bound on a machine with 8 processors available, an

application DOP of 8 processors, 100% parallel code, and the above efficiencies, the realistic

speedup is 6.6 using the Amdahl formula. Comparing this result to the findings of this

study quickly indicates that scalable performance of the pseudo-transient matrix-free model

problem solution was achieved.

This section briefLy touches on one reasonable scalability metric that can be employed

in a production environment. There are many others equally satisfactory metrics. In a

237

production environment, the best metric is often performance per dollar. In the limit, the best

application to perform a simulation (be it serial or pardel) achieves the highest performance

for the lowest cost within the time scale and accuracy requirements of the task. This study,

aside from the above discussion on hardware selection for computational needs, considered

only performance scalability.

238

Appendix B

Sample Cray FLOWTRACE

output

,

Floutrace S ta t i s t i c s Report

Shooing Routines Sorted by CPU Time (Descending)

(CPU Times are Shown in Seconds)

Routine Hame Hulti? Tot Time Calla Avg Time Percentage

HIVHLDD

WOl4

UnDn
TElIP

BLDBLK2
corn
PRECUDD

mTnuL
PRliT
DIAG

EXTRCV

ASSHBV

PRIMT

OUT

S’SRHBFS

VECADD

PRECOUD

cowus
HIBVlUS
ORDER
PQHRCGSL

Y
Y

I
Y

U
Y

B
B
H
I
B
B
I
Y
I
I
I
li

Io
I
Y

2.83E+01

2.6OE+Ol
2.37E+01
1.39E+01

8.94E+OO

8.7OE+OO
5.26E+OO
4.15E+OO

3.23E+OO
3.OlE+OO

2.49E+OO

2.47E+OO
1.79E+00

1.4OE+OO
6.55E-01
5.75E-01
1.78E-01
1.72E-01
1.55E-01
1.22E-01

1.07E-01

5632 5.02E-03

6 4.33E+OO
6 3.95E+OO
6 2.32E+OO

48 1.86E-01

6 1.45E+OO
48 1.lOE-01

1035 4.0lE-03

2 1.6lE+OO
1 3.01E+O0

5632 4.423-04

5632 4.38E-04
11 1.63E-01

1 1.4OE+OO ’

16.55E-01
3779 1.52E-04

6 2.96E-02
1 1.72E-01

704 2.213-04
1 1.22E-01

6 1.78E-02

20.87
19.17
17.48
10.29

6.60

6.42
3.88
3.07

2.38
2.22

1.84

1.82
1.32

1.03
0.48

0.42

0.13
0.13
0.11
0.09

0.08

Accum%

20.87 ****e

40.05 ****
57.52 ****
67.82 **
74.42 *
80.84 *
84.72
87 -79

90.17
92.39

94.23
96.05
97.37

98.40

98.89
99.31
99.44
99.57

99.68

99.77

99.85

239

SOLV

VECHUL

UPDAT
AtNLL
INPUT

HIHVHUL
AmLLQ95

SETCOHST
ROYL
SOLVQ278

PRECOuDQ710

ETIltE
IHITLZ
ROY
COIIPNS8270
UPDATQl97

ILOCSET

SETIFAC
GRID

I
H
H
H
I
H
Y

N
H
Y

Y

H
N
I
Y

Y

I
H
H

8.40E-02

7.353-02
1.54E-02

1.14E-02
8.553-03

3.36E-03
1.36E-03

1.12E-03
5.13E-04

2.52E-04
2.47E-04

1.773-04
1.4OE-04

1.OlE-04
1.00E-04
9.44E-05

1.90E-05

1.24E-05
4.07E-06

6 1.40E-02

686 1.07E-04
6 2.573-03
6 1.89E-03

1 8.55E-03

704 4.77E-06
5 2.723-04

1 1.12E-03
8 6.4lE-05

2 1.26E-04
16 1.54E-OS

31 5.72E-06
1 1.40E-04

1 1.OlE-04
18 5.563-06
1 9.44E-05

1 1.9OE-05
6 2.07E-06
1 4.07E-06

0.06

0.05

0.01
0.01

0.01

0.00
0.00

0.00
0.00
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

99.91

99.97
99.98
99.99

99.99

100 * 00
100.00

100.00
100.00

100.00
100.00

100.00
100.00
100.00

100.00
100.00

100 -00

100.00
100.00

Totals 1.35EM2 24065

Flovtrace Statistics Report
Shoving Routines Sorted by InLine Factor

(CPU Times are Shown in Seconds)

