
Appl Intell (2018) 48:2546–2567

https://doi.org/10.1007/s10489-017-1093-y

Scalable aggregation predictive analytics

A query-driven machine learning approach

Christos Anagnostopoulos1
· Fotis Savva1

· Peter Triantafillou1

Published online: 12 December 2017

© The Author(s) 2017. This article is an open access publication

Abstract We introduce a predictive modeling solution that

provides high quality predictive analytics over aggregation

queries in Big Data environments. Our predictive method-

ology is generally applicable in environments in which

large-scale data owners may or may not restrict access to

their data and allow only aggregation operators like COUNT

to be executed over their data. In this context, our method-

ology is based on historical queries and their answers to

accurately predict ad-hoc queries’ answers. We focus on

the widely used set-cardinality, i.e., COUNT, aggregation

query, as COUNT is a fundamental operator for both inter-

nal data system optimizations and for aggregation-oriented

data exploration and predictive analytics. We contribute a

novel, query-driven Machine Learning (ML) model whose

goals are to: (i) learn the query-answer space from past

issued queries, (ii) associate the query space with local lin-

ear regression & associative function estimators, (iii) define

query similarity, and (iv) predict the cardinality of the

answer set of unseen incoming queries, referred to the Set

Cardinality Prediction (SCP) problem. Our ML model incor-

porates incremental ML algorithms for ensuring high qual-

ity prediction results. The significance of contribution lies

in that it (i) is the only query-driven solution applicable over

general Big Data environments, which include restricted-

access data, (ii) offers incremental learning adjusted for

� Christos Anagnostopoulos

christos.anagnostopoulos@glasgow.ac.uk

Peter Triantafillou

peter.triantafillou@glasgow.ac.uk

1 School of Computing Science, University of Glasgow,

Glasgow G12 8QQ, UK

arriving ad-hoc queries, which is well suited for query-

driven data exploration, and (iii) offers a performance

(in terms of scalability, SCP accuracy, processing time,

and memory requirements) that is superior to data-centric

approaches. We provide a comprehensive performance eval-

uation of our model evaluating its sensitivity, scalability and

efficiency for quality predictive analytics. In addition, we

report on the development and incorporation of our ML

model in Spark showing its superior performance compared

to the Spark’s COUNT method.

Keywords Query-driven predictive analytics · Predictive

modeling · Aggregation operators · Set cardinality

prediction · Regression vector quantization ·
Self-organizing maps

1 Introduction

Recent R&D efforts in the modern big data era have

been dominated by efforts to accommodate distributed big

datasets with frameworks that enable highly quality and

scalable distributed/parallel data analyzes. Platforms such

as MapReduce [14], Yarn [29], Spark [32] and Mahout [22]

are nowadays commonplace. Predictive modeling [26], [23]

and exploratory analysis [2, 3, 6, 20] are commonly based

on statistical aggregation operators over the results of explo-

ration queries [4, 7]. Such queries involve large datasets

(which may themselves be the result of linking of other

different datasets) and a number of range predicates over

multidimensional data vectorial representation, structured,

semi- and unstructured data. High quality query-driven data

exploration and quality modeling is becoming increasingly

important in the presence of large-scale data since accu-

rately predicting aggregations over range predicate queries

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-017-1093-y&domain=pdf
mailto:christos.anagnostopoulos@glasgow.ac.uk
mailto:peter.triantafillou@glasgow.ac.uk

Scalable aggregation predictive analytics 2547

is a fundamental data exploration task [12] in big data sys-

tems. Frequently, data analysts, data scientists, and statisti-

cians are in search of approximate answers to such queries

over unknown data subspaces, which supports knowledge

discovery and underlying data function estimation. Imag-

ine exploratory and predictive analytics [9] based on a

stream of such aggregation operators over data subspaces

being issued, until the scientists/analysts extract sufficient

statistics or fit local function estimators, e.g., coefficient of

determination, product-moment correlation coefficient, and

multivariate local linear approximation over the subspaces

of interest.

In modern big data systems like Spark [32], often data to

be analyzed possibly extends over a large number of feder-

ated data nodes, perhaps even crossing different administra-

tion domains and/or where data owners (nodes) may only

permit restricted accesses (e.g., aggregations) over their

data. Similarly, in the modern big data era, large datasets are

often stored in the Cloud. Hence, even when access is not

restricted, accesses to raw data needed to answer aggregate

queries are costly money-wise. Quality predictive model-

ing solutions which are widely applicable, even in such

scenarios, are highly desirable.

Consider a d-dimensional data space x ∈ Rd .

Definition 1 (Range Query) Let a d-dim. box be defined

by two boundary vectors [a1, . . . , ad]⊤ and [b1, . . . , bd]⊤,

ai ≤ bi , ai, bi ∈ R. A range query is represented by the 2d-

dimensional vector q = [a1, b1, a2, b2, . . . , ad , bd]⊤ where

ai and bi is lower and higher value, respectively, for the i-th

dimension. Query q is a hyper-rectangle with faces parallel

to the axes.

Definition 2 (Query Distance)1 The normalized Euclidean

distance between queries q and q′ is ‖q − q′‖2 =
1√
2d

∑d
i=1

(

ai − a′
i

)2 +
(

bi − b′
i

)2
, where 1√

2d
is a normal-

ization factor since 0 ≤ ‖q − q′‖2 ≤
√

2d.

Definition 3 (Answer Set Cardinality) Given a range query

q and a dataset B of data points x ∈ Rd , y ∈ N is the

cardinality of the answer set of those x ∈ B in the interior of

the hyper-rectangle defined by query q satisfying ai ≤ xi ≤
bi , ∀i.

The reader could refer to Appendix for a nomenclature.

The reason we focus on the COUNT aggregation operator

is that the answer Set Cardinality Prediction (SCP) of a mul-

tidimensional range query is a fundamental task, playing a

1When dealing with mixed-type data points, e.g., consisting of cate-

gorical & continuous attributes,we can adopt other distance metrics;

this does not spoil the generality of our solution.

central role in predictive modeling. With multidimensional

range queries, analysts define the subspaces in Rd of interest

within the overall data space. High quality cardinality pre-

diction in such subspaces then becomes important for data

mining, data exploration, time series analysis, and big data

visualization tasks [9, 12] of data (sub)spaces of interest.

In predictive modeling, data scientists routinely define

specific regions of a large dataset that are worth explor-

ing and wish to derive and accurately predict statistics over

the populations of these regions. This amounts to the SCP

of the corresponding range queries. In addition to being

an important aggregation operator, in database systems

accurate cardinality prediction (which amounts to the well

known selectivity estimation problem) is explicitly used for

query processing optimization, empowering query optimiz-

ers to choose, for instance, the access plan which produces

the smallest intermediate-query results (which have to be

retrieved from disks and communicated over the network)

saving time, resource waste, and money (e.g., in Clouds).

Furthermore, SCP is a core operator in modern big data

frameworks. Notably, in Spark [32] one of the five funda-

mental actions defined is the so-called count action, which

is executed over the underlying raw data at each data node.

1.1 Motivation & research objectives

Well-established and widely adopted techniques for

Approximate aggregation-Query Processing (AQP) based

on sampling, histograms, self-tuning histograms, wavelets,

and sketches [13] have been proposed. Their fundamental

and naturally acceptable assumption is that the underlying

data are always accessible and available, thus it is feasi-

ble to create and maintain their statistical structures. For

instance, histograms [15] require scanning of all data to

be constructed and being up-to-date; the self-tuning his-

tograms [1] require additionally the execution of queries to

fine tune their statistical structures; the sampling methods

[16] execute the queries over the sample to extrapolate the

cardinality prediction result.

Consider now a big data environment, where a feder-

ation of data nodes store large datasets. There are cases

where the data access to these nodes’ data may be either

restricted, (e.g., government medical and DNA databases

and demographic and neighborhood statistic datasets). Fur-

thermore, many real-world large-scale data systems may

limit the number of queries that can be issued and/or charge

for excessive data accesses. For example, there may exist

per-IP limits (for web interface queries) or per developer key

limits (for API based queries). Even when the (daily) limit is

high enough, repeated executions actually have high mone-

tary cost (e.g., in cloud deployments), waste communication

overhead due to remote query execution, and computational

resources. The accessed data nodes can either fully execute

2548 C. Anagnostopoulos et al.

the queries (to produce exact results) or locally deploy an

AQP technique to produce estimates. In the latter case, we

must rely upon the SCP accuracy provided by the applied

traditional AQP technique. Hence, the cardinality prediction

accuracy is upper bounded by the predictability capability

of the AQP method.

The above discussion raises the following desiderata: it

is important to develop quality AQP techniques that:

– D1: are applicable to all data-environment scenarios

(restricted-access or not),

– D2: are inexpensive, i.e., avoid relying on excessive

querying of and communication with the data nodes,

while

– D3: offering high prediction accuracy, and

– D4: being prudent in terms of compute-network-store

resource utilization.

Let us consider an indicative baseline solution for AQP in

our environment. One approach is to store, e.g., locally to a

central node, all the AQP structures (e.g., histograms, sam-

ples, sketches, etc.) from a federation of data nodes. Thus,

we can simply locally access this node for SCP. Firstly, this

violates our first desideratum, as privacy issues emerge (data

access restrictions). Obviously, retaining all AQP structures,

provides one with the whole valuable information about the

underlying data (e.g., in the case of histograms, we obtain

the underlying probability data distribution p(x), while in

sampling methods we retain actual samples from the remote

datasets). Even, in cases where the local accesses to AQP

structures were secured (which is again subject to major

security concerns), we would have to cope with the prob-

lem of AQP structure updates. The maintenance of those

structures in the face of updates demands high network

bandwidth overhead, cost for data transfer (in a Cloud set-

ting), latency for communicating with the remote nodes

during updates of the underlying dataset at these nodes, and

scalability and performance bottleneck problems arise at the

central node. Therefore, this approach does not scale well

and can be expensive, violating our 2nd and 3rd criteria

above.

An alternative baseline solution would be to do away

with the central node and send the query to the data nodes,

which maintain traditional AQP statistical structure(s) and

send back their results to the querying node. As before,

this violates many of our desiderata. It is not applicable

to restricted-access scenarios (violating criterion 1) and

involves heavy querying of the data node (violating crite-

ria 2 and 4). Even if this was the case (by violating criteria

1, 2, and 4), the construction and maintenance of an AQP

structure would become a prohibited solution; we struggle

with huge volumes of data (data universe explosion phe-

nomenon; imagine only the creation of a multidimensional

histogram over 1 zettabyte). These facts help expose the

formidable challenges to the problem at hand, (a signifi-

cant problem for large-scale predictive analytics) which to

the best of our knowledge, has not been studied before. In

this work we study a query-driven SCP in a big data system

taking into consideration the above-mentioned desiderata.

Although significant data-centric AQP approaches for car-

dinality prediction have been proposed [13] a solution for

our intended environments of use is currently not available.

There are three fundamental pressures at play here. The

first pertains to the development of a solution for cardinal-

ity prediction that is efficient, and scalable, especially for

distributed scale-out environments, wherein extra commu-

nication costs, remote invocation techniques, and estimation

latency are introduced. The second pertains to the quality

of cardinality prediction results in terms of accuracy and

model fitting, where as we shall see traditional solutions

fall short. The third concerns the wide-applicability of a

proposed method, taking into account environments where

data accesses may be restricted, We propose a solution that

addresses all these tensions. Conceptually, its fundamental

difference from related works is that it is query-driven, as

opposed to data-driven, and is thus based on a ML model

(trained by a number of queries sent to a data node) and later

utilized to predict answers to new incoming queries.

