
ARTICLE OPEN

Scalable and accurate deep learning with electronic health

records
Alvin Rajkomar 1,2, Eyal Oren1, Kai Chen1, Andrew M. Dai1, Nissan Hajaj1, Michaela Hardt1, Peter J. Liu1, Xiaobing Liu1, Jake Marcus1,

Mimi Sun1, Patrik Sundberg1, Hector Yee1, Kun Zhang1, Yi Zhang1, Gerardo Flores1, Gavin E. Duggan1, Jamie Irvine1, Quoc Le1,

Kurt Litsch1, Alexander Mossin1, Justin Tansuwan1, De Wang1, James Wexler1, Jimbo Wilson1, Dana Ludwig2, Samuel L. Volchenboum3,

Katherine Chou1, Michael Pearson1, Srinivasan Madabushi1, Nigam H. Shah4, Atul J. Butte2, Michael D. Howell1, Claire Cui1,

Greg S. Corrado1 and Jeffrey Dean1

Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare

quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR

data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a representation

of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that

deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple

centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic

medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR

data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for

tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93–0.94), 30-day

unplanned readmission (AUROC 0.75–0.76), prolonged length of stay (AUROC 0.85–0.86), and all of a patient’s final discharge

diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases.

We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case

study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the

patient’s chart.
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INTRODUCTION

The promise of digital medicine stems in part from the hope that,
by digitizing health data, we might more easily leverage computer
information systems to understand and improve care. In fact,
routinely collected patient healthcare data are now approaching
the genomic scale in volume and complexity.1 Unfortunately,
most of this information is not yet used in the sorts of predictive
statistical models clinicians might use to improve care delivery. It
is widely suspected that use of such efforts, if successful, could
provide major benefits not only for patient safety and quality but
also in reducing healthcare costs.2–6

In spite of the richness and potential of available data, scaling
the development of predictive models is difficult because, for
traditional predictive modeling techniques, each outcome to be
predicted requires the creation of a custom dataset with specific
variables.7 It is widely held that 80% of the effort in an analytic
model is preprocessing, merging, customizing, and cleaning
datasets,8,9 not analyzing them for insights. This profoundly limits
the scalability of predictive models.
Another challenge is that the number of potential predictor

variables in the electronic health record (EHR) may easily number
in the thousands, particularly if free-text notes from doctors,

nurses, and other providers are included. Traditional modeling
approaches have dealt with this complexity simply by choosing a
very limited number of commonly collected variables to consider.7

This is problematic because the resulting models may produce
imprecise predictions: false-positive predictions can overwhelm
physicians, nurses, and other providers with false alarms and
concomitant alert fatigue,10 which the Joint Commission identified
as a national patient safety priority in 2014.11 False-negative
predictions can miss significant numbers of clinically important
events, leading to poor clinical outcomes.11,12 Incorporating the
entire EHR, including clinicians’ free-text notes, offers some hope
of overcoming these shortcomings but is unwieldy for most
predictive modeling techniques.
Recent developments in deep learning and artificial neural

networks may allow us to address many of these challenges and
unlock the information in the EHR. Deep learning emerged as the
preferred machine learning approach in machine perception
problems ranging from computer vision to speech recognition,
but has more recently proven useful in natural language
processing, sequence prediction, and mixed modality data
settings.13–17 These systems are known for their ability to handle
large volumes of relatively messy data, including errors in labels
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and large numbers of input variables. A key advantage is that
investigators do not generally need to specify which potential
predictor variables to consider and in what combinations; instead
neural networks are able to learn representations of the key
factors and interactions from the data itself.
We hypothesized that these techniques would translate well to

healthcare; specifically, deep learning approaches could incorpo-
rate the entire EHR, including free-text notes, to produce
predictions for a wide range of clinical problems and outcomes
that outperform state-of-the-art traditional predictive models. Our
central insight was that rather than explicitly harmonizing EHR
data, mapping it into a highly curated set of structured predictors
variables and then feeding those variables into a statistical model,
we could instead learn to simultaneously harmonize inputs and
predict medical events through direct feature learning.18