InLine Factors Greater Than 1 Hay Indicate Candidates for InLining.

HIHVHUL
VECADD

ASSHBV

EXTRCV

VECHUL
ETIHE

COHPHSQ270
IIIrnS
SETIFAC
HIVHLDD
VHOH

UlIOlI

TElIP
BLDBLK2

CONT
PRECNDD
m m
PRNT
DIAG
PRINT
OUT

STRHBFS
PRECOND
COHPHS

I
H
H
H
H
B
Y

H
H
H
Y

H
Y

H
Y

I
Io
H

H
I
H
H
I

n

3.36E-03
5.75E-0 1

2.47E+OO

2.49E+OO

7.35E-02

1.77E-04
1.00E-04
1.55E-01

1.24E-05
2.83E+O1
2.60E+01
2.37E+O1
1.39E+Ol
8.94E+OO

8.70E+OO
5.26E+OO
4.15E+OO
3.23E+OO

3.0 lE+OO
1.79E+OO

1.4OE+OO
6.55B-01
1.78E-01
1.72E-01

704 4.77E-06
3779 1.52E-04

5632 4.38E-04

5632 4.42E-04
686 1.07E-04

31 5.723-06

18 5.56E-06
704 2.21E-04
6 2.07E-06

5632 5.02E-03
6 4.33E+OO
6 3.953+00
6 2.32EMO
48 1.86E-01

6 1.45E+OO

48 1.lOE-01
1035 4.01E-03

2 1.61E+OO

1 3.OlE+OO

11 1.63E-01

1 1.4OE+OO
1 6.55E-01
6 2.963-02
1 1.72E-01

0.00

0.42

1.82

1.84
0.05

0.00

0.00

0.11

0.00

20.87
19.17
17.48
10.29
6.60

6.42

3.88
3.07
2.38

2.22
1.32

1.03

0.48
0.13
0.13

0.00

0.43

2.25

4.09

4.14
4.14

4.14

4.26

4.26
25.13
44.30
61.78

72.07
78.67

85.09

88.97
92.04
94.43

96.64
97.96

99.00

99.48
99.61

99.74

0.61
0.10

0.05

0.05

0.03
0.02

0.01
0.01

0.01
0.00 *****
0.00 ****
0.00 ****
0.00 **
0.00 *
0.00 *
0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

ORDER H 1.22E-01 1 1.22E-01 0.09 99.83 0.00

PQlIRCGSL B 1.07E-01 6 1.78E-02 0.08 99.91 0.00
SOLV B 8.4OE-02 6 1.40E-02 0.06 99.97 0.00

UPDAT B 1.54E-02 6 2.57E-03 0.01 99.98 0.00
MULL B 1.14E-02 6 1.893-03 0.01 99.99 0.00

IllpuT B 8.55E-03 1 8.55E-03 0.01 100.00 0.00
AnuLLQ95 Y 1.36E-03 5 2.72E-04 0.00 100.00 0.00

SETCOBST H 1.12E-03 1 1.12E-03 0.00 100.00 0.00
ROUL B 5.13E-04 8 6.413-05 0.00 100.00 0.00
SOLVQ278 Y 2.52E-04 2 1.263-04 0.00 100.00 0.00
PRECOHDo710 Y 2.473-04 16 1.54B-05 0.00 100.00 0.00

IBITLZ B 1.40E-04 1 1.40E-04 0.00 100.00 0.00
ROY H 1.OlE-04 1 1.01E-04 0.00 100.00 0.00

UPDAT0197 Y 9.44E-05 1 9.44E-05 0.00 100.00 0.00
ILOCSET B 1.90E-05 1 1.90E-05 0.00 100.00 0.00

GRID B 4.073-06 1 4.07E-06 0.00 100.00 0.00

Totals 1.35EM2 24065

- - ---==I- -

Flomtrace Environment Report

ORIGIBAL USER EXECUTION
......................