The challenging aim of our approach is to swiftly pro-

vide cardinality prediction of ad-hoc, unseen queries while

(i) avoiding executing them over a data node, saving com-

munication and computational resources and money, and (ii)

not relying on any knowledge on the p(x), and any knowl-

edge about nodes’ data. Through our query-driven SCP, an

inquisitive data scientist, who explores data spaces, issues

aggregate queries, and discovers hidden data insights, can

extract accurate knowledge, efficiently and inexpensively.

1.2 Related work

Given a d-dim. data space x ∈ Rd the holy grail approaches

focus on: (i) inspecting the (possibly huge) underlying

dataset and estimate the underlying probability density

function (pdf) p(x). Histograms (typically multidimen-

sional) as fundamental data summarization techniques are

the cornerstone, whereby the estimation of p(x) is highly

exploited for SCP of range queries, e.g., [1, 15]. The tra-

ditional methods of building histograms do not scale well

with big datasets. Histograms need to be periodically rebuilt

in order to update p(x) thus, exacerbating the overhead

of this approach. Central to our thinking is the observa-

tion that a histogram is constructed solely from data, thus

obviously being not applicable to our problem for the above-

mentioned reasons. Histograms are also inherently unaware

on the cardinality prediction requests, i.e., query patterns.

Their construction method rely neither on query distribu-

tion p(q) nor on joint p(q, y) but only on p(x). As a result,

Scalable aggregation predictive analytics 2549

such methods do not yield the most appropriate histogram

for a given p(q) [11]. The limitations of this method are also

well-known [27, 30].

To partially address some of the above limitations, prior

work has proposed self-tuning histograms (STHs) e.g., [1,

27]. The STHs learn a centrally stored dataset from scratch

(i.e., starting with no buckets) and rely only on the cardinal-

ity result provided by the execution of a query, referred to

as Query Feedback Records (QFR). STHs exploit the actual

cardinality from QFR and use this information to build and

refine traditional histograms. Formally, given a query q over

data with cardinality y, the methods of STHs estimate the

conditional p(x|y, q) since the main purpose is to construct

and tune a histogram conditioned on query patterns. Fun-

damentally, the limitations in STHs in our problem stem

from the fact that they estimate p(x|y, q), thus, having to

data access (in multidimensional STHs, at least one scan

of the set B is required), deal with the underlying data dis-

tribution and make certain assumptions of the statistical

dependencies of data.

Other histogram-based cardinality prediction methods

utilize wavelets [31] or entropy-based [28]; the list is not

exhausted. Briefly, the idea is to apply wavelet decomposi-

tion to the dataset to obtain a compact data synopsis based

on the wavelet coefficients. By nature, wavelets-based AQP

relies on the synopsis construction over data thus could not

be applied to our problem. Overall, STHs and the other

advanced histogram-based approaches, are associated with

data access for estimating p(x) or any other p(x|q, . . .)

thus not applicable in our problem. Sampling methods [16]

have been also proposed for SCP. They share the common

idea to evaluate the query over a small subset of the dataset

and extrapolate the observed cardinality. Finally, another

approach for AQP answering to SCP is data sketching; we

refer the reader to [13] for a useful survey of sketching

techniques. Sketching algorithms construct estimators from

the raw data and yielding a function of these estimators

as the answer to the query. Therefore, as discussed above,

we neither have access to data nor to a sample of them,

thus yielding the data sketching and sampling methods

inapplicable to our problem.

In conclusion, the data-centric approaches in related

work are not applicable to our problem since they require

explicit access to data to construct their AQP structures

and maintain them up-to-date. For this reason, our proposed

solution to this novel setting is query-driven.

Our model can be highly useful when it is very costly (in

time, money, communication bandwidth) to execute aggre-

gation operators over the results of complex range queries

(including joins of datasets and arbitrary selection predi-

cates), when data are stored at the cloud, or at federations

of data stores, across different administration domains, etc.

And, to our knowledge, it is the only approach that can

address this problem setting. It is worth noting that this

paper significantly extends our previous work presented in

[5]. The interesting reader could refer to [5] to assess the

performance of our solution with respect to traditional data-

centeric (AQP) systems for cardinality prediction namely

with multidimensional histograms, popular self-tuning his-

tograms, and sampling methods. In [5], through comprehen-

sive experiments we showed that the query-driven approach,

which extracts knowledge from the issued queries and

corresponding answers, provides higher cardinality predic-

tion accuracy and performance, while being more widely

applicable. Based on the scalability and efficiency of this

approach, we further generalize our model in [5] and imple-

ment generalized ML algorithms within the most popular

big data system, Spark. Specifically, the major differences

of the proposed generic ML model discussed in this paper

with that of our paper in [5] are:

– We propose a generalization of the ML model in [5] by

introducing (i) associative local linear regression mod-

els for cardinality prediction and (ii) the concept of the

coefficients lattice in self-organizing maps statistical

learning algorithm;

– We provide the theoretical analysis and convergence of

the learning algorithms of the generalized ML model

(Theorems 2 and 4);

– We implement our ML model within the Spark system;

– We provide comprehensive experiments showing the

quality of prediction of our ML model through a variety

of evaluation metrics.

– We experiment with the scalability performance of our

ML model compared with the Spark’s COUNT method

for answer-set cardinality estimation.

1.3 Organization

The structure of the paper is as follows: Section 2 reports

on the rationale of our approach and the research chal-

lenges for the SCP, while summarizes the contribution and

our research outcome. In Section 3, we provide prelim-

inaries for unsupervised & heteroassociative competitive

statistical learning and the self-organizing maps along with

the problem formulation for SCP. Section 4 provides the

set cardinality learning methodology, the machine learn-

ing algorithms over the novel introduced lattice concepts

and the fundamental convergence theorems of our neuron-

based model. In Section 5 we provide an implementa-

tion of our model in the Spark system, while Section 6

reports on a comprehensive performance and comparative

assessment with the build-in Spark COUNT over real large-

scale datasets introducing different experimental scenarios.

Finally, Section 7 concludes the paper with future research

directions.

2550 C. Anagnostopoulos et al.

2 Challenges & overview

Our approach is query-driven. The first requirement (and

challenge) of our approach is to incrementally learn the

query patterns p(q) at any time, thus being able to (i) detect

possible changes to user interests on issuing queries and (ii)

reason about the similarity between query patterns. The sec-

ond requirement (and challenge) is to learn the association

q → y between a query q and its cardinality y, i.e., p(y|q),

thus being able to predict the cardinality. The third require-

ment (and challenge) is to learn such association without

relying on the underlying p(x) which in our case is totally

unknown and inaccessible. The fourth requirement (and

challenge) is to update p(q) and p(q, y) based on changes

in query patterns and to data. Query distributions are known

to be non-uniform, with specific portion of the data space

being more popular. However, query patterns change with

time, reflecting changes of users interests to exploring dif-

ferent sections of the datasets of nodes. Hence, we must

swiftly adapt and learn on-the-fly the new query patterns,

updating p(q, y) and p(q). Furthermore, updates on the

underlying datasets of nodes can independently occur, alter-

ing p(x). We must also deal with such mutations, implying

the need to maintain the current q → y association, sub-

ject to updates of the underlying data. We require a model

to meet the above-mentioned requirements.

2.1 Overview of COUNT predictive learning

Consider a set Q = {(qi, yi)}ni=1 of training pairs and a new

query q with actual result y. Our major aim is to predict its

result ŷ using only Q without executing q. Let us discuss

some baseline solutions:

A first idea is to keep all pairs (qi, yi) and given q we

find the most similar query qj with respect to Euclidean

distance and predict ŷ = yj , with (qj , yj) ∈ Q. We can

also involve the k closest queries to q and average their car-

dinality values, i.e., k-nearest neighbors regression, as will

be further analyzed later. The major problems here are: (i)

we must store and search all previous pairs for each new

query; Q can be huge. Deciding which pairs to discard is

not a trivial task (a new pair might convey useful informa-

tion while another new one might be a redundant / repeated

query); (ii) when data change (updates on raw data), which

impacts the query results, it is not trivial to determine which

pairs from Q and how many to update. Even worse, all pairs

may need updating; (iii) when query patterns change (new

user interests), then there may be many pairs in Q that will

not contribute to cardinality prediction (the new queries are

actually far distant to the previous ones) or even negatively

impact the final result.

To avoid such problems we extract knowledge from Q

as to how query and cardinality depend on each other. We

could cluster similar queries given the Euclidean distance,

thus forming a much smaller set L of representative (pro-

totype) queries w with |L| ≪ |Q|. For instance, w ∈ L

can be the centroid of those queries from Qw ⊂ Q with

distances from w be the smallest among all other repre-

sentatives. However, we are not just interested in clustering

Q. We should partition Q aiming at cardinality prediction.

An approach could be to assign to each wi ∈ L a ‘repre-

sentative’ cardinality value, e.g., the average cardinality of

those queries that belong to Qwi
. Once this assignment is

achieved, we only keep L and discard Q.

Nonetheless, our requirements include incremental learn-

ing of the query space in light of cardinality prediction.

We require an adaptive clustering algorithm that incremen-

tally, i.e., with only one pass of Q, quantizes Q but also

with respect to minimizing the prediction error. Also, the

adoption of an on-line quantization algorithm, like on-line

k-means is not directly applicable in our case as we don’t

wish to simply quantize the query space; we explicitly

require quantization of the query space in light of cardinal-

ity prediction. Moreover, on-line regression methods, e.g.,

incremental regression trees [17], on-line support vector

regression [24], could not fulfill all requirements. This is

because, we also deal with the fact that queries are con-

tinuously observed, conveying the way users are interested

in data exploration. The capability of the model to adapt

to such changes requires explicit information on accessing

the very specific regions of the query patterns space; this is

neither easily provided nor supported by incremental regres-

sion methods. Moreover, the problem here is not only to

adapt to changes on the query patterns but to decide which

and how representative(s) or regions of the query patterns

space to update upon data and/or query updates.

2.2 Contribution & research outcome

We introduce a novel and scalable Machine Learning (ML)

model M that incrementally extracts information about the

q → y association by learning p(q) and, in parallel, p(y|q).

Once trained, model M predicts the cardinality of an unseen

query without requesting its execution. The major technical

contributions are:

– a prediction error-driven, associative local regression

model for predicting the aggregate results of range queries.

– theoretical analysis of convergence of our machine

learning algorithms over large-scale squared and abso-

lute loss minimization.

– implementation of our algorithms in the Spark system.

– comprehensive experimental results analyzing the per-

formance of our model and showcasing its benefits

vis-à-vis the data-centric Spark’s COUNT method for

set-cardinality estimation.

Scalable aggregation predictive analytics 2551

3 Preliminaries & problem formulation

3.1 Preliminaries

We overview the essentials of our ML model, namely

Unsupervised Competitive Learning (UCL) [21] and Het-

eroassociative Competitive Learning (HCL) [19].

3.1.1 Unsupervised competitive learning

UCL partitions a query pattern space R2d characterized by

an unknown p(q), q ∈ R2d . A prototype or neuron wj rep-

resents a local region of R2d . UCL distributes M neurons

w1, . . . , wM in R2d to approximate p(q). A UCL model

learns as wj changes in response to random training pat-

terns. Competition selects which wj the training pattern q

modifies. Neuron wj wins if it is the closest (based on 2-

norm distance ‖q − wj‖2) of the M neurons to q. During

the learning phase of UCL, patterns q are projected onto

their winning neurons, which competitively and adaptively

move around the space to form optimal partitions that mini-

mize the quantity
∫

‖q − wj‖2
2p(q)dq with winning neuron

wj : ‖wj − q‖2 = mini‖wi − q‖2. The neurons upon a t-th

training pattern q are incrementally updated as follows:

�wj = β(t)
(

q − wj

)

and �wi = 0, if i �= j, (1)

where learning rate β(t) ∈ (0, 1] slowly decreases with the

update step.

