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Abstract

Record linkage, the task of linking multiple databases with the aim to identify records

that refer to the same entity, is occurring increasingly in many application areas.

Generally, unique entity identifiers are not available in all the databases to be linked.

Therefore, record linkage requires the use of personal identifying attributes, such as

names and addresses, to identify matching records that need to be reconciled to the

same entity. Often, it is not permissible to exchange personal identifying data across

different organizations due to privacy and confidentiality concerns or regulations.

This has led to the novel research area of privacy-preserving record linkage (PPRL).

PPRL addresses the problem of how to link different databases to identify records

that correspond to the same real-world entities, without revealing the identities of

these entities or any private or confidential information to any party involved in the

process, or to any external party, such as a researcher. The three key challenges that

a PPRL solution in a real-world context needs to address are (1) scalability to large

databases by efficiently conducting linkage; (2) achieving high quality of linkage

through the use of approximate (string) matching and effective classification of the

compared record pairs into matches (i.e. pairs of records that refer to the same entity)

and non-matches (i.e. pairs of records that refer to different entities); and (3) provision

of sufficient privacy guarantees such that the interested parties only learn the actual

values of certain attributes of the records that were classified as matches, and the

process is secure with regard to any internal or external adversary.

In this thesis, we present extensive research in PPRL, where we have addressed

several gaps and problems identified in existing PPRL approaches. First, we begin

the thesis with a review of the literature and we propose a taxonomy of PPRL to char-

acterize existing techniques. This allows us to identify gaps and research directions.

In the remainder of the thesis, we address several of the identified shortcomings.

One main shortcoming we address is a framework for empirical and comparative

evaluation of different PPRL solutions, which has not been studied in the literature

so far. Second, we propose several novel algorithms for scalable and approximate

PPRL by addressing the three main challenges of PPRL. We propose efficient private

blocking techniques, for both three-party and two-party scenarios, based on sorted

neighborhood clustering to address the scalability challenge. Following, we propose

two efficient two-party techniques for private matching and classification to address

the linkage quality challenge in terms of approximate matching and effective classi-

fication. Privacy is addressed in these approaches using efficient data perturbation

techniques including k-anonymous mapping, reference values, and Bloom filters.

Finally, the thesis reports on an extensive comparative evaluation of our proposed

solutions with several other state-of-the-art techniques on real-world datasets, which

shows that our solutions outperform others in terms of all three key challenges.
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Chapter 1

Introduction

This chapter provides an introduction to the research problem addressed by this

thesis in Section 1.1, real-world applications of the problem in Section 1.2, the aim of

the research study in Section 1.3, the contributions of this work in Section 1.4, and

the methodology of how the problem is addressed in Section 1.5. An outline to the

organization of the thesis is also given at the end of the chapter, as are the notation

and terminology used throughout this thesis.

1.1 Problem Statement

In recent times the world has seen an explosion in the volume of data that is being

collected by organizations as well as individuals. Much of these data are about

people, or they are generated by people. Examples of the former include financial

data such as shopping transactions, telecommunication records, or electronic health

records. Examples of the latter include emails, tweets, blog posts, and so on. It has

been recognized that analyzing large data collections through the use of data mining

and analytics techniques can provide a competitive edge to a commercial enterprise,

can allow improved crime and fraud detection, can lead to better patient outcomes

in the health sector, and can be of vital importance to national security [29, 80].

Analyzing and mining large datasets often requires information from multiple

data sources to be integrated in order to enable more sophisticated analysis. Inte-

grating data also improves the quality of data by allowing the identification (and

possible automatic correction) of conflicting data values, the enrichment of data, or

the imputation of missing values [86]. The analysis of integrated data can, for exam-

ple, facilitate the detection of adverse drug reactions in particular patient groups, or

enable the accurate identification of terrorism suspects [24, 63].

The process of matching and aggregating records that relate to the same entity

from one or more datasets is known as ‘record linkage’, ‘data matching’ or ‘entity res-

olution’ [63, 86]. In computer science, a long line of research has been conducted in

record linkage, based on the theoretical foundation provided by Fellegi and Sunter

in 1969 [65]. Today, record linkage not only faces computational and operational

challenges due to the increasing size of datasets, but also privacy preservation chal-

lenges due to growing privacy concerns. Generally, record linkage is a challenging

1
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task because unique entity identifiers are not available in all the databases that are

linked. Therefore, the common attributes available which are sufficiently well cor-

related with entities, known as quasi-identifiers (QIDs) [47], need to be used for the

linkage. For databases that contain personal information about people, these QID at-

tributes generally include names, addresses, dates of birth, and other details. Using

such personal information often leads to privacy and confidentiality concerns.

Record linkage aims to classify the pairs of records from different databases into

matches (i.e. pairs of records that refer to the same entity) and non-matches (i.e.

pairs of records that refer to different entities) based on the matching / comparison

results of the QIDs [33]. The presence of real-world data errors makes this classifi-

cation task more challenging. In practice, the matching of two records is generally

determined by applying similarity comparison functions between QID attributes to

calculate how similar the records of a pair are. We outline the three key challenges

that are associated with the record linkage problem in the following.

1. Scalability: The first challenge of record linkage is the scalability to large

databases which is generally dependent on the complexity of the process. As-

sume two databases that are to be linked, DA and DB, contain nA = |DA| and

nB = |DB| records, respectively. In order to classify the record pairs (a, b) from

these two databases (a ∈ DA and b ∈ DB) into matches and non-matches, in a

naïve approach the number of comparisons required is the product of the size

of the two databases (nA × nB) which is the bottleneck of the whole linkage

process [13, 33]. This quadratic complexity makes naïve linkage not scalable

to large databases. Blocking techniques can be used to overcome this prob-

lem [29] as will be discussed further in Chapter 2. The complexity of record

linkage also depends on the techniques employed. Complex techniques for

linkage, such as secure multi-party computation techniques [41, 78, 135] or

advanced classification techniques including machine learning or graph-based

approaches [15, 85, 153], generally have higher computational complexity and

therefore they might not be scalable to large databases.

2. Linkage quality: It is commonly accepted that real-world data are ‘dirty’ [84],

which means they contain errors, variations, values can be missing, or can be

out of date. Therefore, even when records that correspond to the same real-

world entity are being compared using the values of their personal identifying

details (QIDs), the variations and errors in these values will lead to ambiguous

matches [23]. The exact comparison of QID values is therefore not sufficient

to achieve accurate linkage results. Approximate matching as well as accu-

rate classification techniques are needed to achieve accurate linkage quality in

record linkage applications [23, 44].

3. Privacy: When personal information about people (contained in QIDs) is used

for the linking of databases across organizations, then the privacy of this in-

formation needs to be carefully protected. Individual databases can contain

information that is already highly sensitive, such as medical or financial de-
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tails of individuals, or confidential business data. When linked, detailed infor-

mation about individuals that is even more revealing might become available,

such as for people who have certain chronic diseases and who also have finan-

cial problems; or confidential business information like the amount a company

owes to all its suppliers. It is therefore paramount that the privacy of data

used for record linkage across organizations, as well as the sensitive details of

the matching results of such a linkage, are preserved throughout the linkage

process [40].

The privacy requirements in the record linkage process led to the development of

a new research avenue called the ‘privacy-preserving record linkage’ (PPRL), ‘blind

data linkage’, or ‘private record linkage’ problem [37, 58, 78, 194]. In this thesis, we

use the name ‘PPRL’ to state this problem. PPRL is the problem of how to identify

matching records in different databases that refer to the same entities without com-

promising privacy and confidentiality of the entities represented by these records.

In today’s organizations it is often not legally and ethically allowed in many coun-

tries to share data across organizations due to the growing concerns of privacy and

confidentiality. The recently established program by the Office for National Statis-

tics (ONS) in the UK, ’Beyond 2011’, for example carries out research to study the

options for production of population and socio-demographics statistics for England

and Wales, by linking anonymous data to ensure that high levels of privacy of data

about people are maintained [68]. The Data-Matching Program Act in Australia 1,

the European Union (EU) Personal Data Protection Act in Europe 2, and the Health

Insurance Portability and Accountability Act (HIPAA) in the USA 3 are few examples

that describe the legal restrictions of disclosing private or sensitive data.

In a PPRL project, the database owners (or data custodians) agree to reveal only

selected information about matched records among them, or to an external party,

such as a researcher. However, to identify the matched records, generally the QIDs

need to be revealed between the parties involved in the PPRL process. Personal infor-

mation contained in the QIDs is often not allowed to be shared or exchanged between

different organizations due to privacy concerns or legal requirements. Therefore, the

linkage has to be conducted on an encoded and / or perturbed version of the QIDs

to preserve the privacy of entities. Encoding and / or perturbation is also known

as ‘masking’, i.e. the original data are transformed in such a way that there exists a

specific functional relationship between the original data and the masked data [67].

Generally, two approaches are adopted to conduct the linkage on the masked

data: (1) two-party linkage where only the database owners participate in the pro-

tocol and (2) three-party linkage where a third party is involved to perform the

linkage. The advantages and drawbacks of these two types of protocols will be dis-

cussed in Section 1.3 (and in detail in Chapter 5). At the end of the linkage process,

the database owners agree to reveal some of the selected attributes of the record pairs

1http://www.privacy.gov.au/law/other/datamatch [Accessed: 02/12/2013]
2http://ec.europa.eu/justice/data-protection/index_en.htm [Accessed: 02/12/2013]
3http://www.hhs.gov/ocr/privacy/ [Accessed: 02/12/2013]



4 Introduction

that were classified as matches. However, the PPRL process is required to guaran-

tee that any information regarding the non-matching records (that could be used to

identify or infer the non-matching entities) is not revealed during or after the pro-

cess. In Section 1.2 we describe several example scenarios where PPRL is required in

real-world applications. We formally define the problem of PPRL as follows.

Definition 1.1. Privacy-preserving record linkage (PPRL):

Assume O1, . . . , Om are the m owners of the databases D1, . . . , Dm, respectively. They

wish to determine which of their records R1
i ∈ D1, R2

j ∈ D2, . . ., Rm
k ∈ Dm match

based on their (masked) QIDs according to a decision model C(R1
i , R2

j , . . . , Rm
k ) that

classifies record pairs into one of the two classes M of matches, and U of non-

matches. O1, . . . , Om do not wish to reveal their actual records R1
i , . . . , Rm

k with any

other party. They however are prepared to disclose to each other, or to an external

party, the actual values of some selected attributes of the record pairs that are in class

M to allow analysis.

A viable PPRL solution that can be used in real-world applications should ad-

dress all three challenges (or properties) of scalability, linkage quality, and privacy.

There have been many different approaches proposed for PPRL as recently surveyed

in [184, 193]. As described in these surveys, some attempts to address the problem

of PPRL fall short in providing a sound solution, either because they are not scal-

able to large databases, because they do not provide sufficient privacy guarantees, or

because they are unable to provide high linkage quality. A review of existing PPRL

techniques is presented in Chapter 3.

1.2 Applications of PPRL

Linking records from different databases with the aim to improve data quality or en-

rich data for further analysis and mining is occurring in an increasing number of ap-

plication areas including healthcare, government services, crime and fraud detection,

and business applications [29]. For example, health researchers are interested in ag-

gregating health databases from different organizations for quality health data min-

ing such as epidemiological studies or to investigate adverse drug reactions [21, 139].

Linked health databases can also be used to develop health policies in a more ef-

ficient and effective way compared to the use of small-scale and time-consuming

survey studies which traditionally have been used for this purpose [39, 110].

Another application of record linkage is the linking of census data to provide an

easy platform for compiling data for different studies, which can then be further ana-

lyzed statistically [205]. Record linkage is increasingly being required by social scien-

tists in the field of population informatics to study insights into our society from the

’social genome’ data (i.e., person-level data about social being) [120]. Record linkage

techniques are also being used by national security agencies and crime investigators

to effectively identify individuals who have committed fraud or crimes [98, 156, 195].

Many businesses take advantage of record linkage techniques for deduplicating their
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list of customers, which helps them to reduce the cost of running an advertising cam-

paign or conducting other types of marketing activities. Businesses which collaborate

often need to link records across their databases for successful collaborations.

When record linkage is applied within a single organization (i.e., only data owned

by the same organization are linked), then generally privacy and confidentiality are

not of great concern (assuming there are no internal threats within the organization).

However, when data from several organizations are linked, then privacy and confi-

dentiality need to be carefully considered, as the following scenarios illustrate.

1. Public health research: Assume a group of public health researchers aims to

investigate the types of injuries caused by car accidents, with the objective to

uncover correlations between types of accidents and the resulting injuries [24].

Such research can have significant impact on policy changes that potentially

save many lives [39]. This research requires data from hospitals, the police, as

well as public and private health insurers. Neither of these parties is willing

or allowed by law to provide their databases to the researchers [176]. The re-

searchers only require access to some attributes of the records that are matched

across all the different databases, such as the medical details and basic bio-

graphic information, like age and gender, of people who were involved in ac-

cidents. An effective governance model has recently been proposed for health

data linkage that specifies privacy policies, guiding principles, best practices,

and roles and responsibilities of participants of such linkage project [176].

2. Health surveillance: Preventing infectious diseases early before they spread

widely around a country or worldwide is important for a healthy nation. Such

prevention can be done by continuously monitoring early occurrences of infec-

tious diseases. Such early outbreak detection systems require data from several

sources to be collected and linked on an ongoing basis, such as human health

data, consumed drugs data, and animal health data [40]. Privacy concerns arise

when such data are linked and stored at a central location [139]. Techniques

are needed to ensure that private patient data, as well as the confidential data

collected from healthcare organizations, are kept confidential and secure.

3. Business collaboration: Collaboration benefits businesses for example in im-

proving efficiency and reducing the costs of their supply chains. However, busi-

nesses generally are not willing to share confidential data, such as strategies

and competitive knowledge. Linking the supplier and customer databases be-

tween two businesses needs to be conducted without revealing any knowledge

besides the suppliers and customers that are present in both databases [40].

4. Plagiarism detection: Plagiarism detection, another related PPRL application,

is useful in many real-world applications [127, 146] to detect copyright viola-

tions, research work duplications, and copied text segments within documents.

In many of these cases, this information is confidential and cannot be shared to

detect plagiarism. However, without having access to the confidential source,
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violations and duplications cannot be identified. PPRL techniques can solve

this problem by performing the matching of long texts (considered as records)

without disclosing the confidentiality to any parties.

5. Serious and organized crime: Imagine a national crime investigation unit

which is tasked with fighting against crimes that are of national significance,

such as organized crime syndicates. Such a unit will likely manage various

national databases which draw from many different sources, including law en-

forcement agencies, Internet service providers, and financial institutions. Such

data are highly sensitive. The collection of such data in one place for retrieval

and analysis makes them vulnerable to both outsider attacks and internal ad-

versaries, such as employees who access certain records without authoriza-

tion. Generally employees are asked by the organization to sign disclosure

agreements for accessing confidential data in order to reduce internal threats.

Employing techniques that facilitate linking without the need of all data be-

ing given to the crime investigation unit would mean that only linked records

(such as those of suspicious individuals) are available to the unit. This would

significantly reduce any risks of privacy and confidentiality breaches.

1.3 Aim of Research

An optimal PPRL solution should balance all three properties of scalability, linkage

quality, and privacy, as described in Section 1.1, which have a trade-off among each

other. While various approaches have been proposed to deal with privacy within the

record linkage process [193], a practical solution that is well applicable to real-world

conditions needs to address the major challenge of scalability of linking very large

databases while preserving privacy and achieving high linkage quality.

Privacy needs to be preserved in the linkage process by calculating the similarity

of the encoded and / or perturbed (also known as ‘masked’, as will be described

in Chapter 5) attribute values of two records without revealing the actual attribute

values of the record pair. Linkage quality can be defined by both the degree of fault-

tolerance to real-world data errors (measured by the ability to perform approximate

linkage in the presence of typographical errors and other variations in real-world

data) and the accuracy of classification. High linkage quality can be achieved by

using approximate similarity comparison functions to compensate for data errors,

and by using an effective classification model to accurately classify the compared

record pairs into matches and non-matches.

Developing approximate and scalable PPRL algorithms without compromising

privacy and quality of linkage is an emerging research problem. The primary aim of

this study is to conduct extensive research on scalable and approximate PPRL, and

the following is a list of research questions that the thesis aims to address.

1. Extensive survey of PPRL: Various techniques have been developed for PPRL

over the past two decades. An extensive survey of current PPRL techniques is
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required to provide insights into the shortcomings of current techniques and

directions for future research. PPRL techniques involve many different dimen-

sions and hence characterizing existing PPRL techniques according to such dif-

ferent dimensions for analysis and comparison is challenging, yet very useful.

2. Efficient privacy techniques: The approaches proposed for PPRL in the lit-

erature can be classified into two based on the privacy techniques employed:

(1) data perturbation privacy techniques [108, 109, 199] and (2) Secure Multi-

party Computation (SMC) privacy techniques [41, 133, 135]. The first category

of techniques perturb private data by attributes reduction, generalization, or

transformation, to prevent re-identification of individual records. The privacy

and quality of linkage provided by these perturbation-based solutions have a

trade-off, in that increasing one often means lowering the other, and vice versa.

On the other hand, SMC-based solutions provide highly secure solutions with

high linkage quality, but they generally are very expensive in terms of runtime

and memory space required, and thus they are impractical in many real-world

scenarios. Hence, efficient data perturbation-based privacy techniques with

high linkage quality and sufficient privacy protection need to be developed

and employed for practical PPRL applications.

3. Two-party efficient algorithms: Existing PPRL techniques can also be cate-

gorized based on their need (or not) of a third party for performing record

linkage [24, 28, 194]. In three-party protocols, a (trusted) third party is involved

in conducting the linkage, while in two-party protocols only the two database

owners participate in the PPRL process. Three-party protocols would often

not suffice in real-world applications since they have the risk of collusion be-

tween one of the database owners and the third party with the aim to learn

the other database owner’s sensitive data. However, two-party protocols gen-

erally require more complex techniques to ensure that the two database owners

cannot infer any sensitive information from each other during the linkage pro-

cess. Most of the two-party solutions proposed for PPRL in the literature are

SMC-based techniques and are not scalable and practical in real-world settings.

Thus, developing efficient two-party protocols that employ cost-effective pri-

vacy techniques and preserve the privacy of sensitive data at the same time

with less accuracy loss is an important research question.

4. Private blocking techniques: There have been various advances with regard to

the quality of linking and privacy of PPRL in recent times [102, 184]. Scal-

ability for PPRL, however, is still a major concern, and scaling the linkage

process to real-world databases that contain many millions of records with-

out compromising privacy and quality is a challenging task. Similar to block-

ing techniques that have been used in traditional record linkage [30], private

blocking techniques can be used in PPRL to reduce the large number of com-

parisons required between records by removing potential non-matching record

pairs before comparing them in detail using private matching and classification
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techniques. Private blocking techniques not only provide a trade-off between

complexity and quality, but they also have a trade-off with privacy.

5. Evaluation framework for PPRL: The evaluation of PPRL techniques in terms

of the three properties of scalability, linkage quality, and privacy is important

to allow the assessment and comparison of different solutions. Measuring pri-

vacy is difficult compared to quality and scalability for which widely accepted

and used measures exist [30, 161]. A general framework with numerical and

normalized measures for all three properties of PPRL will provide a baseline

for comparison and analysis of PPRL solutions. Developing such a framework

is therefore important for PPRL research.

1.4 Contributions of this Work

This thesis provides a detailed study of PPRL techniques. Specifically, it proposes

new algorithms for scalable and approximate PPRL addressing several gaps in ex-

isting PPRL research. Contributions of the study are visualized in Figure 4.2 on

Page 43 (which we will discuss in detail in Section 4.3). We categorize the contribu-

tions into three, which are (a) conceptual, (b) methodology, and (c) evaluation. The

thesis mainly covers:

(a) Conceptual:

1. A taxonomy of PPRL techniques (Chapters 3 and 4): As discussed in Sec-

tion 1.3, conducting an extensive survey of PPRL techniques with regard to

different dimensions of PPRL is important to analyze the shortcomings in the

current approaches. We are the first to carry out such a large-scale survey in

PPRL. We present a taxonomy of PPRL techniques that characterizes existing

PPRL techniques along 15 dimensions of PPRL in Chapter 4. These 15 dimen-

sions are categorized into five main topics which are privacy aspects, linkage

techniques, theoretical analysis, evaluation, and practical aspects. We then char-

acterize around 40 PPRL techniques that have been proposed in the literature

in the last two decades (as surveyed in Chapter 3) along the proposed taxon-

omy, and we analyze the gaps that exist in existing techniques that will provide

directions into future research.

(b) Evaluation:

2. An evaluation framework for PPRL (Chapter 5): One main shortcoming (iden-

tified in our survey) we address in this thesis is an evaluation framework for

PPRL solutions. We propose a general framework with normalized measures

to practically evaluate and compare different PPRL solutions with regard to the

three properties of scalability, linkage quality, and privacy. While the scalabil-

ity and linkage quality properties can be assessed based on available standard

measures (such as precision, recall, reduction ratio, pairs completeness, etc.)
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that will be discussed in Sections 5.3.2 and 5.3.3, respectively, the privacy pro-

tection provided by a PPRL technique is comparatively more difficult to assess.

The proposed evaluation framework introduces a novel set of numerical privacy

measures to quantify the amount of privacy provided by a privacy-preserving

solution based on a linkage attack, as will be described in detail in Chapter 5.

(c) Methodology:

3. An efficient private blocking technique (Chapter 6): As discussed in Sec-

tion 1.1, private blocking techniques are needed to make PPRL applications

scalable to large databases by reducing the number of candidate record pairs.

There have been several private blocking solutions proposed in the literature in

recent times [3, 18, 56, 104, 124, 172] that adapt existing blocking techniques into

a privacy-preserving context. Among different blocking techniques the sorted

neighborhood approach is the most efficient in terms of number of candidate

record pairs generated, as we will discuss in Section 6. However, only limited

work has investigated sorted neighborhood-based private blocking [106]. We

propose an efficient three-party private blocking technique based on the sorted

neighborhood approach [52, 84]. Our approach uses a combination of two

privacy techniques which are k-anonymous mapping [72] and reference val-

ues [154] to adapt the sorted neighborhood approach in a privacy-preserving

context. The previously proposed sorted neighborhood-based private block-

ing approach by Karakasidis et al. [106] uses k-nearest neighbor (or k-medoids)

clustering to group similar (candidate) records into the same block individually

by the database owners (which is less efficient than the sorted neighborhood

approach in terms of computation complexity), followed by using the sorted

neighborhood approach by the third party to group candidate blocks from both

database owners. In contrast, our approach only uses the sorted neighborhood

approach for the private blocking of databases. This results in more efficient

blocking than several other existing private blocking solutions, as we will em-

pirically validate in Section 10.

4. An efficient two-party private blocking technique (Chapter 7): Another im-

portant shortcoming we identified is that most of the private blocking solutions

and private matching and classification solutions in PPRL are three-party ap-

proaches that require a trusted third party to perform the blocking and / or

linkage. Since three-party solutions are often not suffice in many real-world

applications due to the risk of parties colluding, we study how the three-party

private blocking solution proposed in Chapter 6 can be converted into a two-

party solution by eliminating the need of a third party to perform blocking

between databases. Similar as in the three-party solution, we use a combina-

tion of privacy techniques which are k-anonymous mapping [72] and reference

values [154]. As we will empirically evaluate in Chapter 10, our proposed

two-party private blocking approach outperforms several other existing private

blocking approaches in terms of all three properties of PPRL.
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5. An efficient two-party private matching and classification technique based on

reference values (Chapter 8): We develop efficient two-party private matching

and classification algorithms that have low computational burdens and allow

high quality approximate matching while still preserving the privacy of the

databases that are matched. Low computational burdens can be achieved by

using perturbation-based privacy techniques such as public reference values.

Reference values have previously been used by Pang et al. [154] as an efficient

perturbation-based privacy technique for private matching and classification

in PPRL. This approach requires a trusted third party to perform the linkage

which might not be available in a real-world application. We propose a novel

two-party solution for private matching and classification in PPRL using refer-

ence values. Pang et al.’s approach [154] is based on the triangular inequality

property of distance metrics on the actual similarity values calculated between

private attribute values and public reference values. Our approach, on the other

hand, uses the reverse triangular inequality property of distance metrics on the

binned similarity values.

6. An efficient two-party private matching and classification technique based

on Bloom filters (Chapter 9): The second efficient two-party private matching

and classification technique we propose is based on Bloom filters. Bloom filters

is another efficient perturbation-based privacy technique that has been success-

fully used for PPRL [59, 174, 175]. However, Bloom filters in a two-party context

has so far not been studied. Our approach performs an iterative classification

of the Bloom filters by exchanging certain bit positions at each iteration without

compromising privacy and complexity. Any Bloom filter encoding methods in-

cluding those proposed by Schnell et al. [174, 175] and Durham et al. [56, 59]

can be used in our approach. In Chapter 10 we will empirically compare dif-

ferent Bloom filter encoding methods in our two-party solution.

(b) Evaluation:

7. Empirical study (Chapter 10): Finally, we conduct a comprehensive empirical

evaluation of our proposed solutions for PPRL on large real-world and syn-

thetic datasets in terms of the three properties of PPRL. We provide compara-

tive evaluation results of our proposed solutions with several other state-of-the-

art techniques [56, 59, 104, 124, 175] using the evaluation framework proposed

in Chapter 5.

Parts of this thesis have been published in refereed journals [193, 190] and confer-

ences [188, 189, 191, 192]. In particular, compared to our published survey [193] we

cover more recent publications to update the survey and we study the trends in PPRL

research over the years, as will be illustrated in Figure 3.1 on Page 32. Compared to

our work published in [191, 188, 189, 192], we present an extensive empirical study

of our proposed algorithms on several realistic datasets (corrupted with real-world

data characteristics using our GeCo tool [183], as will be explained in Section 5.4).

We use our evaluation framework based on linkage attack methods we propose on
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Figure 1.1: The proposed research methodology (adapted from [115]).

those solutions for empirical privacy evaluation. We also include a detailed analysis

of the solutions with respect to complexity, linkage quality, and privacy. In addition

to the Bloom filter-based two-party private matching and classification solution pub-

lished in [188], we include several Bloom filter encoding methods and different noise

addition techniques.

1.5 Research Methodology

The preliminary approach of this study is to review the literature and understand

the basic concepts and current approaches in PPRL research. From this initial under-

standing, the followed research methodology (adapted from [115]) for the research

study is illustrated in Figure 1.1.

1. Define or identify the research problem.

2. Design new algorithms for PPRL that address the research problem.

3. Theoretically analyze the PPRL techniques in terms of the three properties,

scalability (based on complexity), linkage quality, and privacy.

4. Prototype the algorithms to be used as proof of concepts (POC) for experimen-

tal study.
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5. Design experimental study with datasets and evaluation measures to be used.

6. Conduct the experimental study.

7. Validate the theoretical analysis of the solution using experimental evaluation.

8. Reflect the experimental results with regard to experimental design, dataset

selection, or algorithm design.

1.6 Thesis Outline

We begin by discussing the preliminaries of record linkage and PPRL in Chapter 2,

and we survey existing PPRL techniques in Chapter 3. In Chapter 4 we propose a tax-

onomy of PPRL techniques, and we characterize existing PPRL techniques along the

proposed taxonomy to identify research directions. In Chapter 5 we present an evalu-

ation framework for PPRL techniques that can be used for evaluation and comparison

in the following chapters. We then propose a three-party private blocking technique

based on the sorted neighborhood approach in Chapter 6 to address the scalability

challenge, and convert this three-party solution into a two-party private blocking

technique by eliminating the need of a third party in the next chapter. In Chapters 8

and 9 we present efficient two-party private matching and classification algorithms

based on reference values and Bloom filters, respectively. In Chapter 10 we com-

pare our proposed algorithms with several existing state-of-the-art techniques using

the evaluation framework proposed in Chapter 5. Finally, we conclude the study by

summarizing our findings and discussing future research directions in Chapter 11.

1.7 Notation and Terminology

The following table provides the general notation (symbols) and terminology used

throughout this thesis. Further notation specific to individual chapters will be intro-

duced at the beginning of the relevant chapters.
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Table 1.1: General notation and terminology used in this thesis.

DA, DB Databases held by database owners Alice and Bob, respectively

D, DM Original databases, encoded and / or perturbed (masked) databases
G Global database that contains values in the same domain of database D

which is used for a frequency linkage attack for privacy evaluation

GM Masked global database with the same masking function as used in DM

R Publicly available reference dataset

RAi, RBj A record in DA and DB, respectively

A, a Attributes common to DA and DB that are used for linking, an attribute a ∈ A
m Number of attributes used to link records (m = |A|)
R A record in the original database D

RM A masked record in the masked database DM

aM A masked attribute value in DM

v, vi, vj An individual attribute value

r, ri, rj A reference value

bA, bB A Bloom filter of each record in DA and DB, respectively
[] An empty list
enc(·, h) Function and key used to hash-encode values
block(·, ·) Function used to block/index a database
dist(·, ·) Distance measure used to calculate distances between two values (0 ≤ dist(·, ·) ≤ 1)
sim(·, ·) Function used to calculate similarity between two values (0 ≤ sim(·, ·) ≤ 1)
st Minimum similarity threshold value to determine a pair of values as similar

nA, nB Number of records in DA and DB, respectively
nR, n Total number of reference values used, and number of records in databases

ng Number of global values in GM that match a certain masked value in DM

nB Number of blocks in a database generated by a block(·, ·) function
q Number of characters that make a q-gram
Ps(·) Probability of suspicion function of a value
S Scalability score calculated for scalability evaluation (0.0 ≤ S ≤ 1.0)
LQ Linkage quality score calculated for linkage quality evaluation (0.0 ≤ LQ ≤ 1.0)
DR Disclosure risk score calculated for privacy evaluation (0.0 ≤ DR ≤ 1.0)

SNC-3PSize Three-party private blocking based on sorted neighborhood clustering (SNC)
with size-based merging proposed in Chapter 6

SNC-3PSim Three-party private blocking based on sorted neighborhood clustering (SNC)
with similarity-based merging proposed in Chapter 6

SNC-2P Two-party private blocking based on sorted neighborhood clustering (SNC)
proposed in Chapter 7

HCLUST Private blocking based on hierarchical clustering (HCLUST)
proposed by Kuzu et al. [124]

k-NN Private blocking based on k-nearest neighbor clustering (k-NN)
proposed by Karakasidis et al. [104]

HLSH Private blocking based on hamming-based locality sensitive hashing (HLSH)
proposed by Durham [56]

2P-Bin Two-party reference values-based binning solution for private matching
and classification proposed in Chapter 8

2P-BF Two-party Bloom filter-based private matching and
classification solution proposed in Chapter 9

CLK Cryptographic Longterm Key (CLK) encoding for Bloom filters
proposed by Schnell et al. [175]

RBF Record-based Bloom filter (RBF) encoding proposed by Durham et al. [59]
CLKRBF Hybrid encoding of CLK and RBF for Bloom filters proposed in Chapter 9
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Chapter 2

Background

Building on the introduction to the privacy-preserving record linkage (PPRL) prob-

lem in Chapter 1, in this chapter we summarize the background material that con-

tributes to the understanding of basic concepts and techniques of record linkage in

general in Section 2.1, and then describe the challenges involved in introducing pri-

vacy requirements into the record linkage process in Section 2.2.

2.1 Record Linkage

Record linkage is a general classification problem where record pairs from two dif-

ferent databases (with one record from each database) are classified as ‘matches’ if

the records in pairs refer to the same entity, or as ‘non-matches’ if they don’t [26, 65].

This is a simple SQL-join problem if the databases to be linked contain common

unique entity identifiers [32]. However, often unique entity identifiers are not avail-

able in all the databases to be linked, and thus common quasi-identifying attributes

(QIDs) such as names and addresses need to be used as linkage attributes to iden-

tify matching records. The record linkage solutions that can be practically used in

real-world applications need to address scalability and linkage quality.

1. Scalability: The number of comparisons required for the classification task

equals to the product of the size of the two databases. This is a performance

bottleneck in the record linkage process since it requires detailed comparison of

all the record pairs in the databases using expensive comparison functions [13,

33]. Due to the increasing size of data collections in organizations, comparing

all record pairs is not feasible and this would render record linkage solutions

impractical in real-world applications. Hence, record linkage applications need

to address the requirement of linking very large databases more efficiently.

