
 

  
Although molecular dynamics (MD) simulations of 

biomolecular systems often run for days to months, many events 
of great scientific interest and pharmaceutical relevance occur on 
long time scales that remain beyond reach.  We present several 
new algorithms and implementation techniques that significantly 
accelerate parallel MD simulations compared with current state-
of-the-art codes.  These include a novel parallel decomposition 
method and message-passing techniques that reduce 
communication requirements, as well as novel communication 
primitives that further reduce communication time.  We have 
also developed numerical techniques that maintain high accuracy 
while using single precision computation in order to exploit 
processor-level vector instructions.  These methods are embodied 
in a newly developed MD code called Desmond that achieves 
unprecedented simulation throughput and parallel scalability on 
commodity clusters.  Our results suggest that Desmond’s parallel 
performance substantially surpasses that of any previously 
described code.  For example, on a standard benchmark, 
Desmond’s performance on a conventional Opteron cluster with 
2K processors slightly exceeded the reported performance of 
IBM’s Blue Gene/L machine with 32K processors running its 
Blue Matter MD code. 
 

1.  INTRODUCTION 
By modeling the motions of atoms within a molecular 

system, molecular dynamics (MD) simulations can serve as a 
computational “microscope” onto phenomena that are difficult 
to observe experimentally.  Such simulations hold great 
promise in biochemistry and molecular biology, where they 
allow functional observation of proteins, nucleic acids, 
membranes, and other building blocks of the cell.  
Unfortunately, many of the events of greatest biological and 
pharmaceutical interest take place on time scales that are still 
beyond the reach of MD simulations on modern computers.  
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Such events as functionally important changes in protein 
structures, “folding” of proteins to their native three-
dimensional structures, and various types of interactions 
between two proteins or between a protein and a candidate 
drug molecule often take place on a microsecond to 
millisecond time scale.  An MD simulation of such an event 
might involve tens of thousands of atoms, representing one or 
more biological macromolecules surrounded by a solvent 
environment consisting of solvated ions (in some cases) and a 
large number of water molecules. 

Because the vibrational frequencies of these atoms typically 
limit each simulation time step to a few femtoseconds, 
simulations of more than a microsecond have thus far proven 
infeasible on systems with more than about ten thousand 
atoms [13, 40].  It seems clear that longer simulations will 
require the application of massive computational parallelism.  
The scalability of MD codes, however, has historically been 
limited by formidable inter-processor communication 
requirements associated with the exchange of atomic positions 
and inter-atomic force data. 

A number of established MD codes, including CHARMM 
[7], Amber [10], GROMACS [45], and NAMD [24, 34, 35], 
are widely used in the research community, each supporting 
somewhat different features and targeting somewhat different 
goals.  Of these, NAMD is regarded as the most scalable and 
the most efficient on highly parallel runs, although 
GROMACS typically achieves superior performance on 
single-processor runs.  IBM’s recently developed Blue Matter 
MD code was designed to scale up to the full 128K-processor 
size of Blue Gene/L [15-17, 19]. Further advances in the 
parallel execution of MD simulations, however, could have 
important implications for both scientific research and the 
development of novel pharmaceutical compounds. 

This paper describes a new MD code, named Desmond, that 
achieves unusually high parallel scalability and overall 
simulation throughput on commodity clusters by using new 
distributed-memory parallel algorithms.  Desmond’s 
efficiency and scalability are due to 1) a novel parallel 
decomposition method that greatly reduces the requirement 
for inter-processor communication, 2) an implementation that 
reduces the number of inter-processor messages, 3) new, 
highly efficient communication primitives, and 4) the use of 
short-vector SIMD (single-instruction multiple data) 
capabilities of the sort included in most modern commodity 
processors.  In addition, Desmond employs new numerical 
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techniques that allow it to use single precision computation 
while maintaining high accuracy. 

Using Desmond, simulations of several microseconds are 
now feasible for reasonably large chemical systems running 
on commodity hardware.  Our results suggest that Desmond’s 
performance on highly parallel systems substantially surpasses 
that of any previously described code.  Indeed, using a 
standard benchmark, we found that Desmond’s performance 
on a conventional Opteron cluster with 2048 processors 
slightly exceeded that of IBM’s Blue Gene/L machine with 
32,768 processors running either Blue Matter or NAMD.  
When we tuned simulation parameters specifically for 
Desmond, its simulation rate increased by an additional factor 
of 2.8 without compromising common accuracy measures. 

To provide a concrete example of Desmond’s performance 
in an actual biomolecular simulation, on a system with 23,558 
atoms (a protein targeted by various cancer drugs called 
dihydrofolate reductase, surrounded by water), Desmond 
achieved a simulation rate of over 173 ns/day on 256 dual-
processor Opteron nodes (512 processors total) with an 
InfiniBand interconnect.  On a relatively large system with 
92,224 atoms (apolipoprotein A1, the main component of 
what is commonly referred to as “good cholesterol,” again 
surrounded by water), Desmond ran at a speed of 120 ns/day 
on 1024 nodes of the same cluster.   

Several other research groups have deployed significant 
computational resources either to run a large number of 
separate MD simulations, each of limited duration [31], or to 
parallelize the simulation of extremely large biochemical 
systems [29, 46].  While such simulations may be of 
considerable value in certain contexts, our own research 
focuses on the many applications that require the simulation of 
a single, very long molecular trajectory for a biomolecular 
system with tens or hundreds of thousands of atoms.  The 
ability to perform these computational experiments could lead 
to important advances in the biomedical sciences, but the 
massively parallel execution of a single, very long MD 
simulation on a system in this size range requires far more 
inter-processor communication, and thus poses far greater 
scalability challenges, than either the execution of many short 
simulations or the simulation of an extremely large 
biochemical system. 

In the remainder of this section, we briefly review the 
essential aspects of molecular dynamics simulation.  In 
Section 2, we describe parallelization strategies, including a 
new parallel decomposition method called the midpoint 
method that is used to parallelize range-limited interactions 
among both covalently bonded and nonbonded atoms, and a 
method for parallelizing the three-dimensional Fast Fourier 
Transform (FFT) used as part of the procedure that handles 
long-range electrostatic interactions.  Section 3 describes 
techniques for shared memory parallelism within each node 
using multiple threads and for parallelism within each 
processor using SIMD instructions.  Section 4 discusses new 
numerical techniques that achieve high accuracy and increased 
simulation throughput.  Section 5 discusses novel 
communication primitives that exploit the communication 
patterns used in Desmond to deliver better performance than 
standard message-passing protocols.  In Section 6, we present 

performance measurements for Desmond on two biochemical 
systems that have been used to benchmark other MD codes, 
including strong scaling results for up to 2048 processors.   