3.1.2 Kohonen’s self-organizing maps

Kohonen’s self-organizing maps (SOM) [19] is an advanced

variant of a UCL, in which wj corresponds to the j -th posi-

tion rj = [rj1, rj2] of a 2-dim. square lattice/matrix L

(we notate wj ∈ L). In SOM, neurons that are topologi-

cally close in the lattice correspond to patterns that are also

closein R2d . This way a topographic mapping is learned

between query pattern and lattice space. This is achieved by

adapting not only the winner neuron wj of a pattern q but

also its topographical neighbors wi to some degree through

a Kernel distance function h(i, j ; t) over the positions ri

and rj of neurons wi and wj in L, respectively. Usually,

h(i, j ; t) is a Gaussian neighborhood function:

h(i, j ; t) = exp

(

−
‖ ri − rj‖2

2

2ρ2(t)

)

. (2)

Parameter ρ(t) is the width of the neighborhood with ini-

tial value ρ0 defined as ρ(t) = ρ0 exp(− t
Tρ

), where Tρ is a

constant. A small width value corresponds to narrow neigh-

borhood. We obtain SOM through an incremental update

rule that adapts all neurons that are topographically close to

wj :

�wi = β(t)h(i, j ; t) (q − wi) , ∀i. (3)

A good choice of β(t) improves significantly the conver-

gence of SOM [19]; usually β(t) = β(t−1)
1+β(t−1)

with β(0) =
1. SOM yields a high quality vector quantization from all

UCL variants because of producing a structured ordering

of the pattern vectors, i.e., similar query patterns are pro-

jected to similar neurons, making it ideal for our purposes.

Figure 1 shows a SOM structure with neuron and posi-

tion vectors before and after an update. UCL/SOM does not

learn any conditional or joint association between different

pattern spaces. In our case, we desire also to estimate an

association between R2d and N, i.e., estimate p(q, y) with

q ∈ R2d , y ∈ N, HCL comes into play.

3.1.3 Heteroassociative competitive learning

HCL estimates indirectly an unknown joint p(q, y), while

directly estimates a function f : R2d → N over random

pairs (q, y). In statistical learning theory [21], HCL refers to

a function estimation model M(f, α) (or simply M) with

parameter α ∈ � (� is a parameter space defined later)

for estimating f . The problem of learning M is that of

Fig. 1 a A Self-organizing Map

with neuron vectors wj and

position coordinates vector rj ;

b The adaptation of the

self-organizing map after the

projection of a query vector q to

its closest neuron wj on the

neurons lattice L

Neuron wwj

rj =(rowj, columnj)

Winner neuron wj

Neuron wi

Original query qq

2552 C. Anagnostopoulos et al.

choosing from a set of functions f (q, α), α ∈ �, the one

which minimizes the risk function:

J (α) =
∫

L(y, f (q, α))dp(q, y), (4)

given random pairs (q, y) drawn according to p(q, y) =
p(q)p(y|q) with loss or estimation error L(y, ŷ) between

actual y and predicted ŷ = f (q, α), e.g., L(y, ŷ) =
|y − ŷ|. The goal for HCL is to learn M(f, α0) which

minimizes J (α) subject to unknown p(q, y), i.e., α0 =
arg minα∈� J (α).

3.1.4 Stochastic gradient descent

Stochastic gradient descent (SGD) is considered to be one

of the best methods for large scale loss minimization and

has been experimentally and theoretically analyzed by [10].

Upon the presence of a t-th pattern (q, y), α(t) is updated

by:

�α(t) = −β(t)∇L(y, ŷ; α(t)), (5)

where ∇L is the gradient of L at t-th pattern w.r.t. α(t).

3.2 Problem formulation

Consider a model M that estimates the cardinality predic-

tion function

f : R2d → N

given a finite set Q of training pairs (q, y) drawn from the

unknown p(q, y), i.e., y = f (q). The model M learns the

mapping from query pattern space to cardinality domain by

minimizing the risk function J (α) in (4) with respect to a

loss function (prediction error) L(y, ŷ). A loss function can

be, e.g., λ-insensitive L(y, ŷ) = max{|y − ŷ| − λ, 0}, λ >

0, 0–1 loss L(y, ŷ) = I (y �= ŷ) with I be the indicator

function, squared loss (y − ŷ)2,or absolute |y − ŷ|.
The fundamental problem of the ML model for cardinal-

ity prediction is:

Problem 1 Given a dataset B and training pairs of queries

and their answer-set cardinality values (q, y) ∈ Q, incre-

mentally train a model M which minimizes J (α).

4 Set cardinality predictive learning

4.1 Machine learning methodology

A natural, baseline solution for cardinality prediction is dis-

tance nearest-neighbors regression. This prediction scheme

is based on utilizing the set cardinality values of similar

historical queries to predict the set cardinality value for a

new, unseen query. The notion of neighborhood is material-

ized by the distance (in some metric space, e.g., Euclidean

space) of the unseen query q to a (stored) query qi ∈ Q,

whose cardinality value is yi . Hence, the regression function

for cardinality prediction y = f (q; k) refers to the aver-

age value of the cardinality values of the k-th closest stored

queries qi :

y = f (q; k) = 1

|Nk(q)|

|Nk(q)|
∑

i=1

yi : qi ∈ Nk(q), (6)

where the neighborhood Nk(q) is the set of the k-th closest

queries to unseen query q:

Nk(q) = {qi ∈ T , q′ ∈ T \Nk(q) : ‖qi −q‖2 ≤ ‖q′−q‖2}.
(7)

In this k-nearest neighbors regression (k-nn), the cardi-

nality of the neighborhood k plays a significant impact on

the accuracy of prediction. The choice of k is very crit-

ical: (i) a small value of k means that noise will have a

higher influence on the prediction result; (ii) a large value

of k, evidently, yields a computationally expensive predic-

tion result and defeats the basic philosophy behind, i.e.,

queries that are near might have similar densities in car-

dinality values; e.g., by involving in the final prediction

result irrelevant and non-similar queries. In general notion,

k is chosen to be
√

|Q|, where |Q| is the number of stored

queries in Q, thus, interdependent of the query dimension-

ality 2d . Moreover, a straightforward k-nn algorithm for

cardinality prediction is O(|Q|d log(k)), which obviously,

is not applicable for large-scale data-sets, especially when

k ∼
√

|Q|. This means that this (non-parametric) solution

does not scale with the number of queries and dimensional-

ity, thus, not suitable for scaling out for predictive analytics

tasks like our problem.

We propose a solution, which scales with the number of

queries and deals with the curse of dimensionality based

on parametric regression, i.e., we attempt to incrementally

extract knowledge from the Q set of historical queries and

then, abstract a parametric model suitable to scale and,

simultaneously, be computationally inexpensive for predic-

tions. In this context, our scalable methodology learns from

incoming queries and answers and dynamically builds a

parametric model, thus (i) avoiding to maintain and pro-

cess historical queries for making prediction and (ii) being

capable to swiftly predict cardinality independent on the

numbers of the queries.

Our objective is a scalable, parametric ML model M to:

1. incrementally quantize (cluster) the query pattern space,

thus, abstracting the query space by certain M parame-

terized prototypes, with a user-specific fixed M;

Scalable aggregation predictive analytics 2553

2. learn the localities of the association q → y, thus,

dealing with the curse of dimensionality [18] based on

localized regression models;

3. predict the set cardinality given an unseen query in

O(d log(M)) independent of the number of queries |Q|.

The novelty of our model relies on the introduction of

two simultaneous incremental learning tasks:

– Task 1: incremental query space quantization

(UCL/SOM; unsupervised learning);

– Task 2: incremental local learning of the q → y

association within the region of these neurons (HCL;

supervised learning).

Both tasks rely on certain 2-dimensional lattices, where

reside the parameters of the model. In Task 1, we abstract

the lattice parameters as the query representatives (neurons).

The parameters of the Task 2 refer to local output represen-

tatives (prototypes) depending on the representation of the

prediction function, residing on a different lattice. In this

work, we propose two variants for the cardinality prediction

function f .

4.2 The lattice concept in machine learning methodology

4.2.1 Neuron input lattice

In this input lattice, hereinafter referred to as the neuron lat-

tice L, we estimate the parameters, i.e., SOM neurons, that

represent the input space in our problem, i.e., the query pat-

terns. The 2d-dimensional neurons wi ∈ L quantize the

query space into a fixed number of M query sub-spaces. As

will be elaborated later, this lattice is used for projecting an

unseen query q onto a query sub-space and then leading to

its associated output lattice for cardinality prediction.

4.2.2 Cardinality output lattice

In this output lattice, we estimate the (local) cardinality pro-

totypes yj , which are associated with each wj . The yj reside

on a cardinality lattice C such that the j -th index of wj

refers to the j -th index of yj . Hence, a point yj in the car-

dinality lattice corresponds to a local associative constant

function:

fj (q) = yj , q ∈ R2d : j = arg min
i∈[M]

‖q − wi‖2. (8)

In the case of input lattice L and output lattice C, the param-

eter set for model M is α = ({wj }, {yj }), j = 1, . . . ,M .

Figure 2 shows the idea of the cardinality lattice.

4.2.3 Coefficient output lattice

In this output lattice, if the local associative function is

varying considerably around a point, a piece-wise constant

approximation may require many units. In this case, we refer

to the estimation of the local linear regression coefficients

mj = [mj0, mj1, . . . , mj2d] ∈ R2d+1, which are associ-

ated with each query prototype wj . That is the cardinality

y is approximated by a linear combination of the query

dimensions q = [q1, . . . , q2d], while m is the (2d + 1)-

dimensional vector of the linear coefficients, with m0 being

the intercept in the R2d × N space. The mj coefficients

reside on a coefficient lattice O such that the j -th index

of wj refers to the j -th regression plane governed by the

regression mj q⊤. This defines a local regression plane over

the query and cardinality space, defined by those queries

that are projected on the query prototype wj . Hence, a point

mj in the coefficient lattice corresponds to the parameter of

the local linear regression function:

fj (q) = mj q⊤, q ∈ R2d : j = arg min
i∈[M]

‖q − wi‖2. (9)

Fig. 2 Cardinality lattice-based

prediction: Projection-

association-local prediction:

Simultaneous UCL and HCL

over lattices L and C

wj

q

wi

wk

Neuron lattice Cardinality lattice

Query space

query

neuron

Kernel regression
feedback

2554 C. Anagnostopoulos et al.

Figure 3 shows the idea of the coefficient lattice. In the case

of input lattice L and output lattice O, the parameter set for

model M is α = ({wj }, {mj }), j = 1, . . . , M .

4.3 Learning methodology

4.3.1 Overview

Consider the presence of a (random) training pair (q, y).

The following steps demonstrate the methodology of

exploiting such training pair for estimating the points on the:

neuron, cardinality and regression lattices.

Projection The query q from the training pair (q, y) is pro-

jected onto its (winner) closest neuron wj ∈ L from the

neuron lattice. Certain neurons, including the winner wj , are

then adapted to this occurrence. In this step, we have to define

the update rule �wi for the neurons in the neuron lattice.

