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Abstract

The RAMpage memory hierarchy is an alternative to the traditional division between cache and main memory: main
memory is moved up a level and DRAM is used as a paging device. As the CPU-DRAM speed gap grows, it is expected
that the RAMpage approach should become more viable. Results in this paper show that RAMpage scales better than a
standard second-level cache, because the number of DRAM references is lower. Further, RAMpage allows the possibility
of taking a context switch on a miss, which is shown to further improve scalability. The paper also suggests that memory
wall work ought to include the TLB, which can represent a significant fraction of execution time. With context switches on
misses, the speed improvement at an 8 GHz instruction issue rate is 62% over a standard 2-level cache hierarchy.
Keywords: memory hierarchy, memory wall, caches, computer system performance simulation
Computing Review Categories:B.3.2, B.3.3

1 Introduction

The RAMpage memory hierarchy is an alternative to a
conventional cache-based hierarchy, in which the lowest-
level cache is managed as a paged memory, and DRAM
becomes a paging device. The lowest-level cache is in
effect an SRAM main memory. Disk remains as a sec-
ondary paging device. Major hardware components re-
main the same as in the conventional hierarchy, except
that cache tags are eliminated in the SRAM main mem-
ory, as it is physically addressed after page translation.
Another difference from the conventional hardware is that
the TLB caches SRAM main memory address translations,
instead of DRAM address translations. In keeping with
a paged memory, misses and replacement policy in the
SRAM main memory are handled in software.

The RAMpage memory hierarchy is motivated by the
need to solve the memory wall problem [12, 5, 11]. A
key insight leading to the development of the RAMpage
model is the fact that cache miss costs with the current
CPU-DRAM speed gap are in the same ballpark as page
fault costs in early virtual memory systems [6] — as ratios
not absolute numbers.

A relatively neglected aspect of the memory wall prob-
lem is the fact that TLB management can be a signif-
icant fraction of run time. In programs with a largely
regular memory access pattern, this issue may not seem
so important, but in programs with less benign locality
(e.g. databases [10], or programs with many small objects
randomly scattered over the address space [7]), TLB be-
haviour may make a significant difference to performance.
Since TLB misses can ultimately result in DRAM refer-
ences, they should be considered as part of the memory
wall problem.

This paper does not present significant TLB data, but

raises the necessity of dealing with the problem, and argues
how RAMpage can make a contribution.

Previously published work [9] focused on hardware-
software trade-offs. Correction of inaccuracies in previ-
ously reported results has shown that RAMpage is signifi-
cantly faster than a comparable conventional hierarchy, un-
der the conditions in which it was measured [8].

This paper focuses on how RAMpage addresses the
memory wall problem, by hiding latency through context
switches on misses. In particular, the focus is on showing
how time spent waiting for DRAM can be hidden, provided
there are available processes.

More detail on the hierarchy simulated here and on
related research can be found in previously published
work [9].

Measurements here are for a multiprogramming mix,
but multithreaded applications could also work well on a
RAMpage machine.

The remainder of this paper is structured as follows.
Simulation parameters are summarized in Section 2, and
results presented in Section 3. Finally, conclusions are pre-
sented in Section 4.

2 Simulated Systems

2.1 Introduction

This section describes and justifies the parameters of the
simulated systems.

The approach used is to measure RAMpage against
a conventional 2-level cache system, with a 2-way asso-
ciative L2 cache. The only major hardware difference (in
terms of added components) is that the conventional sys-
tem has tags and associated logic.

RAMpage measurements have two variations: without
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and with context switches on misses. The version without
context switches on misses models the effect of better man-
agement of replacement (the cost is software management,
which has to be traded against fewer misses). Measure-
ment with context switches on misses is intended to show
how RAMpage scales up better than a conventional cache-
based hierarchy as the CPU-DRAM speed gap grows.