Related work

The idea of using computer systems to learn from a “highly
organized and recorded database” of clinical data has a long
history.19 Despite the rich data now digitized in EHRs,20 a recent
systematic review of the medical literature7 found that predictive
models built with EHR data use a median of only 27 variables, rely
on traditional generalized linear models, and are built using data
at a single center. In clinical practice, simpler models are most
commonly deployed, such as the CURB-65,21,22 which is a 5-factor
model, or single-parameter warning scores.23,24

A major challenge in using more of the data available for each
patient has been the lack of standards and semantic interoper-
ability of health data from multiple sites.25 A unique set of
variables is typically selected for each new prediction task, and
usually a labor-intensive8,9 process is required to extract and
normalize data from different sites.26

Significant prior research has focused on the scalability issue
through time-consuming standardization of data in traditional
relational databases, like the Observational Medical Outcomes
Partnership standard defined by the Observational Health Data
Sciences and Informatics consortium.27 Such a standard allows for
consistent development of predictive models across sites, but
accommodates only a part of the original data.
Recently, a flexible data structure called FHIR (Fast Healthcare

Interoperability Resources)28 was developed to represent clinical
data in a consistent, hierarchical, and extensible container format,
regardless of the health system, which simplifies data interchange
between sites. However, the format does not ensure semantic
consistency, motivating the need for additional techniques to deal
with unharmonized data.
The use of deep learning on EHR data burgeoned after adoption

of EHRs20 and development of deep learning methods.13 In a well-
known work, investigators used auto-encoders to predict a
specific set of diagnoses.29 Subsequent work extended this
approach by modeling the temporal sequence of events that
occurred in a patient’s record, which may enhance accuracy in
scenarios that depend on the order of events, with convolutional
and recurrent neural networks.30–35 In general, prior work has
focused on a subset of features available in the EHR, rather than
on all data available in an EHR, which includes clinical free-text
notes, as well as large amounts of structured and semi-structured
data. Because of the availability of Medical Information Mart for
Intensive Care (MIMIC) data,36 many prior studies also have
focused on ICU patients from a single center;33,37 other single-
center studies have also focused on ICU patients.30 Each ICU
patient has significantly more data available than each general
hospital patient, although non-ICU admissions outnumber ICU
admissions by about sixfold in the US.38,39 Recently, investigators
have also explored how interpretation mechanisms for deep
learning models could be applied to clinical predictions.33 Given

rapid developments in this field, we point readers to a recent,
comprehensive review.40

Our contribution is twofold. First, we report a generic data
processing pipeline that can take raw EHR data as input, and
produce FHIR outputs without manual feature harmonization. This
makes it relatively easy to deploy our system to a new hospital.
Second, based on data from two academic hospitals with a
general patient population (not restricted to ICU), we demonstrate
the effectiveness of deep learning models in a wide variety of
predictive problems and settings (e.g., multiple prediction timing).
Ours is a comprehensive study of deep learning in a variety of
prediction problems based on multiple general hospital data. We
do note, however, that similar deep learning techniques have
been applied to EHR data in prior research as described above.

RESULTS

We included a total of 216,221 hospitalizations involving 114,003
unique patients. The percent of hospitalizations with in-hospital
deaths was 2.3% (4930/216,221), unplanned 30-day readmissions
was 12.9% (27,918/216,221), and long length of stay was (23.9%).
Patients had a range of 1–228 discharge diagnoses. The
demographics and utilization characteristics are summarized in
Table 1. The median duration of patients’ records, calculated by
the difference of the timestamps of last and first FHIR resource
was 3.1 years in Hospital A and 3.6 years in Hospital B.
At the time of admission, an average admission had 137,882

tokens (discrete pieces of data that we define in the methods
section), which increased markedly throughout the patient’s stay
to 216,744 at discharge (Fig. 1). For predictions made at discharge,
the information considered across both datasets included
46,864,534,945 tokens of EHR data.