Association Simultaneously, the actual cardinality y from

the training pair (q, y) is utilized to update certain points

from the cardinality and regression lattices. Specifically, the

corresponding prototype yj ∈ C, i.e., this is associated with

the winner query neuron wj , and the corresponding regres-

sion coefficient mj ∈ O are updated based on y and the

query q (in the latter case) governed by feedback update

rules. Such rules derive from the stochastic negative partial

derivative (introduced later).

Prediction The model M after locating the winner neuron

wj based on the input lattice, predicts the cardinality ŷ using

Kernel regression over (i) the local associative functions in

the C lattice, and (ii) the local linear regression functions in

the O lattice.

Feedback The prediction result ŷ feeds the C and O lattices

for updating the cardinality prototypes and the regression

coefficients, respectively.

4.4 The predictive learning algorithm

We adopt SOM for UCL since based on topology preserva-

tion we can claim that: if queries q and q′ are similar due

to being projected onto the same neuron wj of L, then their

images through the local associative and local regression

functions fj (q) and fj (q
′) on cardinality lattice C and coef-

ficient lattice O, respectively, are likely to be similar, too.

This argument cannot be claimed by any other UCL method

(e.g., k-means or fuzzy c-means clustering), which does not

guarantee topological ordering of quantization vectors.

At this point, we can define the cardinality prediction

function ŷ = f (q, α) based on the local associative and

regression functions, and in the sequel, report on the loss

function L(y, ŷ). Consider two range queries q, q′ normal-

ized firstly in [0, 1]2d (only for simplicity in our analysis).

Let the winner neuron wj ∈ L and its corresponding (i)

local associative function fj (q), i.e., cardinality prototype

yj ∈ C and (ii) local linear regression function fj (q), i.e.,

regression coefficient mj ∈ O to a random query q.

The cardinality prediction f is not only based on fj (q),

but also on the contribution of the neighboring fi(q) defined

by the topographical neighborhood of winner wj . This is

achieved by a kernel function Kǫ(‖ri − rj‖2) over the nor-

malized location vectors ri and rj (i.e., ‖ri‖, ‖rj‖ ≤ 1)

of the associated neurons wi and wj in the input lattice

L, respectively. That is, ŷ = f (q, α) is produced by the

(Nadaraya-Watson) Kernel regression model:

ŷ = f (q, α) =
∑M

i=1Kǫ(‖ri − rj‖)fi(q)
∑M

i=1Kǫ(‖ri − rj‖)
(10)

with j = arg minwi∈L‖q − wi‖2. In this paper, we utilize

the kernel Kǫ(x) = 0.75 ·
(

1 − (x−0.5
ǫ

)2
)

· I (|x − 1
2
| ≤ ǫ),

which is the Epanechnikov kernel function shifted to 0.5

and scaled by 0 < ǫ ≪ 0.5. Obviously, any other ker-

nel functions can be also adopted e.g., uniform, triangular,

quadratic, with Epanechnikov being most commonly used

Fig. 3 Coefficient lattice-based

prediction: Projection-

association-linear regression:

Simultaneous UCL and HCL

over lattices L and O

wj

q

wi

wk

Neuron lattice Coefficient lattice

Query space

query

neuron

mk

mi

Query q

C
ar

d
in

al
it

y
 y

mj

Local Linear fj(q) =mjq
T

Regression plane

projec�on associa�on regression

Scalable aggregation predictive analytics 2555

kernel for regression. Topographically close neurons w.r.t.

location vectors also imply close neurons w.r.t. Euclidean

distance. However, the adoption of a Kernel function over

the distance of neurons in R2d could assume query compo-

nents to be isotropically Gaussian, which is not a general

case when d is relatively large. The predicted cardinality ŷ

is estimated by a kernel smoothing of those cardinality pro-

totypes and linear regression coefficients, whose associated

neurons are topographically close (w.r.t. ǫ) to the winner

neuron.

Given actual y and predicted ŷ in (10), we then adopt the

loss functions:

L1(y, ŷ) = |y − ŷ| and L2(y, ŷ) = (y − ŷ)2 (11)

since there are widely used for evaluating the prediction

error in cardinality prediction as in [11, 15, 27].

We can now provide the (on-line) learning phase of

the model M given a sequence of pattern (training) pairs

(q(1), y(1)), (q(2), y(2)), . . . Query patterns q(t) are used

for quantizing the query space (over L) and cardinalities

y(t) are used for learning the q → y association (over C

and O). Upon the presence of a pattern pair (q(t), y(t)) the

winner wj (t) ∈ L is determined by

j = arg min
wi∈L

‖q(t) − wi(t)‖. (12)

After the projection of q to winner wj , the model M

updates in an incremental manner the winner and all its

neighbors of lattice L such that they approach the query pat-

tern q with a magnitude of β(t)h(i, j ; t). In the same time,

the actual cardinality y is used for updating the correspond-

ing: (i) yj ∈ C along with all prototypes yi ∈ C and (ii)

mj ∈ O along with all coefficients mi ∈ O associated

with the neighbors of winner neuron wj . Notably, the update

rules for each yi and mi are governed by the loss function

L(y, ŷ) we aim to minimize, having ŷ defined in (10).

In the case of the neuron-cardinality lattices for cardi-

nality prediction, the model M estimates the parameter

α = ({wi}, {yi})Mi=1 by minimizing the objective function

J1 in (13)

J1({wi}, {yi}) = 1

2

∫

W

∑

wi∈L
h(i, j)‖wi − q‖2

2dp(W)

+
∫

Y

∑

yi∈C
h(i, j)|y − ŷ|dp(Y) (13)

being taken over an infinite sequence of W = {q(1),

q(2), . . .} and corresponding Y = {y(1), y(2), . . .} and

p(W), p(Y) is the pdf of W and Y , respectively, with

ŷ =
∑M

i=1Kǫ(‖ri − rj‖)yi
∑M

i=1Kǫ(‖ri − rj‖)
(14)

and j = arg minwi∈L‖q − wi‖2. The factor 1
2

is for math-

ematical convenience. Here, we utilize the L1 in (11) loss

function, since the cardinality prototypes are local scalar

constant values within each query sub-space.

In the case of the neuron-regression lattices for cardi-

nality prediction, the model M estimates the parameter

α = ({wi}, {mi})Mi=1 by minimizing the objective function

J2 in (15)

J2({wi}, {mi}) = 1

2

∫

W

∑

wi∈L
h(i, j)‖wi −q‖2

2dp(W)

+1

2

∫

U

∑

mi∈O
h(i, j)(y−ŷ)2dp(U) (15)

where p(U) is the pdf of m, with j = arg minwi∈L‖q−wi‖2

and

ŷ =
∑M

i=1Kǫ(‖ri − rj‖)m⊤
i q

∑M
i=1Kǫ(‖ri − rj‖)

. (16)

Here, we utilize the L2 in (11) loss function, since we

estimate the local linear regression coefficients within each

query sub-space based on the ordinary least squares method.

Theorem 1 Given a training pair (q(t), y(t)), the model

M converges to the optimal parameter α, which minimizes

the risk function J1(α) in (13) with respect to loss function

L1(y, ŷ) = |y−ŷ| and ŷ is defined in (14), if neuron wi(t) ∈
L and its associated prototype yi(t) ∈ C are updated as:

�wi(t) = β(t)h(i, j ; t) (q(t) − wi(t)) (17)

�yi(t) = β(t)

M
∑

k=1

h(k, j ; t)
Kǫ(‖ri − rj‖)

∑M
k=1Kǫ(‖rk − rj‖)

×sgn
(

y(t) − ŷ(t)
)

(18)

where sgn(·) is the signum function, β(t) is the learning rate

and h(i, j ; t) is the neighborhood function, j is the index of

the winner neuron wj (t) of pattern query q(t) and predicted

ŷ(t) is determined by (14).

The proof of Theorem 1 is provided in [5]; we present it

here for self-contained reasons.

Proof We derive the analysis of convergence corresponding

to lattices L and C. We verify whether the quantization error

‖w − q‖2
2 and loss L1(y, ŷ) = |y − ŷ| actually decreases

as the learning phase proceeds, converging eventually to a

stable state.

The convergence is evaluated through the average

expected loss J1 in (13) being taken over an infinite

sequence of W = {q(1), q(2), . . .} and corresponding Y =
{y(1), y(2), . . .} and p(W), p(Y) is the pdf of W and Y ,

respectively. Since both pdfs are unknown and sequences

2556 C. Anagnostopoulos et al.

Y and W are actually finite we use the Robbins-Monro

(RM) stochastic approximation for J1 minimization to find

an optimal value for each wi , yi, i = 1, . . . , M . Based

on RM the stochastic sample J1(t) of J1 is J1(t) =
1
2

∑

wi∈L h(i, j ; t)‖wi(t)−q(t)‖2
2+

∑

yi∈C h(i, j ; t)|y(t)−
ŷ(t)|. The J1(t) has to decrease at each new pattern at t by

descending in the direction of its (partial) negative gradient.

Hence, the SGD rule for each wi is �wi(t) = − 1
2
β(t)

∂J1(t)
∂wi(t)

and for yi is �yi(t) = −β(t)
∂J1(t)
∂yi (t)

, where β(t) satisfies
∑∞

t=0 β(t) = ∞ and
∑∞

t=0 β2(t) < ∞ [21]. From the par-

tial derivatives of J1(t) we obtain the update rules (17) and

(18) for parameter set α.

Remark 1 Note that the update rule (18) for prototypes

yi(t) involves the current prediction ŷ(t) of the model dur-

ing the t-th training pair in the learning phase. Naturally

we update each yi(t) in an on-line supervised regression

fashion, in which we take the prediction ŷ(t) in (14) as feed-

back. From (18) we observe that neighbor yi(t) of yj (t) is

adapted by its relative contribution provided by the kernel

function, which is rational since yi(t) contributes with the

same magnitude to the cardinality prediction. If y(t) > ŷ(t),

then yi(t) increases linearly with its contribution to predic-

tion approaching the actual y(t). On the other hand, i.e.,

y(t) < ŷ(t), yi(t) decreases to move away from ŷ(t) and

approaches y(t). When the current prediction error is zero,

i.e., L(y(t), ŷ(t)) = |y(t) − ŷ(t)| = 0, there is no update

on the cardinality prototypes. Neuron wi(t) moves toward

pattern query q(t) to follow the trend. Obviously, the more

similar a pattern query q and a neuron wi are, the less wi

gets updated.

Theorem 2 refers to the convergence of a neuron wi

to the local expectation query representative, i.e., centroid

E[q|Qi] in the input sub-space Qi .

Theorem 2 If E[q|Qi] is the local expectation query of the

subspace Qi and prototype wi is the subspace representa-

tive, P(wi = E[q|Qi]) = 1 at equilibrium.

Proof The update rule for a neuron wi based on Theorem 1

is �wi ∝ (q−wi). Let the i-th neuron wi reach equilibrium:

�wi = 0, which holds with probability 1. By taking the

expectation of both sides we obtain

0 = E[�wi] = E[(q − wi)] =
∫

Qi

(q − wi)p(q)dq

=
∫

Qi

qp(q)dq − wi

∫

Qi

p(q)dq.

This indicates that wi is constant with probability 1, and

then by solving E[�wi] = 0, the wi equals the centroid

E[q|Qi].

If ǫ is selected such that Kǫ(‖ri − rj‖) = 0, i �= j ,

then we obtain �yj ∼ sgn(y − yj) in which only yj of

the winner wj is updated, given that there is no significant

impact from other neighboring neurons after convergence,

i.e.,
∑M

k=1 h(k, j)
t→∞= h(j, j) ∼= 1. We then provide the

following theorem:

Theorem 3 If ỹj is the median of the partition Yj corre-

sponding to the image of query sub-space Qj of winner wj

then P(yj = ỹj) = 1 at equilibrium.