Upper levels of the memory hierarchy – L1 caches and
TLB – are chosen conservatively, to reduce any benefit
seen from reducing misses to DRAM. With a more aggres-
sive L1 and a bigger TLB, RAMpage should do better, as
time spent in DRAM will be a larger fraction of overall
time. A bigger TLB would improve performance of small
pages in RAMpage: the simulated configuration has a very
high TLB overhead for small pages [9].

The remainder of this section starts by describing
benchmark data used to drive the simulations, then item-
izes configurations of the various simulated systems.

2.2 Benchmarks

Measurements were done with traces containing a total of
1.1-billion references, from the Tracebase trace archive at
New Mexico State University1.

The traces were interleaved, switching to a different
trace every 500,000 references, to simulate a multipro-
gramming workload. These SPEC92 traces are used for
comparability with earlier results. Although individual
traces would be too small to exercise a memory hierarchy
of the size measured here, the combined effect of all the
traces, simulating a multiprogramming workload, is suffi-
cient to warm up the memory hierarchy simulated for this
paper [9].

2.3 Common Features

Both systems are configured as follows:

� CPU – single-cycle execution, pipeline not modeled

� L1 cache – 16Kbytes each of data (D) and instruc-
tion (I) cache,physically tagged and indexed, direct-
mapped, 32-byte block size, 1-cycle read hit time,
12-cycle penalty for misses to L2 (or SRAM main
memory in the RAMpage case); for D cache: per-
fect write buffering, zero (effective) hit time, write-
back (12-cycle penalty; 9 cycles for RAMpage – no
L2 tag to update), write allocate on miss

� TLB – 64 entries, fully associative, random replace-
ment, 1-cycle hit time, misses modeled by interleaving
a trace of page lookup software

� DRAM level – Direct Rambus [2] without pipelining:
50ns before first reference started, thereafter 2 bytes
every 1.25ns

1The traces used in this paper can be found atftp://
tracebase.nmsu.edu/pub/.tb1/r2000/utilities/ and
ftp://tracebase.nmsu.edu/pub/.tb1/r2000/SPEC92/ .

� paging of DRAM – inverted page table: same organi-
zation as RAMpage main memory for simplicity (infi-
nite DRAM with no misses to disk)

� TLB and L1d hits fully pipelined; hit times are used to
simulate replacements and maintaining inclusion

Detail of the L1 cache is similar across all variations.
A superscalar CPU is not explicitly modeled: the cycle
time represents instruction issue rate rather than actual
CPU cycle time. Issue rates of 1 GHz to 8 GHz are simu-
lated to model the growing CPU-DRAM speed gap (cache
and SRAM main memory speed are scaled up but DRAM
speed is not).

2.4 Conventional Cache System Features

The cache-based system has a 4 Mbyte 2-way set associa-
tive L2 cache using a random replacement policy. Block
(line) size is varied in experiments from 128 bytes to
4 Kbytes. The bus connecting the L2 cache to the CPU
is 128 bits wide and runs at one third of the CPU clock rate
(i.e., 3 times the cycle time). The L2 cache is clocked at
the speed of the bus to the CPU. Hits on the L2 cache take
4 cycles including the tag check and transfer to L1.

Inclusion between L1 and L2 is maintained [3], so L1
is always a subset of L2, except that some blocks in L1
may be dirty with respect to L2 (writebacks occur on re-
placement).

The TLB caches translations from virtual addresses to
DRAM physical addresses.

2.5 RAMpage System Features

The simulated RAMpage SRAM main memory is up to
128 Kbytes larger (since it does not need tags), for a to-
tal of 4.125 Mbytes. The extra amount is scaled down for
larger page sizes, since the number of tags in the compa-
rable cache also scales down with block size. In our simu-
lations, the operating system uses 6 pages of the SRAM
main memory when simulating a 4 Kbyte-SRAM page,
i.e., 24 Kbytes, up to 5336 pages for a 128 byte block size,
a total of 667 Kbytes. These numbers cannot be compared
directly with the conventional hierarchy as they not only
replace the L2 tags, but also some operating system in-
structions or data (including page tables) which may have
found their way into the L2cache, in the conventional hi-
erarchy.