Mortality

For predicting inpatient mortality, the area under the receiver
operating characteristic curve (AUROC) at 24 h after admission was
0.95 (95% CI 0.94–0.96) for Hospital A and 0.93 (95% CI 0.92–0.94)
for Hospital B. This was significantly more accurate than the
traditional predictive model, the augmented Early Warning Score
(aEWS) which was a 28-factor logistic regression model (AUROC
0.85 (95% CI 0.81–0.89) for Hospital A and 0.86 (95% CI 0.83–0.88)
for Hospital B) (Table 2).
If a clinical team had to investigate patients predicted to be at

high risk of dying, the rate of false alerts at each point in time was
roughly halved by our model: at 24 h, the work-up-to-detection
ratio of our model compared to the aEWS was 7.4 vs 14.3 (Hospital
A) and 8.0 vs 15.4 (Hospital B). Moreover, the deep learning model
achieved higher discrimination at every prediction time-point
compared to the baseline models. The deep learning model
attained a similar level of accuracy at 24–48 h earlier than the
traditional models (Fig. 2).

Readmissions

For predicting unexpected readmissions within 30 days, the
AUROCs at discharge were 0.77 (95% CI 0.75–0.78) for Hospital A
and 0.76 (95% CI 0.75–0.77) for Hospital B. These were significantly
higher than the traditional predictive model (modified HOSPITAL)
at discharge, which were 0.70 (95% CI 0.68–0.72) for Hospital A
and 0.68 (95% CI 0.67–0.69) for Hospital B.

Long length of stay

For predicting long length of stay, the AUROCs at 24 h after
admission were 0.86 (95% CI 0.86–0.87) for Hospital A and 0.85
(95% CI 0.84–0.86) for Hospital B. These were significantly higher
than those from the traditional predictive model (modified Liu) at
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24 h, which were 0.76 (95% CI 0.75–0.77) for Hospital A and 0.74
(95% CI 0.73–0.75) for Hospital B.
Calibration curves for the three tasks are shown in Supplement.

Inferring discharge diagnoses

The deep learning algorithm predicted patients’ discharge
diagnoses at three time points: at admission, after 24 h of
hospitalization, and at the time of discharge (but before the
discharge diagnoses were coded). For classifying all diagnosis
codes, the weighted AUROCs at admission were 0.87 for Hospital
A and 0.86 for Hospital B. Accuracy increased somewhat during
the hospitalization, to 0.88–0.89 at 24 h and 0.90 for both hospitals
at discharge. For classifying ICD-9 code predictions as correct, we
required full-length code agreement. For example, 250.4 (“Dia-
betes with renal manifestations”) would be considered different
from 250.42 (“Diabetes with renal manifestations, type II or
unspecified type, uncontrolled”). We also calculated the micro-F1
scores at discharge, which were 0.41 (Hospital A) and 0.40
(Hospital B).

Case study of model interpretation

In Fig. 3, we illustrate an example of attribution methods on a
specific prediction of inpatient mortality made at 24 h after
admission. For this patient, the deep learning model predicted the
risk of death of 19.9% and the aEWS model predicted 9.3%, and

the patient ultimately died 10 days after admission. This patient’s
record had 175,639 data points (tokens), which were considered
by the model. The timeline in Fig. 3 highlights the elements to
which the model attends, with a close-up view of the first 24 h of
the most recent hospitalization. From all the data, the models
picked the elements that are highlighted in Fig. 3: evidence of
malignant pleural effusions and empyema from notes, antibiotics
administered, and nursing documentation of a high risk of
pressure ulcers (i.e., Braden index41). The model also placed high
weights on concepts, such as “pleurx,” the trade name for a small
chest tube. The bolded sections are exactly what the model
identified as discriminatory factors, not a manual selection. In
contrast, the top predictors for the baseline model (not shown in
Fig. 3) were the values of the albumin, blood-urea-nitrogen, pulse,
and white blood cell count. Note that for demonstration purposes,
this example was generated from time-aware neural network
models (TANNs) trained on separate modalities (e.g., flowsheets
and notes), which is a common visualization technique to handle
redundant features in the data (e.g., medication orders are also
referenced in notes).