The proof of Theorem 3 is provided in [5]; we present it

here for self-contained reasons.

Proof Let yj correspond to wj and assume the image of

Qj ⊂ R2d to subspace Yj ⊂ N via the y = f (q). The

median ỹj of Yj satisfies P(y ≥ ỹj) = P(y ≤ ỹj) = 1
2
.

Suppose that yj has reached equilibrium, i.e., �yj = 0,

which holds with probability 1. By taking the expectations

of both sides and replacing �yj with the update rule sgn(y−
yj):

E[�yj] =
∫

Yj

sgn(y − yj)p(y)dy

= P(y ≥yj)

∫

Yj

p(y)dy−P(y <yj)

∫

Yj

p(y)dy

= 2P(y ≥ yj) − 1.

Since �yj = 0 thus yj is constant, then P(y ≥ yj) = 1
2
,

which denotes that yj converges to the median of Yj .

Theorem 4 Given a training pair (q(t), y(t)), the model

M converges to the optimal parameter α, which minimizes

the risk function J2(α) in (15) with respect to loss function

L2(y, ŷ) = (y − ŷ)2 and ŷ is defined in (16), if neuron

wi(t) ∈ L and its associated linear regression coefficients

mi(t) ∈ O are updated as:

�wi(t) = β(t)h(i, j ; t) (q(t) − wi(t)) (19)

�mi(t) = β(t)

M
∑

k=1

h(k, j ; t)
Kǫ(‖ri − rj‖)

∑M
k=1Kǫ(‖rk − rj‖)

×
(

y(t) − ŷ(t)
)

[1; q(t)]⊤ (20)

where β(t) is the learning rate and h(i, j ; t) is the neigh-

borhood function, j is the index of the winner neuron wj (t)

of pattern query q(t) and predicted ŷ(t) is determined by

(16).

Proof As in the proof of the Theorem 1, the conver-

gence is evaluated through the average expected loss J2

in (13) being taken over an infinite sequence of W =
{q(1), q(2), . . .} and corresponding Y = {y(1), y(2), . . .}
and p(W). We rest on RM stochastic approximation

Scalable aggregation predictive analytics 2557

for J2 minimization to find an optimal value for each

wi , mi, i = 1, . . . , M . The stochastic sample J2(t)

of J2 is J2(t) = 1
2

∑

wi∈L h(i, j ; t)‖wi(t) − q(t)‖2
2 +

1
2

∑

mi∈O h(i, j ; t)(y(t) − ŷ(t))2. Hence, the SGD rule for

each wi is �wi(t) = − 1
2
β(t)

∂J2(t)
∂wi (t)

and for mi is �mi(t) =
− 1

2
β(t)

∂J2(t)
∂mi (t)

, where β(t) satisfies
∑∞

t=0 β(t) = ∞ and
∑∞

t=0 β2(t) < ∞ [21]. From the partial derivatives of

J2(t) we obtain the update rules (19) and (20) for parameter

set α.

Remark 2 As seen in (20), when determining the positions

of regression coefficients, supervised (prediction) error is

not only taken into account, but also the input q and the

impact of all neurons (reflected by their neighborhood func-

tions h(k; j) are taken into consideration. Through this

coupled training of the regression coefficients and neurons

positions, query and regression representatives are placed in

the input and output space, respectively, in such a way so as

to minimize the loss function L2.

Remark 3 Let us assume again that an ǫ is selected such

that Kǫ(‖ri − rj‖) = 0, i �= j . Given that both neurons

and regression coefficients converge from Theorem 4, then,

we obtain the update rule: �mj ∼ (y − m⊤
j q)q, given that

there is no significant impact from other neighboring neu-

rons after convergence, i.e.,
∑M

k=1 h(k, j)
t→∞= h(j, j) ∼=

1; here, for mathematical convenience, we absorbed the

’intercept’ constant of the local regression plane by adding

a constant dimension of one to q. Evidently, this corre-

sponds to the stochastic update rule for the multivariate

linear regression utilizing the ordinary least squares method.

The learning phase of model M is described in Algo-

rithm 1. The input is the training set of pairs Q = {(q, y)},
2-dim. lattices L and C (or O) with M entries, and a stop-

ping threshold θ > 0. The algorithm processes successive

random pattern pairs until a termination criterion Tt ≤ θ . Tt

is the 1-norm between successive estimates of neurons and

cardinality prototypes:

Tt =
M

∑

i=1

(‖wi(t) − wi(t − 1)‖1 + |yi(t) − yi(t − 1)|) ,

(21)

or regression prototypes,

Tt =
M

∑

i=1

(‖wi(t) − wi(t − 1)‖1 + ‖mi(t) − mi(t − 1)‖1) ,

(22)

with ‖wi‖1 =
∑2d

k=1 |wik| and ‖mi‖1 =
∑2d+1

k=1 |mik|. The

output is parameter set α.

4.5 Set cardinality prediction

Once the parameter set α is trained (for both output lat-

tice variants), and thus no more updates are realized on

neurons, cardinality prototypes and local regression coeffi-

cients, we predict the cardinality ŷ given a random query q

as defined in (14) and (16). That is, we proceed with answer

set cardinality estimation without executing the incoming

query q.

Firstly, the query q is projected onto the neuron lattice L

and its winner wj is obtained. In the case of the cardinality

lattice C, the corresponding cardinality prototype yj is the

associated constant of the query sub-space Qj . In the case

of the regression lattice O, the local regression coefficient

mj is obtained. The predicted COUNT value is ŷ calculated

by the Kernel regression over the region around the images

fi(q) = yi in lattice C and fi(q) = m⊤
i q in lattice O,

respectively, such that Kǫ(‖ri−rj‖) > 0, for i = 1, . . . ,M .

4.6 Computational complexity

During the learning phase of the model M, we require to

(i) find the closest (winner) neuron over the neuron lattice L

and then (ii) update all M prototypes in both input and out-

put lattices based on the neighborhood weight h(i, j), ∀i.

This requires O(dM) space and O(dM) for the updates.

Since prototypes are updated during learning, the learning

2558 C. Anagnostopoulos et al.

phase requires O(d/θ) [10] iterations to get Tt ≤ θ . After

learning, we obtain cardinality prediction in O(d log M)

by applying an one-nearest neighbor search for the win-

ner using a 2d-dim. tree structure over the neurons in L.

After locating the winner, then we just retrieve those neigh-

boring neurons (constant number) which are determined by

the Kernel neighboring function Kǫ . In the case of updates,

adaptation given a pair requires also O(d log M) time for

searching for the winner. Hence, our proposed parametric

model, after training, can provide prediction in O(d log M),

which is independent of the size of the data |B| and the train-

ing set |Q|, thus, being capable for scaling out predictive

analytics tasks.

5 Implementation in Spark

We have implemented our model in the Spark system [32].

The reason behind this implementation is to explore how

such models can be incorporated into Big Data Engines.

In addition, we examine how much faster and how close

our cardinality estimations are, compared with the result

obtained from the built-in COUNT method provided by

these engines. This section covers the basic concepts behind

Spark [32] (currently a popular Big Data engine) and

an overview of how we developed and incorporated our

machine learning model into Spark.

5.1 Overview of Spark

The Resilient Distributed Datasets (RDDs) lie in the foun-

dation of Spark. RDDs are fault-tolerant distributed data

structures that allow users to save intermediate results in

main memory. This means that, RDDs can be easily recov-

ered once something goes wrong and that they can be easily

distributed in a cluster environment to improve efficiency.

Their recovery is relied on the lineage graph produced by

Spark. A lineage graph is a Directed-Acyclic Graph that is

used to record all of the changes made to a dataset. Hence,

once something goes wrong it can be easily re-computed

using the steps recorded. In addition, through this func-

tionality, the users can control the number of partitions to

optimize the data placement and, also, offer a rich set of

operations [32]. The set of operations can be divided into

transformations and actions which are described as follows:

5.1.1 Transformations in Spark

The RDDs are created by loading data files from permanent

storage or by using transformations on loaded data. These

transformations can change the loaded data through oper-

ations such as filter and map. A comprehensive list of the

available transformations can be found at Spark’s website.2

It is worth noting that transformations are not applied imme-

diately. Instead, Spark uses a lineage graph and pipelines

successive transformations to the original dataset once an

action is called [32].

5.1.2 Actions in Spark

Spark contains a type of methods called actions. These oper-

ations return a value to the application or export data into

storage [32]. Example of those types of actions are:

1. COUNT, which refers to the exact cardinality of a given

query and corresponds to our ground truth for assessing

the cardinality predictability of our model;

2. COLLECT, which returns a list of elements given a

query;

3. SAVE, which stores the RDD into a permanent storage,

e.g., HDFS or a local file system.

5.2 Machine learning model implementation

For UCL (Task 1), we implement the online SOM algorithm

with M neurons. We make use of the neurons input lat-

tice concept L described in Section 4.2.1 and we implement

our UCL approach to partition the query space as described

in Section 3.1.1. The neuron input lattice L contains all

of our neurons and the winner is determined and updated

as in (1) making use of Stochastic-Gradient descent. For

HCL (Task 2), we implement the supervised linear regres-

sion model making use of the coefficient output lattice O

described in Section 4.2.3, in which the coefficients mj =
[mj0, mj1, . . . , mj2d] ∈ R2d+1 are associated with each

query prototype wj ∈ L. We then generate our predictions

using Kernel regression in (16).

5.3 Range queries workload

In our implementation and experiments we dealt with multi-

dimensional queries corresponding to a 2-dimensional data

space (d = 2). The two boundary vectors are a = [a1, a2]⊤
and b = [b1, b2]⊤, ai ≤ bi, ai, bi ∈ R. Hence, in the exper-

iments, a range query q is represented by a 4-dimensional

row vector q = [a1, b1, a2, b2]. We further adjust this repre-

sentation to ease up the process of generating our query set

Q. In this context, our resulting queries are of the form q =
[c1, c2, l] with center ci = ai+bi

2
, and volume l = bi − ai ,

i = 1, . . . , d . Through this representation, each query q is a

hyper-cube.

2http://spark.apache.org/

http://spark.apache.org/

Scalable aggregation predictive analytics 2559

5.4 Cardinality prediction in Spark

To allow the execution of our model by Spark, we had

to extend the main abstraction class RDD. (Note that the

models we used or variations of them are available in

MLlib.3) However, using these models was not possible

when trying to extend the Spark-Core module because of

a cyclic-dependency error between MLlib and Spark-Core.

Therefore, we introduce some new methods to make use of

our model. The main methods are as follows:

1. Training: This method trains our model given a list

of executed range queries, i.e., the training set Q. This

Spark method is written in Scala:

where Q is the training set of queries, regression

refers to the number of training queries to be consid-

ered for training the local linear regression models, and

neurons refers to the number of neurons M in lattice

L that partition the query-space.

2. Estimation: This method returns a cardinality esti-

mation ŷ given a range query q = [c1, c2, l]. This Spark

method is written in Scala:

We also developed a number of helper methods to ease

the execution of the two main methods.

1. Euclidean-Distance, which given two range

queries, it calculates the Euclidean distance;

2. closest, which given a query q, it finds its closest

neuron wj ∈ L;

3. descent and movement, which update the winner

neuron wj w.r.t an incoming query q and learning rate β.