User Program Run on 11/04/94, at 15:19:22

Hachine Serial Number 4809, a CIUY Y-HP C90,
with a Clock Speed of 4167 Picoseconds

Program was running in C90 rode.

Program w a s running IRILTI-TASKED.
High-mater mark for the stack m a s 113322130 (octal words)

or 19768408 (decimal words).

Original Executable Filename = ./lievt.x

Timestamp f o r t h i s F i l e : F r i Bov 4 15:18:54 1994

241

or 1.30E-01 (seconds).

or 3.22E-04 (seconds).
8 First-Time EUTER processing vas 77222 (clocks)

Flouview version * 80.8
Rau File Being Processed by flowieu low = flou.data

242

Bibliography

[l] P. R. McHugh, D. A. Knoll, V. A. Mousseau, and G. A. Hansen. An investigation of
Newton-Krylov solution techniques for low Mach number compressible flow. ASME FED

Summer Meeting, Hilton Head Island, S.C., August 1995.

[2] S. Saini and D. H. Bailey. NAS pardel benchmark results 12-95. Technical Report

[3] Cray Research, Inc. CF77 Optimization& Guide, SG-3773 6.0 edition, 1993.

NAS-95-021, NASA Ames Research Center, Dec 1995.

[4] Ronald L. Panton. Incompressible Flow. John Wiley & Sons, 1984.

[5] F. M. White. Viscous Fluid Flow. McGraw-Hill, Inc., New York, 1974.

[6] R. B. Guenther and J. W. Lee. Partial Diflerential Equations of Mathematical Physics

and Integml Equations. Prentice-Hall, 1988.

[7] J. B. Dongarra. Performance of various computers using standard linear equations soft-

ware. Technical report, University of Tennessee/Oak Ridge National Laboratory, Dec

1995.

[8] D. A. Knoll and P. R. McHugh. A fully implicit direct Newton solver for the Navier-

Stokes equations. Int. J. Num. Meth. Fluids, 17:449-461,1993.

[9] P. R. McHugh and D. A. Knoll. Fully coupled finite volume solutions of the incompress-
ible Navier Stokes and energy equations using inexact Newton’s method. Int. J. Numer.
Meth. Fluids, 19:439-455,1994.

[lo] P. R. McHugh and D. A. Knoll. Inexact Newton’s method solutions to the incompressible

Navier-Stokes and energy equations using standard and matrix-free implementations. In
Proc. of 11 th AIAA Computational Fluid Dynamics Conference, pages 385-393, Orlando,

FL., July 1993. AIAA-93-3332.

[ll] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri. Newton-Krylov-Schwarz meth-
ods in CFD. In F. Hebeker, R. Rannacher, and G. Wittum, editors, Numericd Methods
for the Navier-Stokes Equations, volume 47 of Notes on Numerical Fluid Mechanics,

pages 17-30, Brainishwig, 1994. Vieweg Verlag.

[12] P. G. Jacobs, V. A. Mousseau, P. R. McHugh, and D. A. Knoll. Domain decomposi-
tion based preconditioning strategies for Newton-Krylov solutions of the incompressible
Navier-Stokes equations. In D. E. Keyes and J. Xu, editors, Domuin Decomposition

Methods in Science and Engineering Computing (Proc. of the 7th Int. Conf. on Domain

243

Decomposition Methods in Scientific and Engineering Computing), Providence, RI, Oc-

tober 1993. American Mathematicd Society.