2. Linkage quality: The frequency of typographical errors and other variations

in real-world data makes the linkage problem more challenging. The exact

matching of identifying attribute values is not sufficient to meet the need of

fault-tolerance to real-world data errors. Also record pairs need to be classi-

fied accurately by reducing the number of false positives and false negatives

15



16 Background

Database A

Database B

Matches

matches

Possible

processing

Data pre−

processing

Data pre−

EvaluationNon−Comparison
tion

Classifica−

Clerical
review

matches

Blocking

Figure 2.1: Outline of the general record linkage process as discussed in Section 2.1
(taken from [193]).

and thus increasing the accuracy of the classification model used. Hence, tech-

niques that provide both approximate matching for fault-tolerance and effective

classification are required for practical record linkage applications.

The record linkage process consists of several steps [30, 63], as Figure 2.1 illus-

trates. The first step of data pre-processing (data cleaning and standardisation) is

crucial for quality record linkage outcomes, because most real-world data contain

noisy, incomplete and inconsistent data [12, 162]. This step includes filling in missing

data, removing unwanted values, transforming data into well-defined and consistent

forms, and resolving inconsistencies in data representations and encodings [38].

The second step in record linkage is blocking [30], which is aimed at reducing

the number of comparisons that need to be conducted between records by remov-

ing as many record pairs as possible that are unlikely to correspond to matches [13].

Only pairs that are potentially matching, the so called ‘candidate record pairs’ among

which we expect to find matches, are brought together to be compared in detail in

the next step, the comparison step. The record pairs that are excluded by a block-

ing technique are classified as non-matches without being compared explicitly. The

process of blocking is discussed further in Section 2.1.1.

Candidate record pairs are compared in detail in the comparison step using a

variety of similarity functions [27]. If a linkage is based on using name and address

details, for example, then approximate string comparison functions need to be em-

ployed which take typographical errors and variations into account [23, 43]. Linkage

based on date, age and numerical values needs to employ comparison functions spe-

cific to such data [26]. Section 2.1.2 describes several popular comparison techniques

in more detail. Several attributes are normally used for comparing records, resulting

in a vector that contains the numerical similarity values of all compared attributes.

In the classification step, the similarity vectors of the compared candidate record

pairs are given to a decision model which will classify record pairs into matches

(where it is assumed the two records in the pair correspond to the same entity),

non-matches (where it is assumed the two records in the pair correspond to differ-

ent entities), and possible matches (where the classification model cannot make a

clear decision) [33, 65, 76]. Various classification techniques have been developed for

record linkage, and Section 2.1.3 discusses these in more detail.
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If record pairs are classified as possible matches, a clerical review process is re-

quired where these pairs are manually compared and classified into matches or non-

matches [204]. This is usually a time-consuming and error-prone process which

depends upon experience of the experts who conduct the review. The manually clas-

sified record pairs can also be used as training data for training supervised classifi-

cation techniques [30]. Alternatively, collective entity resolution techniques [15, 100]

can be employed that analyze not only attribute values of records but also relation-

ships between records to determine the match status of pairs or groups of records.

Measuring the complexity, completeness, and quality, of a record linkage study

is the final step in the record linkage process before the results of a linkage study

can be used in an application, or the linkage approach can be implemented into an

operational system. A variety of evaluation measures have been proposed [30, 33].

More details of these measures are provided in Chapter 5.

In what follows we discuss the steps of the record linkage process in more detail,

and present techniques that have been used in each of the steps. As we will discuss

in Chapter 4, however, many of the state-of-the-art techniques developed for record

linkage have not been investigated so far within a privacy-preserving context.

2.1.1 Blocking

If the two database tables DA and DB which are to be linked contain nA and nB

records, respectively, then potentially each record from DA has to be compared with

all records from DB, resulting in nA × nB comparisons. In large databases, comparing

all pairs of records is not feasible. It is also not necessary, because the majority of

these comparisons corresponds to non-matching records [30].

To reduce this large number of potential record pair comparisons, some kind of

filtering of the unlikely matches can be performed. Techniques that accomplish this

are generally known as blocking, searching, or indexing techniques [13, 30]. A single

record attribute, or a combination of attributes, commonly called the ‘blocking key’,

is used to decide into which blocks (or clusters) to insert a record. Records that

have the same value for the blocking key will be grouped into the same block, and

candidate record pairs are generated only from records within the same block. These

candidate record pairs are then compared in detail in the comparison step.

Blocking has a trade-off between the computational complexity and the quality of

the generated candidate record pairs [13]. Having many small blocks (b) or clusters

generated based on a more specific blocking key definition will result in a smaller

number of candidate record pairs and thus reduces the computation cost (though

communication cost will be increased with many blocks due to the start-up costs).

At the same time it is more likely that true matches are being missed. On the other

hand, a less specific blocking key definition will lead to larger blocks and more

candidate record pairs, but likely also to more true matches that are found [30].

Various blocking techniques for record linkage have been developed in recent

years, and several surveys of these techniques have been presented [13, 30, 151]. In

the traditional standard blocking approach used since the 1960s [65], all records that
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have the same blocking key value will be inserted into the same block, and only

the records within the same block will be compared with each other in detail in the

comparison step. This reduces the number of comparisons to (nA × nB)/b.

An efficient blocking technique is the sorted neighbourhood approach [83, 84],

where the database tables are sorted according to a ‘sorting key’ over which a sliding

window of fixed size w is moved. Candidate record pairs are then generated from

the records that are within the current window (results in (nA + nB)w comparisons).

We study this approach in a privacy-preserving context in Chapters 6 and 7.

In mapping-based blocking [96], the blocking key values are mapped to objects in

a multi-dimensional Euclidean space whereby the similarities (or distances) between

the blocking key values are preserved. A clustering or nearest-neighbour approach

is then applied on these multi-dimensional objects to extract candidate record pairs.

To overcome the issues with data that are of low quality, q-gram-based blocking

techniques can be used that insert each record into several blocks by generating

variations of the record’s blocking key value through the use of q-grams (sub-strings

of length q characters) [13, 30]. Related to q-gram-based and sorted neighbourhood

blocking is suffix array-based blocking [2, 49], where suffixes are generated from the

blocking key values, and blocks are extracted from the sorted array of suffix strings.

Canopy clustering [44, 142] generates overlapping clusters (canopies) using two

thresholds and an efficient similarity function (usually based on q-grams and Jaccard

or TF-IDF/Cosine similarity), such that each record is inserted into several clusters.

Each cluster then forms one block from which candidate record pairs are generated.

Locality sensitive hashing (LSH) [113] has recently been used for blocking that

allows similar values to be hashed into the same block with high likelihood. Multibit

trees [9, 117] is another recent blocking technique that first transforms records into

bit vectors and then filters pairs of vectors by using a binary array tree structure.

2.1.2 Comparison

Comparisons between two records can be conducted either at the record level or at

the attribute (field) level. Record level comparisons concatenate the attribute val-

ues in a record into one long string, and then compare these longs strings between

records. With comparisons at the attribute level, comparisons are conducted between

individual attribute values, with specialized comparison functions used depending

upon the type of data in these attributes.

The comparison of values can either be done exact or approximate. With the

former approach, a comparison function simply measures whether the values in two

attributes are the same or different. Approximate comparison functions, on the other

hand, measure how similar the values in two attributes are with each other. In many

real-world record linkage scenarios it is not possible to simply compare two strings

exactly because they can contain typographical errors and variations [23, 83].

Approximate matching of values requires a function that represents similarity as

a numerical value. Generally, exact agreement is represented as a similarity of 1,

total disagreement as a similarity of 0, and partial agreements as similarity values
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in-between 0 and 1. Many approximate comparison functions have been developed

for different types of data [29, 77, 97, 148, 157]. In the following, popular techniques

for approximate string comparison are described in more detail.

The Levenshtein edit distance [148] is a commonly used comparison method for

approximate string and sequence matching. It calculates the smallest number of edit

operations (character inserts, deletes and substitutes) that are required to convert one

string into another. Various modifications and extensions of the basic edit distance

approach have been developed. Some allow for different costs of different types of

edits, while others allow for gaps, or they are optimized for certain types of data.

Two surveys of edit distance-based approximate string comparison functions can be

found in [97, 148]. We use distance-based comparison function for PPRL in Chapter 8.

Another type of comparison function is based on the idea of comparing the sub-

strings, known as q-grams, that two strings have in common [111, 118, 186]. The

strings to be compared are first split into shorter sub-strings of length q characters

using a sliding window approach, and then the number of q-grams that occur in both

strings is counted. Three different normalized similarity scores can be calculated

using the overlap, Dice, or Jaccard coefficient [23, 29]. This is used in Chapter 9.

One string comparison technique that is commonly used in record linkage ap-

plications where names and addresses need to be compared is the Jaro-Winkler ap-

proach [93, 202]. This technique was developed at the US Bureau of the Census based

on the expertise gained in conducting large record linkage projects. The Jaro tech-

nique combines an edit distance and a q-gram-based approach [93] by counting the

number of common and transposed characters in two strings. Winkler later added

several improvements to this basic comparison function [202, 203], such as increased

similarity if the beginning of two strings is the same, or weight adjustments based

on the lengths of two strings and how many similar characters they contain.

The SoftTF-IDF string comparison technique developed by Cohen et al. [43] aims

at comparing strings that contain several words. It can therefore be used for record

level comparisons. Similar to the concepts of Term Frequency (TF) and Inverse Doc-

ument Frequency (IDF) [169], as used in information retrieval, it gives weights to

words according to their overall occurrence in a database. The similarity between two

strings is calculated as the highest similarity between pairs of words in the strings.

2.1.3 Classification

Assuming k attributes have been compared, the outcome of the comparison step is a

vector of similarity values (this is typically called ‘comparison vector’), [s1, . . . , sk], for

each candidate record pair. These vectors are used to classify record pairs as matches,

non-matches, or possible matches, depending upon the decision model used [76].

Record linkage classification techniques can be broadly grouped into four categories:

threshold-based, probabilistic, rule-based, and machine learning-based.

Threshold-based classification provides a simple way to classify record pairs

based on the calculated overall similarity values of the pairs [25]. The similarity

values contained in the comparison vector are summed into a single overall similar-
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ity, S = ∑
k
i=1 si, for each candidate record pair. This similarity value is then used to

determine into which class the record pair belongs to based on the threshold values.

A widely used approach to record linkage classification is the probabilistic method

developed by Fellegi and Sunter in the 1960s [65]. In this model, the likelihood that

two records correspond to a match or non-match is modelled based on a-priori er-

ror estimates in the data, as well as frequency distributions of individual attribute

values, and the approximate similarities si calculated in the comparison step [29].

Extensions to the basic Fellegi and Sunter approach include the use of the Expecta-

tion Maximization (EM) algorithm to estimate the conditional probabilities required

by the method in an unsupervised fashion [143, 200, 201, 203].

Rule-based classification techniques (also known as deterministic techniques [75])

use sets of rules to classify record pairs [42, 84, 147]. Generating rules is often a

time-consuming and complex process, since it requires manual efforts to build and

maintain rule systems. An alternative is to learn rules from training data [29].

To accurately classify record pairs, many recently developed classification tech-

niques for record linkage employ supervised machine learning approaches [16, 62,

63]. These supervised approaches require training data with known class labels for

matches and non-matches to train the decision model. Once trained, the model

can be used to classify the remaining unlabelled pairs of records. Support vector

machines and decision trees are two popular supervised learning techniques that

have been employed for record linkage [16, 25, 62]. One limitation with supervised

learning techniques is, however, that they require training data, which are not always

available in record linkage applications, especially in privacy-preserving settings [29].

Alternatively unsupervised learning techniques can be employed, such as clus-

tering, which do not require training data to classify record pairs [147]. Cluster-

ing groups record pairs that are similar, such that each cluster consists of records

that refer to one real-world entity [44, 142]. Recently developed collective [15, 100],

group [153], and graph-based [85, 147] classification techniques, while achieving high

linkage quality, are not scalable to very large databases due to their quadratic or

higher computational complexity. Active learning [6] is a semi-supervised learning

technique that is being used for manual classification required in clerical review.

2.1.4 Evaluation

Evaluating the performance of record linkage algorithms in terms of how efficient

and effective they are is the final step in the linkage process. The efficiency of the

linkage provides a measure of how scalable a linkage technique is on large real-

world applications with potentially millions of records, while the effectiveness of a

linkage exercise is measured by the accuracy of the classification model used. A

variety of evaluation measures has been proposed that can be used to assess the

scalability [30, 33] and quality [33] of the linkage process (as detailed in Chapter 5).

Scalability can be evaluated using measures that are dependent on the computing

platform and networking infrastructure used, or measures that are based on the num-

ber of candidate record pairs generated. The quality of a linkage can be measured by
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Figure 2.2: Outline of the general privacy-preserving record linkage process as de-
scribed in Section 2.2 (taken from [193]).

using the metrics commonly employed in both information retrieval, and in machine

learning and data mining [140, 161]. Accuracy, precision, recall, and F-measure are

such commonly used quality measures. However, accuracy is not a suitable quality

measure because record linkage is generally a very imbalanced classification prob-

lem with many non-matching record pairs compared to matching pairs [33] that can

significantly distort accuracy values. Precision, recall and the F-measure are more

suitable for measuring linkage quality [29].

2.2 An Overview of PPRL

As the scenarios in Section 1.2 have shown, the exchange of private or confiden-

tial data between organizations is often not feasible due to privacy concerns, legal

restrictions, or because of commercial interests. Databases from different organiza-

tions therefore need to be linked in such ways that no sensitive information is being

revealed to any of the parties involved in a cross-organizational linkage project, and

no adversary is able to learn anything about these sensitive data. The increasing

need of being able to link databases across organizations while, at the same time,

preserving the privacy of the entities stored in these databases, has introduced a new

research problem called privacy-preserving record linkage (PPRL) [37, 78, 194].

The privacy-preserving requirement in the record linkage process adds a third

challenge, privacy, to the two main challenges of scalability and linkage quality that

were discussed in Section 2.1. The question now arises how to conduct the steps in

the record linkage process (as was shown in Figure 2.1) in a privacy-preserving set-

ting. Privacy needs to be considered in all steps of the record linkage process, making

the task of linking databases across organizations more difficult. Figure 2.2 outlines

the record linkage process within a privacy-preserving context. Several privacy tech-

niques have been used for PPRL ranging from SMC-based techniques to perturbation

techniques such as k-anonymity, reference values, Bloom filters, differential privacy,
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and random noise, which we will discuss in detail in Chapter 4. Adversaries in PPRL

are assumed to follow different models including the most commonly used honest

but curious (HBC) and malicious models which will be described in Chapter 4.

Because data pre-processing can be conducted independently at each data source,

it is not part of the techniques that are required for PPRL. However, it is important

that all data sources conduct the same data pre-processing steps on the data they

will use for linking. Some exchange of information between the data sources about

what data pre-processing approaches they use, as well as which attributes they have

in common that are to be used for the linkage, is therefore required.

As was discussed in Section 2.1.1, the blocking step is crucial to make record

linkage across large databases scalable. This also applies to PPRL, but blocking for

PPRL needs to be conducted in such a way that no information that would allow to

infer individual records in the databases is revealed to any party or to an external

adversary. The scalability challenge of PPRL has been addressed by several recent

approaches using private blocking techniques, as we will discuss in Section 3.4.

The attribute values used for comparing records often contain variations and

errors, and therefore simply encoding these values with a standard cryptographic

technique and comparing the encoded values will not lead to high linkage quality

for PPRL [37, 152]. Since a small variation in an attribute value leads to a completely

different encoded value [37], only exactly matching attribute values can be identified

with such a simple approach. Therefore, an approach for securely and efficiently

calculating the approximate matching of attribute values is required. Several of the

approximate comparison functions described in Section 2.1.2 have been adapted into

a PPRL context as will be discussed in Sections 3.3 and 3.4.

As we discussed in Section 2.1.3, the output of the comparison step are the calcu-

lated similarity values for each compared record pair that will be used to classify the

pairs into matches, non-matches, or possible matches. In a PPRL context, this classi-

fication needs to be conducted in such a way that no party learns anything about the

records in the other parties’ databases that do not match, such as similarity values for

certain attributes of individual record pairs, which record pairs have low similarities,

or even the distribution of similarity values across all compared record pairs.

The evaluation of linkage quality in a privacy-preserving context is challenging,

because in PPRL access to the actual record values is unlikely to be possible as this

would reveal private or confidential information about these records. How to evalu-

ate linkage quality as well as privacy protection is still an open challenge, as we will

discuss further in Section 4.3.

2.3 Summary

We have presented the background material to understand the research problem by

outlining the process and techniques used in the record linkage process, and the

challenges posed when privacy is considered in the process. In the following chapter

we will review the literature in PPRL.



Chapter 3

Related Work

A study of related work in privacy-preserving record linkage (PPRL) is reviewed in

this chapter. We conducted a survey of around 40 existing PPRL techniques which

are then characterized according to the taxonomy (as described in Chapter 4) in

Table 4.1 on Page 42 in order to identify future research directions in PPRL.

3.1 Introduction

Research directions for PPRL were provided in [24, 40] stating the needs, problems

and current approaches in this area, while various techniques have been developed

addressing the research problem [58, 102, 184, 194]. In the following we provide a

review of existing PPRL techniques. We highlight important terms in the techniques

that relate to our taxonomy we propose in Chapter 4 in italic font.

We categorize PPRL techniques into three generations according to the factors

that have been considered. These three generations are (1) techniques that consider

exact matching of attribute values only; (2) techniques that can conduct approximate

matching to improve the quality of linkage; and (3) techniques that also address

scalability while conducting approximate matching. We present PPRL techniques

under each category in a chronological order to study how the techniques have been

developed developed over time. Each technique is given an identifier composed

of the first three letters of the first author and the last two digits of the year of

publication, which is then used in Table 4.1 to identify individual techniques.

3.2 Exact Matching PPRL Techniques

The first generation of PPRL techniques focus only on the exact matching of records.

Qua98: This is the first approach to PPRL proposed in the 1990s by Quantin et

al. [19, 60, 158, 159] within the framework of epidemiological follow-up studies. This

approach is applicable for linking more than two databases by using a third party for

conducting the linkage. One-way secure hash algorithms (SHA) are used with two pads

added in order to avoid dictionary attacks. The comparison is limited to likely pairs

of matches by using a blocking method based on phonetic encodings. Record linkage

is then performed using a statistical model (probabilistic classification) with weights

23
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estimated by the EM algorithm. An empirical evaluation conducted using real health

datasets showed high linkage quality of the approach.

Van00: A secure three-party approach proposed by Van Eycken et al. [187] in

2000, is based on creating a single hash pseudonym for maintaining privacy. In this

approach, both database owners merge the values of their linkage attributes into a

single string (record-based) which is then double-hashed using a secure hash function

and a public key encryption algorithm in order to prevent dictionary attacks. These

hash strings are then used by a third party to classify the records using a deterministic

classification technique. Experiments conducted on real health datasets showed that

the accuracy of the classification increases if the concatenated string includes the full

date of birth value.

OKe04: In 2004, a multi-party SMC-based approach was proposed by O’Keefe et

al. [152] for PPRL, as well as privacy-preserving extraction of a cohort of individu-

als’ data from a database, without revealing the identity of these individuals to the

database owners. The authors assumed an untrusted third party, in that the only

way for the third party to obtain identifying information is through collusion with

a database owner. The approach improves on the security and information leakage

characteristics of several previous protocols, including Agrawal et al.’s [1] two-party

secure intersection and equi-join protocols that use commutative encryption schemes.

However, variations and (typographical) errors in the linkage attributes are not con-

sidered (exact matching), and the protocol is computationally more expensive than

PPRL solutions that use perturbation-based privacy techniques (as will be discussed

in Chapter 5).

Fre05: Privacy-preserving information retrieval (PPIR) is a research area related

to PPRL, whereby PPIR employs a single query record while PPRL employs all

records as match queries. Freedman et al. [69] in 2005 presented an efficient two-

party privacy-preserving keyword search algorithm for PPIR. The proposed approach

assumes both HBC and malicious adversarial models. Their approach uses SMC tech-

niques (homomorphic encryption) and oblivious pseudo random functions. The server

holds a database of n pairs (xi, ri), each consisting of a keyword xi and its record

identifier (payload) ri. The client’s input is a search keyword w. If there is a pair

where the keyword xi is equal to the search keyword w (i.e., exact matching), then the

corresponding record identifier ri will be returned to the client.

Lai06: Lai et al. [125] in 2006 proposed a multi-party protocol that uses Bloom

filters for private matching without a third party for performing the linkage. In their

approach, all the records are first converted into a Bloom filter bit array, and each

party partitions its Bloom filter into the number of parties involved in the linkage

and sends a segment to the corresponding party. The segments received by a party

are combined using a conjunction (logical AND) operation. The resulting combined

Bloom filter segments are then exchanged between the parties. Each party checks its

own full Bloom filter with the result, and if the membership test is successful then it

is considered to be a match. Though the cost of this approach is low since the compu-

tation is completely distributed between the parties and the creation and processing

of Bloom filters are very fast, the approach can only perform exact matching.
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Kan08: A multi-party approach based on a generalization technique (k-anonymity)

for person-specific biomedical data was introduced by Kantarcioglu et al. [101] in 2008.

This approach performs efficient secure joins of encrypted databases by a third party

without decrypting or inferring the contents of the joined records. It is guaranteed

that each record can be linked to no less than k entities in the databases. The database

owners k-anonymize their databases and send the encrypted databases to the third

party. When the third party performs a join, it constructs buckets corresponding to

each combination of k-anonymous values. For each bucket, the third party performs

a secure equi-join. This approach is only applicable to categorical data.

Web12: Similar to Van Eycken et al.’s approach, a simple heuristic method for

privately linking medical data in a three-party protocol was presented by Weber et

al. [197] in 2012. The authors experimentally validated the hypothesis that using

a concatenated identifier made of the first two characters of the given name and

surname attributes along with the date of birth attribute as the linkage attribute

provides better results in terms of sensitivity and specificity, compared to performing

the linkage based on the identifier consisting of patients’ full names and date of birth.

This approach is useful when health policies preclude the full exchange of identifiers

that is commonly required by other more sophisticated algorithms.

3.3 Approximate Matching PPRL Techniques

Techniques in the second generation of PPRL techniques look into the approximate

matching of attribute values to remedy the problem of errors and variations in real-

world data.

Du01: Du et al. [53] in 2001 suggested a secure approach for private remote

database access with an untrusted third party that is assumed to not collude with

any of the two database owners. They propose four different SMC-based e-commerce

models for secure remote database access, all of which require privacy of customer

data. The four models are the Private Information Matching (PIM), the PIM from

Public Database (PIMPD), the Secure Storage Outsourcing (SSO), and the Secure

Storage and Computing Outsourcing (SSCO). Approximate record matching is per-

formed using distance functions and Monte Carlo techniques. Random values are

used to disguise the query and the intermediate results. The minimum value of the

final distance values of the records in the database, as compared with the query, is

computed to identify the closest match.

Ata03: A two-party protocol was proposed by Atallah et al. [7] in 2003 where the

edit distance algorithm, as presented in Section 2.1.2, is modified for providing pri-

vacy to genome sequence approximate comparisons in the area of bioinformatics. The

three types of edit operations are insertions, deletions and substitutions of characters

a and b, and each operation has an associated cost, namely I(a), D(a) and S(a, b).
The smallest overall cost of transforming one sequence into another is calculated as

the edit distance. The dynamic programming matrix M is split across the two parties

such that M = MA + MB. At each step, the minimum of three costs needs to be de-
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termined without revealing at which position the minimum occurred. This approach

is aimed towards sequence comparisons and has a considerable communication cost.

One communication step is required for each element in the matrix M, which is

quadratic in the length of the sequences that are compared. It is therefore unsuited

for tasks with large databases.

Rav04: In 2004, Ravikumar et al. [165] used SMC techniques for secure compu-

tation of several distance functions. In their work, they presented methods for ap-

proximate comparison of values using string distance metrics, specifically TF-IDF [169],

SoftTF-IDF [43] and the Euclidean distance. They use a secure stochastic dot product

protocol for secure computation of these distance metrics in a two-party setting. The

use of SMC techniques for achieving privacy makes the protocol computationally

intensive. To overcome this drawback, they use sampling techniques to control the

amount of communication between the two parties. Experiments on the public Cora

bibliographic dataset [29] showed high linkage quality with average precision of 0.85

after 1, 000 samples for vectors of length 10, 000 (0.1%).

Chu04: A token-based three-party approach suggested by Churches and Chris-

ten [37] in 2004 uses hash-encoded q-grams to achieve approximate private linkage. Sub-

sets of q-gram sets are used to calculate the Dice coefficient between attribute values.

All matching hash values are compared by a third party using extra information, such

as the number of q-grams contained in a subset and the total number of q-grams com-

prising an attribute value. A threshold-based classification is used for deciding which

record pairs are matches. This is a costly approach because of the power set gener-

ation of q-gram subsets it requires. Another drawback of this approach is that it is

susceptible to frequency attacks [184].

Sch09: An approach based on a combination of Bloom filters and q-grams (to fa-

cilitate approximate matching) was proposed by Schnell et al. [174] in 2009. The q-

grams of linkage attribute values of each record are mapped to one Bloom filter bit

array (record-based comparison) using multiple cryptographic hash functions. Then

the Bloom filters are compared in a bit-wise manner by a third party, and similarity

between Bloom filters is calculated according to the Dice-coefficient, because this sim-

ilarity function is insensitive to many matching zeros in long Bloom filters. Bloom

filters are efficient to generate and compare, and this approach supports approximate

matching of values as well, rendering it applicable to real-world conditions. How-

ever, due to the use of q-grams this approach is only applicable to matching of string

attribute values. This approach can be compromised by a cryptanalysis attack given

the knowledge of certain parameters, as shown by Kuzu et al. [122].

Dur10: Durham et al. [57] in 2010 adapted Schnell et al.’s Bloom filters-based

approach [174] in their work to evaluate three different PPRL approaches. They

investigated (1) deterministic classification techniques for exact comparison, (2) proba-

bilistic classification techniques for exact comparison, and (3) probabilistic classification

techniques for approximate comparison. Eleven attributes from a clinical dataset from

the Vanderbilt University Medical Center were used for this study. The empirical

evaluation of these three approaches indicated that approximate comparison using

probabilistic classification technique [65] outperformed the other two approaches.
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Li11: An approach for privacy-preserving group linkage (PPGL) has been in-

troduced by Li et al. [128] in 2011 to measure the similarity of groups of records

rather than individuals. A threshold-based PPGL method is proposed to overcome

the problem of group membership inference attacks which could be employed to

learn the member records of the other party’s groups even though the groups are not

linked. K-combinations of records are first extracted from the groups and then SMC

techniques are used to privately calculate the set intersection of the k-combinations.

The Jaccard coefficient is used at group level to calculate the similarity between two

groups. In order to support approximate matching of groups of records, the Cosine sim-

ilarity is employed in a bipartite graph to calculate the similarity of pairs of records

between two groups. Both parties only learn the verdict of whether the two groups

are matched or not, instead of learning the group similarity value. However, this

approach has an exponential complexity in the size of the databases.

Jon13: A group level anonymous matching approach for two-party PPRL was

proposed by Jones et al. [99] in 2013. In their work only group level data (generaliza-

tion) are revealed between the database owners, not the individual level data. The

database owners concatenate the linkage attributes and generate a hash key for each

record, which is then used to calculate the group ID based on the predetermined

number of groups. They repeat this process several times with different salt values

added at the end of the concatenated string to generate a different hash key at each it-

eration and calculate the group ID for each record. Finally, the records are compared

based on the group IDs calculated at each iteration. If a record from one dataset is

matched with a record from the other dataset in more than a certain number of group

IDs, then the records are classified as a match. This method was empirically tested

on real-world data (to match voter data and Facebook data), and the results showed a

high accuracy of 95% while generating the same level of uncertainty about individual

records as theoretically predicted.

Kum13: An effective three-party human-machine hybrid system for PPRL was

recently introduced by Kum et al. [121]. Frequent human interaction is required in the

linkage process to improve the quality of linkage results. In human interactive record

linkage, people are involved in fine tuning the false matches as well as examining

the uncertain record pairs to make classification decisions [119]. In this work, the

authors adapted three privacy techniques which are decoupling sensitive data, adding

random values, and recoding the values to ensure that no sensitive values are disclosed

during any such human interaction. This is the first work in the direction of privacy-

preserving interactive record linkage and more research is required for investigating

on how much information is needed for tuning the linkage results by an expert

without any potential harm that can result from disclosing sensitive information.

3.4 Scalable and Approximate Matching PPRL Techniques

In this section, we survey the third generation of PPRL techniques that address scala-

bility to large databases while allowing the approximate matching of attribute values.
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Son00: The approach of Song et al. [178] in 2000 in a two-party context takes into

consideration the problem of approximate matching by calculating encoded permutations

of values using pseudo random functions for private searching of documents by certain

query values. The approximate comparison on advanced queries containing multiple

words is processed based on individual words (i.e., field-based). If an encoded query

value matches at least one of the encoded permutations (rule-based), then the pair of

values can be considered as a match since the permutation occurred due to a typo-

graphical error. The use of an encoded index data structure-based blocking provides

an efficient search when the data size is large. However, it is practically impossible

to predict all possible permutations by pre-computing all types of errors and varia-

tions that might occur in real-world applications. The approach is also susceptible to

frequency attacks if a certain number of words are being queried.

All05: Al-Lawati et al. [3] proposed a secure three-party private blocking proto-

col in 2005 for achieving high performance private record linkage by using secure

hash-encoding for computing the TF-IDF distance in a secure fashion. In their work,

three methods have been explored which are simple blocking, record-aware blocking,

and frugal third party blocking. Simple blocking arranges hash signatures in blocks

where the similarity of a pair may be computed more than once if they are in more

than one common block. Record-aware blocking solves this issue by using an iden-

tifier with every hash signature to indicate the record it belongs to. However, these

methods provide a trade-off between privacy, and computation and communication

costs. The third method, the frugal third party blocking, uses a secure set intersection

(SSI) SMC protocol to reduce the cost of transferring the whole databases to the third

party by first identifying the hash signatures that occur in both databases.

Sca07: Scannapieco et al. [170] in 2007 presented an approach that provides pri-

vacy for both data and schema matching without revealing any information. This

approach transforms records into objects in an embedding metric space using a set of

reference values, while preserving the distances between record values. These dis-

tances are then sent to a third party to perform the linkage. To achieve secure schema

matching, it is assumed that the third party holds a global schema to which the

schemas of the database owners are mapped. A greedy re-sampling heuristic based

on the SparseMap [87] algorithm allows the mapping of values into a vector space

at low computational costs. However, the experimental results presented in [170]

indicate the trade-off between a more efficient mapping and the resulting quality.

Ina08: A hybrid approach that combines generalization and cryptographic techniques

to solve the PPRL problem was proposed by Inan et al. [91] in 2008. This method uses

a blocking approach based on value generalization hierarchies and the record pairs

that cannot be blocked are compared in a computationally expensive SMC com-

putation step using cryptographic techniques. This approach manages to perform

approximate matching both due to the use of the generalization scheme in the blocking

step, as well as due to the SMC step. However, the blocking method is only useful

with attributes that can form hierarchies.

Pan09: Pang et al. [154] in 2009 suggested a protocol based on a set of reference

strings that are available to both the database owners. The database owners com-
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pute the distance between the reference strings and their attribute values (assumed

to be strings), and send the results to a third party that sums these distance values

and finds the minimum distance. Based on the triangular property of distance-based

measures [131], if this minimum distance value lies below a certain threshold, then

the two original strings are classified as a match. To reduce the size of the match-

ing space, nearest neighbour clustering is applied. The performance of the protocol

depends crucially on the set of reference strings. Increasing the size of the reference

table improves the linkage quality to some extent, but this leads to longer runtime.

Yak09: Based on the work by Scannapieco et al. [170], a similar approach was pro-

posed by Yakout et al. [210] in 2009 which uses Scannapieco’s vector representation of

attribute values and eliminates the need of a third party for performing PPRL. Com-

plex numbers are calculated to create a complex plane, and in the first step the likely

matched pairs are computed by moving an adjustable width slab within this com-

plex plane. Euclidean distance is used to measure the approximate similarity between

records. Based on these distances, similar record pairs are classified as those that are

within the slab width. These similar pairs are compared in detail in the second step

using a SMC-based secure scalar product protocol based on randomized vectors. This

is an improvement over Scannapieco’s work in the privacy and scalability aspects.