Executing our cardinality predictor in Spark involves

two phases: the training and the prediction phase. The

training phase is based on an input file containing the set

Q = {(qi, yi)}ni=1 corresponding to previously executed

queries. The result of this phase generates an updated list of

predicting the cardinality of incoming queries through the

execution of the Estimation method. Executing these two

phases in Spark involves loading up the dataset Q contain-

ing our previously executed queries into an RDD. For the

training phase, we proceed using a map transformation to

this set and create a new representation for query set Q. The

new representation, includes the corresponding closest neu-

ron for each query qi , i.e., wj ∈ L, j = arg mink∈[M]‖qi −
wk‖2, ∀i. Therefore, each tuple in the query set is now of

3http://spark.apache.org/mllib/

the form Q = {(qi, yi, wj)}ni=1. To train the local linear

regression models we iterate through all M neurons in lat-

tice L. For each neuron, we filter the query set Q such that

we obtain a subset Qk ⊂ Q : {(qi, yi, wj)}ni=1 and j = k.

We then based on the subset Qk , train the associated linear

regression models fk(q) = m⊤
k q. For the estimation phase,

we do not require any transformations since the only thing

we need are the coefficients mj , j ∈ [M] for each one of the

local linear regression models fj (q) = m⊤
j q; these are sim-

ply stored as global variables on runtime or in an external

file.

Figure 4 shows the standard approach and our ML

approach over Spark through an example where the actual

cardinality y = 3678 as derived from the Spark’s COUNT.

Specifically, we observe the dataset B of data points x ∈ Rd

being stored along with our training set Q holding training

pairs of {(qi, yi)}ni=1 and our stored coefficients m from the

coefficient lattice O. Moreover, Figure 4 demonstrates how

the COUNT is obtained using a standard approach with trans-

formations and actions. It is worth noting that the standard

approach requires expensive operations such as loading the

whole dataset B, filtering it in parallel and, then, executing a

COUNT action. However, in our ML approach, we can skip

this procedure and only incur the cost of loading our Coef-

ficient lattice O, or if our ML model was trained at runtime,

we could already have this model stored as a global vari-

able. We, then, proceed to predict the answer set cardinality

ŷ using inexpensive operations.

6 Performance evaluation

We now turn to study the performance and accuracy of our

implemented machine learning model in Spark. We mea-

sure the model’s accuracy using various metrics and also

demonstrate how our model can be used to speed up joins

in databases. In addition, we compare its average execu-

tion time and standard deviation with Spark’s own COUNT

method over a standard file size. We also demonstrate the

scalability of our solution by varying the file sizes. Finally,

we measure the training time required by our machine learn-

ing model over different file sizes. Over the next sections,

we introduce the evaluation metrics used and also explain

how the training dataset was generated. Furthermore, we

describe the experiment procedure followed and analyze the

findings of our experiments.

6.1 Evaluation metrics

To evaluate our model we chose multiple evaluation metrics.

These metrics are divided into two categories, accuracy and

performance. Accuracy metrics help us determine whether

the estimations generated by our model are close to the

http://spark.apache.org/mllib/

2560 C. Anagnostopoulos et al.

Fig. 4 The standard approach

in obtaining the answer set

cardinality y (COUNT) and our

ML approach as a sequence of

transformations and actions

over the dataset B., which

predicts the cardinality ŷ

actual (true) values. These true values are obtained from

the exact cardinality by invoking the COUNT Spark method.

Performance metrics help us compare our solution with

Spark’s own implementation of COUNT in terms of query

processing time. In addition, they can help us identify bot-

tlenecks in our solution when experimenting with different

file sizes or parameters, thus, evaluating the scalability of

our approach.

6.1.1 Cardinality prediction accuracy

The first accuracy metric for a prediction model is the

Root Mean Squared Deviation (RMSD) which aggregates

the magnitudes of the errors (yi − ŷi)
2 corresponding to

the actual cardinality yi and the predicted cardinality yi of

unseen query qi for n prediction times:

RMSD =

√

∑n
i=1(ŷi − yi)2

n
.

By adopting RMSD, we can examine how large our predic-

tion errors are by using our model.

6.1.2 Coefficient of determination

The Coefficient of Determination R2 is calculated using the

sum of squared residuals
∑n

i (yi − ŷi)
2 and the total sum

of squares
∑n

i (yi − ȳ)2 where ȳ is the average cardinality

value ȳ = 1
n

∑n
i yi , i.e.,

R2 = 1 −
∑n

i (yi − ŷi)
2

∑n
i (yi − ȳ)2

.

The R2 is a real number within [0, 1] and indicates how

closely the obtained approximation of ŷ ≈ f (q, α) matches

the actual cardinality y. The closer R2 is to 1, the better our

model fits the data and is able to make accurate cardinality

predictions.

6.1.3 Normalized RMSD (NRMSD)

A normalized version of RMSD is also used. Knowing the

normalized RMSD helps us determine the ratio of the stan-

dard deviation to the mean. When calculated, its value is

Scalable aggregation predictive analytics 2561

a percentage that indicates us how far off we are from the

mean of the true cardinality values ȳ we are trying to predict.

NRMSD = RMSD

ȳ
.

6.1.4 Forecast interval

To get a better view of the dispersion between the predicted

values ŷ and the true values y we used the RMSD and

NRMSD with the mean value of the true cardinality. By

using the equations below we can see how much our esti-

mation and the actual COUNT differ by orders of magnitude,

i.e., by defining the intervals:

ȳ ± RMSD, ȳ ± NRMSD.

To effectively measure the performance of our solution,

we conducted multiple experiments each time recording

the time taken by different stages in our solution. The

main aspects we wanted to measure was training time and

execution time. Both of these are explained below.

6.1.5 Symmetric mean absolute percentage error (SMAPE)

The mean absolute percentage error (MAPE) for assessing

the predictability capability of our model is not symmet-

ric in the sense that interchanging ŷ and y does not lead to

the same answer. The cause of this asymmetry lies in the

denominator of the MAPE formula:
|y−ŷ|

y
dividing by the

actual y instead of the predicted value ŷ leads to a different

result. This issue has been raised in [8] and [25]. Makridakis

in [25] proposed a variation of the MAPE to provide sym-

metry and protected against outliers by dividing the absolute

loss |y − ŷ| by the arithmetic mean of the actual y and the

predicted ŷ. This is known as the symmetric mean absolute

percentage error (SMAPE):

SMAPE = 100%

n

n
∑

i=1

|yi − ŷi |
yi + ŷi

SPAME provides a lower and an upper percentage bound,

i.e., between [0, 100]%, which is much easier to interpret

adopting and due to its advantages of scale-independency.

Remark 4 Note that to evaluate the predictability of our

model and fairly compare with the Spark’s COUNT built-in

aggregation operator we adopt the above-mentioned metrics

(RMSD, NRMSD, Coefficient of Determination, Forecast

interval, and SMAPE), which align with the objective mini-

mization prediction loss functions in the second part of (13)

and (15). Recall, that we learning the query-cardinality asso-

ciation in light of minimizing the prediction loss in (11),

thus, the SCP evaluation has to be consistent with these

objective functions. Moreover, such prediction accuracy

metrics are widely used for evaluating the prediction error

in SCP as in [11, 15, 27].

6.1.6 Model training time

The recorded model training time is the time taken for our

model to execute the SOM algorithm and then train the

individual linear regression models for each neuron.

6.1.7 Query execution time

To be able to compare the performance of the COUNT

method of Spark with our solution, the time required for

each of the functions to return a result was measured.

6.2 Datasets & workloads

In Spark we used the real dataset RS44 containing around

4 million 2-dimensional data (d = 2). The dataset con-

tains sensor readings which were normalized and are bound

within a range of [−0.5, 0.5]. This dataset was used to

answer the cardinality range queries. We generate the train-

ing set Q and evaluation set E , such that the evaluation set E

is generated independently of Q, thus, assuring completely

unseen queries.

The training set size |Q| = s, s ∈ [105, 2 · 105, 4 · 105]
and the number of neurons M = 20 for lattice L (and C,

O). In addition, the evaluation set size |E | = 103. The set

Q contains a number of K query subspaces Qk ⊂ R2d .

Each Qk, k = 1, . . . , K, is characterized by a query pattern-

generator (ck, vk, ℓk). The center of each q of Qk , for each

dimension i, i = 1, . . . d , is sampled from a Gaussian dis-

tribution N (cki, vki) with mean cki , variance vki , and radius

ℓki ; i.e., lower bound aki = xki − ℓki and upper bound

bki = xki + ℓki , center xki ∼ N (cki, vki). The mean ck

for each dimension i was drawn uniformly at random, with

ck1 = [0.05, 0.2] and ck2 = [0.1, 0.25]. The variance was

constant for each subspace and at each dimension set to

vki = 0.01. The volume of each query 2ℓki is drawn uni-

formly at random from [0.01, 0.05]. A random query q is

then generated as follows: a Qk is selected uniformly at

random from K query spaces with equal probability 1
K

.

Then, from Qk we obtain the center (lower and upper val-

ues) and volume values for all attributes. Table 1 shows the

parameters and the default values.

6.3 Performance assessment

The experiments were ran on a system with an i7 8-core

processor and 6 GB RAM, under an Ubuntu 14.04 LTS OS.

4http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic

+gas+mixtures

http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures
http://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+dynamic+gas+mixtures

2562 C. Anagnostopoulos et al.

Table 1 Parameters

Parameter (Default) Value/Range

Data dimension d 2

Dataset size |B| 4,178,504 (RS4)

No. of neurons M 20

Training/Evaluation set |Q|, |E | |Q| = 100, 000, |E | = 1000

Subspaces K 5

Spark (version 1.6) was setup in standalone mode working.

We trained our models using the trainingmethod imple-

mented over Spark. A number of experiments were executed

and are outlined below:

1. Execute the evaluation set E against the dataset RS4

each time recording:

– the cardinality value y from the Spark’s COUNT.

– the predicted cardinality value ŷ from our model.

– the execution time for Spark’s COUNT method.

– the execution time for our model.

2. Execute 100 queries over different file sizes: 1GB,

2GB, and 3GB and find the average execution time and

its standard deviation for both COUNT over Spark and

our model implementation.

3. Execute the model training method training 100

times over different file sizes and obtain the average

training time. The training file sizes are: (i) ’Small File’

containing 1 ·105 training pairs of queries and their car-

dinality values, (ii) ’Medium File’ containing 2 · 105

training pairs of queries and their cardinality values,

and (iii) ’Large File’ containing 4 · 105 training pairs of

queries and their cardinality values.

Using the results of these experiments, we were able to

construct multiple graphs and run other side-experiments.

We analyze our findings in the following section.

6.3.1 Accuracy experiments

Accuracy Experiment 1 Table 2 shows the forecast inter-

val, the RMSD value, the SMAPE value, and the coefficient

of determination for our model. We present the actual and

Table 2 Forecast interval for Experiment 1

Forecast Interval 91876 ± 10149

Forecast Interval (%) 91876 ± 11%

RMSD 10149

R2 0.99

SMAPE 9%

0 0.5 1 1.5 2 2.5 3 3.5 4

× 105

0

0.5

1

1.5

2

2.5

3

3.5

4
× 105

-5 -4 -3 -2 -1 0 1 2 3 4

× 104

0

20

40

60

80

100

120

Fig. 5 (Left) The predicted ŷ and actual y cardinality values; (right)

histogram showing the distribution of the prediction error y − ŷ

predicted cardinality in Fig. 5 (left) and a histogram, in

Fig. 5 (right), showing the distribution of the difference

|y − ŷ| between our predictions ŷ and the actual values y.