[13] D. A. Knoll, A. K. Prinja, and R. B. Campbell. A direct Newton solver for the two-

dimension$ Tokamak edge plasma fluid equations. J. Comput. Phys., 104:418-426,
1993.

[14] S. P. Vanka. Block-implicit calculation of steady turbulent recircdating flows. Int. J.
Heat Mass Tmnsfer, 28(11):2093-2103,1985.

[15] J. W. MacArthur and S. V. Patankar. Robust semidirect finite difference methods for
solving the Navier-Stokes and energy equations. Int. J. Num. Meth. Fluids, 9:325-340,
1989.

[16] R. W. Johnson, P. R. McHugh, and D. A. Knoll. Defect correction with a fully coupled
inexact Newton method. Numer. Heat Tmnsfer., Part B, 26:173-188,1994.

[17] P. R. McHugh and D. A. Knoll. Fully implicit solution of the benchmark backward
facing step problem using finite volume differencing and inexact Newton’s method. In
B. Blackwell and D. W. Pepper, editors, Benchmark Problems for Heat Tmnsfer Codes,

pages 77-87, Anaheim CA., November 1992. ASME Winter Annual Meeting. ASME
HTD-Vol. 222.

[lS] D. A. Knoll, P. R. McHugh, and V. A. Mousseau. Newton-Krylov-Schwarz methods ap-

plied to the Tokamak edge plasma fluid equations. In D. Keyes, Y. Saad, and D. Truhlar,
editors, Domain-Based Pamllelism and Problem Decomposition Methods in Computa-

tional Science and Engineering, pages 75-95, Philadelphia, 1995. SIAM.

[19] S. R. Idelsohn and E. Oiiate. Finite volumes and finite elements: Two ‘good friends’.
International Journal for Numerical Methods in Engineering, 37:3323-3341,1994.

[20] P. R. McHugh. An Investigation of Newton-Kylov Algorithms for Solving Incompressible

and Low Mach Number Compressible Fluid Flow and Heat Tmnsfer Problems Using

Finite Volume Discretization. PhD thesis, University of Idaho, 1995.

[21] G. H. Golub and D. P. O’Leary. Some history of the conjugate gradient and Lanczos

algorithms: 1948-1976. SIAM Review, 31:50-102,1989.

[22] 0. Axelsson. Itemtive Solution Methods. Cambridge University Press, New York, 1994.

[23] R. W. Freund. Transpose-free quasi-minimal residual methods for non-Hermitian linear

systems. Numerical Analysis Manuscript 92-7, AT&T Bell Laboratories, Murray Hill,
NJ., July 1992.

solving nonsymmetric linear systems. SIAM J Sci. Stat. Comput., 7:856-869,1986.

[25] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for

the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13:631-644,
1992.

[24] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for

244

[26] P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems. SIAM

J. Sei. Stat. Comput., 10:36-52,1989.

[27] P. N. Brown and Y. Saad. Convergence theory of nonlinear Newton-Krylov algorithms.
Technical Report UCRL-102434 R 1, Lawrence Livermore National Laboratory, April

1992.

[28] A. T. Chronopoulos. On the squared unsymmetric Lanczos method. J. Comput. and

Appl. Math., 54:65-78,1994.

[29] X.-C. Cai. A family of overlapping Schwarz algorithms for nonsymmetric and indefinite
elliptic problems. In D. E. Keyes, Y. Saad, and D. G. Truhlar, editors, Domain-Based
Parallelism and Problem Decomposition Methods in Computational Science and Engi-

neering, chapter 1, pages 1-19. SUM, 1995.

[30] X.-C. Cai and Y. Saad. Overlapping domain decomposition algorithms for general sparse
matrices. Preprint 93-027 93-27, Army High Performance Computing Research Center,
University of Minnesota, 1993.

[31] L. F. Pavarino and M. Ram& Numerical experiments with an overlapping additive
Schwarz solver for 3-D parallel reservoir simulation. Int. J. Super. App., 9:3-17, 1995.