The overhead is lower for a smaller SRAM main mem-
ory in terms of page table size, but the size needed for oper-
ating system code and data is fixed (in the current model).
Preliminary work on a range of different sizes shows that a
1 Mbyte SRAM main memory is the minimum size which
is practical, with the overhead of the current design.

The RAMpage SRAM main memory uses an inverted
page table [4], and replacements use a standard clock algo-
rithm [1].

The TLB in the RAMpage hierarchy caches transla-
tions of SRAM main memory addresses and not DRAM
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physical addresses. Another major difference from the
conventional hierarchy is that a TLB miss never results
in a reference below the SRAM main memory, unless the
reference itself results in a page fault in the SRAM main
memory.

2.6 Context Switches

Measurement is done by adding a trace of simulated con-
text switch code, based on a standard textbook algorithm,
to the conventional system (approximately 400 references
per context switch). In the RAMpage system, context
switches are also taken in one set of measurements on
misses to DRAM. In the RAMpage model, the context
switching code and data structures are pinned in the RAM-
page SRAM main memory, so that switches on misses do
not result in further misses to DRAM by the operating
system code or data. In the conventional hierarchy, con-
text switches can result in operating system references to
DRAM.

3 Results

3.1 Introduction

Results in this section are focused on illustrating how
RAMpage can address the memory wall problem. In par-
ticular, context switches on misses are highlighted as a
mechanism for providing scalability as CPU speeds in-
crease relative to memory speeds.

Results are summarized in two forms: fraction of run
time spent at each level of the hierarchy, and speedups ver-
sus both a cache-based hierarchy and the slowest CPU.

3.2 Memory Occupancy

Table 1 presents fractions of times spent in various levels
of the memory hierarchy. TLB hits and L1d hits are not
counted separately, as they are fully pipelined. The only
TLB and L1d references counted are those resulting from
replacements.

The biggest difference is the much lower fraction of
time spent in the DRAM level when context switches are
taken on misses (the time reported as spent in DRAM is
only the time when the processor has to stall when no pro-
cesses are ready). Although the fraction of time spent in
DRAM does also increase in the case of context switches
on misses, as the CPU-DRAM speed gap increases, the
fraction of time waiting for DRAM remains very small.

Waiting time for DRAM is unlikely to be completely
eliminated: changes in the overall workload (e.g., when
a new user logs in and starts programs) results in a large
number of cold start misses. However, scalability of RAM-
page with context switches on misses is clear from this
data. Without context switches on misses, RAMpage
scales better than the conventional cache but not enough
to do more than delay the memory wall problem.

cache RAMpage
no switches switches

1 GHz
L1i 0.646 0.690 0.720
L2 0.280 0.251 0.277
DRAM 0.072 0.057 4.96�10-5

best L2 512 2048 4096
size

2 GHz
L1i 0.603 0.681 0.712
L2 0.261 0.211 0.286
DRAM 0.134 0.105 1.23�10-4

best L2 512 1024 4096
size

4 GHz
L1i 0.532 0.685 0.716
L2 0.231 0.177 0.282
DRAM 0.236 0.136 2.66�10-4

best L2 512 1024 4096
size

8 GHz
L1i 0.430 0.515 0.731
L2 0.186 0.165 0.267
DRAM 0.382 0.318 4.20�10-4

best L2 512 1024 2048
size

Table 1: Fraction of time spent in each level, for the best
L2 block or SRAM main memory page size for each speed
(“best L2 size” refers to this best block or page size).L1
results only include L1i references; “L2” means either the
L2 cache or the RAMpage SRAM main memory.

It is useful to illustrate the fraction of time spent in
each level of the hierarchy graphically, for the fastest and
slowest CPU modeled.