As shown in Table 2, the true mean value for count

is 91876 and our estimation is off at any time by around

10149 or 11% from the actual value for count. In addition,

the coefficient of determination R2 = 0.99 indicating that

our model fits the cardinality and query space significantly

well and can proceed with accurate approximation of the

y = f (q, α) function. Examining the Table 2 and the Fig. 5,

we can determine the quality of accuracy of our predictions.

Using these metrics, big data analysts can decide whether

such estimations are acceptable with respect to the appli-

cations needs. Moreover, it is worth mentioning that the

SMAPE value is 9% indicating the normalized symmetric

absolute deviation from the actual cardinality value.

Scalable aggregation predictive analytics 2563

Accuracy Experiment 2 Analyzing the results of Experi-

ment 1, allowed us to gain some insight as to how accurate

our predictions were. However, we wanted an effective way

to measure whether such approximations are acceptable in

applications we wish to use the proposed cardinality estima-

tor. One of the ways our estimator can be used is for solving

the selectivity estimation problem. Specifically, we examine

our model from a qualitative perspective in the case where

such an estimator can be used in query optimization. When

joining two database relations, R ⊲⊳ S, a common prac-

tice of optimized JOIN algorithms is to find the smaller

relation in terms of cardinality and then perform the JOIN

algorithm. In this case we need the cardinality of the two

relations R and S. In cases where the cardinality is unknown

or R and S are intermediate relations, we need to perform

a COUNT operation over both relations to find the smallest

one. However, such an operation can be expensive espe-

cially in a Big Data environment. Hence, by adopting our

SCP estimator, this operation can be performed at a fraction

of the time. Our experiment measures the average false rate

of our SCP estimator. By false rate, we mean the probability

of our estimator being wrong about a comparison between

the cardinalities of the two relations under the ⊲⊳ operator.

We use a zero–one loss function, which records the false rate

for our SCP estimator. To be more precise, the ground truth

value of a comparison, termed as Ground Truth Compari-

son (GTC) between the two relations comes from the actual

system and from our SCP estimator. A comparison can have

one of the following outcomes: (i) |R| > |S|; (ii) |R| < |S|;
and (iii) |R| = |S|. If GTC and PRC are not in agree-

ment for the outcome of a comparison then the false rate is

incremented, otherwise it remains as is. By the end of our

experiment we are left with a percentage denoting the prob-

ability of our estimator being incorrect when comparing two

relations. For every result we got, we would compare it

with the other N − 1 results we had. We would first com-

pare the actual COUNT y and see which of the two queries

had the largest cardinality. We would then compare their

corresponding estimated cardinality result. The false rate

provides insight on the degree of confidence on adopting our

SCP methodology for the selectivity estimation problem in

light of JOIN query optimization.

The Algorithm 2 explains this process with comparing

the decisions coming from the GTC and our SCP method.

The averaged false rate is 0.034342, which basically indi-

cates that out of all the N − 1 = 999 query optimization

decisions, that we made for each query, only 3% of them

were false. That is, if our estimator was used to decide

which relation is the smallest out of the ones involved

in a JOIN, the smallest one would be found 97% of the

time. A false rate of 3% indicates the upper qualitative

degree of confidence for adopting our model in query opti-

mization regardless of the quantified prediction error. This

corresponds to the degree of confidence for using our SCP

method for the selectivity estimation in JOIN queries with-

out actually executing the query before the relational join ⊲⊳
operator.

Accuracy Experiment 3 Figure 6(left) shows the RMSD

error for our model against number of neurons M ∈
5, 10, 20, 30, 50 for a constant number of query subspaces

K = 20 over RS4 with d = 2. Our model achieves very low

error as M increases indicating the need for an increased

partitioning of our query-space. In addition, Fig. 6(right)

demonstrates how an increase in M also affects how well

our model M fits the underlying unknown function y =
f (q, α). We note that for M > 20, the coefficient of deter-

mination does not change significantly suggesting that there

is no need for introducing more neurons.

6.3.2 Performance experiments

The next set of experiments were focused around the per-

formance of our solution. This involved experiments to

compare the execution time of the COUNT method over

Spark and our method. In addition, we measured the perfor-

mance of the training phase, which is essentially, the time

required by the clustering process and the training of the

linear regression models.

Performance Experiment 1 We measure the execution

times obtained for Spark and our implementation by execut-

ing the evaluation set E, |E | = 1000 over RS4 holding 4

million rows. We record the time (ms) ti required to obtain

a value for COUNT for each query qi ∈ E and get the Mean

Execution Time (MET) for both Spark and our model, i.e.,

2564 C. Anagnostopoulos et al.

Fig. 6 (Left) The RMSD is improving by increasing the number

of neurons M in lattice L; (right) Coefficient Of Determination R2

improving after varying the number of neurons in lattice L

MET = 1
n

∑n
i=1 ti , with n = |E | = 1000. We compare

the two means MET1 for Spark and MET2 for our model

and observe that we gain superior performance by approx-

imately 4 orders of magnitude as MET1 ≈ MET2 · 104.

We also measure the Standard Deviation (SD) for the exe-

cution times of both Spark (SD1) and our model (SD2). The

MET, SD, and median of the execution times are shown in

Table 3. Again, we observe that the same pattern arising,

Table 3 Performance comparison of Spark and our model

COUNT over Spark Our model for COUNT

Mean Execution 83.165 0.0074

Time (ms)

Standard Deviation 261.216 0.0055

Median of execution 69.128 0.0053

times

Table 4 File sizes

Dataset name File size (GB)

Small dataset (SD) 1 GB

Medium dataset (MD) 2 GB

Large dataset (LD) 3 GB

showing that our model has less fluctuations in performance

that Spark as SD1 ≈ 1
2

· SD2 · 105. Therefore, it is safe to

conclude that our solution provides a tremendous boost to

big data applications and large-scale analytics tasks based

on the cardinality of the analytics query answer sets.

Performance Experiment 2 For the second performance

experiment, we constructed two larger files from the orig-

inal dataset B (RS4). We wanted to vary the size of the

dataset to see the performance of our solution compared to

Spark when the dataset size is increasing. We kept the orig-

inal dataset and renamed it as ’Small Dataset’ (SD) with

|SD| = |B| ≈ 4 · 106. We then generated two more files,

’Medium Dataset’ (MD) and ’Large Dataset’ (LD) by repli-

cating the existing rows by a factor of γ ∈ {2, 3}. In this

context, we obtain: |MD| = γ |B| ≈ 8 · 106, γ = 2 and

|LD| = γ |B| ≈ 1.2 · 107, γ = 3. The corresponding file

sizes for these datasets are shown in Table 4. We, then, exe-

cuted the evaluation set E over each data-set and obtained

the MET for Spark’s COUNT method and our model as in

Performance Experiment 1. The results of this experiment

are shown in Fig. 7.

We can observe that as the file size gets larger the

MET for COUNT over Spark exponentially grows. On the

contrary, our model has relatively constant MET over all

three files. The constant performance is due to the fact that

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Data size (GB)

10-4

10-2

100

102

104

106

M
E

T
(m

s)

Spark

Our model

Fig. 7 Scalability: performance comparison of Spark and our method

for different data set size (GB)

Scalable aggregation predictive analytics 2565

Table 5 Number of training pairs (query,cardinality)

For SOM For linear regression

Small file 40,000 100,000

Medium file 80,000 200,000

Large file 160,000 400,000

our implementation does not need to execute any trans-

formations or actions over Spark, thus, no computation or

memory usage is required other than evaluating the linear

regression model. This trend-line in Fig. 7 demonstrates

how data size affects Spark and our solution. Evidently, this

indicates the scalability capability of our model which is

independent on the increase of the underlying data sizes.

Performance Experiment 3 In this performance experi-

ment, we measured the time required for our model to pass

through the training phase. Again, the number of neurons

was set to M = 20. To better examine the training phase, we

have created two larger training datasets. We left the origi-

nal training set Q, |Q| = 1 ·105 hereby referred to as ‘Small

Query-set’ (SQ). Using the same process we generated a

’Medium Query-set’ (MQ), |MQ| = γ ′ · |Q| and a ’Large

Query-set’ (LQ), |LQ| = γ ′ · |Q| where γ ′ ∈ {2, 4}. The

number of queries (and their corresponding actual cardinal-

ity values) contained in each file, along with the number of

queries used for the SOM and the linear regression models

training, are shown in Table 5. We run the training process

100 times over each file and obtain the Mean Training Time

(MTT).

Small File Medium File Large File
10

1

10
2

10
3

10
4

SOM

LR

Spark Op.

77.17%

0.72%
0.58%

77.68%

22.73%

22.11%

0.58%

76.06%

23.34%

Fig. 8 Break down of the total Mean Training Time (MTT) over dif-

ferent file sizes in logarithmic scale; The mean training time consists

of training for SOM, training for Local Linear Regression (LR) and

allocated time for Spark Operations (Spark Op.)

The results of this experiment are shown in Fig. 8. We

observe that the MTT grows exponentially with the size of

the training dataset. Although, this might be a drawback of

our implementation, it is a cost that will incur only once,

as the training process is not required to run again unless the

dataset changes. In addition, Fig. 8 shows the time required

by the different stages in the training phase. The time allo-

cated to Spark (‘Spark Op.’ in Fig. 8) refers to time not

accounted for by our operations but allocated to Spark’s

internal operations. The two stages concerned by our solu-

tion is SOM training and local linear regression training (LR

in Fig. 8). It is clear that training the individual local lin-

ear models required longer time. However, the difference in

time between the two stages is because of the larger amount

of queries involved in the local linear regression training

stage.

7 Conclusions & future work

We introduce a novel perspective and solution for the prob-

lem of Set Cardinality Prediction. The fundamental unique

characteristic of our approach is that it is query–driven. This

is especially important for big data settings, as an increase in

the underlying dataset size is largely inconsequential for our

method’s efficiency and accuracy. The contributed neuron-

based machine learning model (i) extracts knowledge from

previous queries and their results, (ii) projects this knowl-

edge onto two lattices (cardinality and coefficient lattices)

of two self-organizing maps, and (iii) predicts the cardinal-

ity of the answer set. The model quantizes the query space

and forms a cardinality and linear regression plane through

learning the query-to-cardinality association. Our compre-

hensive experiments showcased the model’s robustness and

that our model achieves very small error rates with small

memory footprints outperforming the data-centric state-of-

the-art. The proposed model represents the only solution

applicable to general modern big data environments, which

may include data nodes/owners placing access restrictions

(e.g., for sensitive data) and/or where data accesses may be

too costly to execute (e.g., in a cloud setting).

Our plans for future work focus on: (i) developing

a framework that can dynamically and optimally switch

between the training phases and query execution phases as

analysts interests shift between data subspaces, and (ii) deal-

ing with data spaces with on-line data mutations (insertions,

deletions, and updates).

Acknowledgments We would like to thank the anonymous review-

ers for their insightful comments on the paper, which led to an

improvement of our work.

2566 C. Anagnostopoulos et al.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

Appendix: Nomenclature

Notation Explanation

B Dataset

Q Set of pairs (query,cardinality)

E Evaluation set

L Neuron lattice

O Coefficient output lattice

C Cardinality output lattice

M Number of neurons

q Range query vector

w Neuron vector

mj Coefficients vector for local linear

regression, associated with neuron wj

y ∈ N Cardinality

M Machine learning model

β ∈ (0, 1) Learning rate

rj = [rj,1, rj,2] Location vector of neuron wj

h(i, j : t) Neighborhood function

ρ Width of the neighborhood function

α Parameter set for model M

� Parameter space

ŷ Predicted cardinality

J (α) Risk function

L(ŷ, y) Loss function

Nk(q) Set of the k-th closest queries to query q.

Kǫ(u) Kernel function

θ Stopping training threshold.