[32] J. H. Bramble, R. E. Ewing, R. R. Parashkevov, and J. E. Pasciak. Domain decom-
position methods for problems with partial refinement. SIAM J. Sci. Stat. Cornput.,

13(1):397-410, January 1992.

1331 D. A. Knoll and P. R. McHugh. Newton-Krylov methods for low Mach number combus-

tion. 12th AIAA CFD Conference, San Diego, CA., June 1995.

[34] P. R. McHugh, D. A. Knoll, and R. W. Johnson. Fully implicit solutions of the bench-
mark problem using inexact Newton’s method. In B. F. Blackwell and B. F. Armaly,
editors, Computational Aspects of Heat Tmnsfer Benchmark Problems, pages 83-91, New

Orleans, LA., November 1993. ASME Wintk Annual Meeting. HTD-Vol. 258.

[35] P. R. McHugh and D. A. Knoll. Comparison of standard and matrix-free implementations

[36] G. A. Hansen, V. A. Mousseau, D. A. Knoll, and P. R. McHugh. Performance of a 2-

D Navier-Stokes solution algorithm using Newton-Krylov techniques on shared-memory

parallel/vector hardware. In High Pedonnance Computing 1995. The Society for Com-
puter Simulation, April 1995.

of several Newton-Krylov solvers. AIAA J., 32(12):2394-2400, December 1994.

[37] V. Venkatakrishnan. Preconditioned conjugate gradient methods for the compressible

[38] V. Venkatakrishnan and D. J. Mavriplis. Implicit solvers for unstructured meshes. J.

Navier-Stokes equations. AIAA J., 29:1092-1100,1991.

Cornput. Php. , 105:83-91,1993.

[39] P. E. Bjarstad and T. Ktstad. Domain decomposition, parallel computing and
petroleum engineering. In D. E. Keyes, Y. Sad, and D. G. Truhlar, editors, Domain-

Based Parallelism and Problem Decomposition Methods in Computational Science and

Engineering, chapter 3, pages 39-56. SIAM, 1995.

245

[40] V. Venkatakrishnan. Parallel implicit methods for aerodynamic applications on unstruc-
tured grids. In D. E. Keyes, Y. Saad, and D. G . lhhlar , editors, Donain-Based Paml-
lelism and Problem Decomposition Methods in Computational Science and Engineering,

chapter 4, pages 57-74. SIAM, 1995.

[41] X.-C. Cai, W. D. Gropp, D. E. Keyes, and M. D. Tidriri. Parallel implicit methods
for aerodynamics. In Pm. of the 7th Int. Conf. on Domain Decomposition Meth&

in Scientific and Engineering Computing, The Pennsylvania State University, October

1993.

[42] J. N. Shadid and R. S. Tuminaro. A comparison of preconditioned nonsymmetric Krylov
methods on a large-scale MIMD machine. SIAM J. Sci. Comput., 15(2):440-459, March

1994.

[43] Kumud Ajmani, Wing-Fai Ng, and Meng-Sing Liou. Preconditioned conjugate gradient
methods for the Navier-Stokes equations. Journal of Computational Physics, 110:68-81,

1994.

[44] R. Choquet, P. Leyland, and T. Tefy. GMRES acceleration of iterative implicit finite el-

ement solvers for compressible Euler and Navier-Stokes equations. International Journal

for Numerical Methods in Fluids, 20:957-967,1995.

[45] B. F. Blackwell and D. W. Pepper, editors. Benchmark Problems for Eeat Transfer
Codes, volume HTD-Vol. 222, Anaheim, CA., November 1992.1992 ASME Winter An-
nual Meeting.

[46] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM J.
’ Numer. Anal., 19:4#-408,1982.

[47] J. A. Meijerink and H. A. van der Vorst. An iterative solution method for linear systems
of which the coefficient matrix is a symmetric M-matrix. Mathematics of Computation,

31(137):148-162,1977.

[48] X.-C. Cai, W. D. Gropp, and D. E. Keyes. A comparison of some domain decomposition
and ILU preconditioned iterative methods for nonsymmetric elliptic problems. J. Numer.