Figure 1 shows the fraction of time spent in each level
of memory in the three hierarchies with a 1 GHz instruc-
tion issue rate. The fractions are cumulative, totalling 12.
The TLB fraction only includes time for references to the
TLB itself, not code executed to handle TLB misses (re-
flected in references in the rest of the hierarchy).

Note again that the time spent waiting DRAM is close
to zero for the RAMpage hierarchy with context switches
on misses: this happens because it is almost always pos-
sible to find another ready process before it’s necessary to
wait for a DRAM access to finish.

Figure 2 shows the fraction of time spent in each level
of memory in the three hierarchies with a 8 GHz instruc-
tion issue rate.

A clear difference can be seen between the fraction
of time spent in DRAM as the CPU-DRAM speed gap
grows, in the cache and RAMpage hierarchies. With con-
text switches on misses, the RAMpage hierarchy becomes
much more scalable in its DRAM usage. For this latter
case, on the scale of the graphs, it is not possible to see a

2Totals in Table 1 don’t add up to 1 though: L1d and TLB fractions
are omitted because they are insignificant.
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Figure 1: Fraction of time spent at each level of the hierar-
chy (1 GHz issue rate).L1d references are fully pipelined
and only L1d references caused by replacements appear;
TLB time only includes TLB references during replace-
ments.
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Figure 2: Fraction of time spent at each level of the hierar-
chy (8 GHz issue rate).For explanation, see Figure 1.
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difference between the 1 GHz and 8 GHz cases (for num-
bers see Table 1).

3.3 Speedups

Results presented here represent speedup over a conven-
tional hierarchy, and over the slowest hierarchy measured.
The purpose of presenting the data in this way is to illus-
trate the significantly better scalability of RAMpage with
context switches more directly.

speedupvs.cache speedupvs.1 GHz
RAMpage cache RAMpage
no context no context

switches switches switches switches

1 GHz 1.042 1.087 – – –
2 GHz 1.062 1.151 1.9 1.9 2.0
4 GHz 1.087 1.315 3.3 3.4 4.0
8 GHz 1.143 1.622 5.3 5.8 7.9

Table 2: Speedups.“Context switches” refers to switches
on misses; all comparisons are against the best block size
for each case.

Table 2 shows that the RAMpage model without con-
text switches on misses shows a modest improvement over
the conventional cache hierarchy for lower CPU-DRAM
speed gaps; this improvement increases as the speed gap
grows, to 14% faster than the cache hierarchy at an 8 GHz
instruction issue rate.

While the RAMpage hierarchy does scale better, tak-
ing context switches on misses (for the workload measured
here) is significantly better. Again, the improvement is
modest for lower speed gaps, but for the 8 GHz case, the
speed improvement is 62% (or a speedup of 1.62).

The improved scalability of RAMpage and more par-
ticularly, RAMpage with context switches on misses, is
shown more clearly in looking at the speedup ofeach hier-
archy over the same hierarchy at 1 GHz. While RAMpage
without switches on misses does scale better than thecache
hierarchy, only RAMpage with switches on misses scales
almost linearly with clock speed.

3.4 Summary of Results

The RAMpage hierarchy scales better than a 2-way as-
sociative cache. However, without context switches on
misses, RAMpage still spends an increasingly high frac-
tion of its time in DRAM, as the CPU-DRAM speed gap
grows.

For the fastest CPU measured, time spent in DRAM
for the conventional hierarchy is almost 40% of the total
(for the best choice of L2 block size). For RAMpage with-
out context switches on misses, time in DRAM is reduced
to 32% – still high, if better. This result suggests that in-
creasing associativity alone, even in large L2 caches, has
limited potential for addressing the memory wall. By con-
trast, the fraction of time spent waiting for DRAM with

the 8 GHz RAMpage hierarchy with context switches on
misses is only 0.04%.

4 Conclusions

4.1 Introduction

This section discusses the significance of the results, as
well as future work. The focus in future work is in fill-
ing gaps in the data presented here, as well as in further
exploring the design space. To conclude, the paper ends
with a final summary.