Ina10: Inan et al. [92] in 2010 presented a hybrid approach for PPRL that com-

bines differential privacy and cryptographic methods in a two-party setting. It uses multi-

dimensional blocking based on specialized tree data structure (kd-tree, BSP-tree, R*-

tree, etc.) to improve scalability. Previous work presented by Inan et al. [91] focused

on generalization based on k-anonymity to provide a scalable solution, which does

not provide sufficient privacy. The work based on differential privacy provides strong

privacy guarantees and a trade-off between accuracy, privacy, and scalability [92].

Haw11: Hawashin et al. [81] in 2011 proposed a private three-party approach for

semantic similarity joins using long string attributes (corresponding to record-based

comparison), such as paper abstracts, product descriptions, and user feedbacks. The

two database owners generate their term by long string value matrices, such that each

row represents a term (word) and each column represents a long string value, and

calculate TF-IDF weights to perform unsupervised feature selection. The list of selected

features along with some random features are sent to a third party that returns the

intersection of these two feature lists. The database owners then send the selected

feature values of the records with randomly generated records to the third party that

performs the semantic join operation using methods such as diffusion maps [45],

latent semantic indexing [51], and locality preserving projection [82], and classifies

the pairs as matches that have a Cosine similarity greater than or equal to a minimum

threshold value. The results of the experimental evaluation showed that the diffusion

maps method provided the best performance results in terms of F-measure [81].

Moh11: Mohammed et al. [145] in 2011 proposed a two-party approach for effi-

cient PPRL using k-anonymity-based generalization. This work is based on the secure

DkA framework proposed by Jiang and Clifton [94] for integrating two private data

tables into a k-anonymous table. However, the DkA framework is not scalable to

large databases. Mohammed et al. presented two scalable methods to securely inte-
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grate private data from multiple data sources based on the HBC and malicious adver-

sarial models. The database owners find the global winner candidate with the best

score that provides less information to the other party according to some criteria,

and then perform a top-down specialization on that candidate for generalizing the

databases. The well-known C4.5 classifier is used to recursively block (generalized

buckets) and classify the records. To prevent malicious parties from sending false

scores, game-theoretic concepts are used. Empirical studies conducted on real-world

census dataset [150] showed that this method outperforms DkA in terms of efficiency.

Kar11a: A three-party approach to PPRL consisting of a secure blocking compo-

nent based on phonetic encoding (Soundex [23]) algorithm and a secure matching

component where approximate matching is performed using a distance-based method

is presented by Karakasidis et al. [103] in 2011. This approach uses a secure version

of the Levenshtein edit distance [148] function on Bloom filters data structure. Field-

based comparisons between records are conducted and they are classified using a

threshold-based model. The experimental study conducted on a synthetic dataset gener-

ated using the Febrl [27] tool showed that the approach outperforms the original edit

distance algorithm in terms of complexity (due to the secure blocking component)

while preserving privacy, and it also offers almost the same matching accuracy.

Kar11b: Karakasidis et al. [105] in 2011 proposed three different faked random

values injection techniques for phonetic-based PPRL [103]. These techniques are the

Uniform Cipher Text/Uniform Plain Text, Uniform Cipher Texts by Swapping Plain

Texts, and k-anonymous Cipher Texts. In the first method, fake values are added such

that both the actual values and the Soundex [23] phonetic values exhibit uniform

distributions. This increases the complexity due to massively oversized datasets. The

second method overcomes this drawback by modifying the frequency of attribute

values such that all Soundex values occur equally frequent. This does not create

an excessive number of faked records as with the first method. However, the at-

tribute values that were removed will not participate in the linkage process. The

third method aims at creating datasets where each Soundex code reflects at least k

attribute values. This work is experimentally evaluated using a real-world Australian

telephone database. It is stated that in terms of information gain, using a Soundex-based

fake injection strategy offers adequate privacy for private blocking [105].

Dur12: Durham [56] in 2012 studied the Bloom filter-based approach pro-

posed by Schnell et al. [174, 175] in more detail. In this work the author proposed

how record-level Bloom filter encoding can be done effectively in order to overcome

the problem of cryptanalysis attack associated with field-level Bloom filter encod-

ing [122], and also used locality sensitive hash (LSH) functions for private blocking

to reduce the computational complexity. A single Bloom filter is used to encode the

entire record by using weighted random bits selection from each field-level Bloom fil-

ter. A probabilistic method based on agreement and disagreement weights is used for

classification. Empirical studies conducted on real datasets showed that this approach

outperforms existing Bloom filter-based approaches.

Bon12: Bonomi et al. [18] in 2012 proposed a new embedding strategy for PPRL

based on Scannapieco et al.’s [170] approach using q-grams and differential privacy. In
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contrast to using random strings to generate the common base among the parties,

this approach uses frequent q-grams mined from their own databases under the dif-

ferential privacy framework as a base for secure embedding. Frequent q-grams are

mined using a top-down approach on a prefix tree. The database owners then map

their attribute strings into this common base and send the embedded space to a third

party that can calculate the euclidean distance between vectors in the embedded space

to classify the record pairs using a threshold. Experiments conducted on real datasets

showed that the approach achieves better scalability and provides formal privacy

proof of differential privacy while resulting in comparable linkage quality.

Kar12: In 2012 a three-party private blocking approach based on k-anonymous

(generalization) and reference values was proposed by Karakasidis et al. [104]. Initially

clusters are created for a set of reference values that are shared by the database owners

using k-nearest neighbor clustering such that each cluster consists of at least k elements

in the reference set. Each database owner then assigns the blocking key values in

their data to the respective clusters according to their Dice-coefficient similarity. These

clusters are sent to a third party that merges the corresponding clusters to gener-

ate candidate record pairs. A main drawback of this approach is that it requires

calculation of similarities between each record and all the used reference values.

Kuz13: Recently, Kuzu et al. [124] introduced a private blocking approach based

on hierarchical clustering and differential privacy. Initially global clusters are generated

for a set of reference values using hierarchical clustering. Then each database owner

assigns their records into these global clusters based on their similarity. Differential

privacy is used by adding random noise drawn from a Laplace distribution to ensure

privacy when these clusters are released. A three-party SMC is then used in the

second step to compare and classify the candidate record pairs. This approach is

computationally expensive in terms of similarity calculations.

Sch13: A recent work by Schnell [172] demonstrated the scalability of their earlier

Bloom filter-based approach [174] by using a private blocking method based on multibit

trees [117]. Multibit trees work in three steps: First, the Bloom filter vectors in one

dataset (optimally the larger dataset) are grouped into bins depending on the number

of bits set to 1 in the vectors. A multibit tree is built within each bin in the second step

and finally the Bloom filters in the second dataset are searched in the trees based on

the Jaccard similarity to generate candidate vector pairs. Experiments were conducted

on synthetic datasets and the results showed the scalability of this approach. Schnell

et al.’s Bloom filter-based approach [174] was also empirically evaluated on large real-

world hospital admissions datasets (comprising over 26 millions records) combined

with a standard blocking method [65] in a latest work by Randall et al. [164] to

illustrate the feasibility of this approach on large scale datasets.

Kar13: PPRL in a distributed framework using LSH was studied by Karapiperis

et al. [107] in 2013. Data are first encoded into Bloom filters and sent to a trusted

third party that utilizes a map/reduce system in order to distribute the workload

efficiently. The third party maps Bloom filters into a low dimensional representation,

LSH, based on which Bloom filters are distributed into different reduce tasks. Bloom

filters that exhibit the same fragmented LSH minhash keys are routed to the same
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Figure 3.1: Research trends in PPRL. The arrows show the trends towards an optimal
solution represented by a circle in the center of the triangle. The techniques that are

proposed in this thesis are marked with an asterisk (*).

reduce task. Then pairs are formulated and compared using the Jaccard distance

metric in order to be classified as matched pairs or not according to a threshold. As

stated by the authors, optimizing workload distribution by measuring computational

cost without overhead in the distributed framework requires further research.

Wen14: The latest work in PPRL by Wen et al. [198] presents efficient two-party

protocols based on Oblivious Bloom filter intersection (OBI) and private set intersection

protocols for exact and approximate private linkage. In their work they extended the

OBI algorithm by including record identifiers in the garbled Bloom filter to enable the

identification of matching records. The second protocol is built on top of this to sup-

port approximate matching by incorporating LSH. They conducted experiments on

synthetic datasets and the results showed the efficiency and accuracy of the protocols.

3.5 Summary

In this chapter we have presented a survey of historical and current state-of-the-art

techniques for PPRL. Figure 3.1 reflects our view of existing PPRL techniques and

the trends in the field of PPRL based on our research in terms of the three main

properties of PPRL which are privacy, linkage quality, and scalability. As the fig-

ure illustrates, more research in recent times starts focusing towards the center of

the triangle by addressing all three properties. We will next characterize the tech-

niques presented in this chapter according to the taxonomy we propose for PPRL

and analyze research directions in detail in the next chapter.



Chapter 4

A Taxonomy of Privacy-Preserving

Record Linkage Techniques

In this chapter we present a taxonomy of privacy-preserving record linkage (PPRL)

that characterizes PPRL techniques along fifteen dimensions. We characterize exist-

ing techniques (surveyed in the previous chapter) along this taxonomy and summa-

rize them in Table 4.1. We then highlight shortcomings of current techniques based

on this characterization and discuss avenues for research in Section 4.3.

4.1 Introduction

Several surveys on privacy-preserving string matching have been presented in the

literature [58, 102, 184, 194]. Trepetin [184] theoretically analyzed four different tech-

niques for anonymized string matching and concluded that many existing techniques

fall short in providing a sound solution either because they are not scalable to large

databases, or because they are unable to provide both linkage quality and privacy

guarantees.

Similar conclusions were also drawn in [102] and [194], which both survey sev-

eral existing techniques for private matching ranging from classical record matching

techniques enhanced by SMC techniques to provide privacy, to advanced solutions

developed specific to solve the PPRL problem.

In Durham et al.’s [58] recent survey on privacy-preserving string comparators,

six existing comparators that can be used in PPRL for private comparison have been

experimentally evaluated in terms of their complexity, correctness, and privacy. The

results show the trade-offs of the six surveyed string comparators among the three

properties of PPRL.

While all these surveys analyze and compare several private comparison func-

tions, we aim to develop a taxonomy that characterizes all aspects of PPRL, and to

provide a comprehensive analysis of current approaches to PPRL along this taxon-

omy. Illustrating the gaps in current approaches to PPRL will help to identify future

research directions for PPRL.
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Figure 4.1: The fifteen dimensions used to characterize privacy-preserving record
linkage techniques (taken from [193]). Abbreviations shown in brackets are those

used in Table 4.1 on page 42.

4.2 A Taxonomy of PPRL Techniques

In this section we describe a taxonomy of PPRL techniques that includes fifteen di-

mensions of PPRL which we categorize into five main topics, as is illustrated in

Figure 4.1. Combined, these fifteen dimensions provide a comprehensive characteri-

zation of PPRL techniques. In the following subsections we discuss each dimension

in detail, and we provide an overview of the major methodologies or techniques

applied in these dimensions.

4.2.1 Privacy Aspects

The privacy requirements for linking databases across organizations consider the

assessment of three dimensions of PPRL techniques: how many parties are involved

in a cross-organizational linkage, the adversarial model assumed, and the actual

techniques employed in a PPRL approach to provide privacy and confidentiality.

4.2.1.1 Number of parties

Solutions to PPRL can be classified into those that require a third party for perform-

ing the linkage and those that do not. The former are known as ‘three-party pro-

tocols’ and the latter as ‘two-party protocols’ [24, 28, 194]. In three-party protocols,

a (trusted) third party (which we call the ‘linkage unit’) is involved in conducting

the linkage, while in two-party protocols only the two database owners participate

in the PPRL process. The advantage of two-party over three-party protocols is that

the former are more secure because there is no possibility of collusion between one
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of the database owners and the linkage unit. However, two-party protocols generally

require more complex techniques to ensure that the two database owners cannot in-

fer any sensitive information from each other during the linkage process. A further

characterization of PPRL techniques is if they can be extended to the efficient linking

of data from more than two data sources (multi-party) or not.

4.2.1.2 Adversarial model

PPRL techniques proposed in the literature generally consider one of the two adver-

sarial models that are commonly used in the field of cryptography, and especially in

the area of secure multi-party computation (SMC) [73, 78, 135].

1. Honest-but-curious behavior (HBC):

HBC parties are curious in that they try to find out as much as they can about

the other party’s inputs while following the protocol [78, 135]. A protocol

is secure in the HBC perspective if and only if all parties involved have no

new knowledge at the end of the protocol above what they would have learned

from the output, which is generally the record pairs classified as matches. Most

of the PPRL solutions proposed in the literature assume the HBC adversarial

model. Note that this adversarial model does not prevent parties from col-

luding with each other with the aim to learn about another party’s sensitive

information [135].

2. Malicious behavior: In contrast to HBC parties, malicious parties or adver-

saries can behave arbitrarily. In particular, malicious parties may refuse to

participate in the protocol, not follow the protocol in the specified way, choose

arbitrary values for their data inputs, or abort the protocol at any time [134].

Proving privacy under this model for evaluation of a privacy technique is more

difficult compared to the HBC model, because there exist additional and po-

tentially unpredictable ways for malicious parties to deviate from the specified

steps of the protocol that are undetectable by an outside observer [22, 73, 135].

4.2.1.3 Privacy techniques

A variety of privacy techniques has been employed to facilitate PPRL. The major

approaches are:

1. Secure hash-encoding: This technique has been one of the first to be used

for PPRL [19, 60, 158, 159]. One-way hash-encoding functions [171] convert a

string value into a hash-code (for example ‘peter’ into ‘51dc3dc01ea0’) such that

having access to only a hash-code will make it nearly impossible with current

computing technology to learn its original string value. The Message Digest

(like MD5) and Secure Hash Algorithms (like SHA-1 and SHA-2) are the most

widely known and used one-way hash algorithms [116].

In order to prevent dictionary attacks, where an adversary hash-encodes val-

ues from a large list of common words using existing hash-encoding functions
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until a matching hash-code is found, a keyed hash-encoding approach can be

used which significantly improves the security of this privacy technique. The

Hashed Message Authentication Code (HMAC) function [116] is one such ap-

proach. Without knowing the secret key, a dictionary attack will not be success-

ful. However, frequency attacks are still possible, where the frequency distribu-

tion of a set of hash-codes is matched with the distribution of known attribute

values, such as surnames [136].

A major problem when using hash-encoded values for matching is, however,

that only exact matches can be found [60]. Even a single character difference in

a string that is encoded will lead to a completely different hash-code.

2. Secure multi-party computation (SMC): The basic idea of SMC is that a com-

putation is secure if at the end of the computation no party knows anything

except its own input and the final results of the computed function [41, 73, 135].

Yao [212] first proposed the secure two-party computation problem and devel-

oped a secure solution. Goldreich et al. [74] extended this approach to sev-

eral parties, and they developed a general framework for SMC. SMC employs

some form of encryption schemes to allow secure computation. The two major

cryptographic encryption schemes used for secure computation in the PPRL

literature are commutative [1] and homomorphic [114] encryption. The secure

set union, secure set intersection, and secure scalar product, are the most com-

monly used SMC techniques [41, 171]. A drawback of these SMC techniques is

that they are computationally expensive. Several works in recent times have de-

veloped efficient SMC techniques for privacy-preserving data mining [4, 5, 64].

3. Pseudo random functions: A Pseudo Random Function (PRF) is a determinis-

tic function f : {0, 1}n → {0, 1}n which is efficient (computable in polynomial

time) and takes two inputs x, k ∈ {0, 1}n. A PRF is a secure algorithm that

when given an n-bit seed k, and an n-bit argument x, it returns an n-bit string

fk(x) such that it is infeasible to distinguish fk(x) for random k from a truly

random function [137]. In PPRL, PRFs that have a long period and that are

not predictable can be used to generate random secret values to be shared by a

group of parties [69, 152, 178].

4. Phonetic encoding: A phonetic encoding algorithm, such as Soundex, NYSIIS

or Double-Metaphone [23], groups values together that have a similar pronun-

ciation. The main advantage of using a phonetic encoding is that it inherently

provides privacy [105], reduces the number of comparisons and thus increases

scalability [23], and supports approximate matching by its tolerance against

data errors [23, 105]. However, they are language dependent and only a limited

work has been done on non-English phonetic encodings [160, 173].

5. Reference values: The use of reference values, which are common to all database

owners, has been applied in several PPRL approaches [104, 154, 170, 210]. Such

reference lists can be constructed either with random faked values, or values
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that for example are taken from a public telephone directory, such as all unique

surnames and town names. This list of reference values can be used by the

database owners to calculate the distances between their attribute values and

the reference values. Reference values are used in Chapters 6, 7, and 8.

6. Embedded space: Similar to mapping-based blocking as described in Sec-

tion 2.1.1, this technique embeds the attribute values into a multi-dimensional

metric space [18, 170, 210] while preserving the distances between these values.

It is often difficult to determine a good dimension of the metric space.

7. Generalization techniques: The idea behind data generalization techniques is

to overcome the problem of re-identification of individual records by general-

izing the data in such a way that re-identification from the perturbed data is

not feasible [130, 138, 182]. k-anonymity is one data generalization technique

that has been used as an effective privacy technique in PPRL [101, 104, 145]. A

database is k-anonymous mapped (satisfies the k-anonymity criteria) if every

combination of (masked) quasi-identifier values is shared by at least k records

in the database [182]. Different notions of k-anonymous mapping are explored

in [72, 129, 180, 208]. Other generalization techniques include value generaliza-

tion hierarchies [91], top-down specialization [145], and binning [132]. We use

k-anonymous mapping in Chapters 6 and 7 and binning in Chapter 8.

8. Bloom filters: A Bloom filter is a bit-string data structure of length l bits where

all bits are initially set to 0. k independent hash functions, h1, h2, . . . , hk, each

with range 1, . . . , l, are used to map each of the elements in a set s into the

Bloom filter by setting k corresponding bit positions to 1. The Bloom filter was

proposed by Bloom [17] for efficiently checking set membership [20]. Bloom

filters have been used in PPRL for private matching of records as they provide

a means of privacy assurance [56, 57, 103, 125, 174, 198], if effectively used [123].

We propose a Bloom filter-based two-party PPRL solution in Chapter 9.

9. Noise addition: Adding noise in the form of extra records to the databases

that are linked is a data perturbation technique [108] which can be used to over-

come the problem of frequency analysis attacks within PPRL protocols [53, 121].

However, when adding extra records there is generally a trade-off between link-

age quality (due to false matches), scalability, and privacy [105]. False matches

can also affect the privacy of the matched real values. Recently, differential

privacy [61] has emerged as an alternative to randomization noise addition

technique for PPRL. Initially, differential privacy was designed to support in-

teractive queries and aggregate results presentation by adding noise to each

statistical query result (such as Count or Sum) with the magnitude of noise

depending on a privacy parameter ǫ and sensitivity of the query set Q. In

recent times, it has been adapted to address microdata publication as well as

PPRL [18, 92, 124].



38 A Taxonomy of Privacy-Preserving Record Linkage Techniques

4.2.2 Linkage Techniques

The dimensions under this topic cover techniques used in each of the required steps

of the PPRL process, as illustrated in Figure 2.2.

4.2.2.1 Indexing / blocking

The techniques employed in the blocking step to facilitate record linkage solutions

that scale to very large databases become more challenging if privacy concerns have

to be considered. In PPRL, there is a trade-off of the blocking step not only between

accuracy and efficiency, but also privacy. Several approaches have been proposed

that address the scalability of PPRL solutions by adapting existing blocking tech-

niques, such as standard blocking, mapping-based blocking, clustering, sampling,

and locality sensitive hash functions, into a privacy-preserving context, as discussed

in Section 3.4.

4.2.2.2 Comparison

Linkage quality is heavily influenced by how the values in records or individual

attributes are compared with each other [157]. As discussed in Section 2.2, the naïve

approach of exact matching of encrypted values does not provide a practical solution.

Several of the approximate comparison functions that were presented in Section 2.1.2

have been investigated from a privacy preservation perspective, as described in detail

in Sections 3.3 and 3.4.

4.2.2.3 Classification

The decision model used in PPRL to securely classify the compared record pairs

needs to be effective in providing highly accurate results, such that the number of

false negatives and false positives is minimized, while at the same time preserving

the privacy of all records that are not part of matching pairs. As discussed in Sec-

tion 2.1.3, a variety of classification techniques has been developed for record linkage.

Details of which classification techniques have been used in PPRL were described for

individual approaches in Chapter 3.

4.2.3 Theoretical Analysis

Theoretical estimates for the three main properties of PPRL allow the comparison

of PPRL techniques, as well as an assessment of their expected scalability to large

databases, quality of linkage results, and privacy guarantees.

4.2.3.1 Scalability

This includes the computation and communication complexities that measure the

overall computational efforts and cost of communication required in the PPRL pro-

cess. Generally, the big-O notation is used to specify the computation and commu-
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nication complexities [155]. Given n is the number of records in a database, the

big-O notation of O(log n) represents logarithmic complexity, O(n) linear complex-

ity, O(n log n) log-linear complexity, O(n2) quadratic complexity, O(nc) polynomial

complexity, O(poly log n) polynomial logarithmic complexity, and O(cn) exponential

complexity, where c > 1.

4.2.3.2 Linkage quality

The quality of linkage is theoretically analyzed in terms of fault-tolerance of the

matching technique to data errors and variations, whether the matching is based on

individual fields or whole records, and the types of data the matching technique can

be applied to. Fault-tolerance to data errors can be addressed by using approximate

matching or pre-processing techniques such as spelling transformations. Records can

either be compared as a whole (record-based) or by comparing the values of individ-

ual selected attributes (field based), as was discussed in Section 2.1.2. Approximate

comparison functions specific to different types of data are required to link different

data types, as was discussed in Section 2.1.

4.2.3.3 Privacy vulnerabilities

The privacy vulnerabilities that a PPRL technique is susceptible to provide a theoret-

ical estimate of the privacy guarantees of that technique. The main privacy vulner-

abilities include frequency attack and dictionary attack (as discussed in Section 4.2.1.3).

Bloom filter-based PPRL techniques are generally also susceptible to cryptanalysis at-

tacks. As Kuzu et al. [122] recently showed, depending upon the number of hash

functions employed and the number of bits in a Bloom filter, using a constrained

satisfaction solver allows the iterative mapping of individual hash-encoded values

back to their original values.

Another vulnerability associated with three-party and multi-party approaches is

collusion between parties. Parties involved in a PPRL protocol may work together

to find out another party’s data. These common privacy vulnerabilities of PPRL

techniques are discussed in detail in Chapter 5.

4.2.4 Evaluation

The outcomes of a PPRL technique need to be experimentally / practically evaluated

in terms of the three properties: scalability, linkage quality, and privacy.

4.2.4.1 Scalability

The measures that were discussed in Section 2.1.4 (and that will be detailed in Sec-

tion 5.3.3) can be used to assess the scalability property of PPRL similar to those

assessing the scalability of non privacy-preserving record linkage approaches.
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4.2.4.2 Linkage quality

Assuming that truth data are available (which is not the case in many PPRL appli-

cations), the linkage quality can be assessed using the measures that are used for

record linkage in a non privacy-preserving setting as was discussed in Section 2.1.4

(and will be detailed in Section 5.3.2).

4.2.4.3 Privacy evaluation

Various measures have been used to assess the privacy protection that PPRL tech-

niques provide. Here we present the most prominent measures used.

1. Entropy, Information gain (IG) and Relative information gain (RIG): En-

tropy measures the amount of information contained in a message [105, 177].

The entropy H(X) and conditional entropy H(Y|X) form the basis for the IG

metric [177]. IG assesses the possibility of inferring the original message Y,

given its encoded version X [105, 177]: IG(Y|X) = H(Y)− H(Y|X). The lower

the value for IG is, the more difficult it is to infer the original value from its en-

coded value. The RIG measure normalizes the scale of IG (0.0 ≤ RIG(Y|X) ≤
1.0) with regard to the entropy of the original text Y [105], and is defined as

RIG(Y|X) = IG(Y|X)
H(Y)

. Since RIG values are normalized between 0.0 and 1.0,

they provide a marginal scale for comparison and evaluation.

2. Security / Simulation proof: The proof of privacy of PPRL solutions can be

evaluated by simulating the solutions under different adversarial models [22,

73, 135]. A party’s view in the execution of a PPRL technique needs to be

simulated given only its input and output to evaluate the privacy in terms

of what the party learns from the execution. If under a certain adversarial

model (honest-but-curious or malicious, as was discussed in Section 4.2.1.3) a

party learns nothing from the execution except its input and output, then the

technique can be proven to be secure and private.

3. Probability of re-identification: The probability of re-identification of values

can be used as a measure to evaluate privacy against several attacks such as

frequency attacks, dictionary attacks, and cryptanalysis attacks (as will be dis-

cussed in detail in Chapter 5).

4.2.5 Practical Aspects

The final three dimensions cover practical aspects of PPRL techniques including the

datasets used for experimental evaluations, how a solution was implemented, and if

a proposed solution was developed with a specific application area in mind.

4.2.5.1 Implementation

This dimension specifies the implementation techniques, such as programming lan-

guages and computing platforms, that have been used to prototype a PPRL tech-
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nique in order to conduct its experimental evaluation. Some solutions proposed in

the literature provide only theoretical proofs but they have not been evaluated exper-

imentally, or no details about their implementation have been published.

4.2.5.2 Datasets

Experimental evaluation on one or ideally several datasets is important for the critical

evaluation of PPRL techniques. Due to the difficulties of obtaining real-world data

that contain personal information, synthetically generated datasets are commonly

used. Several tools are available to generate synthetic data [34, 88]. However, to

evaluate the practical aspects of PPRL techniques with regard to their expected per-

formance in real-world applications, evaluations should ideally be done on datasets

that exhibit real-world properties and error characteristics.

4.2.5.3 Application areas

This dimension describes if a PPRL technique has been developed with a certain

application area in mind, or if it is specialized to link data from a certain application

area. Some of the areas targeted include healthcare, census, e-commerce, information

retrieval (IR), and finance applications.

4.3 Discussion and Research Directions

We conducted an extensive survey of existing PPRL techniques along the proposed

taxonomy as summarized in Table 4.1. These PPRL techniques were described in

detail in Chapter 3. In this section, we analyze the surveyed PPRL techniques as

characterized in Table 4.1 with regard to the taxonomy proposed. This analysis high-

lights several areas of where future research in PPRL needs to focus on.

As our survey has shown, since the beginning of the development of techniques

that aim to provide solutions for PPRL, there has been a large variety of techniques

that have been investigated. There is a clear path of progress, starting from early

techniques that solve the problem of privacy-preserving exact matching, moving on

to techniques that allow approximate matching while keeping the attribute values

that are matched private, and finally in the last few years focusing on techniques

that address the issue of scalability of PPRL to large databases. This has also been

illustrated in Figure 3.1 on Page 32.

The gaps that are identified in existing PPRL research are illustrated in Figure 4.2

which follows the same five topics of our taxonomy shown in Figure 4.1. The research

questions that are represented by darker boxes with solid outlines are considered

within the scope of this research study and the remaining represented by lighter

boxes with dotted outlines are left out for future research which will be discussed

further in Chapter 11.
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Figure 4.2: The gaps identified in existing PPRL research to outline research direc-
tions. The research gaps represented by darker boxes with solid lines are addressed

in this thesis, while the lighter boxes with dotted lines are left for future work.

4.3.1 Privacy Aspects

With regard to privacy, several topics require further attention in order to make PPRL

more applicable for practical applications.

• Efficient two-party PPRL: Most work in PPRL require a (trusted) third party to

perform linkage which is not always available in real-world applications. The

two-party solutions proposed in the literature often use expensive SMC privacy

techniques to ensure that no private information can be inferred from the data

exchanged between the two database owners, which are not practical due to

computational cost. Therefore, two-party PPRL solutions that employ efficient

privacy techniques are required for practical PPRL applications where no third

party is available. We address this problem in Chapters 7, 8 and 9.

• Efficient privacy techniques: As the characterization of PPRL techniques in

Table 4.1 has shown, many different privacy techniques have been explored

over the past nearly two decades to address the various challenges posed by

the requirements of PPRL. More advanced privacy techniques have been de-

veloped in the second and third generations while first generation techniques

are mainly based on secure hash-encoding only. More research is needed to

investigate the use of efficient and other advanced scalable privacy techniques

for private blocking and private matching and classification in PPRL that pro-

vide sufficient privacy protection to work in combination with or even replace

the expensive SMC-based techniques. This is addressed in our work by using

efficient perturbation-based privacy techniques such as reference values [154],

Bloom filters [17], and k-anonymous mapping [72] in Chapters 6, 7, 8, and 9.

• PPRL on multiple databases: Most work in PPRL (and record linkage in

general) thus far has concentrated on linking data from two database owners
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only. Only a small number of approaches have investigated how to efficiently

link databases from more than two data sources [101, 125, 145, 152, 158]. As

the scenarios in Section 1.2 have shown, however, linking data from more than

two sources is commonly required. Recent work by Sadinle et al. [168] extends

the Fellegi and Sunter model to link more than two databases in a non privacy-

preserving context.

• PPRL for other adversarial models: Most solutions proposed so far assume

the HBC adversarial model. However, this is not sufficient in many real-

world applications. PPRL under different adversarial models such as the covert

model [8] and accountable computing [95] need to be developed.

4.3.2 Linkage Techniques

Research in non-PPRL in recent years has developed various advanced techniques

that provide improved scalability and linkage quality. Thus far, however, most of

these techniques have not been investigated in a privacy-preserving setting.

• Efficient blocking: Most work in PPRL that has investigated scalability through

some form of blocking (or indexing) technique has employed the basic stan-

dard blocking approach [65]. As explained in Section 2.1.1, this technique

is not efficient and has quadratic complexity when the databases are large.

Mapping-based blocking [96] is a second technique that has been employed in

PPRL [170, 210]. The use of locality sensitive hashing (LSH) has recently been

proposed to improve the scalability of PPRL techniques [56]. Other efficient

blocking techniques such as the sorted neighbourhood, or suffix-array-based

techniques, need to be explored in a privacy-preserving setting. Chapters 6

and 7 contribute to this problem by using the sorted neighborhood approach.

• Distributed PPRL: Distributing computations in PPRL among computational

resources can scale up the process with respect to large scale data volumes.

Distributed computing in PPRL needs to consider the privacy aspect, making

the task challenging. There has not been much work done in this direction.

Karapiperis and Verykios [107] proposed a distributed framework for PPRL

based on LSH. More work needs to be carried out addressing this aspect of

scalability to develop and implement practical PPRL solutions.

• Matching different data types: PPRL solutions in the second and third gen-

erations consider approximate comparison, mostly for string data type only.

Research is required to develop approximate comparison functions that are tai-

lored to numeric, date, age, and time attributes, and even for those containing

geographic and other complex types of information [29].

• Advanced classification: As Table 4.1 shows, most current approaches to PPRL

employ a simple threshold or rule-based deterministic approach to classify the

compared record pairs. Only limited work has been conducted that investigates
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the application of advanced classification techniques that have been developed

for record linkage in the past decade, such as machine learning or graph-based

collective classification approaches, in a privacy-preserving context [145, 209,

213]. This constitutes a significant gap between the state-of-the-art techniques

in non-PPRL techniques and those employed in PPRL, and provides ample

opportunities for research to significantly improve PPRL techniques.

4.3.3 Theoretical Analysis

Analyzing PPRL solutions in terms of privacy, linkage quality, and scalability in order

to understand the expected performances of the solutions with regard to these three

properties is important and has some theoretical challenges unaddressed.

• Theoretical privacy assessment: While the analysis of scalability of PPRL al-

gorithms with regard to their communication and computation requirements is

based on standard approaches such as the big-O notation [155], and the analy-

sis of linkage quality can be assessed by the type of data that can be matched,

and if matching is exactly or approximately, the theoretical assessment of the

privacy achieved within PPRL is currently the least matured aspect.

4.3.4 Evaluation

The evaluation of implementations of PPRL techniques with regard to their scalabil-

ity, linkage quality, and privacy preservation, poses some unique challenges.

• An evaluation framework for PPRL: There is currently no framework avail-

able for PPRL that facilitates the comparative evaluation of different PPRL tech-

niques with regard to privacy, scalability, and linkage quality. Researchers have

used a variety of evaluation measures and datasets (both real and synthetic),

which makes comparing existing techniques difficult. We address this gap by

proposing an evaluation framework for PPRL solutions in Chapter 5.

• Privacy measures: While the two properties of scalability and linkage quality

have standard sets of measures that have been widely used for evaluation, pri-

vacy does not have such a standard set of measures to allow for comparative

evaluation. A standard set of privacy measures is required that quantifies the

amount of privacy provided by a privacy-preserving solution. We propose a set

of measures for empirical privacy evaluation of PPRL solutions in Chapter 5.