Lin. Alg. Applic., 1994.

[49] Pau-Chang Lu. Introduction to the Mechanics of Viscous Fluids. Hemisphere Publishing

Corporation, 1977.

[50] K. Ajmani, M. S. Liou, and R. W. Dyson. Preconditioned implicit solvers for the Navier-
Stokes equations on distributed-memory machines. Technical Report NASA Technical
Memorandum 106449, NASA, National Aeronautics and Space Administration, Lewis

Research Center, Cleveland,OH, 44135-3191, January 1994. AIAA-940408 : ICOMP-
93-49.

[51] L. C. Dutto, W. G. Habashi, M. Robichaud, and M. Fortin. A pardel strategy for the

solution of the fully-coupled compressible Navier-Stokes equations. In M. N. Dhaubhadel,
M. S. Engelman, and W. G. Habashi, editors, Advances in Finite Element Anal@ in

Fluid Dynamics. American Society of Mechanical Engineers, 1993. FED-Voll71.

246

1521 W. D. Gropp and D. E. Keyes. Domain decomposition methods in computational fluid

[53] B. A. Finlayson. The Method of Weighted Residuals and Variational Principles. Acac

dynamics. International Journal for Numerical Methods in Fluids, 14:147-165,1992.

demic Press, 1972.

[54] S. V. Patankar. Numerical Heat Tramfer and Fluid Flow. Hemisphere, New York, 1980.

I551 J. E. Dennis, Jr. and Jorge J. Mor& Quasi-Newton methods, motivation and theory.

[56] A. Mizrahi and M. Sullivan. Calculw and Analytic Geometry. Wadsworth Publishing

[57] M. Dryja and 0. B. Widlund. Domain decomposition algorithms with small overlap.

[58] Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving non-symetric

[59] R. W. Fkeund. A transpose-free quasi-minimal residual algorithm for non-Hermitian

[so] S. F. Ashby, T. Manteuffel, and P. Saylor. A taxonomy for conjugate gradient methods.

[61] T. Barth and T. Mantedel. Variable metric conjugate gradient methods. Center for

[62] L. V. Curfman. Solution of Convective-Difusive Flow Problems math Newton-Like Meth-

SIAM Rev., 19:46-89,1977.

Company, 1982.

SIAM Journal of Scientijic Computing, 15:604-620,1994.

linear systems. Mathematics of Computation, 44:417-424,1985.

linear systems. SIAM J. Sci. Comput., 14:470-482,1993.

SIAM J. Numer. Anal., 27:1542-1568,1990.

Nonlinear Studies Newsletter LALP-94-003, Los Alamos National Lab., 1994.

ods. PhD thesis, University of Virginia, 1993.

[63] J. H. Bramble, 2. Leyk, and J. E. Pasciak. Iterative schemes for nonsymmetric and

indefinite elliptic boundary value problems. Mathematics of Computation, 6O:l-22,1993.

[64] R. W. Fkeund, G. H. Golub, and N. Nadhtigal. Iterative solution of linear systems. Acta

Nermerica, pages 57-100,1991.

[65] G. Golub and J. M. Ortega. Scientific Computing, An Introduction with Parallel Com-

puting. Academic Press, Inc., New York, 1993.

[66] L. Zhou. Krylov Subspace Methods for Linear and Nonlinear Systems. PhD thesis, Utah

State University, 1993.

1671 V. Faber and T. Manteuffel. Necessary and sufficient conditions for the existence of a

conjugate gradient method. SIAM J. Numer. Anal., 21:352-362,1984.

1681 R. Fletcher. Conjugate Gmdient Methods for Indefinite Systems, volume 506, pages

[69] C. H. Tong. A comparative study of preconditioned Lanczos methods for nonsymmetric
linear systems. Technical Report SAND91-8240, UC-404, Sandia National Laboratories

Report, January 1992.

73-89. Springer-Verlag, Berlin, 1976.