DISCUSSION

A deep learning approach that incorporated the entire EHR,
including free-text notes, produced predictions for a wide range of
clinical problems and outcomes and outperformed traditional,

Table 1. Characteristics of hospitalizations in training and test sets

Training data (n= 194,470) Test data (n= 21,751)

Hospital A (n= 85,522) Hospital B (n= 108,948) Hospital A (n= 9624) Hospital B (n= 12,127)

Demographics

Age, median (IQR) y 56 (29) 57 (29) 55 (29) 57 (30)

Female sex, no. (%) 46,848 (54.8%) 62,004 (56.9%) 5364 (55.7%) 6935 (57.2%)

Disease cohort, no. (%)

Medical 46,579 (54.5%) 55,087 (50.6%) 5263 (54.7%) 6112 (50.4%)

Cardiovascular 4616 (5.4%) 6903 (6.3%) 528 (5.5%) 749 (6.2%)

Cardiopulmonary 3498 (4.1%) 9028 (8.3%) 388 (4.0%) 1102 (9.1%)

Neurology 6247 (7.3%) 6653 (6.1%) 697 (7.2%) 736 (6.1%)

Cancer 14,544 (17.0%) 19,328 (17.7%) 1617 (16.8%) 2087 (17.2%)

Psychiatry 788 (0.9%) 339 (0.3%) 64 (0.7%) 35 (0.3%)

Obstetrics and newborn 8997 (10.5%) 10,462 (9.6%) 1036 (10.8%) 1184 (9.8%)

Other 253 (0.3%) 1148 (1.1%) 31 (0.3%) 122 (1.0%)

Previous hospitalizations, no. (%)

0 hospitalizations 54,954 (64.3%) 56,197 (51.6%) 6123 (63.6%) 6194 (51.1%)

≥1 and <2 hospitalizations 14,522 (17.0%) 19,807 (18.2%) 1620 (16.8%) 2175 (17.9%)

≥2 and <6 hospitalizations 12,591 (14.7%) 24,009 (22.0%) 1412 (14.7%) 2638 (21.8%)

≥6 hospitalizations 3455 (4.0%) 8935 (8.2%) 469 (4.9%) 1120 (9.2%)

Discharge location no. (%)

Home 70,040 (81.9%) 91,273 (83.8%) 7938 (82.5%) 10,109 (83.4%)

Skilled nursing facility 6601 (7.7%) 5594 (5.1%) 720 (7.5%) 622 (5.1%)

Rehabilitation 2666 (3.1%) 5136 (4.7%) 312 (3.2%) 649 (5.4%)

Another healthcare facility 2189 (2.6%) 2052 (1.9%) 243 (2.5%) 220 (1.8%)

Expired 1816 (2.1%) 2679 (2.5%) 170 (1.8%) 265 (2.2%)

Other 2210 (2.6%) 2214 (2.0%) 241 (2.5%) 262 (2.2%)

Primary outcomes

In-hospital deaths, no. (%) 1816 (2.1%) 2679 (2.5%) 170 (1.8%) 265 (2.2%)

30-day readmissions, no. (%) 9136 (10.7%) 15,932 (14.6%) 1013 (10.5%) 1837 (15.1%)

Hospital stays at least 7 days, no. (%) 20,411 (23.9%) 26,109 (24.0%) 2145 (22.3%) 2931 (24.2%)

No. of ICD-9 diagnoses, median (IQR) 12 (16) 10 (10) 12 (16) 10 (10)
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clinically-used predictive models. Because we were interested in
understanding whether deep learning could scale to produce
valid predictions across divergent healthcare domains, we used a
single data structure to make predictions for an important clinical
outcome (death), a standard measure of quality of care (read-
missions), a measure of resource utilization (length of stay), and a
measure of understanding of a patient’s problems (diagnoses).
Second, using the entirety of a patient’s chart for every

prediction does more than promote scalability, it exposes more
data with which to make an accurate prediction. For predictions
made at discharge, our deep learning models considered more
than 46 billion pieces of EHR data and achieved more accurate
predictions, earlier in the hospital stay, than did traditional
models.
To the best of our knowledge, our models outperform existing