• Clerical review in PPRL: Current PPRL techniques only address how to assess

linkage quality and completeness to a very limited degree. Given in a practi-

cal linkage situation the true match status of the compared record pairs are

unlikely to be known, and in a PPRL scenario even the actual record attribute

values cannot be inspected (because this would reveal private information),

measuring the linkage quality and completeness is difficult [11, 33]. Hence, re-

search directions are required for privacy-preserving interactive record linkage
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through active learning systems or crowdsourced systems [6, 141, 196]. Recent

work in PPRL proposes an interactive solution with human-machine interaction

to improve the quality of linkage results [121].

4.3.5 Practical Aspects

Several gaps exist in the PPRL literature regarding the practical aspects.

• Realistic (synthetic) datasets: Since real-world datasets are often not available

and/or accessible due to privacy and confidentiality concerns, researchers are

often dependent on synthetic datasets for evaluating their algorithms. While

there have been several tools developed that allow the generation of datasets,

a practical way of generating datasets that exhibit similar characteristics as real

data (such as data errors, variations, and dependencies between attributes) is

essential to conduct an effective empirical evaluation. We contribute to this

direction by developing a flexible data generation and corruption tool [35, 183]

to generate and/or corrupt synthetic datasets with realistic data characteristics,

which will be discussed in Chapter 5.

• A language for PPRL: Researchers have used various languages to prototype

their algorithms for evaluation, making it difficult to compare different algo-

rithms. A language for PPRL will need to facilitate the detailed specifications

of all building blocks of the PPRL process in the form of abstract represen-

tations, such as XML schemas. This will make it possible for researchers to

implement their novel algorithms and techniques, and integrate them so as to

evaluate them comparatively.

• Comprehensive PPRL evaluation: So far it seems that no single PPRL tech-

nique has outperformed all other techniques in the three properties of link-

age quality, privacy preservation, and scalability to large datasets. However,

the lack of comprehensive studies that compare existing techniques within the

same framework and on different types of data, means that it is currently not

possible to determine which technique(s) perform better than others on data

with different characteristics and of different sizes. We contribute to this re-

search avenue by conducting a comprehensive evaluation of several PPRL so-

lutions in terms of all three properties of PPRL in Chapter 10.

4.4 Summary

We have identified fifteen dimensions that allowed us to characterize PPRL tech-

niques, and to generate a taxonomy of such techniques. This proposed taxonomy

can be used as a comparison and analysis tool for PPRL techniques. Through this

taxonomy we have identified various shortcomings of current approaches to PPRL

that suggest several future research directions in this field. We will address some of

these identified shortcomings in the remaining chapters of this thesis.



Chapter 5

Evaluation Framework

As the research directions identified in the previous chapter (Section 4.3) stated, (1)

developing an evaluation framework for privacy-preserving record linkage (PPRL)

with a standard set of measures for assessing the three main properties of scalability,

linkage quality, and privacy, and (2) using realistic datasets are the two important

research problems in order to practically evaluate and implement PPRL solutions

in real-world applications. Recognizing this, we propose an evaluation model in

Section 5.2 based on which we define evaluation measures for the three properties in

Section 5.3. We present details of the datasets in Section 5.4, the linkage studies in

Section 5.5, and the computing platform in Section 5.6 that will be used to evaluate

our proposed algorithms.

5.1 Introduction

Over the years, various solutions for PPRL have been proposed as reviewed in Chap-

ter 3. Privacy is addressed in these solutions using two different types of general ap-

proaches: (1) secure multi-party computation (SMC) techniques [41, 78, 135] and (2)

data perturbation techniques [108, 109, 199]. The former approach is generally more

expensive with regard to the computation and communication complexity though it

provides strong privacy guarantees, while the latter uses efficient techniques and, as

opposed to SMC techniques, in many cases it reveals a certain amount of information

without compromising the privacy of sensitive data. However, due to the presence

of partially revealed information, such perturbation techniques can be vulnerable to

various types of attack.

It is important to note that the objective of PPRL is different from that of privacy-

preserving data publishing [70, 179] or of statistical data disclosure [54, 90]. Privacy-

preserving data publishing masks a dataset in such a way that no identifying infor-

mation about individuals can be inferred from the published dataset, while PPRL

aims to identify matching records in two or more datasets without disclosing any

sensitive information that can be used to identify individual records (and thus the

entities they refer to) in the datasets. Therefore, in data publishing sensitive attributes

which may contain some (masked) sensitive values (for example, an attribute contain-

ing disease values) are disclosed possibly along with the (masked) quasi-identifiers

47
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(QIDs) that contain personal identifying information such as names and addresses.

In PPRL, on the other hand, only the (masked) QIDs are disclosed (only to the parties

involved in the process) to allow the identification of matching records.

Various privacy models have been used for data publishing and different attacks

have been studied in privacy preserving data publishing, including minimality at-

tacks [207], deFinetti’s theorem [112], and composition attacks [71]. However, most of

these attacks are not applicable to PPRL since they use information from the (masked)

sensitive attributes as well. Without sensitive attribute values disclosure, such attacks

would not be possible.

Several attack methods have been developed to investigate the privacy guarantees

of perturbation-based PPRL solutions. The main attacks and vulnerabilities of PPRL

defined in the literature include:

• Dictionary attack: In dictionary attacks, it is assumed that the adversary

knows the masking function (e.g. one-way hash function such as SHA and

MD5 [171]) and potential parameter values used in a PPRL protocol, so that

the adversary can mask a large list of common (global) values using the same

masking function and parameter values as used in the PPRL protocol until a

matching masked value is found. A keyed masking approach can overcome

this problem by using a secret key for masking [116]. The Hashed Message

Authentication Code (HMAC) function [116] is one such approach. Without

knowing the secret key, a dictionary attack is unlikely to be successful.

• Frequency attack: Frequency attacks are still possible on the keyed masking

approach (without knowing the secret key), where the frequency distribution

of a set of masked values matches with the distribution of known global val-

ues [136].

As is examined in [126], original values can be identified in a pseudo-anonymiza

tion-based PPRL solution by using frequency distribution analysis of anonymized

values. Experimental results showed that exact identification, without any prior

knowledge, is difficult but the characteristics of the dataset and the quality of

prior knowledge influence the likelihood of

• Cryptanalysis attack: Generally, Bloom filter-based PPRL techniques [56, 174,

188] are also susceptible to cryptanalysis attacks [122], where the bit distribu-

tion in a Bloom filter allows an adversary to learn the characteristics of hash

functions that are used to map the values from records (e.g. q-grams) into the

Bloom filter. This is similar to a frequency attack on bits and consequently on

the values or q-grams which are mapped to those bit positions.

Kuzu et al. [122] proposed a constraint satisfaction cryptanalysis attack on

Bloom filters in PPRL, where the Bloom filter encodings can be iteratively

mapped to values in a global dataset, and certain values can then be identi-

fied using the properties of the hash functions and the frequency distribution

of values.
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• Composition attack: Given auxiliary information (also called background

knowledge [71]) about the individual datasets that are linked and / or certain

records in the datasets, a composition attack can be successful by combining

knowledge from more than one independent masked datasets to learn sensitive

values of certain records [71].

An attack on distance preserving perturbation techniques is investigated in [185]

where the original data values can be re-identified with high level of confidence

if knowledge about mutual distances between data objects is available.

• Collusion: Another vulnerability associated with three-party and multi-party

solutions is the collusion between some of the parties involved in the protocol

(one of several or a set of database owners and the third party) with the aim to

learn the other database owner’s data. Different types of scenarios might occur

with regard to collusion, as they will be discussed in detail in Section 5.2.

Linkage studies or linkage attacks defined in the statistical disclosure commu-

nity [54] are general terms for attack methods, that link a masked dataset to an

external global dataset with known values using any subset of the previously dis-

cussed attacks in order to re-identify records and / or attribute values (known as

identity or attribute disclosure, respectively, as will be explained in Section 5.3.1) in

the masked dataset. We consider linkage attack methods based on frequency attack,

cryptanalysis attack, and collusion for privacy evaluation of PPRL solutions.

Based on such re-identification attacks, PPRL solutions can be evaluated for pri-

vacy guarantees. However, as characterized in Chapter 4, most of the PPRL solutions

developed so far have not been properly evaluated in terms of the privacy aspect.

Some PPRL solutions provide theoretical proofs of the privacy aspect which makes

the comparative practical evaluation of solutions difficult. As Rudin and Wagstaff

explained in [167], in the communities of machine learning, data mining, and statis-

tics, relatively little effort is made on practical evaluation and deployment of novel

algorithms, and these communities should prioritize applications of algorithms that

have impact to science and society. The same holds for the area of PPRL as well.

A general framework with a set of standard and normalized measures is there-

fore required to conduct such practical evaluation and comparison of PPRL solutions

with respect to the three main properties of PPRL, scalability, quality, and privacy.

Cormode et al. [46] recently proposed a unifying framework for evaluating empirical

privacy and empirical utility of several privacy techniques by using the measures

of prediction accuracy and relative query results, respectively. However, the predic-

tion accuracy measure used in this work provides only the average empirical privacy

based on the accuracy of the classifier that aims to find correlations between each

quasi identifier and the sensitive attribute (which is also not available in PPRL as dis-

cussed above). Given this lack of standard privacy measures and evaluation methods

for PPRL, we therefore propose a comprehensive evaluation framework that includes

a wide range of numerical measures for empirical evaluation of all three properties,

and that enables quantifying and interpreting the performances of different PPRL

solutions on the same scale.
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Figure 5.1: General three-party (left) and two-party (right) settings in PPRL solutions

with linkage databases DA and DB and the data flow between the parties (taken
from [190]). The numbers correspond to the order of the data flow in the protocols.

5.2 Evaluation Model

In this work, we consider an evaluation model for PPRL on two data sources only. As-

sume Alice and Bob are two database owners with their respective databases DA and

DB (generally referred as D), who participate in a PPRL protocol to identify match-

ing records in their databases that correspond to the same real-world entities under

the privacy-preserving setting. Existing PPRL techniques can be categorized based

on their need (or not) of a third party for performing record linkage [24, 28, 194].

General settings of three-party and two-party protocols are illustrated in Figure 5.1.

In three-party protocols, a trusted third party, Carol, is involved in conducting the

linkage, while in two-party protocols only the two database owners participate in

the PPRL process. As was discussed in Section 5.1, three-party protocols are often

not sufficient in many real-world applications due to the absence of a trusted third

party, since there is a risk of collusion between one of the database owners and the

third party with the aim to learn the other database owner’s sensitive data. Two-

party protocols do not rely on a trusted third party but they generally require more

complex techniques to ensure that the two database owners cannot infer any sensitive

information from each other during the linkage process.

The internal adversaries in a PPRL protocol are the parties involved in the process

(Alice, Bob, and / or Carol). We assume that the parties involved follow the honest

but curious behavior (HBC) [78, 135], in that they try to find out as much as possible

about the data of the other parties while following the protocol. So far most devel-

oped PPRL techniques adapt the HBC threat model, as surveyed in Chapter 4. It is

important to note that the HBC threat model does not prevent collusion between par-

ties [135]. There have been few PPRL techniques proposed for the malicious threat

model [135] as well, where adversaries may behave arbitrarily. Proving privacy un-

der the malicious model is more difficult because there exist several and potentially

unpredictable ways for malicious parties to deviate from the protocol [22, 73, 135].

Two different general philosophies are adopted to preserve privacy and confiden-

tiality of person-level data, which are restricted access and restricted data [54, 67]. To

obtain effective results of privacy-preserving tasks, it is often preferred to have un-

controlled access to restricted data rather than restricted access to data [67]. Often,

restricted data is achieved in PPRL by first decoupling personal (quasi-)identifying
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DB and the global dataset G (taken from [190]). P is the total assumed population.

attributes (QIDs) from sensitive attributes [121] and then by transforming a database

(D) into a masked version (DM) in order to protect the actual sensitive values in the

database while preserving certain information to perform effective linkage.

Privacy evaluation requires assessing the risk of disclosure by calculating the

probability that an adversary can correctly identify a value in a released dataset [54].

Such re-identification studies can be done through a linkage attack, as described in

Section 5.1, using an available dataset, for example a publicly available global dataset

such as a telephone book or an electoral roll. In this thesis we assume the adversary

is using a linkage attack for evaluating the privacy of PPRL solutions.

We assume that the adversary has access to a global dataset G that contains N =
|G| unique values or combinations of values (for example, combinations of surname

and first name values) of the population P from which the databases DA and DB are

also drawn. This is reasonable because generally personal identifying attributes, such

as names and addresses, are used for linkage and in many countries this background

information is partially available in public resources (e.g. North Carolina (NC) voter

registration data [31]). The individual databases that are used for the linkage (DA

and DB) can be considered as horizontal partitions of G (i.e. records overlap), while G

can be a vertical partition of the linkage databases (attributes overlap). An overview

of the overlaps of records and attributes in the datasets G, DA, and DB is illustrated

in Figure 5.2.

We only consider insider attacks (which involve the internal adversaries who are

the database owners and / or the third party) for privacy evaluation. We deem

insider attacks to be the worst case because an insider adversary can be assumed

to have more information than any external adversary, including knowledge about

the PPRL protocol used, masking methods, and parameter values of the linkage

techniques and algorithms used. It is important to note that a frequency attack might

still be possible by an external adversary without this information. The possible

scenarios for insider attacks in three-party and two-party protocols are:

• Three-party protocols

1. In the first scenario, we assume that Alice, Bob and Carol do not collude

with each other. This case is much harder to attack because Carol does not
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know the encoding key and / or the parameter values used in the protocol

and Alice and Bob do not have access to the actual or masked values in each

other’s database. In this case, only a frequency attack might be possible

by Carol depending on the PPRL protocol used.

2. In the second scenario, one of the database owners (Alice or Bob) gets the

other database owner’s data (Bob’s or Alice’s, respectively) by colluding

with the third party Carol. This is a worst case assumption because if two

parties collude in such a way, then the privacy of the party that is not

involved in the collusion cannot be assured. However, many three-party

protocols assume a trusted third party (as reviewed in Chapter 3) to reduce

this risk of collusion. An alternative is to re-design a three-party protocol

into a two-party protocol, which is one of the important research aims of

this thesis.

3. Similar to the above scenario, Carol colludes with Alice or Bob in order to

get the (secret) encoding key. Thereby it can conduct a dictionary attack

using the key, and so can decode both Alice’s and Bob’s data. Instead of

one of the database owners, the third party gets both database owners’

data in this type of collusion. However, the colluding database owner in

many cases would not like to reveal the (secret) encoding key because that

would compromise the privacy of its own data as well.

4. The first scenario, where no collusion between parties happens, is the best

possible assumption. However, collusion can still happen in a HBC proto-

col [135]. The second and third scenarios are the worst case assumptions

and they may be too unrealistic. Therefore, in this fourth scenario we as-

sume that Carol knows only the masking function(s) and the parameter

values used (and not the encoding key), either by colluding with Alice or

Bob, or assuming or estimating parameter values with some background

knowledge. Carol can perform an attack depending on the protocol, for

example a cryptanalysis attack [122], with this knowledge to infer Bob’s or

Alice’s values.

• Two-party protocols

1. No collusion is obviously possible in two-party protocols. However, sim-

ilar to the fourth scenario in three-party protocols which was described

above, Alice and Bob know the masking function(s) and the parameter val-

ues used in the protocol, and as a result they can perform attacks on the

exchanged (masked) data between them to infer actual values from each

other’s data.

In the remainder of this thesis, we assume that Carol knows the masking func-

tion(s) used in a PPRL protocol and knows or predicts the parameter values used in

the protocol (fourth scenario for three-party protocols) to evaluate privacy of three-

party protocols, similar to any two-party protocols. This assumption of an adver-
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sary’s background knowledge (or partial knowledge) has been used in many attack

methods that have been proposed in the literature [71, 122, 126, 185].

5.3 Evaluation Measures

The evaluation of a PPRL technique needs to be conducted in terms of the three

properties of privacy, quality, and scalability. Quality and scalability correspond to

the effectiveness and efficiency of a linkage process and they can be assessed based

on available standard measures (such as precision, recall, reduction ratio, etc.) that

will be discussed in Sections 5.3.2 and 5.3.3, respectively. However, the privacy pro-

tection provided by a PPRL technique is comparatively more difficult to assess. In

the following Section 5.3.1, we present evaluation measures that can be used to eval-

uate the privacy aspect of PPRL. While the privacy measures based on information

gain (see Section 5.3.1.1) have previously been used in PPRL [56, 105], the statistical

disclosure risk measures based on probability of suspicion are novel.

5.3.1 Privacy Measures

Privacy is normally measured as the risk of disclosure of information to the parties

involved in a PPRL protocol. As defined in the glossary on statistical disclosure

control [89], if an entity’s confidential information can be identified in the disclosed

(masked) data with an unacceptably narrow estimation, or if it can be exactly iden-

tified with a high level of confidence, then this raises a privacy risk of disclosure.

A practical way of assessing disclosure risk is to conduct re-identification studies by

linking values from a masked dataset to an external global dataset G [54].

We categorize the types of disclosure into record level or identity disclosure, and

attribute level disclosure [55, 67, 89]. Identity disclosure occurs when a record with

multiple attribute values from the masked dataset DM can be linked to an entity

with the same masked attribute values in GM, which allows re-identification of the

entity. It is important to note that a rare value (that only occurs in one or a small

number of entities) for a single attribute could also lead to re-identification of the

entity represented by that value by spontaneous recognition [55]. On the other hand,

attribute level disclosure allows an attribute value (characteristics) of an entity from

DM to be accurately re-identified.

Our method to evaluate privacy is to simulate attacks (as described in Section 5.1)

on protected data in the masked dataset (DM) by linking them to the masked version

(GM) of the known unprotected (publicly available) data in G [149]. A disclosure

risk (DR) measurement that boils down to a numerical value to quantify the privacy

protection of a PPRL technique based on such a simulation attack allows to compare

the privacy guarantees of several PPRL techniques.

The resulting DR measures should be numerical values that are normalized be-

tween 0.0 and 1.0, where DR = 0.0 means no disclosure at all and DR = 1.0 means a

provable disclosure (i.e. exact and correct re-identification). These normalized values

can also be specified as degrees of privacy as illustrated in Figure 5.3, following the
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Figure 5.3: Degrees of privacy (adapted from [166]): Degrees range from absolute
privacy, where the adversary cannot re-identify the actual value from the masked
data, to provably exposed, where the adversary can provably re-identify the actual

value.

work on degrees of connectivity or routing anonymity proposed by Reiter et al. [166].

In the following, we first consider linkage using a single attribute in defining the pri-

vacy evaluation model, and then we extend the model to include multiple attributes.

5.3.1.1 Disclosure risk of linkage using a single attribute

If an attribute value aM of a record RM in a masked dataset (RM ∈ DM) matches

with exactly one value for the same attribute in GM, then there is a provably exposed

risk of disclosure of aM, because the masked value aM can be identified with this

one-to-one match. A value aM that matches with a small number of values in GM

has a risk of suspicion with a high probability, while a value aM that matches with

possibly many values in GM has a disclosure risk with a low probability. Absolute

privacy is attained with values aM that match with either no values in GM (i.e. no

background information is available), or with all the values in GM, or with a user-

specified acceptable number of values k (as discussed below).

Given ng is the number of global values in GM that are matched with an attribute

value aM in the masked dataset DM, the probability of suspicion of the corresponding

value aM is calculated as 1/ng. We then normalize this probability into the 0.0 to

1.0 interval, where 1.0 indicates provably exposed risk and 0.0 represents absolute

privacy, as defined in Equation 5.1 (with N = |GM|).

Ps(aM) =
1/ng − 1/N

1 − 1/N
(5.1)

Statistical disclosure risk measures: Using the probability of suspicion (Ps) values

calculated for each of the values aM in an attribute in DM, we present five different

statistical disclosure risk (DR) measures to calculate the overall disclosure risk of the

entire masked dataset DM.

As a running example, Table 5.1 shows the Ps values for a small made-up dataset

of n = 50 values. This dataset contains, for example, five values of an attribute with

Ps = 1.0, which means that these five attribute values match with only one attribute

value out of 1, 000 in GM (we assume GM contains 1, 000 values of the same attribute),
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Table 5.1: Probability of suspicion (Ps) of values aM in an attribute in a small (fictional)
example masked dataset DM. The total number of aM values is n = 50, and the total
number of global values for the same attribute in GM is N = 1, 000. Values are sorted

according to their Ps(aM
i ), 1 ≤ i ≤ n (adapted from [190]).

ID Ps ID Ps ID Ps ID Ps ID Ps ID Ps ID Ps ID Ps ID Ps ID Ps

1 1.0 2 1.0 3 1.0 4 1.0 5 1.0 6 0.5 7 0.5 8 0.5 9 0.5 10 0.5
11 0.5 12 0.5 13 0.5 14 0.5 15 0.5 16 0.33 17 0.33 18 0.33 19 0.33 20 0.33
21 0.33 22 0.25 23 0.25 24 0.2 25 0.2 26 0.2 27 0.2 28 0.2 29 0.2 30 0.1
31 0.1 32 0.1 33 0.1 34 0.1 35 0.1 36 0.01 37 0.01 38 0.01 39 0.01 40 0.01
41 0.002 42 0.002 43 0.002 44 0.002 45 0.0 46 0.0 47 0.0 48 0.0 49 0.0 50 0.0

ten attribute values that match with two global values (Ps = 0.5), and six attribute

values that match with either no values or all the 1, 000 values in GM (Ps = 0.0).

1. Maximum risk (DRMax): This measure allows us to define the maximum risk

of disclosure of the masked dataset. It corresponds to the maximum value for

the probability of suspicion Ps of attribute values aM in the masked dataset, as

explained in Equation 5.2.

DRMax = max
aM∈DM

(Ps(aM)) (5.2)

In the example given in Table 5.1, the DRMax is calculated as DRMax = 1.0. This

explains that the masked dataset has a maximum risk of 1.0 of any sensitive

value being disclosed, i.e. there exists at least one attribute value in DM that

matches to a single value in GM.

2. Marketer risk (DRMark): It is important to know how many values in a masked

dataset can be exactly re-identified. This risk is known as marketer risk and

it evaluates the risk of disclosure from the perspective of a marketer adver-

sary who wishes to re-identify as many values as possible in the disclosed

dataset [48]. Marketer risk is measured as the proportion of values in DM that

have provably exposed risk of disclosure (Ps = 1.0) with one-to-one mapping

in GM. DRMark for the running example in Table 5.1 is 5/50 = 0.1 calculated

using Equation 5.3 (as there are five of the fifty values having Ps = 1.0).

DRMark = |{aM ∈ DM : Ps(aM) = 1.0}|/n (5.3)

where Ps(aM) is the probability of suspicion of a value aM in DM and n = |DM|.

3. Mean risk (DRMean): The mean risk calculates the average of probability of

suspicion values to evaluate the average disclosure risk. DRMean is calculated
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using Equation 5.4. A value in the example masked dataset illustrated in Ta-

ble 5.1 has an average probability of 0.28 of being re-identified, i.e. in average a

value in DM can be matched to around four values in GM.

DRMean =
1

n ∑
aM∈DM

Ps(aM) (5.4)

4. Median risk (DRMed): The median risk takes into account the distribution of

probabilities of suspicions in the masked dataset and it gives the center of

the distribution of disclosure risk values. DRMed is calculated as shown in

Equation 5.5, assuming Ps(aM) values are sorted in ascending order. DRMed

for the running example (with n = 50) results in 1/2 × [Ps(aM
25) + Ps(aM

26)] =
(0.2 + 0.2)/2 = 0.2.

DRMed =











1/2 × [Ps(aM
n/2) + Ps(aM

n/2+1)] n is even

Ps(aM
(n+1)/2

) n is odd
(5.5)

5. User acceptance (UA) mean risk (DRUAM): If the users / data respondents of

the linkage accept that the data will not be at a disclosure risk if a value aM

in their masked dataset matches with more than a certain number of values (k

unique values) in the global dataset, then we can eliminate the risk of disclosing

those masked values that are below the respective probability of suspicion, as

the probabilities of suspicion of those values would be in the low confidence

level, as shown in Figure 5.3. This approach is based on the concept of (k, 1)-
anonymization mapping [72], where any value in a masked dataset is consistent

with at least k original values and thus provides (k, 1)-anonymization privacy

constraints. Ramachandran et al. [163] and Ferro et al. [66] proposed similar

approaches to identify vulnerable records in a dataset that match with at most

k global records in public data.

The mean disclosure risk calculation can then be applied using Equation 5.4 af-

ter removing or setting to 0.0 the probabilities of suspicions that are acceptable

by the users. For our running example, if the acceptable minimum number

of global values that match with a single value in the masked dataset is set to

k = 4 (Ps = 0.25), then in Table 5.1 we can set the probability of suspicion for

the last 27 values (those with Ps < 0.25) to Ps = 0.0, and DRUAM would then be

calculated as DRUAM = 0.24 using Equation 5.4.

We illustrate the distribution of Ps values in the example dataset shown in Ta-

ble 5.1 and the calculated statistical disclosure risk measures in Figure 5.4. In Fig-

ure 5.5, we also present the distribution of Ps values in a real North Carolina (NC)

voter dataset [31] (to be described in detail in Section 5.4) and the disclosure risk
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Figure 5.5: Distribution of probability of
suspicion (Ps) of first name attribute values
in the hash-encoded NC voter dataset [31]
and the calculated disclosure risk measures
for a simple dictionary attack on hash-
encoded values using the same dataset as the
global dataset. We set k = 50 for DRUAM

calculation (taken from [190]).

measures calculated for a simple dictionary attack on hash-encoded first name val-

ues using the same original NC voter dataset as the global dataset. As can be seen

from these two figures, this set of statistical disclosure risk measures provide numer-

ical and statistical information (maximum, mean, median, marketer, and UA mean)

on the risk of disclosing a masked dataset.

Information theory measures: The standard information theory measures, such as

information gain (IG) and relative information gain (RIG) [177], can also be used as

DR measures based on a simulation attack on the masked dataset using the original

dataset as the global dataset. IG assesses the possibility of inferring values in the

original dataset D, given its masked version DM [177]. These information theory

measures have been used for privacy evaluation in PPRL before [56, 105]. However,

there are some limitations of these measures.

The first limitation is that the global dataset can only be assumed to be the same

as the original linkage dataset (G ≡ D), while our statistical DR measures, proposed

in the previous section, are independent of the choice of the global datasets. The

second is that the IG measures provide only the overall total information gain from

the masked dataset while our DR measures provide statistical summary information

of the disclosure risk. We use a small example dataset shown in Table 5.2 to illustrate

the calculation of IG and RIG.

Following the notation used by Durham [56] and Karaksidis et al. [105], the en-

tropy H(D) of a dataset D is defined as:
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Table 5.2: Disclosure risk calculation of a small example dataset using IG and RIG.
The global dataset is the same as the original dataset (G ≡ D) and the total number

of global values in G is N = n = 100 (taken from [190]).
Original Prob of values log2(ng/N) Masked Prob of values H(D|DM = aM)

values in D in G (ng/N) values in DM in GM (nM
g /N)

peter 30/100 = 0.3 −0.522 p360 50/100 = 0.5 0.6 × log20.6+
pete 20/100 = 0.2 −0.464 0.4 × log20.4 = 0.48

smith 50/100 = 0.5 −0.5 s530 50/100 = 0.5 1.0 × log21.0 = 0.0
H(D) = −∑(ng/N)log2(ng/N) = 1.48 H(D|DM) = −∑(nM

g /N)× H(D|DM = aM) = 0.48

H(D) = − ∑
a∈D

(ng/N)log2(ng/N) (5.6)

where ng denotes the number of global values in G that match with a value a in

D, and N is the total number of values in G. H(D) is calculated for the example

dataset with three made-up values (shown in Table 5.2) to 1.48, as explained in the

left three columns in the table.

The conditional entropy of a dataset D given DM, H(D|DM), is defined as [105]:

H(D|DM) = − ∑
aM∈DM

(nM
g /N)H(D|DM = aM) (5.7)

where nM
g is the number of masked global values in GM that match with a masked

value aM in DM, and N is the total number of values in GM. H(D|DM) for the run-

ning example is 0.48, as shown in the right three columns in Table 5.2. The entropy

and conditional entropy form the basis for the information gain (IG) metric [177]. IG

between D and DM is defined as [105]:

IG(D|DM) = H(D)− H(D|DM) (5.8)

The running example results in IG = 1.48 − 0.48 = 1.0. The lower the value

for IG is, the more difficult it is for an adversary to infer the original dataset from

a masked dataset. The relative IG (RIG) measure normalizes the scale of IG (0.0 ≤
RIG(D|DM) ≤ 1.0) with regard to the entropy of the original dataset D [105], and is

defined as RIG(D|DM) = IG(D|DM)/H(D). This is calculated as RIG = 1.0/1.48 =
0.67 for the running example dataset. Since RIG values are normalized between 0.0

and 1.0, they provide a marginal scale for comparison and evaluation.

5.3.1.2 Disclosure risk of linkage using multiple attributes

Record level (or identity) disclosure is possible when multiple attributes are used for

linking, as it is generally the case. Disclosure risk calculation for linking on multiple
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attributes can be done in three ways depending on the information available in the

global dataset G.

1. The first case is if the global dataset contains combinations of individual val-

ues for all attributes (m attributes) used in the linkage and / or blocking, and

each combination refers to one single entity, then the disclosure risk calculation

is similar to the single attribute disclosure calculation. For each record RM in

the masked dataset DM, the number of global records ng in GM that have the

matching (masked) values in the same attributes of RM is calculated and the

probability of suspicion of RM then is Ps(RM) = 1/ng. An example would be

if a combination of masked values of ‘amilia’ for the first name attribute and

‘smith’ for the last name attribute of a record RM in DM matches with ng = 2

combinations / records in GM that have the same masked values in the corre-

sponding two attributes, then the probability of suspicion of RM is calculated

as Ps(RM) = 1/2 = 0.5. This disclosure risk is higher than when only a sin-

gle attribute is used in linkage, since multiple attributes (more information) of a

record are compared with the entities in G that also have the same combination

of attribute values (which could likely allow for an identity disclosure).

The distributions of probability of suspicion values in a real NC voter dataset

[31] and the calculated disclosure risk measures for a dictionary attack on hash-

encoding of multiple attributes are shown in Figure 5.6. As the figure illus-

trates, when multiple attributes are used in linkage the disclosure risk becomes

higher compared to the risk when only a single attribute is used, as was shown

in Figure 5.5. The probability of suspicion and the disclosure risk values be-

come higher with more attributes used. The number of unique combinations

of attribute values of first name and city is smaller than the number of unique

combinations of first name and last name which results in lower disclosure

risk values for the former, as can be seen in Figures 5.6(a) and 5.6(b), respec-

tively. The probability of suspicion of the four attributes first name, last name,

city, and zipcode provide a marketer risk of DRMark = 0.84, as shown in Fig-

ure 5.6(d). This is similar to the results by Sweeney [181] which showed that

around 90% of the population of the USA have a unique combined value of the

three attributes zipcode, gender, and date of birth.

2. The second case is where the global dataset G contains combinations of at-

tribute values as in case 1, but a certain subset of attribute values of a record

RM in DM do not match with any values in the corresponding attributes in GM.

For example, a masked first name value of ‘amilia’ in DM matches with ng1
= 2

masked first name values in GM but the corresponding (masked) last name

value ‘dickson’ in DM does not match with any global values (ng2 = 0). In such

a case, we calculate the probability of suspicion as Ps(RM) = 1/(ng1
× N) =

1/(2 × 1, 000) = 0.0005, by considering all the global values in GM as possible

matches (N = 1, 000 in this example) for masked values that match with zero

global values.
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(c) Probability of suspicion of first name, last name, and city
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(d) Probability of suspicion of first name, last name, city, and zipcode
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Figure 5.6: Distributions of probability of suspicion (Ps) of (a) first name and city, (b) first
name and last name, (c) first name, last name, and city, and (d) first name, last name, city,
and zipcode attribute values in the hash-encoded NC voter dataset [31] and the calculated
disclosure risk measures for a simple dictionary attack on hash-encoded values using the
same dataset as the global dataset. We set k = 50 for DRUAM calculation (taken from [190]).