Molecular Dynamics Simulations.  In an MD simulation, 
the positions and velocities of particles corresponding to 
atoms evolve according to the laws of classical physics.  In 
this paper, we will assume a one-to-one correspondence 
between particles and atoms for expository simplicity, 
although Desmond is also capable of representing a group of 
atoms by one particle or a single atom by several particles.  
Desmond is designed for explicit solvent simulations, where 
water molecules (along with any ions that may be present 
within this solvent environment) are represented at the atomic 
level rather than through a less accurate but potentially 
cheaper continuum electrostatics model. 

Each time step of an MD simulation involves 1) computing 
forces on each particle (force computation) and 2) using these 
forces to compute updated positions and velocities on each 
particle by numerically integrating Newton’s laws of motion 
(integration).  Most of the computational load lies in the force 
computation.   

The force computation uses a model called a molecular 
mechanics force field (or simply, force field), which specifies 
the potential energy of the system as a function of the atomic 
coordinates.  (The force on a particle is the derivative of this 
potential energy with respect to the position of that particle.)  
Although classical MD simulation is inherently an 
approximation, it is dramatically faster than a direct solution 
to the full set of quantum mechanical equations.  Several 
decades of work have gone into the development of 
biomolecular force fields through fitting models to 
experimental and quantum data.  

Desmond is compatible with common biomolecular force 
fields, including CHARMM [26], AMBER [23], OPLS-AA 
[22], GROMOS [39], and MMFF [20].  All of these express 
the total potential energy (E) of a chemical system as a sum of 
the form 

E = Ebonded + Ees + EvdW. 
Ebonded is the sum of several bonded terms which depend on 

the covalent bond structure of the molecules.  These include 
bond length terms, involving two particles connected by a 
bond; bond angle terms, involving three particles, two of 
which are bonded to a third; and dihedral angle (torsional) 
terms, involving four particles connected by three bonds. 

Ees and EvdW—the electrostatic and van der Waals terms, 
respectively—are known as nonbonded terms because they 
include interactions between essentially all pairs of particles in 
the system.  They therefore represent a much larger 
computational burden than the bonded terms.  Van der Waals 
forces fall off sufficiently quickly with distance that they can 
typically be neglected for pairs of particles separated by more 
than some cutoff radius R, typically chosen between 9 and 12 
Å.  An ever-mounting body of evidence shows that neglecting 
electrostatic interactions beyond a cutoff is inadequate for 
explicit solvent simulations [8, 27, 30, 33]; electrostatic forces 
thus are typically computed by one of several efficient, 
approximate methods that account for long-range interactions 
without requiring the explicit interaction of all pairs of 
particles.  Desmond supports particle mesh Ewald (PME) [12] 



 

and k-space Gaussian split Ewald (k-GSE) [41], both of which 
use the fast Fourier transform (FFT) to compute electrostatic 
potential on a mesh given a charge distribution on that mesh.  
Both these methods require that modified pairwise 
electrostatic interactions be computed explicitly within the 
cutoff radius.  They also require that charge be mapped from 
particles to nearby mesh points before the FFT computation 
(charge spreading) and that forces on particles be calculated 
from potentials at nearby mesh points after the FFT 
computation (force interpolation).  PME and k-GSE assume 
periodic boundary conditions, which are used by default in 
Desmond. 

One can lengthen the simulation time step somewhat by 
applying constraints that eliminate the fastest vibrational 
motions.  When applying constraints, we typically fix the 
lengths of bonds to all hydrogen atoms, as well as angles 
between the bonds in water atoms, by computing a correction 
to atom positions and velocities after integration. 

 

2.   PARALLELIZATION OF MOLECULAR DYNAMICS 
A distributed memory parallel program consists of several 

processes using a number of processors that can communicate 
via a network.  Each process usually runs on one processor, 
but it is also common for multiple processes to be run on one 
processor, or for each process to be run on multiple processors 
that share memory.  In this section, we discuss parallelization 
from the point of view of processes, independent of their 
relation to processors.  In Section 3.1, we discuss how we 
actually run Desmond on an Opteron cluster that has two 
processors per node. 

In Desmond, as in many other MD codes designed for 
scalability [15-17, 19, 34-36], each process takes 
responsibility for updating positions of particles that fall in a 
certain region of space.  Desmond assumes that the region to 
be simulated (the global cell) is a parallelepiped, divided into 
a regular grid of small parallelepipeds called boxes.  For 
expository simplicity, we will assume in this paper that both 
the global cell and the boxes are rectangular parallelepipeds, 
although Desmond also supports non-rectangular global cells.  
Each process updates the coordinates of the particles in one 
box, referred to as the home box of that process and of those 
particles.  In the interest of simplicity, we will refer 
interchangeably to a process and its home box.   

The FFT operation used to evaluate long-range 
electrostatics requires communication between boxes that are 
distant from one another.  All other Desmond operations that 
require inter-process communication—explicit pairwise 
computation of nonbonded forces, computation of bonded 
forces, charge spreading, force interpolation, computation of 
constraints, and particle migration—involve only local 
communication between nearby boxes.  Section 2.1 describes 
our parallelization strategy for computations involving local 
communication and Section 2.2 describes our parallelization 
strategy for the FFT. 

2.1  The Midpoint Method 
We first describe Desmond’s approach to parallelizing the 

evaluation of nonbonded (electrostatic and van der Waals) 
forces between all pairs of atoms separated by less than the 
cutoff radius R.  Several papers survey traditional methods for 
parallelizing the explicit evaluation of interactions between 
pairs of particles separated by less than some maximum 
distance [21, 36-38].  Plimpton [36] categorized these 
methods as atom, force, and spatial decomposition methods.  
Unlike atom and force decomposition methods, spatial 
decomposition methods offer the desirable property that the 
amount of data to be transferred into and out of each process 
(the method’s communication bandwidth) decreases as the 
interaction radius decreases.  In traditional spatial 
decomposition methods, as in Desmond’s parallelization 
strategy, each process takes responsibility for updating 
positions of particles falling in one region of space.  In 
traditional spatial decomposition methods, the process that 
computes the interaction between two particles is always a 
process on which one or both particles reside. 

A number of recently introduced methods for parallelizing 
range-limited particle interactions require significantly less 
communication bandwidth than traditional parallelization 
methods  [4-6, 43, 44].  These novel methods also employ a 
spatial assignment of particles to processes, but unlike 
traditional spatial decomposition methods, they sometimes 
compute an interaction between two particles in a process on 
which neither particle resides [6].  We refer to such techniques 
as neutral territory methods [6, 43]. 