247

[70] S. Ashby, T. Manteuffel, and P. Saylor. Preconditioned Polynomial Iterative Methods, A

Tutorial. University of Colorado, Denver, CO., April 1992.

[71] K. Hoffman and R. Kunze. Lineur Algebra. Prentice-HaJl Inc., Englewood Cliffs, New
Jersey, 2nd edition, 1971.

1721 R. W. Freund and N. M. Nachtigal. QMR A quasi-minimal residual method for non-
Hermitian linear systems. Numer. Muth., 60:315-339,1991.

[73] R. W. Freund and N. M. Nachtigal. An implementation of the QMR method based on
coupled two-term recurrences. SIAM J. Sci. Cornput., 15:313-337,1994.

[74] M. Dryja and 0. B. Widlund. Schwarz methods of Neumann-Neumann type for
three-dimensional elliptic finite element problems. Comm. on Pure and Appl. Muth.,

XLvIII.121-155,1995.

[75] R. E. Ewing, 0. P. Ileiv, S. D. Margenov, and P. S. Vassilevski. Numerical study of three

multilevel preconditioners for solving 2D unsteady Navier-Stokes equations. Comput.
Methods Appl. Mech. Engrg., 121:177-186,1995.

[76] J. L. Hennessy and D. A. Patterson. Computer Architecture, A Quantitative Approach.
Morgan Kaufmann, San Fkancisco, CA, Second edition, 1996.

	Authorization Form
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	1 Introduction
	1.1 Solution of the Navier-Stokes Equations
	1.2 Research Overview
	History and Related Work
	1.2.2 Mathematical Overview
	1.2.3 Research Outline
	1.2.4 Alternatives

	1.3 Summary of Procedures and Results

	2 The Mathematical Basis
	2.1 The Backward-Facing Step Problem
	2.2 The Governing Equations
	2.2.1 Non-Dimensionalization of the Governing Equations
	Discretization of the Governing Equations
	2.2.3 The Finite Volume Approximation of the Governing Equations

	2.3 Boundary Conditions
	2.4 The Non-linea Algebraic System of Equations

	3 Solution of the Non-linear Algebraic System
	3.1 Newton™s Method
	3.2 The Inexact Newton™s Method
	3.3 Preconditioning
	3.3.1 Additive Schwarz Preconditioning
	3.3.2 Multiplicative Schwarz Preconditioning
	3.3.3 Preconditioning of the Model Problem

	3.4 Krylov Subspace Algorithms
	3.4.1 Transpose-Free Quasi-Minimal Residual Method (TFQMR)
	3.4.2 Generalized Minimal Residual Method (GMRES)

	3.5 The Matrix-Free Technique
	3.6 Mechanics
	3.7 Summary

	4 The Additive Schwarz Preconditioner
	4.1 Architecture Overview
	4.1.1 Cray Optimization
	4.1.2 SGI Optimization

	4.2 Initial Results
	4.2.1 The Jacobian Algorithm
	4.2.2 The Preconditioner

	4.3 Jacobian Granularity and Contention
	4.4 Subdomain Overlap with Additive Schwarz
	4.5 Summary

	5 The Multiplicative Schwarz Preconditioner
	5.1 Results
	5.2 Summary

	6 The Matrix-Free Technique
	6.1 Robustness Concerns
	6.2 Performance of the Matrix-Free Technique
	6.3 Summary

	7 Conclusions
	7.1 Optimal Architecture
	7.2 Summary of Results and Future Research Topics

	A Some Mechanics of Shared Memory Parallel Computation
	A.1 Applied Pardel Computation
	Hardware Selection for Applied Parallel Computation
	A.2.1 Requirements
	A.2.2 The Optimal Architecture
	A.2.3 The Comparison
	A.2.4 Final Thoughts

	Shared Memory Hardware Programming Basics
	A.3.1 Cray Optimization Process
	A.3.2 SGI Optimization Process