4.2 Discussion of Results

RAMpage with context switches on misses has a relatively
small increase in time spent waiting for DRAM as the
CPU-DRAM speed gap is increased. This increase should
be related to the fact that RAMpage performs best with
relatively large page sizes (2Kbytes for this case). With a
more aggressive TLB, RAMpage may perform better with
smaller page sizes. Smaller page sizes will likely result in
fewer cases where a miss to DRAM is still not completely
handled when there are no more processes ready to run.

Taking context switches on misses is a promising ap-
proach to the memory wall problem. RAMpage relies on a
CPU-DRAM speed gap high enough to recover the cost of
the extra software miss handling and the increased num-
ber of context switches. In the results here, at an 8 GHz
issue rate, a speed improvement over a conventional cache
of 62% is seen. Clearly, improvements on a conventional
hierarchy could reduce this benefit. However, a key factor
in RAMpage’s favour is that it scales well as the CPU-
DRAM speed gap grows, as can be seen from its near-
linear speedup with CPU speedup of 8.

4.3 Future Work

Preliminary results show that a 1 Mbyte SRAM main
memory is practical for the faster CPUs modeled. It would
be useful to extend this work further, and determine the
break-even point for RAMpage across a number of differ-
ent SRAM main memory sizes.

A more aggressive L1 and TLB will favour RAMpage
(as well as being more realistic).

A more aggressive L1 will result in a higher fraction
of the runtime being in DRAM, assuming that the abso-
lute number of misses from L2 (or SRAM main memory)
is not reduced. Consequently, RAMpage benefits will be
increased. The current hierarchy has deliberately been de-
signed to be conservative, so as not to favour RAMpage.

RAMpage relies on the TLB for page translations to
the SRAM main memory. A larger TLB would likely make
RAMpage more competitive with smaller page sizes.

Work done in the mid-90s [7] showed that TLB over-
head could at that time account for as much as 25% of
execution time in a specific class of application, one with a
large number of randomly allocated objects. Given that
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TLB management can result in DRAM references, we
should also give consideration to aTLB wall. The traces
used here do not exhibit poor TLB behaviour, so it is nec-
essary to investigate applications which will have problem-
atic locality properties. An important aspect of the work in
the 1990s was that the program which had poor TLB be-
haviour had been designed for goodcache behaviour. The
fact that pages differed significantly in size from cache
blocks made it difficult to optimize for both areas of the
memory hierarchy simultaneously. The RAMpage model
has the advantage that a TLB miss will never result in a
DRAM reference if the referenced page is at a higher level
of the hierarchy (the SRAM main memory inverted page
table contains all page translations for pages at that level).

It would be interesting to implement a more complete
CPU simulation. It is likely that out of order execution and
non-blocking L1caches are second-order effects, given the
high latency of DRAM. However, it would be useful to
have a more accurate CPU model to investigate other as-
pects of RAMpage in more detail, particularly the cost of
context switches in terms of pipeline stalls.

It would also be interesting to implement a more com-
plete operating system simulation, to investigate possible
variations in standard paging and context switching strate-
gies, adapted to the relatively low latency of DRAM, as
opposed to disk, as a paging device.

Finally, it would be interesting to implement a RAM-
page machine.

4.4 Final Summary

RAMpage is a promising approach. With the addition of
taking context switches on misses, it has the potential to
avoid the memory wall problem, at least in cases where
processes are available to run while servicing a miss. For
applications where running a single process at maximum
speed is the requirement, RAMpage has less to offer – at
best, fewer misses to DRAM.

Results presented here show that as the CPU-DRAM
speed gap grows, the benefits of RAMpage grow. Even
though complete implementation would require both hard-
ware and software changes, these changes are not complex.
In fact, RAMpage hardware is simpler than that of a con-
ventional cache.

The major obstacle to building a RAMpage system is
the fact that a large fraction of the computing world con-
sists of systems where the hardware and software do not
originate from the same company.
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