3. In the third case, the combinations of attribute values are not available in GM

(i.e. GM consists of individual lists of global values for each attribute, but not

the combinations of different attribute values). In this case, we multiply the

number of global values that match with each attribute of a record RM in DM

individually, in order to calculate the total number of global values that match

with the record RM. The probability of suspicion for RM in this case would

be Ps(RM) = 1/(ng1
× ng2 × · · · × ngm), where m is the number of attributes

used for the linkage. For example, if a record RM in DM with masked values

of ‘amilia’ and ‘smith’ for the first name and last name attributes, respectively,

matches with ng1
= 2 global records in GM that have the same (masked) first

name value, and ng2 = 10 global records that have the same (masked) last name

value, then the probability of suspicion of that record is Ps(RM) = 1/(2× 10) =
1/20 = 0.05.
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5.3.2 Linkage Quality Measures

PPRL has to deal with the trade-off between privacy protection and the quality of

linkage. Achieving more privacy generally means losing more data quality due to

information lost in the protected / masked data as compared to the original data,

and thus losing more quality of the linkage results. In practice, measuring the link-

age quality is often difficult, because no truth data with known match status are

available in many real-world applications [33]. However, the linkage quality can be

assessed in a pilot study using synthetic data (representing real data characteristics)

with known match status [35], or using the manual classification results obtained by

clerical review in a record linkage process [29].

The quality of linkage in PPRL depends on both the quality of blocking as well as

the quality of comparison and classification results (the three main steps in the PPRL

process as is illustrated in Figure 2.2). The measures that are commonly used in infor-

mation retrieval and data mining, such as precision, recall, and f-measure [140, 161],

can be used to assess the quality of private matching and classification results. The

quality of blocking can be measured using the pairs completeness and pairs quality

measures [29, 62]. Based on the classification of the number of true matches (TM),

false matches (FM), false non-matches (FN), true non-matches (TN), true matches

included in the candidate record pairs generated by blocking (BM), and true non-

matches included in the candidate record pairs (BN), the quality of linkage measures

are defined as given below.

1. Precision: Precision is the fraction of record pairs classified as matches by a

decision model that are true matches: Precision = TM/(TM + FM).

2. Recall: Recall is the fraction of true matches that are correctly classified as

matches by a decision model: Recall = TM/(TM + FN).

3. F-measure: The F-measure or F-score is the harmonic mean of Precision and

Recall, calculated as F-measure = 2 × (Precision × Recall)/(Precision + Recall).

4. Pairs completeness (PC): Pairs completeness measures the effectiveness of a

blocking technique in the record linkage process: PC = BM/(TM + FN). This

measure is similar to Recall.

5. Pairs quality (PQ): Pairs quality measures the efficiency of a blocking technique

and is similar to the Precision measure: PQ = BM/(BM + BN).

5.3.3 Scalability Measures

The third aspect of PPRL that makes the linkage process scalable to large real-world

databases is dependent on the complexity of the protocol. The number of record

pairs that are compared and classified using a PPRL technique determines the com-

plexity of the protocol. A naïve pair-wise comparison of two databases is of quadratic

complexity in the size of the databases [30]. Private blocking techniques [56, 104, 124]
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are used in the first step of PPRL to reduce this large number of comparisons by re-

moving pairs that are unlikely to refer to matches without comparing them in detail

in the next step.

The efficiency of a blocking technique can be measured using reduction ratio

(RR) [29, 62], which provides a value that indicates by how much a blocking tech-

nique is able to reduce the number of candidate record pairs that are being generated

compared to all possible record pairs. A higher RR value means a blocking technique

is more efficient in reducing the number of candidate record pairs that are being gen-

erated. RR is calculated as RR = 1.0 − (BM + BN)/(TM + FN + FM + TN).

The complexity of techniques (or algorithms) used in PPRL has also an impact

on the scalability of the protocol. Generally the complexity of algorithms is mea-

sured using the big-O notation [155] and practically evaluated in terms of efficiency

using measures that are dependent on the computing platform and the networking

infrastructure used, such as the total runtime, the memory space required to perform

the linkage, and the size of messages or data communicated between parties in the

protocol. The challenge with these platform dependent measures is how to normal-

ize them into the 0.0 to 1.0 interval, to allow comparison of several PPRL solutions.

A possible way to evaluate runtime, for example, is to calculate the average time

required for a candidate record pair to be compared and classified using the most

computationally intensive PPRL technique, and then multiply this value by the total

number of candidate record pairs (nA × nB, if no blocking is applied). This would

give an upper bound for expected runtime. Then we can run all the PPRL solutions

that need to be evaluated on the same computing platform, and measure their run-

time. Using the upper bound calculated, the resulting runtime values can then be

normalized between 0.0 and 1.0.

5.3.4 Overall Evaluation Score

A generic score can be calculated to evaluate PPRL techniques in terms of the three

properties using the measures discussed in the above sections. For example, given the

measures for disclosure risk (DR), linkage quality (LQ), and scalability (S), the overall

evaluation score can be computed as the weighted average of the three measures.

score = α(1 − DR) + β(LQ) + (1 − α − β)(S) 0 ≤ α + β ≤ 1 (5.9)

Different weights for the three properties can be used depending on the impor-

tance of the properties with respect to application or user preferences. This final

numerical score indicates the viability of a specific PPRL solution in terms of pri-

vacy, linkage quality, and scalability. A graphical representation of the three prop-

erties of PPRL provides more insights into the analysis and comparison of different

PPRL techniques. Three-dimensional plots can be used to define the three properties

along the three axes of the graphs to compare PPRL solutions, as will be shown in

Chapter 10.
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Table 5.3: The number of records in the datasets used for experiments, and the num-
ber of records that occur in both datasets of a pair (i.e. the number of true matches).

Dataset Alice Bob Overlap

OZ-1730 No-mod / Mod 1,730 1,730 849 (50%)

OZ-17,294 No-mod / Mod 17,294 17,294 8,536 (50%)

OZ-172,938 No-mod / Mod 172,938 172,938 86,476 (50%)

OZ-1,729,379 No-mod / Mod 1,729,379 1,729,379 864,231 (50%)

NC 481,315 480,701 333,403 (70%)

5.4 Datasets Used

We used two real-world databases to empirically evaluate and compare the perfor-

mances of our proposed PPRL solutions and several existing state-of-the-art PPRL

solutions, as will be presented in the following chapters, using our proposed evalu-

ation framework.

1. OZ: The first dataset is a real Australian telephone database that contains

6,917,514 records. We extracted four attributes commonly used for record link-

age: given name (with 78,336 unique values), surname (with 404,651 unique

values), suburb (town) name (13,109 unique values), and postcode (2,632 unique

values). To generate datasets of different sizes, we sampled 0.1%, 1%, 10% and

100% of records in the full database twice each for Alice and Bob, and stored

them into pairs of files such that 50% of records appeared in both files of a pair.

The record pairs that occur in both datasets are exact matches. These datasets

are labelled as ‘No-mod’ for no modification. To investigate the performance

of PPRL solutions in the context of ‘dirty data’ (where attribute values con-

tain errors and variations), we generated another series of datasets where we

modified each attribute value by applying a randomly selected character edit

operation (insert, delete, substitute, or transposition) [34]. These datasets are

labelled as ‘Mod’ for modification. This leads to a much reduced number of

exact matching record pairs and allows us to evaluate the quality of solutions

in terms of the accuracy of approximate matching.

2. NC: The second dataset we used is a large real-world voter registration database

from North Carolina (NC) in the US [31], containing records of over 8 million

voters. We downloaded this dataset every two months since October 2011 to

build a longitudinal dataset. We extracted four attributes (first name, surname,

city, and zipcode) of 629,362 voters, such that 314,644 were represented by a

single record and 314,718 by two or more records (up-to 6), where duplicate

records contain both typographical errors, and actual variations and changes of

values. We split this dataset (randomly) into two containing 481,315 and 480,701

records for Alice and Bob, respectively. Because voter registration numbers iden-

tify unique voters we can calculate the linkage quality. Table 5.3 provides an

overview of the datasets we generated.



64 Evaluation Framework

Table 5.4: The number of records in the corrupted datasets used for experiments, and
the number of records that occur in both datasets of a pair (i.e. the number of true
matches). Three levels of corruptions are applied which are labelled as ‘Light-mod’,

‘Med-mod’, and ‘Heavy-mod’.
Dataset Alice Bob Overlap

OZ Cor-4,611 Light / Med / Heavy 4,611 4,611 2,305 (50%)

OZ Cor-46,116 Light / Med / Heavy 46,116 46,116 23,058 (50%)

OZ Cor-461,167 Light / Med / Heavy 461,167 461,167 230,583 (50%)

NC Cor-5,488 Light / Med / Heavy 5,488 5,488 2,744 (50%)

NC Cor-54,886 Light / Med / Heavy 54,886 54,886 27,443 (50%)

NC Cor-548,860 Light / Med / Heavy 548,860 548,860 274,430 (50%)

3. OZ Cor and NC Cor: To simulate real-world ‘dirty’ data [29, 83] that ex-

hibit data errors, such as data entry errors, phonetic variations, typographical

mistakes, measurement or format variations, scanning and Optical Character

Recognition (OCR) errors, and speech recognition errors of dictated values, we

applied several corruption functions to the two above described databases (OZ

and NC) and generated another set of corrupted datasets. These datasets allow

us to evaluate the performance of PPRL algorithms (especially the quality of ap-

proximate matching) in a real-world setting. We used our flexible data Genera-

tion and Corruption of personal data tool (GeCo) [35] to corrupt the OZ and NC

databases. The GeCo tool is available online: http://dmm.anu.edu.au/geco [183].

We applied four different corruption functions as given below:

(a) Character edit corruptor: This function applies one of the four edits at a

randomly selected position in an attribute value: insert a new character,

delete the character, substitute with a new character, or transpose the char-

acter with one of its neighboring characters. Probabilities are set as equal

for each of these edits except for the postcode / zipcode attribute where

only the substitute edit is applied with probability of 1.0 (since zipcode /

postcode values have fixed length of numerical characters).

(b) OCR corruptor: This function replaces a character sequence in an attribute

value with a new character sequence that has similar shape, such as ‘5’ and

‘s’ or ‘m’ and ‘rn’, to model OCR errors.

(c) Keyboard corruptor: This function simulates typing errors by randomly

replacing a character with a neighbouring character according to a key-

board layout matrix, such as ’a’ and ’s’ in QWERTY keyboard layout.

Probabilities for selecting a replacement in a row or column are set to

0.5 for each.

(d) Phonetic corruptor: This function simulates phonetic errors by replacing

a sequence of characters in an attribute value with a new sequence of

characters that sounds similar, such as ‘ph’ and ‘f’, or ‘rie’ and ‘ry’.
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We applied all four corruption functions with equal probability (of 0.25) to all

attributes except the postcode / zipcode attribute to which only the character

edit corruptor and OCR corruptor are applied with probabilities set to 0.5.

For each dataset, we generated three variations with three different levels of

corruptions, which are lightly modified (that corrupts only one attribute), mod-

erately modified (corrupts two attributes), and heavily modified (corrupts all

four attributes). The attributes are selected for corruption randomly with 0.25

of probability. The different levels of corruptions in the datasets allow us to

evaluate how these corruptions affect the performance of the solutions. The set

of corrupted datasets we generated for the experimental study are shown in

Table 5.4.

It is important to note that we assume in this study that the datasets do not con-

tain any missing values in the attributes used for linkage and / or blocking. However,

real-world datasets do contain missing values due to various reasons [29]. Address-

ing the problem of missing values by preprocessing the datasets before conducting

PPRL is out of the scope of this study.

5.5 Linkage Attacks

We present the methods for linkage attacks on our proposed solutions using an ex-

ternal global dataset, for privacy evaluation of the solutions, in the relevant chapters.

As explained by Duncan et al. [54], a drawback of using external datasets for risk

calculation in disclosure control, is that the results are dependent on the choice of

global datasets. Conducting linkage studies using a very large external dataset as

the global dataset would require longer runtime and more computational resources

which might not be practical for empirical evaluation. In addition, an external global

dataset might not be available for privacy evaluation. In the worst case scenario, the

global dataset G can be considered to be equivalent to the linked database D (i.e. G ≡
D). Conducting linkage studies of attacks such as frequency attacks, cryptanalysis

attacks, and collusion using the masked dataset (DM) and the original dataset D

as the global dataset would provide the highest disclosure risk in this worst case

scenario. If a specific privacy technique provides sufficient privacy guarantees under

such a worst case assumption, then the privacy technique would provide sufficient

privacy in a real-world setting as well, because the global dataset available to an

adversary is highly likely to be different from the original dataset. If G is larger than

D, then there would possibly be many global values in GM that match a masked

value in DM, which therefore results in lower disclosure risk. On the other hand, if

G is smaller than D, there might be masked values in DM that do not match with

any global values in GM, again resulting in lower disclosure risk.

We consider the worst case assumption of G ≡ D (though they are not practical in

real applications, they provide a baseline for privacy comparison of PPRL techniques)

in this thesis for privacy evaluation and comparison of several PPRL techniques in

Chapters 6, 7, 8, 9, and 10. However, the proposed framework can be used with
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any choice of global datasets (as long as all the techniques are compared for privacy

against attacks using the same global dataset).

5.6 Computing Platform Used

We prototyped all the solutions presented in the remaining chapters using the Python

programming language (version 2.7.3), due to its flexibility and efficiency for rapid

prototype development model. We also used the Freely extensible biomedical record

linkage (Febrl) [32] tool for implementing the approximate string comparison func-

tions and phonetic encoding function. All tests were run on a compute server with

two 64-bit Intel Xeon (2.4 GHz) CPUs, 128 GBytes of main memory and running

Ubuntu 12.04. The programs and (the small) test datasets are available upon request.

5.7 Summary

In this chapter, we have provided the details of the experimental setup used to con-

duct an effective and practical empirical study of our PPRL solutions which will be

presented in the next four chapters. We have proposed a comprehensive evaluation

framework for PPRL solutions that enables assessment and comparison of different

solutions in terms of the three main properties of PPRL, which are scalability, linkage

quality, and privacy.

Scalability and quality of PPRL solutions can be assessed using the standard mea-

sures that have been used in the literature. However, numerical measures to quantify

the privacy guarantees provided by a solution need to be defined. We have defined

five different disclosure risk measures that can be used to measure the privacy by

simulating frequency linkage attacks using an external global dataset. Then we pre-

sented the details of datasets and computing platform used for the empirical study

of our research.

Future work includes extending the evaluation framework to address the problem

of privacy-preserving linking of multiple sources and to consider different adversar-

ial models such as the covert model [8] or accountable computing [95] for privacy

evaluation. A limitation with the proposed disclosure risk measures for privacy

evaluation is that they strongly depend on the attack methods used and the fine tun-

ing of parameters of those attack methods. More research is required in the direction

of developing efficient and effective attack methods for privacy evaluation.



Chapter 6

Three-Party Private Blocking

Addressing the scalability aspect of privacy-preserving record linkage (PPRL) using

efficient private blocking techniques has been identified as one of the important re-

search directions in Chapter 4. In this chapter, we propose an efficient three-party

private blocking solution based on the sorted neighborhood approach that combines

the k-anonymous mapping and reference values privacy techniques, as will be de-

scribed in Section 6.2. We analyze the solution in Section 6.3 with respect to com-

plexity, privacy, and quality, and in Section 6.5 we validate these analyses through

an empirical study based on a linkage attack proposed in Section 6.4. Finally we

summarize our findings in Section 6.6.

6.1 Introduction

The scalability challenge of PPRL has been addressed by several recent approaches

that adapt existing blocking techniques, such as standard blocking [65], mapping-

based blocking [96], clustering [44], and locality sensitive hashing [113], into a privacy-

preserving context. One popular blocking technique used in traditional record link-

age is the sorted neighborhood approach [52, 84], where database records are sorted

according to their sorting key values (SKVs - values of an attribute or a combina-

tion of attributes used to sort the records) over which a sliding window is moved.

Candidate pairs are generated from the records that are within the current window.

The sorted neighborhood approach is very efficient compared to other blocking

techniques in that its resulting number of candidate record pairs is O((nA + nB)w),
compared to O((nA · nB)/b) for other blocking techniques [30], where nA and nB are

the respective number of records in the two databases DA and DB to be linked, b is

the number of blocks generated, and w is the size of the window. However, the use

of sorted neighborhood methods for blocking has only received a little attention in

the PPRL context [106].

Karakasidis et al. [106] proposed a sorted neighborhood-based private blocking

approach using k-nearest neighbor (or k-medoids) clustering to group similar (candi-

date) records into the same block individually by the database owners (which is less

efficient than the sorted neighborhood approach in terms of computation complex-

ity), followed by using the sorted neighborhood approach by the third party to group

67
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Table 6.1: Notation used in this chapter.
DA, DB Databases held by database owners Alice and Bob, respectively
R Publicly available reference dataset
R′ Lists of reference values selected from R by Alice and Bob
nA, nB Number of records in DA and DB, respectively
nR, n Number of reference values in R′, and number of records in databases
k Minimum number of records in a block
SA, SB Set of sorted neighborhood clusters (SNC) in Alice’s and Bob’s databases, respectively
OA, OB Set of k-anonymous clusters in Alice’s and Bob’s databases, respectively
C Set of candidate record pairs
sim(·, ·) Function used to calculate similarities between two reference values (0 ≤ sim(·, ·) ≤ 1)
st Minimum similarity threshold value to determine a pair of reference values as similar, 0 ≤ st ≤ 1

candidate blocks from both database owners. In contrast, we aim to develop more

efficient technique by using only the sorted neighborhood approach for the private

blocking of databases.

In this chapter, we propose an efficient three-party blocking technique for PPRL

based on the sorted neighborhood approach using a combination of two privacy tech-

niques: k-anonymous mapping [72, 182] and public reference values [154]. The aim

of this approach is to efficiently create k-anonymous blocks represented by reference

values from which candidate pairs are generated, without revealing any information

that can be used to infer individual records and their attribute values. We propose

two versions of k-anonymous mapping to generate k-anonymous blocks. The first

is based on similarity between reference values (which we call SNC-3PSim) and the

second on the size of blocks (SNC-3PSize). In the following section we describe our

protocol in detail.

6.2 Proposed Solution

In this section we describe the steps of our sorted neighborhood clustering (SNC)-

based three-party private blocking protocol. Assume Alice and Bob are the two own-

ers of their respective databases DA and DB, and Carol is the trusted third party. Alice

and Bob share the sorted reference list R′ containing nR reference values selected from

the publicly available reference dataset R.

Reference values have been used in PPRL as a privacy technique for mapping the

attribute values in a database into a masked version such that the distances between

the actual values are preserved in the masked version [104, 154, 170, 210]. Such

reference values can either be constructed with random faked values, or they can be

extracted from a publicly available dataset, for example, all unique surnames taken

from a public telephone directory or electoral roll (such as the NC voter dataset [31]

as described in Section 5.4).

Figure 6.1 illustrates the three-party setting for private blocking, and Table 6.1

summarizes the notation we use in this chapter. We illustrate the steps with an ex-

ample consisting of two small databases with given names and surnames, as shown

in Figure 6.2. The two database owners Alice and Bob perform the following steps, as

illustrated in Figures 6.2 to 6.4 (taken from [189]).
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DA DB
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Alice Bob

Carol

(7) candidate
record pairs

blocks
(5) k−anonymous

blocks (7) candidate
record pairs

(5) k−anonymous

(1) agree on parameters

Figure 6.1: Outline of the proposed three-party private blocking protocol (taken
from [189]). The numbers given correspond to the protocol steps described in Sec-

tion 6.2 that involve an exchange of data between parties.
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Figure 6.2: Example databases held by Alice (DA) and Bob (DB) with surname and
given name attributes and their SKVs, and a list of reference values (R′) along with

their position values, used to illustrate the protocol described in Section 6.2.

1. They agree upon the list of attributes to be used as the sorting keys, the ref-

erence dataset R, the number of reference values to be used nR, the minimum

number of records in a block k, a similarity (approximate string comparison)

function sim(·, ·) to compare reference values (0 ≤ sim(·, ·) ≤ 1), and the min-

imum similarity threshold st used to decide if two blocks are to be merged in

the SNC-3PSim approach described in Step 4.

2. Alice and Bob each randomly selects and sorts nR (nR ≤ |R|) reference values in

lexicographical order. The value for nR can be chosen as nR = min(|DA|, |DB|)/k,

so that each block will contain roughly around k database records. It is impor-

tant to note that both Alice and Bob have the same list of sorted reference values

R′ at the end of this step and Carol does not know R′. A secret random seed

shared by Alice and Bob (but not known to Carol) can be used to select the same

set of values from R into R′ by both Alice and Bob.

3. Alice and Bob individually insert their records based on the records’ SKVs into

the sorted list of reference values to create SNC blocks, as shown in Figure 6.3.

An inverted index data structure can be used to efficiently insert records where

the keys are the reference values and the corresponding values contain a list of

SKVs that are lexicographically sorted before the reference value.
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Figure 6.3: Insertion of SKVs into the sorted list of reference values (protocol step 3)
where each block is represented by one reference value (shown in italics font), and
merging of blocks to create k-anonymous blocks (protocol step 4) where each block

is represented by one or more reference values (in this example, k = 3).

Algorithm 6.1 : Size-based merging
Input: S: Set of SNC blocks (b : [v1, . . . , vl ])

k: Minimum number of elements in a block
Output: O: Set of k-anonymous blocks

(‘b_x . . . _(x + y)′ : [v1, . . . , vk ])
1: ids = []; sizes = [] {[] is an empty list}
2: for (r, c) ∈ S do

3: ids+ = [r]; sizes+ = [len(c)]
4: end for

5: min_size = min(sizes)
6: while min_size < k and len(ids) > 1 do

7: min_size_block = S.getID(len(b) =min_size)
8: block_vals = S[min_size_block]
9: i = ids.getindex(min_size_block)

10: prev_block = ids[i-1]; next_block = ids[i+1]
11: if len(S[prev_block]) < len(S[next_block])

then

12: block_id =min_size_block +prev_block
13: block_vals += S[prev_block]
14: else

15: block_id = min_size_block + next_block
16: block_vals += S[next_block]
17: end if

18: update(sizes); min_size = min(sizes)
19: O[block_id] =block_vals
20: end while

Algorithm 6.2 : Sim-based merging

Input: R′: List of sorted reference values
[r1, . . . , rnR

]
S: Set of SNC blocks (b : [v1, . . . , vl ])
k: Minimum number of elements in a block
st: Minimum similarity threshold
sim(·, ·): Similarity comparison function

Output: O: Set of k-anonymous blocks
(‘b_x . . . _(x + y)′ : [v1, . . . , vk ])

1: i = 0
2: while i < nR do

3: block_vals = []; block_id = ‘b’
4: num_vals = 0; j = 0
5: sim_val = 0.0
6: while (num_vals < k and i + j < nR)

or (sim_val ≥ st and i + j < nR) do

7: ri = R′[i + j]; b = S[ri+j]
8: num_vals += len(b)
9: block_vals += b

10: sim_val = sim(ri+j, ri+j+1)
11: block_id += str(i + j) + ‘_’
12: j+= 1
13: end while

14: O[block_id ] = block_vals
15: i+= j
16: end while

4. The next step is to create k-anonymous blocks. After inserting records into the

sorted list of reference values there will be nR SNC blocks each represented by

one reference value. However, to provide k-anonymous privacy characteristics,
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each database owner has to perform k-anonymous mapping [182] by merging

their blocks in such a way that each block contains at least k database records.

Block IDs are assigned to the merged (k-anonymous) blocks such that they

consist of the position values of the reference values that reside in the merged

blocks. We use block IDs of the form ‘b_x_(x+1) · · · _(x+y)’, where x is the

position value of the first reference value in the corresponding block, and (y +
1) is the number of reference values in that block. The merging of blocks

to create k-anonymous blocks is shown in Figure 6.3. This merging process

can be done in two different ways, as illustrated in Algorithms 6.1 and 6.2

(individually by Alice and Bob).

(a) SNC-3PSize: Blocks are merged until the minimum size of the blocks

becomes greater than or equal to k by iteratively identifying the smallest

block. Algorithm 6.1 provides an overview of this method. In lines 2-5, we

find the block with the smallest number of elements, and if this number

is less than k (line 6) we merge it with the smaller of its two neighboring

blocks. getID(.) and getIndex(.) are functions used to get the ID and the

index of a block in the set of SNC blocks (S), respectively, while len(.) is

a function used to calculate the length of a block. We repeat this merging

(lines 6-20) until the size of the smallest block is at least k. The values

in the merged block are stored in the output set of k-anonymous blocks

(O) in line 19 along with the block ID. This method results in similar

number of records in most blocks. However, true matches might be missed

depending on the value for k, because the similarity between reference

values is not considered.

(b) SNC-3PSim: Blocks are merged until the number of elements in each

of them becomes greater than or equal to k and the similarity between

reference values of adjacent blocks becomes less than the threshold st.

This approach follows recent work on adaptive sorted neighborhood for

duplicate detection [52]. Algorithm 6.2 shows the main steps involved in

this method. The blocks are merged until their size becomes greater than

or equal to k (line 6 in Algorithm 6.2). If the size of the (merged) block

is at least k, we compute the similarity of the next block’s reference value

ri+j+1 with the current block’s reference value ri+j, and if this similarity

value sim(ri+j+1, ri+j) is greater than or equal to st, then we continue to

merge the next block with the current block. Lines 6-13 show this loop

of merging. In line 14, the values in the merged block are stored in the

output set of k-anonymous blocks (O) with the block ID. This method is

more likely to insert similar values into one block, at the cost that the

resulting larger blocks will generate more candidate record pairs.

5. Once the k-anonymous blocks are created, they need to be sent to a third party,

Carol, to generate candidate record pairs. The values in the blocks are replaced

by their (encrypted) record IDs.
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Figure 6.4: The merging of corresponding blocks from Alice and Bob to generate
candidate record pairs as conducted by Carol in Step 6 of the protocol.

Carol receives the k-anonymous blocks from Alice and Bob and performs the following

steps:

Algorithm 6.3 : Generating candidate record pairs

Input: OA: Alice’s set of k-anonymous blocks
OB: Bob’s set of k-anonymous blocks

Output: C: Set of candidate record pairs
1: for (iA, bA) ∈ OA do

2: ref_pos_vals_alice = get_re f _pos_vals(iA)
3: bob_blocks = []; bB = []
4: for ref_pos ∈ ref_pos_vals_alice do

5: bob_blocks += OB.getIDs(ref_pos)
6: bB += OB[bob_blocks]
7: end for

8: for alice_rec_ID ∈ bA do

9: for bob_rec_ID ∈ bB do

10: C += [alice_rec_ID, bob_rec_ID]
11: end for

12: end for

13: end for

6. Carol finds corresponding blocks from Alice and Bob based on the reference

position values in the block IDs to generate candidate record pairs, as illustrated

in Figure 6.4 and Algorithm 6.3. From the block IDs, Carol extracts the position

values of the reference values that reside in the corresponding blocks using

get_re f _pos_vals(·) (line 2). In lines 3-7, Carol finds for each of Alice’s blocks all

of Bob’s blocks that need to be merged by extracting the position values from

Alice’s block IDs. Carol then performs a nested loop (lines 8-12) over Alice’s

blocks and Bob’s corresponding blocks, and stores the record pairs from Alice’s

and Bob’s records in the output set of candidate record pairs C.

7. Carol sends the record IDs of the candidate pairs C back to Alice and Bob which

then employ a private matching and classification protocol on the generated

candidate record pairs [56, 154, 174] (as will be proposed in Chapters 8 and 9).
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6.3 Analysis of the Protocol

In this section we analyse our SNC-based three-party private blocking approach in

terms of complexity, privacy, and quality of blocking.

6.3.1 Complexity

Assuming both databases contain n records (n = nA = nB) and nR reference val-

ues are selected from the reference dataset, sorting these nR reference values is of

O(nR log nR) complexity, and inserting the n database records into the sorted list of

reference values is of O(n) complexity. At the end of this step (step 3), there will

be nR SNC blocks each represented by one reference value. Merging these blocks to

create k-anonymous blocks in step 4 requires a loop over nR blocks, which results to

O(nR) merged blocks. Sending the k-anonymous blocks to Carol is of O(n) commu-

nication complexity. Carol performs a loop over the blocks (a maximum of nR blocks)

in step 6 to merge and generate candidate record pairs from Alice’s and Bob’s records.

The computation complexity of this step is O(n2
R).

The overall complexity of our approach is linear in the size of the databases n and

quadratic in the number of reference values nR. The number of generated blocks will

be on average n/k. Assuming each block contains k records, the number of candidate

record pairs generated by our approach is n
k × k2 = n k.

6.3.2 Privacy

We assume that all parties that participate in the protocol follow the honest but

curious (HBC) adversarial model [78], in that they follow the protocol while trying

to find out as much as possible about the data from the other party. We analyze

the privacy of the protocol, by evaluating what can be learned by each of the parties

from the data they communicate with each other during the protocol.

In step 5, Alice and Bob send their k-anonymous blocks (with encrypted record

identifiers) to Carol to generate candidate blocks. Since each block consists of at least

k records, it is difficult for Carol to perform a frequency linkage attack (as will be

presented in Section 6.4) to infer individual records. This is because each record in a

k-anonymous block is consistent (or similar) with at least k records in the same block

resulting in a maximum disclosure risk of DRMax = 1/k (as was discussed in Sec-

tion 5.3.1). The value for k has to be chosen carefully. A higher value for k provides

stronger privacy guarantees but more candidate record pairs will be generated.

Furthermore, Carol does not know the list of reference values used (R′), and

therefore she cannot learn the blocking details such as k-anonymous mapping. Alice

and Bob cannot learn anything about each other’s data as they do not communicate

any data between them. However, as with other three-party protocols, collusion

between the third party and one of the database owners with the aim to identify the

other database owner’s data, is a privacy risk in this approach as well [78].

In step 7, Carol sends back the candidate record pairs to Alice and Bob to perform

linkage using a private matching and classification technique [56, 154, 174], which
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Figure 6.5: An attack method for three-party private blocking solutions [56, 104, 124, 189]
using G ≡ D and the statistical disclosure risk (DR) measures (presented in Section 5.3.1)
calculated for the linkage attack. The example dataset is made-up for illustrative purposes.
Records r1 . . . r4 are consistent with 4 records in the same block b1 of size t1 = 4 resulting in
probability of suspicion of Ps = 1/4, while records r5 . . . r7 are consistent with 3 records in
the same block b2 of t2 = 3 resulting in Ps = 1/3. The total number of records in D is n = 7

(taken from [190]).

should not reveal any sensitive information (this step is outside of our protocol).

6.3.3 Quality

A good blocking technique should be able to group all similar records into the same

block - i.e., effectiveness measured by pairs completeness (PC), while keeping the

number of candidate record pairs generated as small as possible - i.e., efficiency

measured by reduction ratio (RR) [30]. SNC-3PSim retrieves more similar records

compared to SNC-3PSize as the similarity between reference values is used in SNC-

3PSim to determine the maximum size of a block. This results in higher PC and

lower RR for SNC-3PSim compared to SNC-3PSize.

The value of k also determines the PC and RR of blocking. A higher value for k

results in higher PC but lower RR. An optimal k needs to be set such that high values

for both PC and RR are achieved while k guarantees sufficient privacy as well.

6.4 Linkage Attack

Based on the evaluation model proposed in Chapter 5, we now describe the fre-

quency linkage attack for our SNC-3P approaches using an external global dataset G

(which is assumed to be the same original dataset D in the worst case as discussed

in Section 5.5) for privacy evaluation.

Generally in three-party private blocking techniques, only the number of blocks

(nB) and the size of each block (ti = |bi|, 1 ≤ i ≤ nB) are revealed to the third party

that participates in the protocol. In the masked (blocked) database DM, a record r is

consistent or similar with ti − 1 other records in the same block bi where r resides.

For our SNC-3P approaches, ti ≥ k. If r is consistent with ti records (including r) in

the local (masked) database then there would be at least ti global matching values
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Figure 6.6: Total time of the SNC-3P blocking approaches required by (a) database owners,
and (b) third party on the OZ datasets, (c) total blocking time on the OZ Cor datasets, and
(d) total blocking time on the NC Cor datasets averaged over the results of all variations of

each dataset.

ng (≥ ti) in G. Therefore the probability of suspicion (Ps) of a record r in private

blocking is Ps = 1/ti (≥ 1/ng) under the worst case assumption (G ≡ D).

The general attack method and disclosure risk calculation for three-party private

blocking solutions on a small made-up (of 7 records) dataset with two blocks b1 of

size t1 = 4 and b2 of t2 = 3 are illustrated in Figure 6.5. The maximum disclosure risk

is DRMax = 1/min(ti) = 1/3, because each masked value in the blocked database

DM is consistent with at least 3 values in the database. Lower DR values calculated

under the worst case validates that a specific private blocking solution would provide

sufficient privacy guarantees against frequency attacks in the actual setting.