EHR models in the medical literature for predicting mortality
(0.92–0.94 vs 0.91),42 unexpected readmission (0.75–0.76 vs
0.69),43 and increased length of stay (0.85–0.86 vs 0.77).44 Direct
comparisons to other studies are difficult45 because of different
underlying study designs,23,46–57 incomplete definitions of cohorts
and outcomes,58,59 restrictions on disease-specific cohorts58–64, or
use of data unavailable in real-time.63,65,66 Therefore, we
implemented baselines based on the HOSPITAL score,67 NEWS51

score, and Liu’s model44 on our data, and demonstrate strictly
better performance. We are not aware of a study that predicts as
many ICD codes as this study, but our micro-F1 score exceeds that
shown on the smaller MIMIC-III dataset when predicting fewer
diagnoses (0.40 vs 0.28).68 The clinical impact of this improvement
is suggested, for example, by the improvement of number needed
to evaluate for inpatient mortality: the deep learning model would
fire half the number of alerts of a traditional predictive model,
resulting in many fewer false positives.
However, the novelty of the approach does not lie simply in

incremental model performance improvements. Rather, this
predictive performance was achieved without hand-selection of
variables deemed important by an expert, similar to other

Fig. 1 This boxplot displays the amount of data (on a log scale) in the EHR, along with its temporal variation across the course of an
admission. We define a token as a single data element in the electronic health record, like a medication name, at a specific point in time. Each
token is considered as a potential predictor by the deep learning model. The line within the boxplot represents the median, the box
represents the interquartile range (IQR), and the whiskers are 1.5 times the IQR. The number of tokens increased steadily from admission to
discharge. At discharge, the median number of tokens for Hospital A was 86,477 and for Hospital B was 122,961

Table 2. Prediction accuracy of each task made at different time

points

Hospital A Hospital B

Inpatient mortality, AUROCa (95% CI)

24 h before admission 0.87 (0.85–0.89) 0.81 (0.79–0.83)

At admission 0.90 (0.88–0.92) 0.90 (0.86–0.91)

24 h after admission 0.95 (0.94–0.96) 0.93 (0.92–0.94)

Baseline (aEWSb) at 24 h after
admission

0.85 (0.81–0.89) 0.86 (0.83–0.88)

30-day readmission, AUROC (95% CI)

At admission 0.73 (0.71–0.74) 0.72 (0.71–0.73)

At 24 h after admission 0.74 (0.72–0.75) 0.73 (0.72–0.74)

At discharge 0.77 (0.75–0.78) 0.76 (0.75–0.77)

Baseline (mHOSPITALc) at
discharge

0.70 (0.68–0.72) 0.68 (0.67–0.69)

Length of stay at least 7 days, AUROC (95% CI)

At admission 0.81 (0.80–0.82) 0.80 (0.80–0.81)

At 24 h after admission 0.86 (0.86–0.87) 0.85 (0.85–0.86)

Baseline (Liud) at 24 h after
admission

0.76 (0.75–0.77) 0.74 (0.73–0.75)

Discharge diagnoses (weighted AUROC)

At admission 0.87 0.86

At 24 h after admission 0.89 0.88

At discharge 0.90 0.90

aArea under the receiver operator curve
bAugmented Early Warning System score
cModified HOSPITAL score for readmission
dModified Liu score for long length of stay

The bold values indicate the highest area-under-the-receiver-operator-

curve for each prediction task
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applications of deep learning to EHR data. Instead, our model had
access to tens of thousands of predictors for each patient,
including free-text notes, and identified which data were
important for a particular prediction.
Our study also has important limitations. First, it is a retro-

spective study, with all of the usual limitations. Second, although it
is widely believed that accurate predictions can be used to
improve care,4 this is not a foregone conclusion and prospective
trials are needed to demonstrate this.69,70 Third, a necessary
implication of personalized predictions is that they leverage many
small data points specific to a particular EHR rather than a handful
of common variables. Future research is needed to determine how
models trained at one site can be best applied to another site,71