Tt 1-norm between successive estimates of

neurons and cardinality prototypes

References

1. Aboulnaga A, Chaudhuri S (1999) Self-tuning histograms: build-

ing histograms without looking at data. ACM SIGMOD Record

28(2):181–192

2. Anagnostopoulos C (2016) Quality-optimized predictive analyt-

ics. Appl Intell 45(4):1034–1046

3. Anagnostopoulos C, Triantafillou P (2014) Scaling out big data

missing value imputations: Pythia vs. godzilla. In: Proceedings of

the 20th ACM SIGKDD international conference on knowledge

discovery and data mining, KDD ’14. ACM, New York, pp 651–660

4. Anagnostopoulos C, Triantafillou P (2015) Learning set cardinal-

ity in distance nearest neighbours. In: 2015 IEEE international

conference on data mining, pp 691–696

5. Anagnostopoulos C, Triantafillou P (2015) Learning to accu-

rately count with query-driven predictive analytics. In: 2015

IEEE international conference on big data (big data), pp 14–23.

https://doi.org/10.1109/BigData.2015.7363736

6. Anagnostopoulos C, Triantafillou P (2017) Efficient scalable accu-

rate regression queries in in-dbms analytics. In: 2017 IEEE 33rd

international conference on data engineering (ICDE), pp 559–570

7. Anagnostopoulos C, Triantafillou P (2017) Query-driven learn-

ing for predictive analytics of data subspace cardinality. ACM

Trans Knowl Discov Data 11(4):47:1–47:46. https://doi.org/10.

1145/3059177

8. Armstrong J, Collopy F (1992) Error measures for generalizing

about forecasting methods: empirical comparisons. Int J Forecast

8(1):69–80

9. Balac N, Sipes T, Wolter N, Nunes K, Sinkovits B, Karimabadi

H (2013) Large scale predictive analytics for real-time energy

management. In: 2013 IEEE international conference on big data.

IEEE, pp 657–664

10. Bousquet O, Bottou L (2008) The tradeoffs of large scale learning.

In: Advances in neural information processing systems, pp 161–168

11. Bruno N, Chaudhuri S, Gravano L (2001) Stholes: a multidimen-

sional workload-aware histogram. In: ACM SIGMOD Record,

vol 30. ACM, pp 211–222

12. Chaudhuri A, Wei TH, Lee TY, Shen HW, Peterka T (2014) Effi-

cient range distribution query for visualizing scientific data. In:

2014 IEEE pacific visualization symposium. IEEE, pp 201–208

13. Cormode G, Garofalakis M, Haas PJ, Jermaine C (2012) Syn-

opses for massive data: samples, histograms, wavelets, sketches.

Foundations and Trends in Databases 4(1–3):1–294

14. Dean J, Ghemawat S (2010) Mapreduce: a flexible data pro-

cessing tool. Commun ACM 53(1):72–77. https://do.org/10.1145/

1629175.1629198

15. Gunopulos D, Kollios G, Tsotras J, Domeniconi C (2005) Selec-

tivity estimators for multidimensional range queries over real attri-

butes. The VLDB J Int J Very Large Data Bases 14(2):137–154

16. Haas PJ, Swami AN (1992) Sequential sampling procedures for

query size estimation, vol 21 ACM

17. Ikonomovska E, Gama J, Džeroski S (2011) Learning model trees

from evolving data streams. Data Min Knowl Disc 23(1):128–168

18. Indyk P, Motwani R (1998) Approximate nearest neighbors:

towards removing the curse of dimensionality. In: Proceedings of

the thirtieth annual ACM symposium on theory of computing,

STOC ’98. ACM, New York, pp 604–613

19. Kohonen T, Somervuo P (1998) Self-organizing maps of symbol

strings. Neurocomputing 21(1):19–30

20. Kolomvatsos K, Anagnostopoulos C, Hadjiefthymiades S (2015)

An efficient time optimized scheme for progressive analytics in

big data. Big Data Res 2(4):155–165

21. Kosko B (1991) Stochastic competitive learning. IEEE Trans

Neural Netw 2(5):522–529

22. Landset S, Khoshgoftaar TM, Richter AN, Hasanin T (2015) A

survey of open source tools for machine learning with big data in

the hadoop ecosystem. J Big Data 2(1):24. https://doi.org/10.1186/

s40537-015-0032-1

23. Lin CY, Tsai CH, Lee CP, Lin CJ (2014) Large-scale logistic

regression and linear support vector machines using spark. In:

2014 IEEE international conference on big data (big data). IEEE,

pp 519–528

24. Ma J, Theiler J, Perkins S (2003) Accurate on-line support vector

regression. Neural Comput 15(11):2683–2703

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/BigData.2015.7363736
https://doi.org/10.1145/3059177
https://doi.org/10.1145/3059177
https://do.org/10.1145/1629175.1629198
https://do.org/10.1145/1629175.1629198
https://doi.org/10.1186/s40537-015-0032-1
https://doi.org/10.1186/s40537-015-0032-1

Scalable aggregation predictive analytics 2567

25. Makridakis S (1993) Accuracy measures: theoretical and practical

concerns. Int J Forecast 9(4):527–529

26. Ong BT, Sugiura K, Zettsu K (2014) Dynamic pre-training of deep

recurrent neural networks for predicting environmental monitor-

ing data. In: 2014 IEEE international conference on big data (big

data). IEEE, pp 760–765

27. Srivastava U, Haas PJ, Markl V, Kutsch M, Tran TM (2006)

Isomer: consistent histogram construction using query feedback.

In: 22nd international conference on data engineering (ICDE’06).

IEEE, pp 39–39

28. To H, Chiang K, Shahabi C (2013) Entropy-based histograms for

selectivity estimation. In: Proceedings of the 22nd ACM inter-

national conference on information & knowledge management.

ACM, pp 1939–1948

29. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M,

Evans R, Graves T, Lowe J, Shah H, Seth S, Saha B, Curino C,

O’Malley O, Radia S, Reed B, Baldeschwieler E (2013) Apache

hadoop yarn: yet another resource negotiator. In: Proceedings

of the 4th annual symposium on cloud computing, SOCC ’13.

ACM, New York, pp 5:1–5:16. https://doi.org/10.1145/2523616.

2523633

30. Viswanathan R, Jain P, Laxman S, Arasu A (2011) A learning

framework for self-tuning histograms. arXiv:1111.7295

31. Vitter JS, Wang M, Iyer B (1998) Data cube approximation and

histograms via wavelets. In: Proceedings of the seventh interna-

tional conference on information and knowledge management.

ACM, pp 96–104

32. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley M,

Franklin MJ, Shenker S, Stoica I (2012) Resilient distributed data-

sets: a fault-tolerant abstraction for in-memory cluster comput-

ing. In: Proceedings of the 9th USENIX conference on networked

systems design and implementation. USENIX Association, pp 2–2

Dr. Christos Anagnostopoulos

is an Academic Research Fellow

(tenure track) in the School of

Computing Science at the Uni-

versity of Glasgow. His exper-

tise is in the areas of network-

centric intelligent systems,

in-network statistical predic-

tive modelling, and contextual

information processing in large-

scale sensor/UxV/Edge net-

works. He has received

funding for his research by

the EC/H2020, EPSRC, is

coordinating (Principal Inves-

tigator) the projects: EU

H2020/GNFUV and EU H2020 Marie Skłodowska-Curie (MSCA)/

INNOVATE, and is a co-PI of the EU PRIMES. Dr Anagnostopou-

los is an author of over 100 publications, with over 1500 citations

in refereed scientific journals/conferences. He is a member of the

Information, Data, and Analysis (IDA) and associate member of the

Glasgow Systems Section (GLASS) at Glasgow. Dr Anagnostopoulos

before joining Glasgow was appointed as an Assistant Professor at

Ionian University and University of Thessaly in the area of network-

centric information systems. He has held postdoctoral research

positions at University of Glasgow (UK/EPSRC) and University of

Athens (EC-funded projects) in the areas of large-scale statistical

learning & predictive analytics in distributed environments. He holds

a BSc (Hons. and Valedictorian) in Informatics & Telecommunica-

tions, MSc (distinction) in Advanced Information Systems, and PhD

in Computing Science, University of Athens. He is an associate fellow

of the HEA, member of ACM and IEEE.

Fotis Savva is currently a

PhD student and a mem-

ber of the IDEAS research

group within the University of

Glasgow. Fotis has obtained

his B.Sc. in 2016 from the

School Of Computing Science

at the University of Glasgow.

His research interests are:

Machine Learning, Big Data

Engines, Expediting Complex

Query Processing using ML

Models, and Explanations in

Aggregate Query Results.

Peter Triantafillou is Pro-

fessor of Data Systems at

the Department of Computer

Science at the University of

Warwick since September

2017, Associate Director of

the Urban Big Data Research

Centre– a national infrastruc-

ture for urban data services

and analytics – and Honourary

Senior Research Fellow at

School of Computing Science

at the University of Glasgow.

Prior to that, he held the Data

Systems Chair at the School

of Computing Science at the

University of Glasgow. Peter has also held professorial positions at

Simon Fraser University (1991-1995), the Technical University of

Crete (1995-2002), the University of Patras (2002-2013), and visiting

professorships at the Max-Planck Institute for Informatics (in 2004-

2005 and in 2012-2013). Peter received his PhD in computer science

from the University of Waterloo in 1991, being the Department of

Computer Science and the Faculty of Mathematics nominee for the

Gold Medal for outstanding achievements at the Doctoral level.

Peter has published extensively in top journals and conferences in

the above areas, has served in the Technical Program Committees of

more than 120 international conferences, and has been the PC Chair

or Vice-chair in several prestigious conferences. Peter has received

the best paper awards at the ACM SIGIR Conference (on Informa-

tion Retrieval) in July 2016 and at the ACM CIKM Conference (on

Information and Knowledge Management) in November 2006 and

is a co-designer of several innovative systems (such as the MIN-

ERVA decentralized search engine and the eXO decentralized social

networking system).

https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
http://arxiv.org/abs/1111.7295

	Scalable aggregation predictive analytics
	Abstract
	Introduction
	Motivation & research objectives
	Related work
	Organization

	Challenges & overview
	Overview of COUNT predictive learning
	Contribution & research outcome

	Preliminaries & problem formulation
	Preliminaries
	Unsupervised competitive learning
	Kohonen's self-organizing maps
	Heteroassociative competitive learning
	Stochastic gradient descent

	Problem formulation

	Set cardinality predictive learning
	Machine learning methodology
	The lattice concept in machine learning methodology
	Neuron input lattice
	Cardinality output lattice
	Coefficient output lattice

	Learning methodology
	Overview
	Projection
	Association
	Prediction
	Feedback

	The predictive learning algorithm
	Set cardinality prediction
	Computational complexity

	Implementation in Spark
	Overview of Spark
	Transformations in Spark
	Actions in Spark

	Machine learning model implementation
	Range queries workload
	Cardinality prediction in Spark

	Performance evaluation
	Evaluation metrics
	Cardinality prediction accuracy
	Coefficient of determination
	Normalized RMSD (NRMSD)
	Forecast interval
	Symmetric mean absolute percentage error (SMAPE)
	Model training time
	Query execution time

	Datasets & workloads
	Performance assessment
	Accuracy experiments
	Accuracy Experiment 1
	Accuracy Experiment 2
	Accuracy Experiment 3

	Performance experiments
	Performance Experiment 1
	Performance Experiment 2
	Performance Experiment 3

	Conclusions & future work
	Acknowledgments
	Open Access
	Appendix : Nomenclature
	References