6.5 Experimental Evaluation

In this section, we present and discuss the results of the experimental evaluation

study of our SNC-3P based approaches conducted on the datasets described in Sec-

tion 5.4 using the evaluation framework proposed in Chapter 5. The default param-

eters were set as st = 0.9 and k = 100 (this gives best results in terms of all three
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properties of PPRL, as will be shown in Figure 6.9). Different values for k in the

range of [3, 10, 20, 50, 100] were also used to evaluate the performance of the SNC-3P

blocking against k. A combination of two attributes was used as the sorting key:

given name / first name, and surname / last name.

Figure 6.6 shows the total blocking time required for private blocking of the SNC-

3P approaches on different datasets. As can be seen from the figure, the SNC ap-

proach (both variations of SNC-3PSim and SNC-3PSize) is very efficient (in terms of

blocking time) and is also almost linear in the size of the databases. SNC-3PSim is

faster in blocking the databases by the database owners, as shown in Figure 6.6 (a),

because the SNC-3PSize involves several iterations until the minimum bock size be-

comes at least k, as was explained in Algorithm 6.1. Both SNC-3PSim and SNC-

3PSize require almost same runtime by the third party, as shown in Figure 6.6 (b).

Hence SNC-3PSim requires shorter time in total than SNC-3PSize, especially on the

largest datasets (see Figures 6.6 (c) and 6.6 (d)).
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Figure 6.7: A comparison of reduction ratio (RR) against pairs completeness (PC) of the (a)
SNC-3PSim and (b) SNC-3PSize solutions on the OZ Cor-46,116 and NC Cor-54,886 datasets

with No-mod, Light-mod, Med-mod, and Heavy-mod variations.

A comparison of the efficiency and effectiveness of the SNC-3P blocking mea-

sured by reduction ratio (RR) and pairs completeness (PC), respectively, is presented

in Figure 6.7 on the OZ Cor-46,116 and NC Cor-54,886 datasets with different levels

of data modifications (corruptions). Different levels of corruptions applied to the

datasets (as was described in Section 5.4) allow us to evaluate the performance of

approximate matching of our solutions in the presence of data errors. As shown in

the figure, both approaches achieve high RR and PC when no modification is applied

to the datasets, and then the values decrease as the level of modifications increases.

Both approaches of SNC-3P achieve similar values for RR and PC. However, as we

discussed in Section 6.3.3, a slightly higher PC and a lower RR are achieved by the

SNC-3PSim approach, comparatively.
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Figure 6.8: A comparison of probability of suspicion (Ps) values of the blocked NC dataset
generated by the (a) SNC-3PSim and (b) SNC-3PSize approaches and the calculated disclo-

sure risk (DR) measures on the NC dataset.

We next study the distribution of Ps values in the masked and blocked NC dataset

by the SNC-3P blocking solutions, and the DR measures (proposed in Section 5.3.1)

calculated for the frequency linkage attack (described in Section 6.4). The DR results

illustrated in Figure 6.8 show the privacy aspects of both SNC-3P approaches by

providing lower values for the disclosure risk even in the worst case assumption.

Finally, we investigate the performance of our solution against different values

of k in Figure 6.9. The SNC-3P approaches achieve high values for both PC and

RR even when k = 100, which gives a strong privacy guarantee (Figure 6.9 (a)).

As discussed in Section 6.3.3, the effectiveness of blocking (PC) increases with k

while efficiency (RR) decreases. PC is slightly higher for SNC-3PSim compared to

SNC-3PSize (though the difference is not significant) due to the effectiveness of SNC-

3PSim as was discussed in Section 6.3.2.

Figure 6.9 (b) shows the scalability (in terms of blocking time) of our approach

with different values of k. Interestingly, the total time required for blocking decreases

with k. This is because when k gets larger, a smaller number of larger sized blocks

are generated, and thus it takes shorter time for k-anonymous mapping and for gen-

erating candidate record pairs. The difference in total time against k is considerable

with the SNC-3PSize approach, as illustrated in Figure 6.9 (b).

The DR measures calculated based on the linkage attack given in Section 6.4

against different values of k is illustrated in Figure 6.9 (c). As discussed in Sec-

tion 6.3.2, disclosure risk decreases when k becomes larger, because a masked value

in the blocked dataset will have at most 1/k of probability of suspicion and this value

decreases with k. These empirical results show that privacy (measured by DR) and

quality (measured by PC) of the SNC-3P approaches increase with k while scalability

or efficiency (measured by RR) decreases with k, though at a smaller cost.
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Figure 6.9: (a) Reduction ratio (RR) and pairs completeness (PC) values for the SNC-3P
blocking approaches on the OZ-17,294 Mod dataset, (b) total blocking time against the dataset
size averaged over the results of all variations of each dataset, and (c) disclosure risk values

on the OZ-17,294 Mod dataset, for different values of k.

6.6 Summary

In this chapter, we have proposed an efficient three-party private blocking technique

that can be used to make privacy-preserving record linkage applications scalable to

large databases. Our method is based on the sorted nearest neighborhood clustering

approach, and uses a combination of the privacy techniques reference values and k-

anonymous mapping. Experiments conducted on large real-world databases validate

that our approach is scalable to large databases and effective in generating quality

candidate record pairs while preserving k-anonymous privacy characteristics.

However, as discussed earlier, three-party solutions are often susceptible to collu-

sion between parties. In the next chapter, we aim to study how the sorted neighbor-

hood clustering can be used for private blocking in a two-party context.



Chapter 7

Two-Party Private Blocking

As discussed in the previous chapters, one main threat with three-party solutions

is the possibility of collusion between parties to identify the private data of another

party. In this chapter, we introduce a novel two-party private blocking technique for

privacy-preserving record linkage (PPRL) based on the efficient sorted neighborhood

clustering, as will be described in Section 7.2. Similar to the SNC-3P private blocking

approach proposed in the previous chapter, privacy is addressed by k-anonymous

mapping and public reference values. We analyze our two-party solution in Sec-

tion 7.3 and empirically evaluate in Section 7.5 based on a linkage attack presented

in Section 7.4. Finally we summarize our work in Section 7.6.

7.1 Introduction

Private blocking aims to generate candidate record pairs from two databases without

revealing any sensitive information that can be used to infer individual records and

their attribute values in the databases. As discussed in Chapter 6, the sorted neigh-

borhood approach is considered to be a very efficient technique compared to other

blocking techniques in terms of the number of candidate record pairs generated [52].

As reviewed in Chapter 3, majority of the proposed private blocking solutions

require a trusted third party to perform the blocking. Such three-party solutions

are often not reliable due to the privacy risk of collusion between the third party

and one of the database owners with the aim to learn about the other database

owner’s private or confidential information. We therefore propose an efficient two-

party private blocking technique based on the sorted neighborhood approach using a

combination of two privacy techniques: k-anonymous mapping [72, 182] and public

reference values [154].

7.2 Proposed Solution

As we did in the previous chapter, we assume again two database owners, Alice and

Bob, with databases DA and DB, participate in the protocol to perform private block-

ing on their databases. Alice and Bob have access to a publicly available reference

79
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Table 7.1: Notation used in this chapter.
DA, DB Databases held by database owners Alice and Bob, respectively
R Publicly available reference dataset
RA, RB Lists of reference values independently selected from R by Alice and Bob, respectively (RA 6= RB)
k, w Minimum number of records in a block, and size of the window
nA, nB Number of records in DA and DB, respectively
nA

R , nB
R Number of reference values in RA and RB used by Alice and Bob, respectively

nR, n Total number of reference values used, and number of records in databases
nr , ne Number of reference values in each block, and number of reference values exchanged from each block

Ai , Bi The ith k-anonymous block of Alice and Bob, respectively

Wi The ith window created by the sliding window

vi Sorting key value (SKV) of ith record in the databases

ri Reference value in the ith position in the sorted reference list
sim(·, ·) Function used to calculate similarities between two reference values ri and rj, (0 ≤ sim(·, ·) ≤ 1)
st Minimum similarity threshold value to determine a pair of values as similar, (0 ≤ st ≤ 1)
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Figure 7.1: Outline of the proposed two-party private blocking protocol (taken from [192]).
The numbers given correspond to the protocol steps explained in Section 7.2.1.

dataset R that contains reference values in the same domain as the values used for

the sorting key. All values in DA and DB are sensitive, and only R is shared between

Alice and Bob. The aim of this approach is to identify candidate record pairs from

DA and DB by using the values in R without revealing any information about the

sensitive values in DA and DB. Figure 7.1 illustrates the two-party setting and the

outline of our solution, and Table 7.1 summarizes the notation we use in this chapter.

Initially local blocks are independently generated by Alice and Bob using sorted

neighborhood-based k-anonymous clustering. Each of the generated k-anonymous

blocks contains at least k database records and nr reference values (nr ≥ 1). To

identify the candidate blocks from both databases a certain number of reference val-

ues (ne) from each block are exchanged between Alice and Bob. These exchanged

reference values represent the sorting key values (SKVs) of the records in the corre-

sponding blocks. The sorted nearest neighborhood approach is applied on the list of

exchanged reference values from both databases, to find the candidate blocks from

the reference values that fall into the same window.
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Figure 7.2: Example databases held by Alice (DA) and Bob (DB) with SKVs based on surname

attribute, and the lists of reference values (RA and RB) for Alice and Bob, respectively, used
to illustrate the protocol described in Section 7.2.1.

7.2.1 Protocol Description

In this section we describe the steps involved in our two-party sorted neighborhood

clustering (SNC)-based private blocking approach, and illustrate the protocol with

an example consisting of two small databases, as shown in Figure 7.2. The protocol

performs the following steps, as illustrated in Figures 7.2 to 7.4 (taken from [192]):

1. The first step is for the database owners, Alice and Bob, to agree upon the

attributes to be used as the sorting key, the minimum number of elements in

a block k, the size of the window w, a similarity function sim(·, ·) to compare

reference values (0 ≤ sim(·, ·) ≤ 1), and the minimum similarity threshold st

which defines if two blocks should be merged or not. The sim(·, ·) function

used here is an approximate string comparison function [29] that calculates

how similar two reference values (which are assumed to be strings) are.

2. Alice and Bob each individually selects and sorts a certain number of reference

values (nR) from the reference dataset R. We will provide details of this selec-

tion process in Section 7.2.2. The value for nR can be chosen as nR = n/k ∗ nr,

where n is the number of records in the database to be blocked, so that each

block will roughly contain nr reference values. Since Alice and Bob do this step

independently, they will end up with different lists of sorted reference values

(RA and RB, respectively). Due to the selection process, some reference values

might occur in both RA and RB.

3. Alice and Bob then individually insert their database records based on the

records’ SKVs into their sorted list of reference values. This step generates

SNC-based blocks that contain one reference value in each block and it’s cor-

responding list of SKVs which are lexicographically sorted before the reference

value (see SNC blocks in Figure 7.3). An inverted index data structure can be

used to perform this blocking efficiently.
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that are sorted near the reference values. The reference values that are selected to represent
each block are then exchanged between Alice and Bob (protocol step 5). In this example, k = 3

and st = 0.8. Reference values are shown in italic font.

Algorithm 7.1 : Generating k-anonymous blocks (protocol step 4)

Input: R′: List of sorted reference values [r1, . . . , rnR
]

S: Set of SNC blocks (r1 : [v1, . . . , vl ])
k: Minimum number of elements in a block
st: Minimum similarity threshold
sim(·, ·): Similarity comparison function

Output: O: Set of k-anonymous blocks ((r1, . . . , rnr ) : [v1, . . . , vk ])
1: i = 0
2: while i < nR do

3: block_vals = []; ref_vals = []
4: num_vals = 0; sim_val = 0.0; j = 0
5: while (num_vals ≤ k and i + j < nR) or

(sim_val ≥ st and i + j < nR) do

6: ri = R′[i + j]; c = S[ri+j]
7: num_vals += len(c)
8: block_vals += c
9: sim_val = sim(ri+j, ri+j+1)

10: ref_vals += ri

11: j += 1
12: end while

13: O[(ref_vals )] = block_vals
14: i += j
15: end while

4. The next step is to merge the SNC blocks such that each block contains at least

k database records. This provides k-anonymous privacy characteristics, as each

record in the database can be seen as similar to at least k − 1 other records. Al-

gorithm 7.1 (which is executed independently by Alice and Bob) shows the main

steps involved in the merging of SNC blocks to create k-anonymous blocks. The

k-anonymous blocks are generated by merging the SNC blocks until the num-

ber of records in the blocks becomes (or is) at least k (lines 5-12). The similarity
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corresponding candidate blocks generated (protocol step 6).

between reference values can also be considered using the sim(·, ·) function. If

the similarity between two reference values in two different blocks is greater

than or equal to the minimum similarity threshold value st, then the two blocks

are merged together. This reduces the chances of missing true candidate record

pairs that have similar SKVs [52, 211]. The first block of Bob (B1) in Figure 7.3

is an example for this similarity-based merging. Though the size of the block

represented by the reference value ‘meyler’ is equal to k = 3, the next block

represented by the reference value ‘myler’ is merged with this block since the

similarity between these two reference values is greater than or equal to st

(sim(‘meyler′, ‘myler′) = 0.9 ≥ st, where st = 0.8).

5. Once the k-anonymous blocks are generated, reference values corresponding

to each block need to be exchanged between Alice and Bob. These reference

values represent each block in their databases. The number of reference values

(ne) exchanged from each block can be 1 or more (ne ≥ 1). The privacy of the

protocol depends on the number of reference values that are exchanged. The

larger this number from each block is, the higher the accuracy but the lower

the privacy. This is discussed in more detail in Section 7.3.

6. Using the exchanged reference values the candidate blocks from Alice and Bob

can be identified to generate candidate record pairs. The sorted nearest neigh-

borhood approach is used to achieve this goal, as explained in Algorithm 7.2.

The reference values from Alice and Bob are merged and sorted first (line 1)

and then the sorted nearest neighborhood method is applied on the sorted list

of reference values using a sliding window of size w to identify the candidate
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reference values that fall in the same window (lines 3-13). The value for w rep-

resents the minimum number of reference values that must be included in the

window from each database owner. The blocks represented by these candidate

reference values are determined as candidate blocks (lines 14-18). This process

is illustrated in Figure 7.4 for w = 1 and w = 2.

Algorithm 7.2 : Generating candidate blocks (protocol step 6)

Input: RA: List of Alice’s reference values [r1, . . . , rnA
]

RB: List of Bob’s reference values [r1, . . . , rnB
]

w: Size of the window
Output: C: Candidate blocks ((rA

1 , rB
1 ), . . . , (rA

l , rB
l ))

1: R = RA ∪ RB; sort(R)
2: i = 0
3: while i < len(R) do

4: alice_refs = []; bob_refs = []
5: j = 0
6: while (len(alice_refs) ≤ w and i + j < len(R)) or

(len(bob_refs) ≤ w and i + j < len(R)) do

7: if R[i + j] ∈ RA then

8: alice_refs += R[i + j]
9: else if R[i + j] ∈ RB then

10: bob_refs += R[i + j]
11: end if

12: j += 1
13: end while

14: for rA ∈ alice_refs do

15: for rB ∈ bob_refs do

16: C += (rA, rB)
17: end for

18: end for

19: i+= j
20: end while

The candidate record pairs are generated from all the records in the correspond-

ing candidate blocks of Alice and Bob. For example, the candidate pair of blocks

(A3, B3) in Figure 7.4 generates the following candidate record pairs: (RA1, RB4),

(RA1, RB7), (RA1, RB8), (RA6, RB4), (RA6, RB7), (RA6, RB8), (RA8, RB4), (RA8, RB7),

and (RA8, RB8). A private matching and classification technique [56, 154, 174] (which

is outside and independent of our protocol) can then be applied on each resulting

candidate block individually to obtain the detailed similarities of individual record

pairs (as will be proposed in Chapters 8 and 9).

7.2.2 Selecting Reference Values

Reference values are used in our approach as a privacy technique to conduct private

blocking between two sensitive databases. Such reference values can be constructed

either with random faked values, or values extracted from a public reference dataset,

for example, all unique surnames taken from a public telephone directory or electoral

roll (such as the NC voter dataset [31], as was described in Section 5.4). The aim of

this approach is to find the candidate blocks using the reference values instead of the

actual values in the databases.
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Figure 7.5: The reference values selection method proposed in Section 7.2.2. A value in the
highest similarity pair is removed in each iteration according to its similarity with neighbors.

The list of reference values used should be effective in blocking the databases by

placing similar SKVs into the same blocks and different SKVs in different blocks. In

addition, the reference values exchanged should not be close to each other in the

lexicographically sorted list of values in a public global dataset, G, as this might

reduce the k-anonymous privacy protection, as will be discussed in Section 7.3. This

means that the reference values selected from R need to be evenly spread to represent

all blocks in the databases.

We propose a reference values selection method to select and exchange appropri-

ate reference values that are not similar/close to each other and represent all blocks.

The similarity or closeness of reference values can be calculated by using an extended

version of the Dice-coefficient similarity function [29] to compare only the first few

characters of the strings (we name this as ‘Dice-short’). We only compare the first

few characters of the reference value strings as the reference values are sorted in lex-

icographical order. Assume ri and rj are two reference values and ri is 10 characters

long and rj is 12 characters long. We only compare the first min(ri, rj)/2 = 5 charac-

ters of ri and rj to check if these two strings are not lexicographically sorted close to

each other.

Algorithm 7.3 : Selecting reference values

Input: R′: List of reference values [r1, . . . , rnR′ ]
nR: Number of reference values, nR < n′

R (n′
R = |R′|)

sim(·, ·): Dice-short similarity comparison function
Output: R′: List of selected reference values [r1, . . . , rnR

]
1: sort(R′); sim_pairs = {}
2: for i ∈ range(len(R′)− 1) do

3: sim_pairs[(R′[i], R′[i + 1])]=sim(R′[i], R′[i + 1])
4: end for

5: while len(R′) ≥ nR do

6: [ri , rj] = max(sim_pairs)
7: i = R′.getIndex(ri); j = R′.getIndex(rj)
8: if sim(R′[i − 1], ri) ≥ sim(R′[j + 1], rj) then

9: R′.remove(ri)
10: else

11: R′.remove(rj)
12: end if

13: end while

The proposed selection method is explained in Algorithm 7.3. This is run by Alice

and Bob independently in Step 2 of the protocol. The process starts by initially select-

ing more than nR reference values from R into R′. Each pair of consecutive reference
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values in the sorted list of R′ are then compared using the Dice-short similarity func-

tion. Pruning of similar reference values from R′ is conducted in an iterative way,

such that one of the reference values in the closest or most similar pair is removed

at each iteration, depending on the similarity between their neighboring reference

values, until the number of reference values in R′ becomes nR. Figure 7.5 illustrates

this iterative pruning of similar reference values.

Further, the reference values of Alice and Bob that are sorted next to each other in

a window (in step 6 of our protocol) should be similar or close to each other in order

to be considered as true candidate blocks. Again, the Dice-short similarity function

can be used to calculate how similar Alice’s and Bob’s reference values in a window

are, to determine the corresponding blocks as candidate blocks.

7.3 Analysis of the Protocol

In this section we analyze our SNC-2P protocol in terms of complexity, privacy, and

quality of blocking.

7.3.1 Complexity

Assume the number of records in both databases is n (n = nA = nB) and nR reference

values are selected by both Alice and Bob from the reference dataset R (nR = nA
R =

nB
R). Sorting these nR reference values is of O(nR log nR) complexity, and inserting

the n database records into their sorted list of reference values is of O(n log nR)
complexity. Insertion of records into the sorted list of reference values in protocol

step 3 results in nR SNC blocks each represented by one reference value. Merging

the SNC blocks to create k-anonymous blocks in step 4 of the protocol requires a

loop over nR blocks, which is of O(nR) complexity, and results in an average of

(n/k) k-anonymous blocks each represented by nr reference values (nr ≥ 1) and each

containing a minimum of k database records.

Alice and Bob then exchange ne reference values (1 ≤ ne ≤ nr) from each of

their k-anonymous blocks (a total of nR reference values) in protocol step 5. The

communication complexity of this step is therefore O(nR). In protocol step 6, sorting

the exchanged reference values is of O(2nR log 2nR) complexity and applying the

sorted nearest neighborhood approach on this sorted list of reference values is of

O(2nR) complexity. The overall complexity of our approach is linear in the size of

the databases n and log-linear in the number of reference values nR used. Assuming

each block contains k records and the size of the sliding window (minimum number

of reference values a window comprises from each database owner) is w, the number

of candidate record pairs generated by our approach is (n/k)× (k2 × w) = n k w.

7.3.2 Privacy

We assume that both Alice and Bob follow the honest but curious (HBC) adversarial

model [78], in that they follow the protocol while trying to find out as much as
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possible about the data from the other party. To analyze the privacy of the protocol,

we need to evaluate what can be learned from the data they communicate with

each other during the protocol. In step 5 of our protocol, Alice and Bob exchange a

certain number of reference values (ne) from each block (no sensitive actual values in

the databases are exchanged), and this might leak some information regarding the

blocks in their databases depending on the value for ne.

• Case 1: ne = 1: Since each block consists of at least k records, revealing only

one reference value from each block guarantees k-anonymous privacy (simi-

lar to the SNC-3P approaches proposed in Chapter 6). This type of privacy

has successfully been used in previous private blocking solutions [91, 104]. k-

anonymous mapping makes it difficult to perform a frequency attack to infer

individual records in the blocks. The value for k has a trade-off between privacy

and computational complexity. A higher value for k provides stronger privacy

guarantees but more candidate record pairs will be generated. One drawback

of representing a block by one reference value only is the possible loss of some

true candidate blocks when applying the sorted nearest neighborhood method

on the exchanged reference values in step 6 of our protocol, because a single

reference value is not sufficient to represent all the SKVs in a block.

• Case 2: ne > 1: If several reference values are exchanged from a block then

k-anonymous privacy is not guaranteed. Conducting a frequency linkage at-

tack (as will be described in Section 7.4) using a global dataset G with known

values in the same domain as used for the sorting key can reveal frequency in-

formation for the reference values exchanged from the blocks. This information

can be used by an adversary to infer the frequency distribution of the sensitive

SKVs in the corresponding blocks. Assume a block is represented by reference

values r = r1, . . . , re and their frequency distribution of individual block sizes

in G is learned as f = f1, . . . , fe. Revealing only one reference value (ri) dis-

closes that there are k records sorted near ri, and thus the disclosure risk is

1/k. But revealing several reference values discloses more information, namely

that there are fi × k/ ∑ fi records sorted near reference value ri, i = 1 . . . e. This

reduces the k-anonymous privacy to min(f)× k/ ∑ fi. For example, if three ref-

erence values, r1, r2 and r3, in a block are exchanged and their individual size

frequency distribution of blocks in G is f1 = 1, f2 = 3, and f3 = 4, then this

reveals that there are k/8 records sorted near r1, 3k/8 near r2, and 4k/8 near r3.

Disclosure risk (maximum) is increased to 1/(k/8) = 8/k with the k/8 records

sorted near r1 from 1/k in case 1. Privacy is therefore reduced to k/8.

Therefore, a larger number of reference values exchanged from each block will

reduce the privacy of the protocol. At the end of private blocking, candidate blocks

are found and private linkage can be conducted on each block pair individually by

using a private matching and classification technique [56, 154, 174], which should

not reveal any sensitive information (this step is outside of our protocol).
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Figure 7.6: An attack method for the SNC-2P private blocking solution. Disclosure
risk is less when only one reference value is exchanged compared to when several ref-
erence values are exchanged from each block. For example, Ps = 1/9 for r1, r2, · · · , r9

in block b1 when one reference value is disclosed, because each record is consistent
with 9 records that are in the same block. If all three reference values (‘melar’, ‘mil-
lar’, and ‘myler’ that are assumed to have the frequency distribution of individual
block sizes of 2 : 3 : 4 in G) are exchanged, then Ps = 1/2 for two records, Ps = 1/3

for three records, and Ps = 1/4 for four records in the block b1.

7.3.3 Quality

The quality of blocking is defined in terms of effectiveness measured by pairs com-

pleteness (PC), i.e., all similar records should be grouped into the same block which

generates candidate record pairs that include all true matching record pairs, and ef-

ficiency measured by reduction ratio (RR), i.e., the number of candidate record pairs

generated should be as small as possible [30].

The size of the window w plays a major role in deciding the quality of blocking.

A higher value for w is more likely to group more nearest blocks as candidate blocks.

This results in higher PC and lower RR. The value for k also determines the PC and

RR of blocking. A higher value for k results in higher PC but lower RR. Optimal k

and w need to be set such that high values for both PC and RR are achieved while k

guarantees sufficient privacy as well.

7.4 Linkage Attack

In this section we present the frequency linkage attack using an external global

dataset G for privacy evaluation of our SNC-2P solution based on the evaluation

model proposed in Chapter 5. A private blocking protocol that reveals more informa-

tion than the number of blocks (nB) and their sizes (ti = |bi|, 1 ≤ i ≤ nB) during the

protocol, will provide more information on the distribution of blocks and their val-
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ues. Our SNC-2P protocol reveals reference values from each block, and as discussed

in Section 7.3.2, the more reference values are exchanged from a block between the

database owners the more information is disclosed about the block, as illustrated in

Figure 7.6. For example, if three reference values, ‘melar’, ‘millar’, and ‘myler’, in

block b1 that contains nine records (t1 = 9), are exchanged and their size frequency

distribution of individual blocks in G is ‘melar’ (b1_1) = 2, ‘millar’ (b1_2) = 3, and

‘myler’ (b1_3) = 4, then this reveals that there are 2t1/9 = 2 records sorted near

‘melar’, 3t1/9 = 3 near ‘millar’, and 4t1/9 = 4 near ‘myler’. The minimum block

size now becomes 2 with the two records sorted near ‘melar’, and the maximum

disclosure risk is therefore increased to DRMax = 1/2 from DRMax = 1/t1 = 1/9,

i.e., when only one of three reference values is exchanged from b1.

7.5 Experimental Evaluation

We conducted an empirical study of our SNC-2P approach on the datasets described

in Section 5.4 using the evaluation framework proposed in Chapter 5. The default

parameters were set as k = 100, st = 0.8, w = 2, and ne = 50% (this setting gives best

results in terms of all three properties of PPRL, as will be shown in Figures 7.10, 7.11,

and 7.12). nR was set to number of records/k × 10 so that each block will roughly

contain nr = 10 reference values. Different values for k, w, and ne were also used to

evaluate the performance of the SNC-2P blocking against k, w, and ne, respectively. A

combination of two attributes was used as the sorting key: given name / first name,

and surname / last name.
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Figure 7.7: Total time of the SNC-2P blocking approach on the (a) OZ Cor datasets, and (b)
NC Cor datasets, averaged over the results of all variations of each dataset.

Figure 7.7 shows the total blocking time required for private blocking of the SNC-

2P approach on the OZ Cor and NC Cor datasets. As can be seen from the figure, the

SNC-2P approach has an almost linear complexity in the size of the databases and is

scalable to large databases.
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SNC-2P solution on the (a) OZ Cor-46,116 and (b) NC Cor-54,886 datasets with No-mod,

Light-mod, Med-mod, and Heavy-mod variations.

A comparison of RR and PC of the SNC-2P blocking is presented in Figure 7.8 on

the OZ Cor-46,116 and NC Cor-54,886 datasets with different levels of data modifi-

cations (corruptions). Different levels of corruptions applied to the datasets (as was

described in Section 5.4) allow to evaluate the performance of approximate matching

of our protocol in the presence of data errors. As shown in the figure, the SNC-2P

approach achieves high RR and PC when no modification is applied to the datasets,

and then the values decrease as the level of modifications increases.
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Figure 7.9: A comparison of probability of suspicion (Ps) values of the blocked datasets
generated by the SNC-2P approach and the calculated disclosure risk (DR) measures on the

(a) OZ-172,938 Mod, and (b) NC datasets.

We then present the distribution of Ps values in the masked and blocked OZ-

172,938 Mod and NC datasets by the SNC-2P blocking solution, and the DR measures

(proposed in Section 5.3.1) calculated for the frequency linkage attack (described in
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Figure 7.10: (a) Reduction ratio (RR) (b) Pairs completeness (PC) and (c) total blocking time
of the SNC-2P approach on the OZ-17,294 and OZ-172,938 datasets, with different values for

window size (w).

Section 6.4). The lower DR results achieved by the SNC-2P blocking approach, as

illustrated in Figure 7.9, show the privacy aspects of our approach.

Figure 7.10 shows RR, PC, and total time required for blocking (averaged over

the results of both database owners over all variations of each dataset) of the SNC-2P

blocking approach with different window sizes w. As expected, PC and time for

blocking increase with w while RR decreases. This is because when w increases more

candidate blocks will be generated which results in more candidate record pairs.

Hence, the efficiency of blocking (evaluated by RR and blocking time) decreases with

w while effectiveness (evaluated by PC) increases, as discussed in Section 7.3.3. Since

there is a drastic improvement in PC when w = 2 with a smaller increase in blocking

time and a smaller decrease in RR, we choose this as the best default parameter

setting. With non-modified datasets we achieve high PC (of nearly 1.0) and with

modified datasets the value is reduced. As it turns out, there is no difference in RR

and blocking time with modified and non-modified datasets, and we therefore only

report the averaged results.

In Figure 7.11, we investigate the performance of SNC-2P solution in terms of

RR, PC, and total blocking time with different values for the privacy parameter k.
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Figure 7.11: (a) Reduction ratio (RR) (b) Pairs completeness (PC) and (c) total blocking time
of the SNC-2P approach on the OZ-17,294 and OZ-172,938 datasets, with different values for

privacy parameter (k).

As discussed in Section 7.3.3, RR decreases with k while PC increases. As can be

seen from the figure, the SNC approach achieves high values for both RR and PC

even when k = 100. Hence, we choose k = 100 as the default parameter setting of

our approach. Interestingly, the blocking time reduces with k. This is because the

number of resulting blocks (n/k) becomes smaller as k gets larger.

Finally we study how the exchange of reference values determines the scalability,

privacy, and quality of blocking in Figure 7.12. Scalability of blocking is measured

by total blocking time and RR, and it reduces with the percentage of reference values

exchanged (Figures 7.12 (a) and 7.12 (b)). Quality of blocking (measured by PC)

significantly increases when the percentage of exchanged reference values (ne) is in-

creased from 10% to 50% with almost no reduction in RR, as shown in Figure 7.12 (b).

However, as discussed in Section 7.3.2, the privacy of the protocol (measured by the

DR measures calculated based on the linkage attack given in Section 7.4) becomes

lower with more reference values exchanged as the disclosure risk of our approach

increases with ne (see Figures 7.12 (c) and 7.12 (d)). Using the Dice-short reference

values selection method, as discussed in Section 7.2.2, increases the privacy of the
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Figure 7.12: (a) Total blocking time (b) reduction ratio (RR) and pairs completeness (PC), (c)
maximum disclosure risk values (DRMax), and (d) mean disclosure risk values (DRMean) of
the SNC-2P approach on the OZ-17,294 and OZ-172,938 datasets, when different percentage
of reference values are randomly selected (‘Random’) or appropriately selected using the
Dice-short similarity function (‘Select’), as described in Section 7.2.2, and exchanged from

each block (ne).

protocol without compromising much the quality of blocking (labeled as ‘Select’ in

the figures). The maximum disclosure risk on the 172,938 dataset is reduced to 0.24

from 0.5 with the proposed reference values selection method when ne = 50%.

7.6 Summary

In this chapter, we have proposed an efficient two-party private blocking technique

based on the sorted neighborhood clustering (SNC) approach that can be used to

develop scalable privacy-preserving record linkage (PPRL) applications. Our method

uses a combination of two privacy techniques, k-anonymous mapping and public

reference values. Experiments conducted on real-world datasets validate that our

approach is scalable to large databases while being effective in generating quality

candidate record pairs and preserving k-anonymous privacy characteristics.
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As discussed earlier, reference values play a major role in determining the privacy

of the protocol and quality of the candidate blocks generated. We introduced one

method for selecting appropriate reference values. As future work, we aim to identify

other reference values selection methods that can be used to improve the quality of

blocking without compromising privacy.

In addition, tackling the problem of finding the optimal values for the SNC-based

private blocking approaches including the privacy parameter k and the window size

w in the trade-off of the three properties of PPRL using some statistical modelling

procedure requires further research.