which would be especially useful for sites with limited historical
data for training. As a first step, we demonstrated that similar
model architectures and training methods yielded comparable
models for two geographically distinct health systems. Our current
approach does not harmonize data between sites, which limits the
model’s ability to “transfer” learn from one site to other sites and
cohorts, and further research is needed. Moreover, our methods
are computationally intensive and at present require specialized
expertize to develop, but running the models on a new patient
takes only a few milliseconds. The availability and accessibility of
machine learning is also rapidly expanding both in healthcare and
in other fields. Another limitation is that the current study focuses
on predictive accuracy as a whole rather than incremental benefit
of a given data type (e.g., clinical notes). We view understanding
the incremental contribution of notes to predictive performance
as an important area of future investigation, including identifying
tasks and metrics where notes should have significant impact,
testing different approaches to modeling the note terms, and
understanding whether different portions of a note have different
contributions to predictive accuracy. In the current study, we
caution that the differences in AUROC across the two hospitals

(one with and one without notes) cannot be ascribed to the
presence or absence of notes given the difference in cohorts.45

Perhaps the most challenging prediction in our study is that of
predicting a patient’s full suite of discharge diagnoses. The
prediction is difficult for several reasons. First, a patient may have
between 1 and 228 diagnoses, and the number is not known at
the time of prediction. Second, each diagnosis may be selected
from approximately 14,025 ICD-9 diagnosis codes, which makes
the total number of possible combinations exponentially large.
Finally, many ICD-9 codes are clinically similar but numerically
distinct (e.g., 011.30 “Tuberculosis of bronchus, unspecified” vs
011.31 “Tuberculosis of bronchus, bacteriological or histological
examination not done”). This has the effect of introducing random
error into the prediction. The micro-F1 score, which is a metric
used when a prediction has more than a single outcome (e.g.,
multiple diagnoses), for our model is higher than that reported in
the literature in an ICU dataset with fewer diagnoses.68 This is a
proof-of-concept that demonstrates that the diagnosis could be
inferred from routine EHR data, which could aid with triggering of
decision support68,72 or clinical trial recruitment.
The use of free text for prediction allows a new level of

explainability of predictions. Clinicians have historically distrusted
neural network models because of their opaqueness. We
demonstrate how our method can visualize what data the model
“looked at” for each individual patient, which can be used by a
clinician to determine if a prediction was based on credible facts,
and potentially help decide actions. In our case study, the model
identified elements of the patient’s history and radiology findings
to render its prediction, which are critical data points that a
clinician would also use.73 This approach may address concerns
that such “black box” methods are untrustworthy. However, there
are other possible techniques for interpreting deep learning
models.33,74 We report the case study as a proof-of-concept drawn
directly from our model architecture and data and emphasize that

Fig. 2 The area under the receiver operating characteristic curves are shown for predictions of inpatient mortality made by deep learning and
baseline models at 12 h increments before and after hospital admission. For inpatient mortality, the deep learning model achieves higher
discrimination at every prediction time compared to the baseline for both the University of California, San Francisco (UCSF) and University of
Chicago Medicine (UCM) cohorts. Both models improve in the first 24 h, but the deep learning model achieves a similar level of accuracy
approximately 24 h earlier for UCM and even 48 h earlier for UCSF. The error bars represent the bootstrapped 95% confidence interval
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further research is needed regarding applicability to all predic-
tions, the cognitive impact, and clinical utility.

METHODS

Datasets

We included EHR data from the University of California, San Francisco
(UCSF) from 2012 to 2016, and the University of Chicago Medicine (UCM)
from 2009 to 2016. We refer to each health system as Hospital A and
Hospital B. All EHRs were de-identified, except that dates of service were
maintained in the UCM dataset. Both datasets contained patient
demographics, provider orders, diagnoses, procedures, medications,
laboratory values, vital signs, and flowsheet data, which represent all
other structured data elements (e.g., nursing flowsheets), from all inpatient
and outpatient encounters. The UCM dataset additionally contained de-
identified, free-text medical notes. Each dataset was kept in an encrypted,
access-controlled, and audited sandbox.
Ethics review and institutional review boards approved the study with

waiver of informed consent or exemption at each institution.