Two distinct neutral territory methods were developed 
independently by Snir [44] and Shaw [43], who point out that 
these methods might be viewed as hybrids between traditional 
spatial decompositions and the force decompositions 
introduced by Plimpton and Hendrickson [38].  We later 
generalized these methods [6] and introduced several new 
neutral territory methods, including the midpoint method [5].    
The midpoint method requires less communication bandwidth 
than traditional spatial decomposition methods, particularly at 
moderate or high levels of parallelism.  While certain other 
neutral territory methods require less communication 
bandwidth than the midpoint method for pairwise interactions 
parallelized over a sufficiently large number of processes, the 
midpoint method offers several significant advantages for an 
MD code [5].  It applies not only to pairwise interactions, but 
also to interactions involving sets of three or more particles, 
and it can therefore be used to parallelize the evaluation of 
bonded force terms.  Moreover, it allows nearly all the 
computations that require local communication to rely on the 
same data that is communicated for the evaluation of pairwise 
nonbonded forces.  It also typically incurs a smaller penalty 
due to communication latency than other methods.  A related 
method was recently developed independently for Blue Matter 
[17, 19]. 

When applied to pairwise interactions, the midpoint method 
specifies that two particles interact on a particular box if and 
only if the midpoint of the segment connecting them falls 
within the region of space associated with that box.  We refer 
 



 

 
Figure 1.  Assignment of particle pairs to interaction boxes in the midpoint 
method.  In this figure, the boxes are square with side length b, and R = 1.5b.  
Each pair of particles separated by a distance less than R is connected by a 
dashed line segment, with the “x” at its center indicating the box which will 
compute the interaction of that pair. 
 
to the box in which a set of particles interact as their 
interaction box.  Figure 1 illustrates the assignment of particle 
pairs to interaction boxes implied by the midpoint method.  
Two particles that lie in the same box necessarily interact in 
that box, but particles that lie in different boxes may interact 
either in the box in which one of them resides (e.g., particles 2 
and 3) or in a box in which neither resides (e.g., particles 1 
and 5 or particles 3 and 4). 

In the midpoint method, the volume of space from which a 
given process must “import” particle data that ordinarily 
resides within other processes (its import region) includes 
only points within a distance R/2 of its home box, because if 
the distance between two particles is less than R and one of 
them lies more than a distance R/2 from the home box, their 
midpoint must lie outside the home box.  This import region is 
shown in Figure 2(a) for a two-dimensional system. 

For comparison, Figure 2(b) shows the import region of a 
particular traditional spatial decomposition method in which 
the box that interacts two particles is always the home box of 
one or both particles.  In this method, the particles interact 
within the home box of the particle with the smaller x-
coordinate, unless the home boxes of the two particles are in 
the same vertical column, in which case the particles interact  

 

 
Figure 2.  Import regions of (a) the 2-D midpoint method and (b) the 2-D 
analog of the HS method, where R = 1.5b.  In each case, the interaction box is 
light gray and the import region is dark gray. 
 

within the home box of the particle with the smaller y- 
coordinate.  The import region includes half the space within a 
distance R of the home box.  This method is the 2-D analog of 
the HS method defined in our recent publications [6, 43]. 

When the midpoint or HS methods are used for an MD 
simulation, or any other application that requires computation 
of the total force on each particle, each interaction box must 
“export” a force contribution to each of the particles in its 
import region after it has computed the interactions assigned 
to it.  A method in which each process computes all force 
contributions for each particle in its home box would avoid 
the need for such force export, but it would have twice the 
import volume of the HS method and would require that each 
interaction between particles in different boxes be computed 
twice. 

Communication Volume.  Assuming uniform particle 
density, the amount of particle data that must be transferred 
into each process during particle import and out of each 
process during force export is proportional to the volume of 
the import region.  We therefore use the volume of the import 
region (the import volume) as a measure of communication 
bandwidth requirements of a parallelization method.  
Assuming cubical boxes of side length b, we can express the 
import volumes of the 3-D HS and midpoint methods 
(Vimport,HS and Vimport,midpoint, respectively) in terms of αR = R/b 
as: 

Vimport,HS       = b3 (2/3 παR
3 + 3/2 παR

2 + 3αR) 
Vimport,midpoint = b3 (1/6 παR

3
 + 3/4 παR

2 + 3αR). 
A large value of αR implies a high degree of parallelism, as 

b is determined by the number of processes used for 
simulation as well as the size of the global cell.  The import 
volume of the midpoint method is always smaller than that of 
the HS method, with the difference growing in both relative 
and absolute terms as αR grows.  For a more detailed 
comparison of the import volumes of various parallelization 
methods, see [5] and [6]. 

Parallelization of Other Calculations.  The midpoint 
method also applies to interactions that involve sets of three or 
more particles:  the interaction between a set of m particles is 
computed on the box that contains their midpoint, defined as 
the center of the smallest sphere that contains all m particles.  
Desmond uses the midpoint method to parallelize computation 
of the bonded terms, which typically involve two, three, or 
four particles.  Each of these terms is evaluated on the box 
containing an easily computed, approximate midpoint of the 
particles involved.  For parameters associated with typical 
biomolecular force fields, this requires no additional 
communication because all particle positions needed for the 
computation of each bonded term are already included in the 
midpoint method import region associated with the pairwise 
nonbonded computations [5]. 

Similarly, no additional communication is typically required 
for the charge spreading or force interpolation operations 
associated with PME and k-GSE because the particles to be 
communicated already lie in the midpoint method’s import 
region [5]. The same holds for the constraint calculations 
performed in Desmond.  Under the HS method, these 
operations would require additional communication. 



 

Particle Migration.  In an MD simulation parallelized via 
the midpoint method, particles migrate from one box to 
another as they move.  In principle, particle migration could 
be combined with the particle import step of the midpoint 
method.  In Desmond, we have chosen to perform particle 
migration in a separate round of communication following 
particle position import, to make communication protocols 
simpler and more efficient.  Desmond also exploits this latter 
round of communication to transfer responsibility for 
computation of bonded terms and constraint terms between 
processors.  Desmond always performs calculations with 
current position and velocity data.  However, because the 
distance by which a particle typically moves in a time step is 
several orders of magnitude smaller than the cutoff radius, 
Desmond can avoid performing migration at every time step 
by slightly expanding the import region.  In particular, 
expanding the import region by a few tenths of an Angstrom 
in each direction ensures that migration need be performed 
only every few time steps, without affecting the accuracy of 
the force terms computed.  While this increases the 
communication bandwidth required for particle import and 
force export, it typically reduces overall communication 
requirements. 

Number of Messages.  The current version of Desmond 
requires that all box side lengths are greater than R/2, 
implying that each box only communicates with its 26 nearest 
neighbors under the midpoint method.  The HS method, on the 
other hand, requires communication between more distant 
boxes whenever any box side length is less than R [5].  

Instead of sending 26 individual messages from each 
process simultaneously, Desmond sends only 6 messages, one 
in each cardinal direction, using a staged approach similar to 
that introduced by Plimpton in the context of a traditional 
spatial decomposition method [36].  All boxes first send 
messages in the +x and –x directions, followed by messages in 
the +y and –y directions, followed by messages in the +z and 
–z directions.  To send data to a (+x, +y, +z) direction 
neighbor, that data is sent first in the +x direction (along with 
all other data being sent in that direction), then in the +y 
direction (along with other data), and finally in the +z 
direction (along with other data).  Other neighbors are handled 
similarly.  The aggregated messages generally remain short:  
due to spatial locality, much of the data sent in the +x 
direction to the (+x, +y, +z) direction neighbor, for example, 
will also be needed by the +x direction neighbor. 