We also aim to study how the quality of blocking can be improved by running

the SNC approach with several iterations using different attributes as sorting keys

(similar to the traditional approach [84]) without compromising privacy of the so-

lution. Investigating how other blocking techniques, such as q-gram-based blocking

and suffix array-based blocking [29], can be used for private blocking in two-party

contexts is another direction for future research.



Chapter 8

Two-Party Reference Values-based

Private Matching and Classification

Developing efficient and two-party algorithms for approximate matching and classi-

fication in privacy-preserving record linkage (PPRL) has been identified as an impor-

tant research direction in Chapter 4. In this chapter, we propose a novel two-party

protocol for PPRL that addresses the three main properties of PPRL, scalability, pri-

vacy, and linkage quality. Our protocol uses the privacy technique of reference values

in a two-party setting, as described in Section 8.2. In Section 8.3 we analyze the solu-

tion in terms of the three properties, and in Section 8.5 we conduct an empirical study

in order to validate these analyses based on a linkage attack proposed in Section 8.4.

Finally, we summarize our findings in Section 8.6.

8.1 Introduction

In the absence of unique identifiers for the entities stored in databases, exact or

approximate similarity matching techniques are generally applied to the common

quasi-identifiers (QIDs, such as name, address and date of birth) for the identifi-

cation of matching record pairs from different databases [205]. Linking records by

comparing the masked QID attribute values with a standard hash-encoding crypto-

graphic technique [41, 78, 135] in a three-party protocol is a naïve solution for private

matching and classification [37, 152]. The attribute values match exactly if the corre-

sponding encoded values match, and the third party can identify exactly matching

records without knowing the actual attribute values. However, as discussed in Chap-

ter 4, a limitation of this naïve approach is that only exact comparisons of values are

possible. A small variation in an attribute value results in a completely different en-

coded value. In practical applications, the exact matching of QID values is not always

sufficient due to variations or typographical and other types of errors in real-world

data [83]. Therefore, an approach for approximate matching of values and effective

classification in PPRL is required.

There have been several approaches proposed for approximate private matching

and classification in PPRL [58, 102, 184, 194]. However, many of these approaches

require a trusted third party for linkage which is not always available in a real-

95
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Table 8.1: Notation used in this chapter.
DA, DB Databases held by database owners Alice and Bob, respectively
RAi , RBj A record in DA and DB, respectively

A, a Attributes common to DA and DB that are used for linking, an attribute a ∈ A
v, vi , vj An individual attribute value
r, ri , rj A reference value
blocka(·, ·) Function used to block/index attribute a
b A blocking key value (BKV): b = blocka(·)
c A compound BKV (CBKV): c = [blocka1

(·), . . . blocka|A| (·)]
sima(·, ·) Function used to calculate similarities between values in attribute a
st Minimum similarity threshold to determine a pair of values as similar, 0 ≤ st ≤ 1
sm Minimum similarity threshold to determine the similarity range [sm − 1.0]
k, d Number of bins, maximum number of bin difference to find the matching bin combinations
enc(·, h) Function and key used to hash-encode values
BIa, BLI Block Index for attribute a ∈ A, Block List Index
RLIa, SIa Reference List Index for attribute a ∈ A, Similarity Index for attribute a ∈ A
MBC, MBR, MIL Matching Bin Combinations, Matching Bins of Records, Match ID List

world application. Generally, most two-party solutions employ secure multi-party

computation (SMC)-based privacy techniques (as reviewed in Chapter 3), which are

expensive in terms of the computation and communication complexities (and there-

fore not scalable) while providing stronger privacy guarantees, in order to ensure

that the two database owners cannot learn anything from the exchanged data.

In this chapter, we address this problem by proposing a novel two-party private

matching and classification solution using efficient perturbation-based privacy tech-

niques. Our protocol is based on (1) the use of reference values that are available

to both database owners, and allow them to calculate the similarities independently

between their attribute values and the reference values; and (2) the binning of these

calculated similarity values to allow their secure exchange between the two database

owners. Our protocol also addresses the three main properties of PPRL, scalability,

linkage quality, and privacy, which makes it viable in real-world applications.

8.2 Proposed Solution

We first discuss the use of reference values for private matching and classification

in a two-party setting in Section 8.2.1, followed with Section 8.2.2 by a step by step

description of our protocol.

8.2.1 Reference Values in Two-Party Protocol

The use of reference values has previously been proposed for PPRL in a three-party

framework by Pang et al. [154]. Such reference values are assumed to be publicly

available and known to both database owners. They can be constructed either by

random faked values, or they can be extracted from an external dataset, for exam-

ple, unique names, postcodes, and suburb names extracted from a public telephone

directory. Reference values are used by the database owners to calculate the similar-

ities between their attribute values and the reference values. These similarities are

then sent to a third party that can link the records based on the triangular inequality
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as shown in Equation 8.1.
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Figure 8.2: Reference value-based similarity
calculation in a two-party setting using the
reverse triangular inequality property of dis-
tance metrics and binning of similarity val-
ues. Binned similarity values calculated with
the reference value (sim(vi, r) and sim(vj, r))
are exchanged between Alice and Bob to cal-
culate the difference d between sim(vi, r) and

sim(vj, r), as shown in Equation 8.2.

property of the distance metrics, as explained in Equation 8.1. A reference value, r,

is the value known to both database owners Alice and Bob, while the attribute values,

vi and vj, are the sensitive values that are only known to the corresponding database

owner (vi by Alice and vj by Bob).

dist(vi, r) + dist(vj, r) ≥ dist(vi, vj)

(1 − sim(vi, r)) + (1 − sim(vj, r)) ≥ (1 − sim(vi, vj))

1 − sim(vi, r)− sim(vj, r) ≥ −sim(vi, vj)

sim(vi, r) + sim(vj, r)− 1 ≤ sim(vi, vj) (8.1)

Assume dist(vi, vj) is the normalised metric distance between two values vi and

vj (0.0 ≤ dist(vi, vj) ≤ 1.0), and sim(vi, vj) = 1.0 − dist(vi, vj) is the correspond-

ing similarity between the two values. Similarity values are assumed to be nor-

malised, such that 0.0 ≤ sim(vi, vj) ≤ 1.0. For an exact match of the two values

the similarity function results in sim(vi, vj) = 1.0 and for two totally different values

it results in sim(vi, vj) = 0.0. A distance-based similarity function mainly holds

four properties [79]: non-negativity (dist(vi, vj) ≥ 0.0), identity of indiscernibles

(dist(vi, vi) = 0.0), symmetry (dist(vi, vj) = dist(vj, vi)), and triangular inequality.

The triangular inequality property states that the direct distance between two values

vi and vj is always less than or equal to the combined distance when going through

a third value r: dist(vi, vj) ≤ dist(vi, r) + dist(vi, r). A reference value can be used as
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a third value (r) to calculate the similarity between the actual attribute values (vi and

vj). Any distance metric can be used in this approach.

In the three-party approach, the similarities between attribute values and refer-

ence values (i.e. sim(vi, r) and sim(vj, r)) are calculated individually by the database

owners, and the results are sent to a third party. The third party can calculate the

left hand side (LHS) of Equation 8.1 by calculating the combined similarity value

(sim(vi, r) + sim(vj, r)− 1). The third party then classifies all record pairs as matches

that have sim(vi, r) + sim(vj, r)− 1 ≥ st, where st is a threshold value. If the LHS of

Equation 8.1 is at least st, then obviously the right hand side (RHS) of the equation,

that is the actual similarity value sim(vi, vj) between two attribute values vi and vj,

is also at least st and therefore the pair (vi,vj) can be classified as a match. This is

illustrated in Figure 8.1. However, the results of an empirical evaluation of this ap-

proach conducted in [10] show inadequate linkage quality in terms of precision and

recall. Increasing the size of the reference list (i.e. using more than one r for similarity

calculation of a pair of vi and vj) improves the linkage quality to some extent but it

leads to long runtime.

In our two-party approach, we use the reverse triangular inequality property

of distance metrics, which is illustrated in Equation 8.2, to privately calculate the

similarity of two attribute values without exchanging the actual attribute values.

∣

∣dist(vi, r)− dist(vj, r)
∣

∣ ≤ dist(vi, vj)
∣

∣(1 − sim(vi, r))− (1 − sim(vj, r))
∣

∣ ≤ (1 − sim(vi, vj))
∣

∣−sim(vi, r) + sim(vj, r)
∣

∣ ≤ (1 − sim(vi, vj))

1 −
∣

∣sim(vj, r)− sim(vi, r)
∣

∣ ≥ sim(vi, vj) (8.2)

From the reverse triangular inequality property, we can see that the value for

sim(vi, vj) (RHS) becomes higher and gets closer to 1.0 if and only if the values for

sim(vi, r) and sim(vj, r) (LHS) become equal to each other, with r being an value from

the reference list. This implies that if the difference between the similarity values of

two values with a value from the reference list is small, then the two values should

be similar to each other. We illustrate this approach in Figure 8.2.

The scalability property of the linkage process can be addressed by blocking the

records in the databases using a private blocking technique, as proposed in Chap-

ters 6 and 7. There have also been several other private blocking techniques proposed

in the literature [3, 56, 103, 104, 124]. For illustrative example, we consider blocking

the records based on a (phonetic) encoding function [103], such as Soundex [23]. The

database owners then use public reference lists to assign one or several reference

values for each block. These reference values are used by the database owners to cal-

culate the similarities between their attribute values and the reference values in each

block. The similarity of each attribute value in a block is calculated by comparing the

value only with the list of reference values that are in its corresponding block (this

improves linkage quality).
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Table 8.2: Example bins of
similarity range

Bin Start End
label range range

A 0.5 0.625

B 0.626 0.750

C 0.751 0.875

D 0.876 1.0

Table 8.3: Matching Bin
Combinations (MBC)

Match Attribute 1 Attribute 2
ID (Given name) (Surname)

1 A,B A,B

2 A,B B,C

3 A,B C,D

4 B,C A,B

5 B,C B,C

6 B,C C,D

7 C,D A,B

8 C,D B,C

9 C,D C,D

Once the similarities are calculated, the database owners can conduct the linkage

by using a third party that classifies the records based on the reverse triangular

inequality of these similarities, as was done by [154]. Since blocking is applied, this

will reduce the runtime for linkage and it will be scalable to large databases. This

approach provides a scalable three-party solution for approximate matching in PPRL.

As with other three-party protocols, privacy is however the major drawback with this

three-party approach as well. If one of the database owners colludes with the third

party they can learn about the other database owner’s private data.

Our aim is to develop a two-party protocol by using public reference lists and

the reverse of triangular inequality property of distance metrics for matching and

classification. If the calculated similarities can be exchanged between the database

owners without revealing any sensitive information, then we can eliminate the need

of a third party for the linkage. Since both database owners know the public reference

list values, exchanging the calculated similarity values with each other can leak some

information about the QIDs to the database owners. Our two-party solution for this

problem is by binning the actual similarity values.

We split the similarity range (a possible range from 0.0 to 1.0) into a number of

bins k (k > 1), and each database owner stores the similarities between their attribute

values and the reference values as bin labels into which the calculated similarity

values fall. Since we compare the attribute values only with the reference values that

are in their corresponding block, the minimum similarity value will be larger than

0.0, and so we only need to bin similarities in an interval [sm, 1.0], with sm > 0.0

selected by the user. Binning the similarity range from 0.5 to 1.0 into 4 bins, for

example, is shown in Table 8.2. We will explain this example in detail further below.

We then calculate the Matching Bin Combinations (MBC) based on the binning

distance d. The binning distance determines the maximum number of bin difference

we allow for each attribute for the approximate matching of attribute values. For

example, if the binning distance is d = 1 for each attribute and we use two attributes

for the matching (and thus a total binning distance of d = 2), then the MBC would

be the ones that are given in Table 8.3. Every Matching Bin Combination in MBC is

given a unique Match ID (as shown in Table 8.3). Based on the MBC, each database
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Table 8.4: Example calculation of bins and matches
RA1 (Alice) RB1 (Bob)

Given name Surname Given name Surname

Attribute values ‘millar’ ‘ameile’ ‘miller’ ‘amelia’

Phonetic (block) values ‘m460’ ‘a540’ ‘m460’ ‘a540’

Reference values ‘myler’ ‘amalia’ ‘myler’ ‘amalia’

Similarity values 0.7 0.8 0.8 0.9

Bin labels B C C D

Match IDs {1,2,3,4,5,6} {2,3,5,6,8,9} {4,5,6,7,8,9} {3,6,9}
{2,3,5,6} {6,9}

owner calculates the set of Match IDs to which each of the records in their database

corresponds to. Then these Match IDs are exchanged between the database owners.

Computing the intersection set of Match IDs and then exchanging the records that

are obtained for those common Match IDs between the database owners provide a

two-party solution for our problem.

To illustrate our approach, assume we have two records (RA1 and RB1) in two

different databases with their respective values for the attributes Surname and Given

name as (‘millar’,‘ameile’) and (‘miller’,‘amelia’), as shown in Table 8.4. Applying

the Soundex [23] phonetic-based blocking to these values results in the two blocks

‘m460’ and ‘a540’ for Given name and Surname attributes, respectively. Assume that

the reference list contains one value for each of these blocks, and they are ‘myler’ for

‘m460’ and ‘amalia’ for ‘a540’.

Comparing the attribute values with the corresponding block reference values

(using sim(·, ·)), for example, gives us the similarity values of (sim(‘millar′, ‘myler′) =
0.7, and sim(‘ameile′, ‘amalia′) = 0.8) for RA1 and (sim(‘miller′, ‘myler′) = 0.8, and

sim(‘amelia′, ‘amalia′) = 0.9) for RB1, which result in the bin combinations (B,C)

and (C,D), respectively (see Table 8.2 for the bin ranges). According to the MBC in

Table 8.3, the corresponding matches would be Match IDs {2, 3, 5, 6} for RA1 and

Match IDs {6, 9} for RB1, because the bin combination of B for attribute Surname

and C for Given name appears in Match IDs 2, 3, 5 and 6, whereas the combination

of C and D appears in Match IDs 6 and 9 only (shown in bold font in Table 8.3).

The intersection of these two sets results in Match ID 6, which is considered to

be the match combination for these two example records (i.e. the two records’ simi-

larity values calculated with the reference value for the Surname attribute are in the

interval of [B − C] = [0.626 − 0.875], and for the Given name attribute they are in the

interval of [C−D] = [0.751− 1.0]), and so the two records can be classified as a match

(with a minimum total similarity of (1.0 − [0.875 − 0.626]) + (1.0 − [1.0 − 0.751]) =
0.751 + 0.751 = 1.502, calculated according to the reverse triangular inequality prop-

erty given in Equation 8.2). If the intersection list is empty, then the records do not

match.

The MBC calculated here are supersets of all the subsets of bin combinations. For

example, if we consider the bin combination of Match ID 6(B, C/C, D), the subsets of

bin combinations for this Match ID 6 are shown in Table 8.5. As shown in this table,
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Table 8.5: Subsets of bin combinations for the (B, C/C, D) combination - Match ID 6
from Table 8.3

Database owner 1 Database owner 2 Total binning
Given name Surname Given name Surname distance (d)

B C B C (0+0) = 0

B C B D (0+1) = 1

B C C C (1+0) = 1

B C C D (1+1) = 2

B D B C (0+1) = 1

B D B D (0+0) = 0

B D C C (1+1) = 2

B D C D (1+0) = 1

C C B C (1+0) = 1

C C B D (1+1) = 2

C C C C (0+0) = 0

C C C D (0+1) = 1

C D B C (1+1) = 2

C D B D (1+0) = 1

C D C C (0+1) = 1

C D C D (0+0) = 0

if the combination (B, C/C, D) is a match, then all the subsets of this combination

can also be considered as matches, since they all have a binning distance of 2 or

less. This improves the privacy aspect of our approach, because there can be many

possible matching combinations (16 in this example) for one Match ID.

This parametric solution requires the number of bins k to be determined before

the linkage. The selection of k is crucial for the performance of the protocol as the

three main properties of PPRL, privacy, scalability and linkage quality, depend on

this parameter. The larger the number of bins the smaller the range of each bin

is, which results in higher accuracy of the protocol. But the smaller the number

of bins the lower the computational complexity is, as the number of candidates of

matching bin combinations is reduced, and the more secure the protocol is due to

the higher range of bins. So the number of bins must be carefully chosen. We will

experimentally investigate how these three properties are affected by the value for

the parameter, the number of bins (k), in Section 8.5.

8.2.2 Protocol Specification

In this section we illustrate the steps (1 to 9) of our protocol (which we call 2P-

Bin) in detail using an example consisting of two small databases, as shown in Fig-

ure 8.3, with Given names and Surnames used as the linkage attributes. Assume two

database owners, Alice and Bob, with their respective databases DA and DB, wish to

identify which of their records RAi ∈ DA and RBi ∈ DB have an overall similarity

sim ≥ st, in order to classify them as matches. The notation used throughout this

chapter is summarised in Table 8.1. Figures 8.3 to 8.13 (taken from [191]) illustrate

the steps of our protocol.
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Figure 8.3: Example databases held by Alice (DA) and Bob (DB) with Surname and
Given name attributes, used to illustrate the protocol described in Section 8.2.2.
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gayle

peter peterra
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p360

smyths530

amelie

s530 smith smeth smeeth

petera

amilia amelie

roberto rupert

Figure 8.4: The Block Indexes (BIs) of Alice and Bob for the Surname and Given name
attributes. The BIs are generated in step 2 of the protocol as the databases are loaded,

and are used in step 5 to build the similarity index.

1. Alice and Bob agree upon (1) a list of attributes A to be used for the linkage (2)

a blocking function (phonetic [103] is used in this example) blocka(·) for each

attribute a ∈ A, used to generate blocking key values (BKV) b; (3) a similar-

ity function sima(v, r), used to calculate the numerical similarity for a pair of

values v and r, where v is an attribute value and r is a reference value, such

that for an exact match (v = r) sima(v, r) = 1.0 and for two totally different

values sima(v, r) = 0.0; (4) a minimum similarity threshold sm, which deter-

mines the start range of the first similarity bin; (5) the number of bins k to

be used; (6) a binning distance d, used for finding the candidates of Match-

ing Bin Combinations (MBC) for each attribute; (7) a hash-encoding function

enc(·, h) and a corresponding hash key h, used to encode the Compound BKVs

(CBKVs), reference lists, and finally the matching records before they are being

exchanged between the database owners. This hash-encoding function can for

example be the HMAC (Hashed Message Authentication Code) function [116],

as described in Section 4.2.1.3. To simplify the illustration we do not apply any

hash-encoding function in the example.

2. Alice and Bob each read their databases and independently build their local

Block Index (BI) data structures for each linkage attribute, and a Block List In-

dex (BLI) data structure by blocking their databases using the blocking function
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Figure 8.5: The Block List Index (BLI) of Alice and Bob and the intersection list of
BLIs. Exchanging the BLIs in order to calculate the intersection list of the BLIs can
reveal some information to a database owner about the other database owner’s data.
This is discussed in detail in Section 8.3.2. The BLI is generated in step 2 of the

protocol.
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g400
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Given name

m460
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p360

s530
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r163
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Individual blocks

Figure 8.6: The compound blocks c in the sorted intersection list of BLIs and the
individual blocks b for each linkage attribute. The intersection list of BLIs is sorted
and the individual blocks are found in step 3 of the protocol. The compound blocks
are sorted and given index numbers which will be needed in step 7 of the protocol.

blocka(·), as illustrated in Figures 8.4 and 8.5. The BI data structures are im-

plemented as inverted indexes [206]. The index keys are the unique encodings

/ keys of a linkage attribute (the BKVs), and the corresponding lists contain

the actual attribute values in a block (that have the corresponding encoding).

The BLI data structure is implemented as a nested inverted index where the

keys are the unique encodings of the first linkage attribute and the index lists

are again inverted indexes with keys being the unique encodings of the second

linkage attribute and the index lists are the lists of unique encodings of the

third linkage attribute, for example if the number of linkage attributes is three.

The nested inverted indexes for two linkage attributes are shown in Figure 8.5.

3. Alice and Bob exchange their BLI data structure with each other. This com-

munication is encrypted, for example using public key encryption [171], such

that only Alice and Bob can decrypt each other’s values. Once the BLIs are ex-

changed, Alice and Bob can generate an intersection list of BLIs, as illustrated



104 Two-Party Reference Values-based Private Matching and Classification

m460

p360 peter

s530 smith
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g400

r163 robert

amilia

gail

malar

Reference List Index for Surname Reference List Index for Given name

Figure 8.7: The Reference List Index (RLI) for Surname blocks and Given name
blocks. In the example, we use one reference value per block. RLI is generated

in step 4 of the protocol.

in Figure 8.5. Exchanging the BLIs to find out the intersection list, which is

the list of compound blocks c (individual blocks b for each linkage attribute

are grouped together to generate the compound block c) that are common to

both databases, might leak some information about each other’s data. In order

to overcome this, a secure set intersection protocol can be used that enables to

find the intersection list of BLIs securely [1, 114]. This is discussed in detail in

Section 8.3.2. Alice and Bob then sort the intersection list of BLIs and find the

common individual blocks b for each linkage attribute separately, as illustrated

in Figure 8.6.

4. The next step is to generate the Reference List Index (RLI) which contains lists

of reference values, one list for each individual block b in the intersection list of

BLIs (shown in Figure 8.5). The RLI can be generated by both parties together,

for example one could generate reference lists for odd blocks and the other

for even blocks, or one for the first attribute blocks and the other for second

attribute blocks. This is shown in Figure 8.7. Exchanging the RLI between the

database owners would not reveal any private information, as the RLI contains

publicly known reference values (no sensitive private values). In our example,

we assume the number of reference values generated for each block is 1. If

more than one reference value is used, then the average of similarities with all

the reference values is calculated.

5. Alice and Bob then build their Similarity Index (SI). For each unique individual

block b in the intersection list of BLIs, they calculate the similarity of each

unique attribute value in that block (which is stored in their BI as generated in

step 2) with the list of reference values of that block (which is retrieved from the

RLI). Figure 8.8 illustrates this for the running example. For example, Alice’s

‘m460’ block for Surname attribute contains two values (‘millar’ and‘myler’)

and the reference value for this block is ‘malar’. Therefore, the similarities

between (‘millar’ and ‘malar’), and (‘myler’ and ‘malar’) are calculated as 0.8

and 0.7, respectively, and stored in Alice’s SI for Surname.

6. In the next step the database owners build the bins with their similarity ranges

and the Matching Bin Combinations (MBC), as illustrated in Figure 8.9. The

similarity range between sm and the complete similarity (i.e., 1.0) is split into
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Figure 8.8: The Similarity Index (SI) which contains the similarities between at-
tribute values and their corresponding reference values calculated using the edit
distance [148] approximate string comparison function, rounded to one digit, along

with their corresponding bins. The SI is generated in step 5 of the protocol.
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Figure 8.9: The bins of similarity and the Matching Bin Combinations (MBC) used
for the running example. The bins and their ranges are agreed upon by the database
owners in step 1 of the protocol. In this example, the number of bins is k = 5
and the similarity range is from 0.5 to 1.0. The MBC are calculated based on the
bins and the binning distance d. In this example, d = 1. The bin combinations (in
MBC) are generated only for one compound block (the first compound block, i.e. the
compound block with index number of 0 in Figure 8.6). Based on this, the Match IDs
are calculated using Equation 8.3 for bin combinations in all the compound blocks.

k bins. Based on the bins and the binning distance d, the bin combinations in

MBC are generated with their corresponding Match IDs.

7. Alice and Bob go through their database and build their local Matching Bins of

Records (MBR) data structure, as shown in Figure 8.10. The MBR data structure

contains unique combined blocking key values (CBKVs) of linkage attributes

and for each unique CBKV, c, it contains (a) a list of bin labels for each of

the attribute values (which are retrieved from SI, as generated in step 5), (b) a

list of Match IDs that correspond to this combination of bin labels (which are
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Figure 8.10: The Matching Bins of Records (MBR) of Alice and Bob. For each of the
unique tuple of encoding values (CBKVs), it contains the combination of Surname
and Given name attribute values with their corresponding bin labels, a list of Match
IDs, and a list of record identifiers that contain the combination. The MBR is gener-
ated in step 7 of the protocol. The Match IDs are calculated only for the records that
belong to the compound blocks that are in the intersection list of BLIs. The records
RA3, RA4 and RB6 in this example belong to the compound blocks of [‘m460’,‘g400’],
[‘p360’,‘r163’], and [‘s530’,‘r163’], respectively, which are not in the intersection list of
BLIs in Figure 8.6. In other words, these compound blocks are not common in both

databases and therefore they cannot be matches.

retrieved from MBC, as generated in step 6) by using Equation 8.3, and (c) a list

of record IDs that contain this unique tuple of attribute values.

Match ID = (compound_block_index_number × number_o f _candidates_in_MBC)

+match_ID_in_MBC (8.3)

It is important to note that the MBC data structure (shown in Figure 8.9) is

calculated only for one compound block because all the compound blocks will

have the same set of candidates of matching bin combinations. Based on this,

the Match IDs can be calculated for bin combinations in all the compound

blocks. The compound blocks in the intersection list of BLIs have unique index

numbers (as shown in Figure 8.6). For example, consider the compound block

of c=[‘p360’,‘g400’] in Figure 8.6. The index number of this compound block is

2. The number of candidates in the MBC is 16 in our example (see Figure 8.9).

A record with the bin combination of ‘D’ for Surname and ‘E’ for Given name

attributes (in the first compound block) corresponds to Match IDs 12 and 16 in

the MBC (Figure 8.9). Using Equation 8.3, the Match IDs for a record (RA5)

with the same bin combination (of ‘D’ and ‘E’ for Surname and Given name

attributes, respectively) in the compound block of c=[‘p360’,‘g400’] (with index

number of 2) would be calculated as (2 × 16 + 12) and (2 × 16 + 16), which are

equal to 44 and 48 (the Match IDs for RA5 in Alice’s MBR in Figure 8.10).

8. Once the MBRs are generated, Alice and Bob retrieve the list of unique Match

IDs from their MBR. They then exchange their list of Match IDs (MILs) with
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Figure 8.11: The Match ID List (MIL) of Alice and Bob that contains the list of Match
IDs found in their records and the intersection list of MILs. The MIL is generated in

step 8 of the protocol.
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Figure 8.12: The matches of Alice and Bob for the corresponding match IDs in the
intersection list of MILs, which are generated in step 9 of the protocol.
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Figure 8.13: The accumulator generated by Alice and Bob which contains the match-
ing record pairs of Alie and Bob, and their similarity range. The accumulator is

generated in step 9 of the protocol.

each other and find the intersection list of the MILs, which contains the Match

IDs that are common in both databases. This step is illustrated in Figure 8.11.

For example, the match IDs 44 and 48 (continuing the above example) are not

in common in both databases and therefore the record RA5 is not a match with

any of the records in Bob’s database.

9. In the final step, as illustrated in Figures 8.12 and 8.13, both Alice and Bob

identify the records of the matches that are corresponding to the Match IDs in

the intersection list of MILs. An accumulator is built for storing these matching

records, as shown in Figure 8.13.
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8.3 Analysis of the Protocol

In this section we analyze our 2P-Bin protocol in terms of complexity, privacy, and

linkage quality.

8.3.1 Complexity

We assume both databases contain n (n = nA = nB) records, m = |A| attributes

are used for linking the records, and each linkage attribute contains ua = u unique

values (1 ≤ a ≤ m). We also assume that each attribute generates nB blocks by

applying the blocka(·) functions to block their databases. It is obvious that for large

databases it commonly holds that m ≪ nB ≤ u ≪ n. In step 1, the agreement of

the parameters and functions between Alice and Bob has a constant communication

complexity. Reading the databases in step 2 and building the local BI data structures

and the BLI data structure are O(n) computation complexity, if m, nB and u are very

small compared to n, because building the BI and BLI data structures are O(m × u)
and O(m × nB), respectively.

The exchange of the BLIs in step 3 requires the communication of m × nB values

for each party, and with m, the number of linkage attributes, being comparatively a

very small constant, this results in an O(nB) communication complexity. Assuming

each BLI contains nB compound blocks (m × nB individual blocks), calculating the

intersection of the two BLIs is O(nB log nB) computation complexity.

We assume the number of reference values used for each individual block in the

intersection list of the BLIs is on average nR. In step 4, the total number of reference

values to be generated and exchanged is m × nB × nR. With nR and m being very

small compared to nB, this step requires O(nB) computation and communication

complexities. In step 5, assuming each list (or block) in the BI that was generated

in step 1 contains on average u/nB attribute values, each of the m × nB individual

blocks requires (u/nB)× nR similarity calculations, and thus a total of m × u × nR.

Again with m and nR being very small, the computation complexity of step 5 is O(u).

Candidates of Matching Bin Combinations are calculated for one compound block

based on the number of bins k, the similarity range (which includes the minimum

similarity value sm and the maximum similarity value 1.0), and the binning distance

d, (0 ≤ d ≤ k) for each attribute. For each of the candidates a unique Match ID is

given. This can be used to calculate the Match IDs for any bin combinations in any

compound block using Equation 8.3. The number of candidates is given by (k − d)m

for one compound block and thus the computation complexity is O((k − d)m).

In step 7, building the MBR by reading the n records requires a total of O(n) com-

putation complexity. In the next step Alice and Bob exchange the lists of unique Match

IDs that are corresponding to the bin combinations found in their records. This is

O((k− d)m × nB), because a maximum of (k− d)m candidates of bin combinations are

calculated for one compound block and with the total number of compound blocks

being nB, this step results in O((k − d)m × nB) communication complexity. Finding

the intersection of these two lists requires O((k − d)mnB log (k − d)mnB). Finally,



§8.3 Analysis of the Protocol 109

the generation of the accumulator to store the matches using the Match IDs in the

intersection list requires a computation complexity of O((k − d)m × nB), because a

maximum of (k − d)m × nB Match IDs can be found in the intersection list.

Overall, the communication and computation complexities of our protocol are

linear in the size of the databases O(n) and the number of blocks O(nB), but they

are of exponential complexity in the number of attributes m and bins k, O(km). The

complexity of our protocol therefore depends on the value of k and the number of

linkage attributes m.

8.3.2 Privacy

The protocol assumes that both Alice and Bob follow the honest but curious (HBC)

adversarial model [78], in that the parties are curious and they try to find out as much

as possible about the other party’s data while following the protocol. The protocol is

secure in this adversarial model if and only if both parties have no new knowledge

at the end of the protocol above what they would have learned from the output of

the matched record pairs. We analyze the privacy of our protocol by discussing what

the two parties can learn from the data they communicate with each other during

the protocol.

There are mainly two steps where we have to consider the privacy aspect in our

protocol. One is the exchange of the BLIs (that contain compound blocks) in step 3

which might leak some information regarding the compound block values in each

party’s database to the other party. Using a secure set intersection (SSI) protocol

to find out the intersection set of the compound blocks in both databases (without

revealing any additional information about the blocks that are not in common to

either party) will solve this problem. There are two major types of SSI protocols that

are commutative encryption [1] and homomorphic encryption [114].The encryptions

of both types of SSI protocols have a linear communication complexity. Since the

exchange of the BLIs is O(nB) (as was discussed in Section 8.3.1), using a SSI protocol

for this step would be feasible.

The second privacy issue in our protocol is at the step of exchanging the Match

IDs (step 8) to find the intersection list that contains the Match IDs of Matching Bin

Combinations that are common to both databases. The privacy of this step depends

on the number of bins k. If k is large then the range of each bin is low and thus the

number of unique attribute values that fall in each bin will become smaller. This re-

sults in higher probability of suspicion (Ps) values (i.e. lower privacy). So the smaller

the value for the number of bins the higher the privacy of our protocol.

8.3.3 Linkage Quality

Evaluating the quality of our protocol is crucial since we use the bins of similarity

values instead of the actual similarity values for the approximate matching of at-

tribute values. In this section, we analyze the quality of our protocol in terms of

efficiency measured by recall (i.e. how many true matches are retrieved by the clas-
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Figure 8.14: An attack method for reference values-based private matching and classification
solutions (taken from [190]). The similarity of value ‘amelia’ (0.85) matches with two global
values in GM while the bin of similarity (D) matches with three global values and thus the

Ps is reduced to 1/3 from 1/2.

sification model) and effectiveness measured by precision (i.e. from the record pairs

that are classified as matches how many are true matches).

The quality of linkage depends on the number of bins k. If k is large, then the

range of each bin is small which results in more specific ranges of similarity values,

and thus the number of false matches and false non-matches will be smaller, resulting

in higher precision. However, if we increase k and thus decrease the range of each bin

above a certain value, then the number of false non-matches will begin to increase,

because the number of missed matches, classified incorrectly as non-matched pairs

(false non-matches), increases. This reduces the recall of the approach with increasing

k. Therefore, the larger the number of bins used the higher the precision but lower

the recall of our protocol.