	Parallel Processing In A Production Environment

	B Sample Cray FLOWTRACE Output
	Bibliography
	The problem domain
	The backward-facing step
	Flow velocity
	Mach number contours
	dimensional discretization
	equation approximation
	The computational cell modified for coincident velocity and density
	The 2-momentum stencil
	The y-momentum stencil
	The energy stencil
	2.10 The problem domain
	2.11 No-slip y-momentum condition along an east wall
	2.12 Adiabatic temperature condition along an east wall
	The structure of the Jacobian matrix
	3.2 Simplified Jacobian matrix
	3.3 Partitioned Jacobian matrix four subdomains
	3.4 Magnified subdomain
	3.5 Partitioned Jacobian matrix 16 subdomains
	3.6 Partitioned Jacobian matrix four subdomains with overlap
	3.7 Overlap of Subdomain
	3.8 Normal block numbering
	3.9 Renumbered blocking
	3.10 ﬁCheckerboardﬂ domain decomposition
	3.11 Flowchart for Newton-Krylov-Schwarz solution technique
	4.1 64 x 320 domain solution time

	ations on the C90
	4.3 Convergence behavior of the Newton-Krylov-Schwarz algorithm
	Jacobian CPU time speedup and &ciency on the C90
	4.5 Partitioned Jacobian matrix four subdomains with overlap
	Plot of overlap behavior versus number of subdomains
	ulation
	sition
	A.l An array stored in Cray banked memory
	A.2 Single processor memory access
	2.1 Parameter dues
	2.2 Dimensionless Parameters
	3.1 ILU memory requirements (adapted from McHugh [l])
	3.2 Schwarz memory requirements (from McHugh [l])
	Iterative behavior of several preconditioners (from McHugh El])
	Contributions towards total CPU time
	Memory requirements for Cray 64 x 320 simulation
	Parallel speedup of the linear solution routine on the C90
	Solution algorithm performance data
	Overall code performance
	Overall performance
	New Jacobian performance
	TFQMR routine performance
	Speedup of the additive Schwarz preconditioner formation routine
	4.10 32 x 160 Onyx simulation iteration behavior

	4.11 SGI Onyx overall performance
	4.12 SGI Onyx Jacobian performance
	4.13 SGI Onyx TFQMR performance
	4.14 Speedup of the additive Schwarz preconditioner formation routine
	4.15 64 x 320 Onyx Run (4 Blocks)

	4.16 Memory requirements for SGI 32 x 160 simulation
	4.17 32 x 160 Onyx simulation iteration behavior comparing overlap values

	tions and CPU time
	4.19 Speedup dues for 8 cell overlap problem
	4.20 Memory requirements for SGI 32 x 160 simulation with various overlap dues
	ations and CPU time for a 96 x 480 simulation
	4.22 Speedup values for 12 cell overlap 96 x 480 problem using 8 processors
	4.23 Speedup values for 12 cell overlap 96 x 480 problem using 16 processors
	problem
	and multiplicative Schwarz (MS) preconditioning
	Schwarz (MS) preconditioning on the basis of DOP
	(* 8 block run on 4 processors)
	Speedup in the Jacobian routine (* 8 block run on 4 processors)
	Speedup of the TFQMR routine (* 8 block run on 4 processors)
	Iteration behavior with multiplicative Schwarz preconditioning
	domain 32 x 160 problem on the Onyx
	Parameters for the Cray 32 x 160 runs
	blocking)
	Speedup values for 32 x 160 problem
	Parameters for the Cray 64 x 320 runs
	64 x 320 matrix-free simulation iteration behavior (n x 1 stripwise blocking)

	Speedup values for 64 x 320 problem
	Parameters for the SGI 32 x 160 runs
	32 x 160 matrix-free simulation iteration behavior (n x 1 stripwise blocking)

	6.10 Speedup values for 32 x 160 problem on the SGI
	100 Mflops performance (1/1/96)

	over 100 Mflops performance considering other imposed requirements

	A.3 NAS parallel benchmark results [2]
	Speedups within a production environment (Table from Cray Research [3])