Data representation and processing

We developed a single data structure that could be used for all predictions,
rather than requiring custom, hand-created datasets for every new
prediction. This approach represents the entire EHR in temporal order:
data are organized by patient and by time. To represent events in a
patient’s timeline, we adopted the FHIR standard.75 FHIR defines the high-
level representation of healthcare data in resources, but leaves values in

each individual site’s idiosyncratic codings.28 Each event is derived from a
FHIR resource and may contain multiple attributes; for example, a
medication-order resource could contain the trade name, generic name,
ingredients, and others. Data in each attribute were split into discrete
values, which we refer to as tokens. For notes, the text was split into a
sequence of tokens, one for each word. Numeric values were normalized,
as detailed in the supplement. The entire sequence of time-ordered
tokens, from the beginning of a patient’s record until the point of
prediction, formed the patient’s personalized input to the model. This
process is illustrated in Fig. 4, and further details of the FHIR representation
and processing are provided in Supplementary Materials.

Outcomes

We were interested in understanding whether deep learning could
produce valid predictions across wide range of clinical problems and
outcomes. We therefore selected outcomes from divergent domains,
including an important clinical outcome (death), a standard measure of
quality of care (readmissions), a measure of resource utilization (length of
stay), and a measure of understanding of a patient’s problems (diagnoses).

Inpatient mortality. We predicted impending inpatient death, defined as a
discharge disposition of “expired.”42,46,48,49

30-day unplanned readmission. We predicted unplanned 30-day read-
mission, defined as an admission within 30 days after discharge from an
“index” hospitalization. A hospitalization was considered a “readmission” if
its admission date was within 30 days after discharge of an eligible index
hospitalization. A readmission could only be counted once. There is no

Fig. 3 The patient record shows a woman with metastatic breast cancer with malignant pleural effusions and empyema. The patient timeline
at the top of the figure contains circles for every time-step for which at least a single token exists for the patient, and the horizontal lines show
the data type. There is a close-up view of the most recent data points immediately preceding a prediction made 24 h after admission. We
trained models for each data type and highlighted in red the tokens which the models attended to—the non-highlighted text was not
attended to but is shown for context. The models pick up features in the medications, nursing flowsheets, and clinical notes relevant to the
prediction
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standard definition of “unplanned”76 percentage, so we used a modified
form of the Centers for Medicare and Medicaid Services definition,77 which
we detail in the supplement. Billing diagnoses and procedures from the
index hospitalization were not used for the prediction because they are
typically generated after discharge. We included only readmissions to the
same institution.

Long length of stay. We predicted a length of stay at least 7 days, which
was approximately the 75th percentile of hospital stays for most services
across the datasets. The length of stay was defined as the time between
hospital admission and discharge.

Diagnoses. We predicted the entire set of primary and secondary ICD-9
billing diagnoses from a universe of 14,025 codes.

Prediction timing

This was a retrospective study. To predict inpatient mortality, we stepped
forward through each patient’s time course, and made predictions every
12 h starting 24 h before admission until 24 h after admission. Since many
clinical prediction models, such as APACHE,78 are rendered 24 h after
admission, our primary outcome prediction for inpatient mortality was at
that time-point. Unplanned readmission and the set of diagnosis codes
were predicted at admission, 24 h after admission, and at discharge. The
primary endpoints for those predictions were at discharge, when most
readmission prediction scores are computed79 and when all information
necessary to assign billing diagnoses is available. Long length of stay was
predicted at admission and 24 h after admission. For every prediction we
used all information available in the EHR up to the time at which the
prediction was made.

Fig. 4 Data from each health system were mapped to an appropriate FHIR (Fast Healthcare Interoperability Resources) resource and placed in
temporal order. This conversion did not harmonize or standardize the data from each health system other than map them to the appropriate
resource. The deep learning model could use all data available prior to the point when the prediction was made. Therefore, each prediction,
regardless of the task, used the same data
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Study cohort

We included all admissions for patients 18 years or older. We only included
hospitalizations of 24 h or longer to ensure that predictions at various time
points had identical cohorts.
To simulate the accuracy of a real-time prediction system, we included

patients typically removed in studies of readmission, such as those
discharged against medical advice, since these exclusion criteria would not
be known when making predictions earlier in the hospitalization.
For predicting the ICD-9 diagnoses, we excluded encounters without

any ICD-9 diagnosis (2–12% of encounters). These were generally
encounters after October, 2015 when hospitals switched to ICD-10. We
included such hospitalizations, however, for all other predictions.