The question remains as to whether sending 6 messages in 3 
stages is faster than sending 26 individual messages 
simultaneously.  In many communication networks, the 
latency of communication calls may be somewhat overlapped, 
that is, it is possible to send k messages with nonblocking 
communications in time less than the product of k with the 
time to send a single message.  In tests using 4096-byte 
messages on an InfiniBand network, we found that sending 
and receiving 2 simultaneous messages took 33.7 µs.  Hence 
the staged approach would take approximately 3 × 33.7 = 
101.1 µs, significantly less than the 328.8 µs required to send 
and receive 26 simultaneous messages (for comparison, 
sending and receiving a single message took 22.4 µs). 

Load Balance.  The density of atoms in biomolecular 
systems is highly uniform, at approximately 0.1 atoms/Å3.  
Load balance is therefore not a significant issue for explicit 
solvent MD simulations at moderate levels of parallelism, as 
illustrated by our performance measurements in Section 6.  At 
very high levels of parallelism, statistical fluctuations, 
differences between the bonded terms in solvent molecules 
(e.g., water) and in solute molecules (e.g., proteins and lipids), 
and the slightly lower density of solute molecules cause some 
load imbalance.  Variants of the midpoint method [5, 17, 19] 
allow for improved load balance, but we have found these to 
have only a minor performance impact in Desmond due to 
additional communication and bookkeeping overhead. 

Parallelization Engine.  To maximize the efficiency of 
communication and computation associated with the midpoint 
method, an implementation should ensure that: 
• The messages to be sent are as small as possible, including 

only data that needs to be updated in other processes, and 
no more messages are sent than necessary. 

• Assembly of these messages requires minimal computation. 
• Each process stores data in such a way that it can be 

accessed efficiently when needed for computation. 
To achieve these goals, we developed a portable library 

called the particle simulation parallelization engine that 
manages ordering of data in memory and assembly of 
messages sent to other processes.  This engine handles not 
only particle records, but also group records that specify 
properties of sets of particles (for example, each bond and 
constraint term has an associated group record that specifies 
which particles participate in that term, along with the 
corresponding force field parameters).  Desmond’s 
parallelization engine ensures that: 
• The six messages sent by each process, one in each of the 

cardinal directions, include only those records required by 
the midpoint method, with no overhead.  Records are sent 
only to processes that need a copy but do not already have 
one.  Only particles that fall strictly within a box’s import or 
export region are communicated.  In particular, the corners 
and edges of this region are properly rounded, as we have 
found the rounding computation to be cheaper than the 
additional overheads implicit in not rounding.  Only a single 
copy of a record is communicated across any 
communication link, even if that record needs to be sent to 
multiple destinations.  Between migrations, the engine 
performs distributed memory update operations on subsets 
of the particle properties rather than communicating the 
entire particle record.  The update messages themselves 
have no formatting overhead; the sender and receiver both 
know how to pack and unpack these messages. 

• Each process aggregates the six outgoing messages in no 
more than a single pass through its particle memory. 

• A process can find any particle record present in an amount 
of time independent of the number of particle records stored 
in that process.  Such particle lookups can be indexed by 
spatial location as well as local or global particle identifier. 



 

2.2  FFT Parallelization 
The PME and k-GSE methods for efficient long-range 

electrostatics both require computation of a 3-D FFT on a 
mesh, followed by a multiplication of the transformed data 
with an influence function that is independent of the data, 
followed by an inverse 3-D FFT.  The computational structure 
of the inverse FFT is similar to that of the forward FFT.  We 
introduce a parallelization technique for the multidimensional 
FFTs that minimizes the required number of inter-process 
messages, assuming that the mesh is distributed spatially 
across boxes and their corresponding processes. 

Let Nx×Ny×Nz denote the dimensions of the 3-D mesh 
superimposed on the global cell; to simplify the calculation of 
the FFT, we assume that Nx, Ny, and Nz are all powers of 2.  
We assume that these mesh points are distributed spatially 
across px×py×pz boxes, where px, py, and pz are also powers of 
2.  We denote by nx×ny×nz the size of the mesh on each box.  
For biomolecular simulations, Nx, Ny, and Nz are typically 
between 32 and 128.  Parallel FFT computation would not 
normally be necessary for this small amount of data, except 
for the fact that the data is distributed.  The cost for 
redistributing the data turns out to govern how best to 
parallelize small distributed FFT calculations. 

A 3-D FFT is computed by successively calculating sets of 
1-D FFTs in each of the three dimensions.  Each column of 
boxes in the x-dimension contains Nxnynz data points, 
requiring nynz separate 1-D transforms.  The data for each 1-D 
transform is distributed across all px processes in the column.  
One parallelization approach, suitable for torus networks such 
as that of Blue Gene/L, is to use all-to-all communication 
among these px processes to redistribute the data such that 
each process computes nynz/px transforms [14].   

For commodity networks, however, all-to-all 
communication among the px processes is slow and generally 
requires every process to send a message directly to every 
other process.  Our approach is not to redistribute the data and 
instead to perform directly the butterfly communications 
required in the FFT calculations, as shown in Figure 3.  In the 
x-dimension transform considered above, the FFT will require 
log2(Nx) stages, of which log2(px) will require inter-process 
data transfer.  (The communication pattern is greatly 
simplified because Nx and px are powers of 2.)  In each stage 
that requires inter-process communication, each process 
exchanges data with one other process. 
FFT algorithms can be categorized as decimation in time or 
decimation in frequency.  In a decimation in frequency 
transform, the first log2(px) stages (of a 1-D transform) 
require inter-process communication and the remaining 
log2(nx) stages use completely local data.  In a decimation in 
time transform, the first log2(nx) stages are local while the 
remaining log2(px) stages require communication.  Our 
forward transforms use decimation in frequency.  After three 
sets of forward transforms, one along each dimension, the 
ordering of the transformed data across processes is bit-
reversed, but computations in the Fourier domain 
(multiplication by the influence function) can be applied with 
the data in this order at no extra expense.  Our inverse 
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FFT and 1-D inverse decimation in time FFT for 8 points distributed across 4 
processes.  The ρ variables represent charge and the φ variables represent 
potential.  The computation of φ from ρ involves multiplication by an 
influence function, performed in bit-reversed order.  The links that cross 
process boundaries imply inter-process communication.  In decimation in 
frequency, the first two stages require communication; the last stage is local.  
In decimation in time, the first stage is local; the last two stages require 
communication. 
 
transforms use decimation in time, which brings the result 
back into the original spatially distributed ordering. 

When parallelizing across 512 processes in an 8×8×8 
configuration, the forward and inverse 3-D FFTs each require 
9 messages to be sent by each process:  3 for each of 3 
dimensions.  For relatively small meshes on commodity 
networks, the number of messages to be sent and their 
associated latency is the primary determinant of FFT 
communication time.  FFTs involving large amounts of data 
are typically parallelized in other ways (e.g., FFTW [18]), 
because in those cases, message bandwidth begins to dominate 
latency. 
 

3.  INTRA-NODE PARALLELIZATION 

3.1  Shared Memory Parallelism 
Many modern distributed parallel systems have multiple 

processors per node, typically in a shared memory 
configuration.  This leads to a choice of parallelization 
methods at the node level.  If a node has k processors, one 
option is to split the box assigned to that node into k smaller 
boxes, with k corresponding processes.  Each processor takes 
responsibility for one of the smaller boxes and the 
corresponding process, using the same protocols to 
communicate with other processors on the same node as with 
processors on other nodes.  An alternative is to run a single 
process per node with k threads, called a hybrid approach, 
which may be implemented using OpenMP or POSIX threads 
(pthreads).  The various threads may be running the same 
parts of the code simultaneously, or they may be running 
different parts of the code. 

In various studies involving other applications [9, 11], 
assigning a separate process to each processor has been found 
to be more efficient than the hybrid approach, due to poorer 
cache behavior and serialization of communication and other 
“critical sections” in the hybrid approach.  However, 
implementations of message-passing protocols often limit the 
maximum number of processes they can support, which forces 



 

the use of a hybrid approach in order to utilize very large 
numbers of processors.  Desmond’s requirement that box side 
lengths be no less than R/2 has a similar effect, as it limits the 
number of boxes that can be used for small chemical systems.  
To allow high degrees of parallelism for small chemical 
systems, Desmond uses pthreads to implement a capability for 
each process to divide its work among multiple threads and 
processors.  This implementation is highly portable across 
platforms.  For a fixed number of processors, we find that the 
use of multiple threads per process leads to a small 
degradation in performance (see Section 6). 

3.2  Data Parallelism  
Many microprocessors provide short-vector SIMD (single 

instruction, multiple data) extensions to accelerate multimedia 
tasks.  For example, some Intel and AMD processors provide 
SSE (streaming SIMD extensions) while some PowerPC-
based processors provide AltiVec extensions.  In both cases, 
these extensions include the ability to simultaneously perform 
four 32-bit single precision floating point operations.  
Unfortunately, these operations require that memory accesses 
are 16-byte aligned, making it difficult or impossible for a 
compiler to generate efficient SIMD code automatically. 

To exploit short vector SIMD accelerations without 
resorting to hand-coding SIMD instructions, we developed a 
programming interface that allows users to write code that will 
compile anywhere but that will be converted to near optimal 
inline assembly on platforms that support short-vector SIMD.  
Desmond uses this interface in nearly all its compute-intensive 
loops.  The interface is a set of C++ classes utilizing operator 
overloading, making SIMD code look very much like plain C 
code.  At present, we support conversion of code written 
under this programming model to SSE-accelerated data 
parallel code as well as portable scalar code; one can easily 
add support for the short-vector SIMD instructions available 
in other architectures.  Our approach might be viewed as an 
elaboration of the V4 programming model used in the 
relativistic 3-D particle-in-cell simulation code V-PIC [3]. 

SIMD parallelism is used either “vertically” or 
“horizontally.”  In vertical SIMD, four similar quantities are 
computed simultaneously; for example, these might comprise 
forces due to four particles on a given particle, or four local 
1-D FFTs.  In horizontal SIMD, four arithmetic operations are 
performed simultaneously on a single particle; for example, 
one might compute its energy and the x-, y-, and z-components 
of its force.   

The use of SIMD gives Desmond very high single-
processor performance.  We estimate that the kernel that 
performs the cutoff-limited nonbonded force calculations is 
operating at 1.7 single precision Gflops/s per processor (peak 
is 9.6 single precision Gflops/s, assuming four per cycle).  
This estimate is based on a count of 56 (single precision) flops 
per pair of interacting particles (there are also 19 memory 
operations and 35 other operations per pair of particles, 
including integer arithmetic and address generation).   

 

4.  NUMERICAL TECHNIQUES 
Desmond can be configured to execute the great majority of 

its arithmetic instructions in either single precision or double 
precision.  Single precision operation reduces memory and 
network bandwidth requirements by about a factor of two and 
allows SIMD extensions to be used, giving much higher 
performance than double precision.  In this section, we briefly 
describe some numerical techniques that allow Desmond to 
operate accurately and efficiently in single precision.  

An exact MD simulation would conserve energy exactly.  
Errors in the simulation generally lead to an increase in the 
overall energy of the simulated system with time, a 
phenomenon known as energy drift.  The rate of energy drift 
is often used as one measure of the accuracy of an MD 
simulation, with a lower energy drift rate corresponding to a 
more accurate simulation.  We express energy drift in terms of 
that rate at which the temperature would change if all the 
excess energy were converted to heat.  Desmond can be 
configured such that its single precision simulations achieve 
energy drift levels below 1 K per microsecond of simulated 
time—better than most double precision codes. 

Bitwise Time Reversibility.  In principle, an MD 
simulation should be time reversible, because the classical 
equations of motion are time reversible.  For example, if one 
runs a simulation for a thousand time steps, negates the 
instantaneous velocities for all particles, and runs for another 
thousand time steps, one should exactly recover the initial 
particle positions.  Most particle simulation codes fail to 
achieve reversibility for two reasons.  First, roundoff error 
during integration leads to a loss of state information; particle  
positions and velocities at one time step cannot be exactly 
reconstructed from those at the next time step.  Second, lack 
of associativity of floating point summation leads to a 
situation where computed forces can depend on various 
factors that affect order of summation, such that these forces 
are not uniquely defined by particle positions and force field 
parameters.   

Desmond, on the other hand, preserves exact bitwise 
reversibility for simulations that do not use constraints and in 
which particle migration is performed at every time step, 
under some MD integration schemes.  Desmond avoids loss of 
information during integration by performing updates to 
particle  coordinates using fixed point arithmetic (the details 
of how this is done without significant performance impact 
are beyond the scope of this paper).  Desmond avoids 
problems due to non-associativity by maintaining a consistent 
ordering of the particles and computations such that computed 
forces are unique functions of the particle positions and force 
field parameters.  We are not aware of any other large floating 
point code, scalar or parallel, that ensures exact reversibility 
for non-trivial runs.  Reversibility helps ensure that Desmond 
will accurately model thermodynamic relationships that 
depend on detailed balance and also results in very low energy 
drift.  While Desmond simulations that employ constraints or 
that perform particle migration infrequently are not strictly 
bitwise reversible, we have found that the numerical 
techniques mentioned here are still beneficial in those cases, 
resulting, for example, in significantly lower energy drift.  In 



 

addition, we note that Desmond simulations are always 
deterministic. 