Algorithm development and analysis

We used the same modeling algorithm on both hospitals’ datasets, but
treated each hospital as a separate dataset and reported results separately.
Patient records vary significantly in length and density of data points

(e.g., vital sign measurements in an intensive care unit vs outpatient clinic),
so we formulated three deep learning neural network model architectures
that take advantage of such data in different ways: one based on recurrent
neural networks (long short-term memory (LSTM)),80 one on an attention-
based TANN, and one on a neural network with boosted time-based
decision stumps. Details of these architectures are explained in the
supplement. We trained each architecture (three different ones) on each
task (four tasks) and multiple time points (e.g., before admission, at
admission, 24 h after admission and at discharge), but the results of each
architecture were combined using ensembling.81

Comparison to previously published algorithms

We implemented models based on previously published algorithms to
establish baseline performance on each dataset. For mortality, we used a
logistic model with variables inspired by NEWS51 score but added
additional variables to make it more accurate, including the most recent
systolic blood pressure, heart rate, respiratory rate, temperature, and 24
common lab tests, like the white blood cell count, lactate, and creatinine.
We call this the augmented Early Warning Score, or aEWS, score. For
readmission, we used a logistic model with variables used by the
HOSPITAL67 score, including the most recent sodium and hemoglobin
level, hospital service, occurrence of CPT codes, number of prior
hospitalizations, and length of the current hospitalization. We refer to this
as the mHOSPITAL score. For long length of stay, we used a logistic model
with variables similar to those used by Liu:44 the age, gender, hierarchical
condition categories, admission source, hospital service, and the same 24
common lab tests used in the aEWS score. We refer to this as the mLiu
score. Details for these and additional baseline models are in the
supplement. We are not aware of any commonly used baseline model
for all diagnosis codes so we compare against known literature.

Explanation of predictions

A common criticism of neural networks is that they offer little insight into
the factors that influence the prediction.82 Therefore, we used attribution
mechanisms to highlight, for each patient, the data elements that
influenced their predictions.83

The LSTM and TANN models were trained with TensorFlow and the
boosting model was implemented with C++ code. Statistical analyses and
baseline models were done in Scikit-learn Python.84

Technical details of the model architecture, training, variables, baseline
models, and attribution methods are provided in the supplement.

Model evaluation and statistical analysis

Patients were randomly split into development (80%), validation (10%),
and test (10%) sets. Model accuracy is reported on the test set, and 1000
bootstrapped samples were used to calculate 95% confidence intervals. To
prevent overfitting, the test set remained unused (and hidden) until final
evaluation.
We assessed model discrimination by calculating AUROC and model

calibration using comparisons of predicted and empirical probability
curves.85 We did not use the Hosmer–Lemeshow test as it may be
misleadingly significant with large sample sizes.86 To quantify the potential
clinical impact of an alert with 80% sensitivity, we report the work-up to
detection ratio, also known as the number needed to evaluate.87 For
prediction of the a patient’s full set of diagnosis codes, which can range

from 1 to 228 codes per hospitalization, we evaluated the accuracy for
each class using macro-weighted-AUROC88 and micro-weighted F1 score89

to compare with the literature. The F1 score is the harmonic mean of
positive-predictive-value and sensitivity; we used a single threshold picked
on the validation set for all classes. We did not create confidence intervals
for this task given the computational complexity of the number of possible
diagnoses.

Data availability

The datasets analysed during the current study are not publicly available:
due to reasonable privacy and security concerns, the underlying EHR data
are not easily redistributable to researchers other than those engaged in
the Institutional Review Board-approved research collaborations with the
named medical centers.

Code availability

The FHIR format used in this work is available at https://github.com/
google/fhir. The transformation of FHIR-formatted data to Tensorflow
training examples and the models themselves depend on Google’s internal
distributed computation platforms that cannot be reasonably shared. We
have therefore emphasized detailed description of how our models were
constructed and designed in our Methods section and Supplementary
Materials.
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