Constraint Stabilization.  Constraint calculations can 
introduce correlations between roundoff errors in a particle’s 
position and velocity.  These correlations can cause severe 
energy drift in single precision MD codes.  We have 
developed new position constraint algorithms that eliminate 
these correlations, to be described in a future paper. 

Normalized Local Coordinate Representation.  Desmond 
represents the positions of particles in each box in a local 
coordinate system that is normalized to that box, i.e., each 
coordinate ranges from –0.5 to +0.5.  This gives extra 
precision compared to using absolute global coordinates, 
particularly in parallel runs.  Another benefit of using a 
normalized coordinate representation is that pressure control, 
which alters the dimensions of the boxes, can be implemented 
to be time-reversible.  Further, local coordinate representation 
simplifies the handling of periodic boundary conditions. 

Interpolation Schemes.  Desmond uses a piecewise 
polynomial approximation to compute explicit pairwise 
electrostatic interactions between nearby atoms, as the 
modified functional form required by PME and k-GSE is 
expensive to compute directly.  Instead of computing the force 
between two particles as a function of the distance r between 
them, however, Desmond computes it as a function of a 
transformed variable of the form ar2+b.  This has the benefit 
that energy and force can be computed simultaneously from 
the same set of polynomial coefficients without using square 
roots or reciprocal square roots.  This ensures that forces are 
strictly the gradient of some potential and eliminates 
expensive operations in Desmond’s nonbonded inner loop. 

 

5.  COMMUNICATION PRIMITIVES USING RDMA 
Modern high-performance interconnects use some form of 

remote direct memory access (RDMA) to transfer data in a 
distributed memory system without interrupting the CPU.  To 
use RDMA, memory regions participating in data transfer 
must be registered to prevent these memory regions from 
being swapped out and to provide the network interface card 
with the virtual to physical address mapping.  Memory 
registrations, however, require costly OS operations.  To 
avoid this overhead for short messages, a message-passing 
library would typically pre-allocate and pre-register several 
small buffers; a short message is sent by first copying it to a 
pre-registered buffer, then sending it via RDMA, and finally 
copying it from the pre-registered buffer on the receiver side.  
To send a long message, a three-step protocol is used which 
avoids memory copies at the cost of memory registrations:  1) 
the sender registers the memory of the data to be sent and first 
sends a short request message, 2) the receiver registers 
memory and replies with a destination address, 3) the sender 
sends the data directly via RDMA to the destination address. 

We have developed a novel set of RDMA communication 
primitives for all message lengths that avoids the memory 
copies, memory registrations, and multiple-step protocols of 
the above techniques.  This results in communication 
  

 
Figure 4.  Iterative exchange pattern for two processes and three 
communication steps.  On processor 0, two send buffers are labeled A and C; 
two receive buffers are labeled B and D.  On processor 1, the corresponding 
buffers are labeled A’, C’, B’, and D’.  When processor 0 receives a message 
into buffer D, it implies that the communication from buffer A to buffer B’ has 
completed and that the send buffer A and the receive buffer B’ are available.  
The next communication step then uses these buffers without needing to 
synchronize with the receiver.  This communication pattern can be regarded as 
two simultaneous ping-pongs. 
 
primitives that have much lower overhead for sending a 
message.  The primitives use a one-step protocol, sending 
RDMA messages without attempting to first synchronize with 
the receiver.  For this to work, one must guarantee that for 
each message being sent, there is a buffer available on the 
receive side.  This condition is easily satisfied for common 
communication patterns used in many parallel codes, 
including Desmond, which we call iterative exchange 
patterns.  These patterns are composed of iterations where a 
process exchanges messages with other processes.  When a 
process receives a message, this implies that a message sent 
by that process in an earlier iteration must have been received; 
thus the receive buffer used in that earlier iteration is 
available.  Figure 4 shows this in detail. 

At initialization time, the application specifies a connection 
between each pair of processes that will communicate, as well 
as the maximum buffer sizes required.  Two sets of buffers 
(two receive and two send buffers) for each connection are 
allocated and registered at this time.  The application uses 
these buffers directly, alternating between the two sets of 
buffers as shown in the figure. 

Our implementation of these communication primitives is 
for InfiniBand; it uses the Verbs interface provided by 
Mellanox Technologies [28].  We use RDMA write 
operations, which are faster than RDMA read operations on 
current hardware [42].  We must poll on the message 
explicitly to know when a message has arrived, since it is 
inefficient for RDMA writes to generate a completion signal 
on the receive side.  We use the two-stage polling technique 
described in [25].  The technique requires that send and 
receive buffers are not modified except for writing data to be 
sent into the send buffer. 

We compare these primitives to an implementation of MPI 
called MVAPICH [25] which supports InfiniBand and its 
RDMA features.  We tuned MVAPICH to optimize 
application performance.  In particular, we use 12 KB pre-
registered buffers (called VBUFs) and 8 VBUFs per 
connection (there is a connection between every pair of MPI 
processes in MVAPICH 0.9.5, which limits VBUF memory).  
Many messages in Desmond, however, are over 12 KB, which 



 

means the slower three-step protocol is used for these 
messages.  A slower protocol is also used for short messages 
when MVAPICH’s credit system detects that VBUFs on the 
receiver side have been exhausted. 

We benchmarked our new communication primitives on an 
iterative exchange between processes arranged in a ring 
topology, where processes exchange messages with their left 
and right neighbors.  For a ring of 1024 processes (on 1024 
nodes of an InfiniBand cluster) the average time for one 
iteration was 111.5 microseconds on MVAPICH, and 12.5 
microseconds with our new primitives—almost an order of 
magnitude improvement.  The performance of the new 
primitives is almost insensitive to number of processes, while 
the performance of MVAPICH degrades with number of 
processes.  Compared to MPI, the new primitives trade 
generality for higher performance.   

 

6.  PERFORMANCE TESTS 
Performance tests with Desmond were carried out on an in-

house 1056 node (2112 processor) InfiniBand cluster.  Each 
node is a Sun Fire V20z server with two 2.4 GHz AMD 
Opteron Model 250 (single-core) processors.  The operating 
system is 64-bit Linux (kernel 2.6.9 from the Rocks 4.0 
cluster distribution [32]).  The InfiniBand network is 
constructed with Cisco SFS 7000 leaf switches, Cisco SFS 
7008 core switches, and Cisco InfiniBand PCI-X Host 
adapters.  Timings were collected by accessing the Opteron 
processor cycle counter, which gives very fine-grained timing 
results. 

We present performance results for two chemical systems 
that are among the most common benchmark systems used for 
MD codes.  These are the ApoA1 (apolipoprotein A1) system 
with 92,224 atoms (in a global cell of approximately 
109×109×78 Å3) and the DHFR (dihydrofolate reductase) 
system, also known as the Joint Amber-CHARMM 
benchmark, with 23,558 atoms (approximately 62×62×62 Å3).  
For each system, we use two sets of simulation parameters.  
First, we use benchmark parameters, which are the parameters 
specified by the benchmarks.  (For ApoA1, Desmond uses a 
PME mesh that is finer than specified by the benchmark, due 
to the powers-of-2 restriction in Desmond’s FFT calculation.)  
We also use production parameters, which were tuned for 
Desmond to achieve a higher simulation rate without 
compromising common accuracy measures, as discussed 
below.  Table 1 lists the benchmark and production 
parameters for both systems.  All simulations were run 
without temperature or pressure control. 

We first show performance results using benchmark 
parameters.  Table 2 shows elapsed time per time step for 
Desmond running on our cluster on the two benchmarks for 8 
to 2048 processors.  Figures 5 and 6 show this data 
graphically for ApoA1 and DHFR, respectively.  Our default 
run for each system uses two processes per node and our new 
communication primitives.  For ApoA1, we also show results 
using a single two-threaded process on each node (“tpn=2”); 
 

Benchmark Parameters 

System Time 
step 

Con-
straints 

PME 
frequency Cutoff PME mesh PME 

order 

ApoA1 1fs No 4 steps 12 Å 128×128×128 4 
DHFR 1fs No  1 step 9 Å 64×64×64 4 

Production Parameters 

System Time 
step 

Con-
straints 

PME 
frequency Cutoff PME mesh PME 

order 

ApoA1 2.5fs Yes 2 steps 12 Å 64×64×64 6 
DHFR 2.5fs Yes 2 steps 9 Å 64×64×64 4 

Table 1.  Benchmark and production parameters.  The cutoff is the cutoff 
radius used for explicit evaluation of pairwise electrostatic and van der Waals 
interactions; the PME order is the order of the B-splines used in the smooth 
PME algorithm.  For ApoA1, NAMD used a coarser PME mesh of  
108×108×80; Desmond and Blue Matter used 128×128×128 which, although  
more costly, is necessary due to the powers-of-2 restriction in Desmond’s and 
Blue Matter’s FFT calculation. 
 

Processor 
Count 

ApoA1 ApoA1 
 tpn=2 

DHFR DHFR 
with MPI 

8 0.2568  0.0414 0.0429 
16 0.1268 0.1415 0.0210 0.0219 
32 0.0643 0.0704 0.0115 0.0121 
64 0.0335 0.0374 0.0063 0.0069 

128 0.0182 0.0206 0.0037 0.0044 
256 0.0094 0.0105 0.0020 0.0026 
512 0.0052 0.0062 0.0014 0.0023 

1024 0.0030 0.0035   
2048 0.0020 0.0025   

Table 2.  Desmond performance:  Average elapsed time per time step (in 
seconds) using benchmark parameters. 
 

Processor 
Count 

ApoA1 DHFR 

8 0.3542 0.0569 
16 0.1730 0.0335 
32 0.0898 0.0190 
64 0.0479 0.0124 

128 0.0285 0.0097 
256 0.0234 0.0070 
512 0.0186 0.0159 

1024 0.0260  
Table 3.  NAMD performance:  Average elapsed time per time step (in 
seconds) using benchmark parameters, running on the Opteron/InfiniBand 
cluster.  Both processors on each node were used for computation. 
 
this mode is slightly slower at any given level of parallelism.  
For DHFR, we also show results using an MPI library 
(MVAPICH) instead of our communication primitives, 
illustrating that the performance gain due to these primitives 
increases as the number of processors increases.   

To provide additional context for these results, we compare 
them to performance measurements on the same benchmarks 
for the NAMD and Blue Matter codes, both of which were 
designed specifically for high parallel performance [15-17, 19, 
35].  Table 3 and Figures 5 and 6 show performance results 
for NAMD on our cluster.  Desmond is faster than NAMD at 
all levels of parallelism examined, with the performance 
difference growing as parallelism increases.  On ApoA1, 
Desmond scales to at least 2048 processors, at which point it 
 



 

 
Figure 5.  ApoA1:  Average elapsed time per time step using benchmark 
parameters. 

 

 
Figure 6.  DHFR:  Average elapsed time per time step using benchmark 
parameters. 
 
is 9.3 times faster than NAMD running on 512 processors; 
NAMD’s simulation rate decreases beyond 512 processors. 

Table 4 shows performance measurements for the ApoA1 
and DHFR benchmarks on Blue Gene/L using NAMD and 
Blue Matter.  This data is also plotted in Figures 5 and 6 for 
comparison purposes.  In the tests reported for Blue Matter 
[14, 15], both processors (cores) on each node were used for 
computation.  In the tests reported for NAMD [24], one core 
was used for computation while the other was used for 
communication (co-processor mode). 

 
Processor 

Count 
ApoA1 with 

NAMD 
[24] 

ApoA1 with 
Blue Matter 

[16] 

DHFR with 
Blue Matter 

[17] 
64   0.1 

256 0.1063          0.03 
1024 0.0276     0.0384          0.009 
2048 0.0154     0.0190         0.007        

16384 0.0048     0.0031           
32768  0.0021           

Table 4.  Comparable results for NAMD and Blue Matter running on Blue 
Gene/L as reported in the literature:  Average elapsed time per time step (in 
seconds) using benchmark parameters.  For NAMD, separate timings for 
cutoff-based and PME calculations were given, and we have combined the 
results into a single number assuming one PME calculation every four steps. 
 

Time step Constraints Desmond NAMD 
1 fs No 2.0 K/ns 2.8 K/ns 
1 fs Yes 0.07 K/ns 0.4 K/ns 

2.5 fs Yes 0.07 K/ns 0.9 K/ns 
Table 5.  Energy drift comparison between Desmond and NAMD for ApoA1 
at 300 K.  The first row corresponds to the benchmark parameters, the second 
row corresponds to the benchmark parameters except for the use of 
constraints, and the third row corresponds to production parameters. 

 
We point out in particular that, for ApoA1, Desmond’s 

performance on 2048 processors of our cluster slightly 
exceeds that of Blue Matter on 32,768 processors of Blue 
Gene/L.  Desmond on 2048 Opteron processors is 9.5 times 
faster than Blue Matter on the same number of Blue Gene/L 
processors.  Desmond’s performance on 1024 processors of 
our cluster exceeds NAMD’s performance on 16,384 
processors of Blue Gene/L, the highest level of parallelism 
reported in the NAMD tests [24].  The Opteron processors in 
our cluster are somewhat faster than the PowerPC 440 
processors of Blue Gene/L; our cluster processors have a 
theoretical peak of 4.8 billion double precision floating point 
operations per second, as compared to 2.8 billion for the Blue 
Gene/L processors.  On the other hand, Blue Gene/L’s 
communication network is faster than our InfiniBand network; 
the Blue Gene/L torus network provides an aggregate raw 
bandwidth per node of 16.8 Gbps and a nearest-neighbor 
latency of 2–3 µs [1], while our network provides an 
aggregate raw bandwidth per node of 8.5 Gbps and a nearest-
neighbor latency of approximately 6 µs. 

Table 5 shows energy drift rates for Desmond and NAMD 
on ApoA1 for several sets of simulation parameters.  Because 
the Desmond runs used the OPLS-AA 2005 force field while 
the NAMD runs used the CHARMM22 force field, the exact 
energy drift figures may not be compared strictly.  However, 
the fact that Desmond’s energy drift is lower than that of 
NAMD, which performs most of its computation in double 
precision, confirms that Desmond achieves acceptable energy 
drift despite its use of single precision computation.  Thanks 
to the numerical stability of Desmond’s constraint algorithms, 
its energy drift drops dramatically, both in absolute terms and 
relative to NAMD, when constraints are applied to fix the 
lengths of bonds to all hydrogen atoms and the bond angles of 
water molecules.  In addition, increasing the time step from 1 
fs to 2.5 fs in a constrained simulation has a negligible impact 
on energy drift in Desmond but a significant impact in 



 

NAMD, suggesting that Desmond is able to use a longer time 
step while maintaining low energy drift. 

We also quantified simulation accuracy using relative rms 
force error, a measure of the error in the calculated 
nonbonded forces defined as the root mean squared error in 
the force divided by the root mean squared force [41].  For 
ApoA1, Desmond’s relative rms force error is lower using 
production parameters than using benchmark parameters.  In 
particular, the relative rms force error using production 
parameters is consistently below 10-4; a relative rms force 
error below 10-3 is considered sufficiently accurate for 
biomolecular MD simulations [47, 48].  For DHFR, the 
relative rms force error is identical for benchmark and 
production parameters. 

The use of production parameters allowed us to more than 
double the simulation rates obtained using the benchmark 
parameters without increasing energy drift or relative rms 
force error.  Figure 7 plots simulation rates for ApoA1 and 
DHFR using production parameters for various processor 
counts in terms of simulated nanoseconds per elapsed day.  
The average simulation rate of ApoA1 increased by a factor of 
2.5 relative to the rate using benchmark parameters, mostly 
due to use of a larger time step and a coarser PME mesh.  On 
2048 processors, the simulation rate increased by a factor of 
2.8.  The average simulation rate for DHFR increased by a 
factor of 2.7, mostly due to use of a larger time step and less 
frequent PME calculation.    

For ApoA1, a 14 ns simulation was sustained over 2.8 hours 
on 2048 processors at a rate of 120 ns/day.  For DHFR, a 
simulation on 512 processors (256 nodes) maintained a rate of 
173 ns/day.  To our knowledge, these ApoA1 and DHFR 
simulation rates are the fastest reported for these systems. 

 

 
Figure 7.  Desmond simulation rate for DHFR and ApoA1 using benchmark 
and production parameters, using two processes per node and new 
communication primitives.   

 

 
Figure 8.  Strong scalability for DHFR and ApoA1, corresponding to the data 
in Figure 7. 
 

Figure 8 plots speedup figures for the simulations relative to 
performance on 8 processors (i.e., assuming a speedup of 8 for 
8 processors).  The parallel efficiency is approximately 55 
percent for ApoA1 for 2048 processors.  The DHFR system 
has fewer atoms and less computational work per time step; its 
parallel efficiency is approximately 40 percent for 512 
processors. 

Applications.  The proteins used for the performance tests 
reported in this paper were chosen to facilitate comparison 
with other benchmarks in the literature.  Most of our Desmond 
simulations, however, have focused on other biomolecular 
systems of interest at a basic scientific level and/or in the 
context of drug development.   

For example, we have studied the sodium-proton antiporter 
protein NhaA from E. coli in an effort to describe how this 
protein harnesses the electrochemical gradient of protons 
across the cell membrane to pump sodium ions out of the cell 
[2].  NhaA is critical for the maintenance of intracellular pH 
and sodium levels, but from the crystal structure alone it is not 
clear how it performs this essential function; molecular 
dynamic studies may play a key role in elucidating the 
mechanism.   

We have investigated several protein kinases, proteins 
which play key roles in cellular signaling pathways.  Most 
protein kinases can exist in both an active and an inactive 
conformation; defects which cause some protein kinases to 
become stuck in their active conformation are implicated in 
certain cancers.  We have used molecular dynamics 
simulations to investigate elements of the conformational 
changes involved in the activation process (i.e., transition 
between inactive and active states) of one of these, c-Abl 
kinase, the target of the cancer drug Gleevec.   

Also of interest to us, and a central practical problem in 
drug discovery, is the determination of binding affinities 
between small drug-like molecules and drug targets.  High 



 

performance molecular dynamics simulations may have the 
potential to provide an accurate solution to this problem, 
supplementing the faster but highly error-prone technique 
currently in use.  We have started to investigate the 
interactions of a particular membrane-bound receptor protein 
implicated in cancer with small molecule inhibitors using 
molecular dynamics, as an important practical problem on 
which to test various approaches.   

We have also used Desmond to simulate fast folding 
proteins.  The fastest of these fold in a few microseconds or 
less, opening up the possibility of directly simulating the 
entire folding process.  Although the details of folding are 
fascinating in themselves, one important reason to study such 
systems is that they provide a stern test of modern day 
molecular force fields.  Hopefully, detailed study of the 
failures as well as the successes of current force fields can 
lead to a new generation of improved force fields that can be 
used to solve further intriguing problems in biology. 

 

7.  CONCLUDING REMARKS 
We are undertaking a concerted effort to make molecular 

dynamics a useful tool in biology, chemistry, and medicine, 
particularly by reducing the turn-around time for 
computational experiments and enabling simulation of 
biochemical events on long time scales.  Desmond represents 
an effort where we have developed new algorithms and 
implementation techniques, as well as MD software of 
unprecedented performance that is already being used in 
biochemistry research.  In this paper we have outlined the 
novel methods underlying Desmond’s efficiency and 
scalability, and shown that Desmond’s parallel performance 
significantly exceeds that of other state-of-the-art codes.  
Other papers will present in more detail the specific methods 
we have developed, many of which are applicable to particle 
simulations in general. 

Like established MD codes, Desmond contains a variety of 
features that are useful for research in chemistry and 
molecular biology.  For example, it contains algorithms for 
simulations with various types of ensembles, sampling 
methods, force fields, and global box shapes.  To handle the 
large amounts of particle trajectory data, Desmond uses a 
system of distributed output files.  Desmond also contains a 
checkpoint mechanism that allows a bitwise perfect restart of 
a simulation that was stopped due to hardware failures or 
other reasons.  Our continuing efforts with Desmond involve 
adding more features without compromising performance.  
We plan to release the Desmond software for use by 
universities and non-commercial research organizations at no 
cost. 
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