Bins of similarities used in our protocol only provide similarity ranges (but not

the exact similarities), and therefore ranking of which pairs are more similar than

others is not possible with this approach.

8.4 Linkage Attack

A frequency linkage attack method for reference values-based private matching and

classification solutions is explained in Figure 8.14 for one example database value

(‘amelia’). An adversary (Alice, Bob, and / or Carol - we only consider insider attacks

in this thesis, as was described in Section 5.2) having access to a global dataset G

can compute the number of matching values ng in GM that have the same similarity

or bin of similarity with the same set of reference values to calculate the probability

of suspicion Ps. DR measures can then be calculated using the Ps values for each

masked value in DM. As illustrated in Figure 8.14, the exchange of bins of similar-

ity reduces the probability of suspicion and thus increases the privacy guarantees

compared to revealing the actual similarity values to a third party, as proposed in

the three-party solution [154] (assuming the third party might collude and / or it

might have information about the reference values used). In addition, the number

of bins used in this 2P-Bin solution determines the privacy of this approach. If the

number of bins k is large, then the similarity range of each bin becomes smaller, and
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Figure 8.15: (a) Total linkage time (b) F-measure and (c) DR measures of the 2P-Bin approach
on the OZ-17,294 and OZ-172,938 datasets, with different values for the number of bins

parameter (k).

this results in a smaller number of global values ng in GM that match with a specific

bin value. Therefore, the larger the number of bins used the lower the privacy of the

solution but higher the quality of linkage. Also, the privacy of this solution depends

on the number of attributes used to link records. If more number of attributes are

used, then the number of combinations with the same bin values in GM will become

smaller and thus the probability of suspicion will be increased with more attributes.

8.5 Experimental Evaluation

In this section we present the results of the empirical study of our 2P-Bin approach

conducted on the datasets described in Section 5.4 using the evaluation framework

proposed in Chapter 5. The default parameters were set to k = 6 (this gives best

results in terms of all three properties of PPRL, as shown in Figure 8.15), and st = 0.8.

The similarity range was set as sm = 0.5 to 1.0. Different values for k in the range

of [4, 6, 8, 10, 12] were also used to evaluate the performance of the 2P-Bin solution

against k. All four attributes in the datasets were used as linkage attributes.
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Figure 8.16: (a) Total linkage time, and (b) total communication size of the 2P-Bin approach
on the OZ datasets, (c) total linkage time on the OZ Cor datasets, and (d) total linkage time

on the NC Cor datasets averaged over the results of all variations of each dataset.

Figure 8.15 presents the results of the scalability, quality, and privacy of the ap-

proach for different number of bins k. The linkage time is calculated for different

number of bin values to evaluate the scalability of the protocol and how it is in-

fluenced by the value for k. As shown in Figure 8.15(a), the linkage time increases

with k, because the complexity of our protocol depends on the value for k (as was dis-

cussed in Section 8.3.1). As expected, the quality of linkage (calculated by F-measure)

increases with k. As we discussed in Section 8.3.3, although the number of false

matches decreases with k, the number of true matches missed (false non-matches)

increases with k due to smaller bin ranges. This leads to a consistent F-measure with

increasing k after certain point. We achieved a high F-measure of 1.0 on the No-mod

datasets. Privacy evaluated by the DR measures for the linkage attack presented in

Section 8.4 for different k is given in Figure 8.15(c). The disclosure risk increases with

k which reduces the privacy of the protocol with increasing k.

Figure 8.16 shows the total linkage time and communication size required for pri-

vate matching and classification of the 2P-Bin approach on different datasets. As can

be seen from the figure, the 2P-Bin approach is efficient and is also scalable to large

datasets. As expected, the computation complexity (shown in Figures 8.16(a), 8.16(c),
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Figure 8.17: A comparison of precision against recall of the 2P-Bin solution on the (a) OZ
Cor-46,116 and (b) NC Cor-54,886 datasets with No-mod, Light-mod, Med-mod, and Heavy-

mod variations.

and 8.16(d)) of our approach is linear in the size of the datasets, and it increases with

the number of attributes m used for the linkage (see Figure 8.16(a)). Most of the steps

in our protocol depend on the number of linkage attributes m and the number of bins

k used. However, the linkage performed with only one attribute takes longer time

than with two, three and even four attributes, especially on larger datasets (as can

be seen from Figure 8.16(a)). All the steps performed after the step of calculating the

intersection list of the BLIs (step 3) are dependent on this intersection list. With only

one linkage attribute, there are many common values that exist in both databases and

thus the intersection list of the BLIs will be larger than when several attributes are

used. As a result, the calculation of similarities of these attribute values, the genera-

tion of the Matching Bins of Records, and building the accumulator take longer time

with one linkage attribute only than performing the linkage with several attributes.

As can be seen from Figure 8.16(b), the communication complexity of our proto-

col is linear or sub-linear in the size of the datasets. It increases with the number of

attributes m used for linkage. With a smaller number of attributes used, the commu-

nication complexity tends to be more sub-linear, while with all four attributes used

it becomes linear in the size of the datasets.

The computation and communication complexities of our approach on the mod-

ified datasets are lower than on the non-modified datasets, as shown in Figure 8.16.

The reason is with modified datasets the number of similar attribute values that fall

into the same block will be smaller, which results in a smaller number of similarity

calculations compared with non-modified datasets.

A comparison of precision and recall of the 2P-Bin protocol is presented in Fig-

ure 8.17 on the OZ Cor-46,116 and NC Cor-54,886 datasets with different levels

of data modifications (corruptions). Different levels of corruptions applied to the

datasets (as was described in Section 5.4) allow us to evaluate the performance of ap-

proximate matching of our protocol in the presence of data errors. As shown in the

figure, our 2P-Bin approach achieves high precision and recall when no modification
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Figure 8.18: Disclosure risk of the 2P-Bin solution against the number of bins (k) used on
the OZ-17,294 No-mod and Mod datasets with (a) one attribute and (b) two attributes used.

is applied to the datasets, and then the values decrease as the level of modifications

increases, as one would expect. Recall drops quite drastically with the level of mod-

ifications, because the number of matches missed by the classification due to errors

and other variations introduced (false non-matches) increases more than the number

of false matches.

Next we evaluate the privacy of our approach using the disclosure risk measures

presented in Section 5.3.1, calculated for the frequency linkage attack (proposed in

Section 8.4) under the worst case assumption of G ≡ D. Figure 8.18 shows how dis-

closure risk increases with the number of bins (k) and the number of attributes used

to link records (linkage attributes) in the 2P-Bin solution. Since we used the original

dataset D as the global dataset G, the number of global values that match a certain

masked value is very small (resulting in high disclosure risk values). However, this

worst case scenario provides a baseline for empirical privacy evaluation of solutions.

Disclosure risk values in the modified datasets are lower than the values in the

non-modified datasets, because the number of global matches becomes smaller with

modified (by data errors and variations) values. Interestingly, in the modified dataset

the mean disclosure risk with two attributes decreases with k. This is because with

modified datasets, the number of global matches ng in GM with the same bin values

as the bin values in DM for both attributes becomes zero with larger number of bins,

and thus all the N global values in GM can be considered as possible matches, which

decreases the disclosure risk. Small variations in the attribute values would make a

frequency linkage attack more difficult.

Linkage quality (measured by precision) against privacy (measured by DRMean)

for different number of bins is shown in Figure 8.19. As can be seen from Figures 8.18

and 8.19, the 2P-Bin provides more privacy at the cost of quality loss on the modified

datasets compared to non-modified datasets.

Finally, we studied how a private blocking solution combined with our 2P-Bin

private matching and classification solution influences the scalability, quality, and

privacy of the process. We evaluated the 2P-Bin private matching and classification
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Figure 8.19: Privacy and linkage quality plot of the 2P-Bin solution for different number of
bins (k = [4, 6, 8, 10, 12]) used on the OZ-17,294 No-mod and Mod datasets.

Table 8.6: Blocking combined with the 2P-Bin private matching and classification
solution on the OZ-17,294 Mod dataset.

No blocking Phonetic SNC-2P

Time (seconds) 622.7531 10.5247 11.6744

Precision 0.0001 1.0000 0.9443

Recall 0.9993 0.5059 0.8447

F-measure 0.0002 0.6719 0.8917

DRMean 0.0006 0.5888 0.2637

DRMark 0.0002 0.5885 0.3066

solution with no blocking, Soundex [23]-based phonetic blocking (a standard block-

ing approach that has been used in non-PPRL, as described in Chapter 2), and our

SNC-based private blocking proposed in Chapter 7. In Table 8.6, we present the total

time required for blocking and linkage, linkage quality results, and the DR measures

in the worst case setting (G ≡ D) of our 2P-Bin solution with these three block-

ing scenarios. As the results show, when no blocking is applied the DR values are

very low. However, it requires significantly longer linkage time compared to when

a blocking technique is applied. Phonetic-based blocking requires shorter time than

our SNC-based blocking, though privacy and linkage quality results are compara-

tively better with the SNC-based approach. Phonetic-based blocking provides lower

privacy guarantees.

8.6 Summary

In this chapter, we have presented a novel two-party protocol for scalable and ap-

proximate privacy-preserving record linkage (PPRL) by using reference values and

binning the similarity ranges for secure calculation of the similarities between at-

tribute values. Our protocol is linear in the size of the databases to be linked which

allows scalability to large databases. This has been validated in our experimental
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evaluation where we performed the linkage on different datasets of up to a size of

nearly two million records. However, our protocol is a parametric solution which

depends on the number of bins k.

As shown in the experimental evaluation k plays a major role in determining the

three main properties of PPRL, which are scalability, linkage quality, and privacy. A

specific future research avenue is to tackle the problem of finding the optimal value

for k. As similar to the previous chapters, the selection of reference values is a crucial

step to achieve high linkage quality while providing sufficient privacy protection,

which requires additional work in this direction. In our current implementation,

we used the Levenshtein edit distance based string comparison function [148] to

measure the similarity between two strings. Another extension to our current work

is to compare the performances of the protocol when different approximate string

comparison functions are used.



Chapter 9

Two-Party Bloom Filter-based

Private Matching and Classification

Similar to the previous chapter, in this chapter we propose a novel two-party private

matching and classification algorithm for privacy-preserving record linkage (PPRL)

that uses one of the efficient privacy techniques, namely Bloom filter-based encod-

ing. Our protocol conducts iterative classification of record pairs into matches and

non-matches, as selected bits of the Bloom filters are exchanged across the database

owners. We describe the protocol in Section 9.2 and analyze in terms of complexity,

linkage quality, and privacy in Section 9.3. We then conduct an empirical study with

respect to these analyses in Section 9.5 based on a linkage attack presented in Sec-

tion 9.4. Finally, we summarize our findings and discuss future work in Section 9.6.

9.1 Introduction

Several approaches have been proposed to deal with PPRL over the past two decades

[58, 102, 184, 194]. As we reviewed in Chapter 3, most of these approaches either

use computationally expensive secure multi-party computation (SMC)-based privacy

techniques [41, 78, 135] or they require a trusted third party (which might not al-

ways be available in a real application) to perform the linkage using efficient data

perturbation-based privacy techniques. Developing efficient and practical algorithms

for private matching and classification in PPRL applications is one of the important

research directions identified in Chapter 4.

Among different perturbation-based privacy techniques that have been applied

in PPRL solutions, the Bloom filter-based encoding [17] is an efficient technique that

can provide adequate privacy guarantees if effectively used. A Bloom filter is an

array of bits of length l, where all the bits are initially set to 0. k independent hash

functions, h1, h2, . . . , hk, each with range 1, . . . l, are used to map the elements of a

set into the Bloom filter by setting the corresponding bit positions to 1. Bloom filters

have previously been used in several three-party and multi-party PPRL solutions.

Schnell et al. [174] were the first to propose a method for approximate matching

in PPRL using Bloom filters. In their work, the attribute values of each record in

the databases to be linked are concatenated into one string, and the q-grams (sub-

117
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Figure 9.1: Mapping of strings into Bloom filters and calculating their Dice coefficient
similarity (taken from [193]).

strings of length q) of these strings are mapped into Bloom filters using k independent

hash functions. This method of encoding is known as cryptographic longterm key

(CLK) [175]. The Bloom filters are then sent to a third party and the Dice coeffi-

cient [29] is used to calculate the similarity of two Bloom filters:

sim(bA, bB) =
2c

xA + xB
(9.1)

where c is the number of common bit positions that are set to 1 in both Bloom filters

bA and bB (common 1-bits), xA is the number of bit positions that are set to 1 in bA,

and xB is the number of bit positions that are set to 1 in bB. The Dice coefficient is

used since it is insensitive to many matching zeros in long Bloom filters [174]. For

example, mapping the bigrams (q = 2) of the two string values ‘peter’ and ‘pete’ into

l = 14 bits long Bloom filters using k = 2 hash functions and calculating the Dice

coefficient similarity of the two Bloom filters are illustrated in Figure 9.1.

The approach is efficient because of the use of Bloom filters and it supports ap-

proximate matching of values as well, rendering it applicable to real-world condi-

tions. However, as with other three-party protocols, collusion between the parties is

a major privacy drawback of this approach [174]. Recent research in PPRL has anal-

ysed the weaknesses of Bloom filters using constraint satisfaction cryptanalysis [122],

and novel solutions based on random sampling of bits from field-level Bloom filters

have been proposed to improve the privacy of Bloom filter-based PPRL [56, 175].

Our aim is to develop a two-party protocol for PPRL using Bloom filters. We

propose a protocol that eliminates the need of a third party by adopting an iterative

method for revealing selected bits in the Bloom filters between the database owners

and classifying record pairs into matches and non-matches in an iterative way such

that the pairs that are unlikely to correspond to matches are removed before reveal-

ing more bits for those pairs. An iterative strategy was introduced in a previous

two-party exact matching solution [14] for PPRL where characters of hash-encoded

values are iteratively revealed until they are identical for a certain length. The use of

iterative method would prevent revealing more information for pairs that are highly

likely to be non-matches. We use the cryptographic longterm key (CLK) [175] based

Bloom filter encoding for our two-party solution in this chapter and we will compare

different encoding methods (which we will discuss in Section 9.3.3) in Chapter 10.
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Table 9.1: Notation used in this chapter.
DA, DB Databases held by database owners Alice and Bob, respectively
SA, SB Lists containing tuples of linkage attributes’ values for each record in DA and DB, respectively
bA, bB A Bloom filter, one for each record in DA and DB, respectively
OA, OB Lists of record IDs and number of 1-bits for each record in DA and DB, respectively
C, Ci List of candidate record pairs, list of candidate record pairs at iteration i
st Minimum similarity threshold value to classify a record pair as a match
sl Minimum acceptable similarity threshold value to add noise
sr Minimum similarity threshold value to reveal bits in an iteration
l Length of Bloom filters
h1 . . . hk , k Hash functions used to map a set of elements into a Bloom filter, number of hash functions
q, i Number of characters that make a q-gram, iteration i, i > 0
r, ri Number of bit positions revealed, number of bit positions revealed in iteration i
ti Total number of bit positions revealed so far up to iteration i, ti = ∑i ri

x, xA, xB Number of 1-bits, number of 1-bits in bA and bB, respectively
xi , xA

i , xB
i Total number of 1-bits revealed so far up to iteration i,

total number of 1-bits revealed in bA and bB so far up to iteration i, respectively
rmin, rmax , zmax Minimum number of bits that can be revealed in an iteration, maximum number of

total bits to be revealed, maximum number of noise bits that can be added or removed
cmin, ci Minimum number of common 1-bits required in both Bloom filters bA and bB

to be classified as a match, total number of common 1-bits revealed from both
Bloom filters bA and bB so far up to iteration i

d Difference between xA and xB

dmax Maximum difference between xA and xB to be classified as a match
sim(·, ·) Function used to calculate the similarity of two Bloom filters bA and bB (Dice coefficient)

9.2 Proposed Solution

Similar as in the previous chapters, we assume two database owners, Alice and Bob,

with their respective databases DA and DB, participate in the protocol. We divide

the steps of our two-party Bloom filter-based protocol (2P-BF) into three main phases,

which are the preparation phase, the length filtering phase, and the iterative classi-

fication phase. The notation we use is summarized in Table 9.1. Figures 9.2 to 9.7

(taken from [188]) illustrate the steps of the protocol.

9.2.1 Preparation Phase

In the initial preparation phase the database owners prepare their data to be used in

the protocol. The steps of this first phase are:

1. Alice and Bob agree upon a bit array length l; k hashing functions h1 . . . hk; the

length (in characters) of grams q; the similarity function sim(bA, bB) to measure

the similarity of two Bloom filters bA and bB; a minimum similarity threshold

value st, above which a pair of records is classified as a match; the maximum

number of bit positions they are willing to reveal to each other rmax (rmax ≤ l);

and a set of attributes A (linkage attributes) that are used to link the records.

2. Alice and Bob each stores the tuples of the linkage attributes’ values (a1, · · · , am)

in a list, SA and SB, respectively, for each of the records in their databases.

3. For every tuple s in SA, Alice performs the following steps:

(a) Alice converts each attribute string ai in s (1 ≤ i ≤ m) into a set of q-grams.
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Figure 9.2: Example Bloom filters held by Alice and Bob for the records in their

databases DA and DB, respectively, and the number of 1-bits in each of their Bloom
filers along with the record identifiers stored in OA and OB, respectively.

(b) Alice maps these q-gram sets into a Bloom filter bA (of that record) of length

l using the hash functions h1 . . . hk. All the attribute values (a1, · · · , am in

s) of a record are mapped into one single Bloom filter.

4. Alice also counts for each Bloom filter the number of bit positions that are set

to 1 (1-bits), xA, and stores this number along with the identifier of the record

into its list OA, as illustrated in Figure 9.2 for the example Bloom filters.

5. For every tuple of attribute values s in SB, Bob performs steps 3 and 4.

9.2.2 Length Filtering Phase

The second phase of our protocol aims to remove non-matching record pairs using a

length filtering method on the Bloom filters. The output of this phase is a set of can-

didate record pairs (C) generated with their corresponding value for the minimum

number of common 1-bits they require (cmin) to be potentially classified as a match.

We use the Dice-coefficient (Equation 9.1) as the similarity function sim(·, ·) to com-

pare two Bloom filters, as it is insensitive to many zeros in Bloom filters [174]. How-

ever, any q-gram-based similarity function can be used [29]. Algorithm 9.1 shows the

main steps involved in this phase.

1. Alice and Bob exchange the number of 1-bits in each of their Bloom filters along

with their record identifiers or randomly generated unique ID numbers (lists

OA and OB, respectively). They then generate all the record pairs (|DA| × |DB|
if no blocking function is applied, see Section 9.2.4 for how this can be im-

proved) along with the number of 1-bits (xA and xB), as illustrated in Figure 9.3.

2. In order to consider a record pair as a possible match, the difference between

the number of 1-bits in their Bloom filters d = |xA − xB| should be less than

or equal to the maximum bit difference dmax, which can be calculated as below.

Assume xA ≤ xB and all the bit positions set to 1 in bA are also set to 1 in bB

(c = xA). This worst case assumption gives the lower bound of the similarity

coefficient (st) and the upper bound of bit difference (dmax). The value for dmax
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Figure 9.3: Record pairs that are likely to be non-matches are pruned (length filtering)

according to the number of 1-bits, xa and xb, using Equation 9.2, as shown in the left
table. Candidate record pairs generated after the length filtering phase are shown in
the right table, with the minimum number of common 1-bits required to be classified
as a match, cmin, according to the values of xA and xB, calculated using Equation 9.3.
st is set to 0.8. The minimum value of all cmin, min(cmin), is 4 which will be used as

the value for r1 in the first iteration (i = 1).

can be calculated given the minimum similarity coefficient threshold st and the

number of 1-bits in the Bloom filters, xA and xB, as shown in Equation 9.2.

sim(bA, bB) =
2c

xA + xB
≥ st

2 min(xA, xB)

min(xA, xB) + (min(xA, xB) + d)
≥ st

2xA

xA + xA + d
≥ st

d ≤ 2xA(1 − st)

st

dmax =
2xA(1 − st)

st
. (9.2)

A record pair must exhibit at most dmax difference between the 1-bits in their

Bloom filters in order to be considered as a possible match (according to the

similarity threshold value st). All the pairs that have a larger 1-bit difference

than dmax can be removed without proceeding further, since they cannot be

matches. For example, if st is set to 0.8, then the difference between 1-bits in

two Bloom filters must be at maximum half the value of the smaller value for

the 1-bits in the two Bloom filters (0.5× min(xA, xB)) in order to be classified as

a match, following sim(bA, bB) ≥ 0.8 ⇒ 2c
xA

1 +xB
1

≥ 8
10 ⇒ 2xA

1

xA
1 +(xA

1 +d)
≥ 8

10 ⇒ d ≤
0.5xA

1 . Alice and Bob store only the record pairs that have |xA − xB| ≤ dmax, as

illustrated in Figure 9.3.
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Algorithm 9.1 : Length filtering (phase 2)

Input: OA: List of record IDs and number of 1-bits (rA, xA) from Alice
OB: List of record IDs and number of 1-bits (rB, xB) from Bob
st: Minimum similarity threshold

Output: C: List of candidate record pairs with their
minimum number of common 1-bits required (cmin)

1: C = [ ]
2: for (rA

i , xA
i ) ∈ OA do

3: for (rB
i , xB

i ) ∈ OB do

4: xmin = min(xA
i , xB

i )
5: d = |xA

i − xB
i |

6: dmax = 2xmin(1−st)
st

7: if d ≤ dmax then

8: cmin = ⌊ st(xA
i +xB

i )
2 ⌋

9: C+= ([rA
i , xA

i ], [r
B
i , xB

i ], cmin)
10: end if

11: end for

12: end for

3. Alice and Bob now calculate the minimum number of common 1-bits required

for a record pair to be classified as a match, cmin, for each pair of the remaining

candidate records, as illustrated in Figure 9.3. This is calculated for each pair

using the values for xA, xB and st as shown in Equation 9.3, where ⌊·⌋ denotes

the rounding to the next lower integer value. The resulting candidate record

pairs with their values for xA, xB, and cmin are stored in the Candidates Index

data structure, C (as shown in the right table in Figure 9.3), which will be used

as an input to the next phase of the protocol, the iterative classification phase.

sim(bA, bB) =
2c

xA + xB
≥ st

2cmin

xA + xB
= st

cmin = ⌊ st(xA + xB)

2
⌋ (9.3)

9.2.3 Iterative Classification Phase

The main task of a record linkage process is the classification of record pairs [29].

The iterative classification phase is where we classify record pairs into matches, non-

matches, and possible matches. This classification needs to be done in such a way

that no information about the attribute values that were mapped into Bloom filters is

being revealed to the two database owners, with the exception of some information

regarding the matches.

We assume that Alice and Bob are prepared to reveal rmax bit positions to each

other in an iterative way without compromising the sensitive values in their Bloom

filters, where rmax is the maximum number of bits in Bloom filters that the database

owners agree to reveal (rmax ≤ l). The number of bits to be revealed in each iteration,

ri, is a crucial parameter to be set as it provides a trade-off between privacy and

computational efficiency of the protocol. There are two possible extreme cases.
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Figure 9.4: Bloom Filters of Alice and Bob with t1 = 4 (r1 = min(cmin) = 4) bits
revealed after the first iteration. The calculated values for c1 are used to calculate the

value for r2 for the next iteration, r2 = min(cmin − c1) = 2.

1. Revealing all the rmax bits in one iteration, which is very fast but is not secure

since all the rmax bit positions are revealed for all the Bloom filter pairs including

non-matches as well. This might allow Alice and Bob to re-identify certain

values of non-matches from the revealed bit patterns based on a linkage attack,

as will be explained in Section 9.4.

2. Revealing the rmax bits in rmax iterations where only 1 bit position is revealed in

each iteration. This would be the best case for preserving privacy as it removes

the non-matches in an iterative way before revealing the rest of the bit positions.

This approach is however not scalable to large databases, especially with long

Bloom filters, as each iteration requires communication between the database

owners.

Hence, a method to reveal the optimal number of bits, ri, in each iteration is

required. We propose a method to calculate this optimal number by finding the

smallest value of the minimum number of additional common 1-bits required to

classify a pair as a match in each iteration among all the record pairs. The record

pair that requires the smallest number of additional common 1-bits among all the

other pairs has a privacy risk if more bit positions are revealed than the minimum

number of common 1-bits it requires.

Assume ci is the total number of common 1-bits revealed so far up to iteration i.

The value for min(cmin − ci−1) (i > 0) is calculated to be used as the value for ri in the

ith iteration, with cmin as calculated in Equation 9.3. For example, in the first iteration

(i = 1), min(cmin) (c0 = 0) will be used as the value for the number of bit positions to

be revealed, r1. After r1 bit positions are revealed in the first iteration, the value for

(cmin − c1) will be calculated for each of the remaining record pairs to calculate the

value for r2 = min(cmin − c1) in the second iteration, and then min(cmin − c2) will be

used as the value for r3 in the third iteration, and so on.
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Figure 9.5: Bloom Filters of Alice and Bob with t2 = 6 (r2 = 2) bits revealed after the
second iteration. The calculated values for c2 are used to calculate the value for r3

for the next iteration, r3 = min(cmin − c2) = 1.
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third iteration. The calculated values for c3 are used to calculate the value for r4 for

the next iteration, r4 = min(cmin − c3) = 1.
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the fourth iteration. The pairs that are still classified as possible matches (the pair
of records RA3 and RB2 in this example) will need to be re-processed with different

hash functions. rmax = 8 in our example.
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Algorithm 9.2 : Iterative classification (phase 3)
Input: C: Candidate record pairs from phase 2

rmax : Maximum number of bits to be revealed in Bloom filters
Output: M: Set of record pairs classified as matches

N: Set of record pairs classified as non-matches
P: Set of record pairs classified as possible matches

1: M = [ ]; N = [ ]; P = C

2: while P 6= [ ] do

3: i = 1; t = 0
4: while t ≤ rmax do

5: ri = min(cmin − ci−1)
6: t = t + ri

7: for (bA, bB) ∈ P do

8: xA = number of 1-bits in bA

9: xB = number of 1-bits in bB

10: cmin = number of common 1-bits in bA and bB

11: reveal_bits(r) {A function to reveal bits from Bloom filters}
12: xA

i =total number of 1-bits revealed in bA

13: xB
i =total number of 1-bits revealed in bB

14: ci =total number of common 1-bits revealed in bA and bB

15: if ci ≥ cmin then

16: M+= (bA, bB)
17: P-= (bA, bB)
18: else if ci < cmin and (cmin − ci) > (l − t) then

19: N+= (bA, bB)
20: P-= (bA, bB)
21: else if ci < cmin and (cmin − ci) ≤ (l − t) then

22: if ((xA − xA
i ) < (cmin − ci)) or

((xB − xB
i ) < (cmin − ci)) then

23: N+= (bA, bB)
24: P-= (bA, bB)
25: end if

26: end if

27: end for

28: i+= 1
29: end while

30: for (bA, bB) ∈ P do

31: Do_rehash(P) {Restart the protocol from phase 1}
32: end for

33: end while

The iterative classification phase is done as follows (Algorithm 9.2 provides an

overview of these steps):

1. Among all the (cmin − ci−1) values for all the unclassified pairs of records, the

minimum value, min(cmin − ci−1), is taken as the lower bound of the number

of bits to be revealed in the next iteration. Alice and Bob both will exchange

ri = min(cmin − ci−1) same bit positions from each of their Bloom filters. For

example, if r1 = min(cmin − c0) = min(cmin) = 4, then the first 4 bit positions

are exchanged in the first iteration, as shown in Figure 9.4. The total number

of bit positions revealed so far up to iteration i is ti = ∑i ri.

From the exchange of ti bit positions, three possible cases can occur with each

record pair.

• Case 1: Record pairs which have cmin or more than cmin out of ti bit

positions set to 1 in both Bloom filters (bA and bB) (ci ≥ cmin). These
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pairs are classified as matches, because the similarity of these pairs is

sim(bA, bB) ≥ st as explained in Equation 9.3.

• Case 2: Record pairs which have some or none of the ti bit positions set

to 1 in both Bloom filters bA and bB (ci < cmin) and the number of ad-

ditional common 1-bits required (cmin − ci) is greater than the number of

remaining unrevealed bit positions (ci < cmin and (cmin − ci) > (l − ti)).
These pairs are classified as non-matches, because the remaining number

of unrevealed bits is not sufficient to be ci ≥ cmin.

• Case 3: Record pairs which have some or none of the ti bit positions set to

1 in both Bloom filters bA and bB (ci < cmin) and the number of additional

common 1-bits required (cmin − ci) is less than or equal to the number of

remaining unrevealed bit positions (ci < cmin and (cmin − ci) ≤ (l − ti)).
These record pairs are classified as possible matches, as there can be more

common 1-bits in the unrevealed bits to be ci ≥ cmin.

2. After having ti bit positions revealed in iteration i, all the pairs that are classified

as matches and non-matches (cases 1 and 2) can be removed from the set of

candidate record pairs C. Only the pairs that are classified as possible matches

(case 3) will be taken to the next iteration.

Based on the revealed bit positions, Alice and Bob calculate the new values for ci,

xA
i , and xB

i . Moreover, the values for xA
i and xB

i can also be used to prune more

non-matches from the pairs of records that were classified as possible matches.

Record pairs which have (cmin − ci) < (xA − xA
i ) or (cmin − ci) < (xB − xB

i )
can be classified as non-matches and pruned. For example, if 2 more 1-bits are

left unrevealed in bB (xB − xB
i = 2) after revealing 4 bit positions in the first

iteration, and (cmin − ci) is 3 which means at least 3 more common 1-bits are

required for the record pair to be classified as a match from only 2 1-bits in

bB (which is impossible), then this record pair can be removed at this iteration

without participating in the next iteration and revealing more bits for this non-

matching pair. Record pair RA3 and RB3 in Figure 9.4 is such a case.

3. For the pairs that are classified as possible matches (case 3), Alice and Bob repeat

the steps until rmax bit positions are exchanged in an iterative method (rmax is

set to 8 in our running example).

4. The record pairs that are still classified as possible matches in the last step, after

rmax bit positions have been revealed, need to be encoded (re-hashed) into new

Bloom filters by different k hash functions (lines 30-32 in Algorithm 9.2).

9.2.4 Improving Efficiency

In the length filtering phase, we remove record pairs that have a difference between

the number of 1-bits larger than a certain value, depending on the minimum simi-

larity threshold value st before starting the iterations, as explained in Section 9.2.2
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(following Equation 9.2). This reduces the number of candidate record pairs to be

processed in the iterative classification phase.

Blocking techniques [30] can be applied before performing the linkage (for ex-

ample, phonetic-based blocking [103] or our SNC-based private blocking approaches

presented in Chapters 6 and 7) such that similar records are grouped together. This

further reduces the number of candidate record pairs, because only the pairs that are

in the same block will be considered as candidate record pairs. Alice and Bob each

individually applies a private blocking function to their databases (using another set

of quasi-identifier attributes or part of the linkage attributes as the blocking keys)

to privately identify the list of common blocks in both databases or to generate the

resulting candidate record pairs from both databases.

The iterative pruning of candidate record pairs using Bloom filters allows remov-

ing pairs that have higher probability of being non-matches before exchanging more

bit positions. The aim of our iterative method is to prune the record pairs that are

classified as non-matches or matches and thereby reduce the number of unclassified

pairs (possible matches) in each iteration as much as possible. We proposed to re-

veal min(cmin − ci−1) bits in each iteration. Experiments conducted on real-world

datasets (see Section 9.5) show that although many bits are being revealed in the first

few iterations, only a small number of bits are being revealed in the later iterations

which requires many iterations to run and thus makes the process not scalable to

large datasets.

To overcome this problem, we propose a method for revealing more bits when the

number of bits to be revealed becomes very small, without compromising privacy.

Assume ti bits have been revealed so far up to iteration i, among which ci common

1-bits have been found in a record pair which needs cmin − ci more common 1-bits

in both Bloom filters in order to be classified as a match. If cmin − ci is very small

and hence we can classify the pair as a match even if no more common 1-bits are

found in the later iterations, then this pair will not be at a privacy risk if more bits

are revealed in the next iteration (because it has already been considered as a match).

The question now arises what is the maximum value for cnon = cmin − ci that can be

ignored to classify pairs as matches without accuracy loss.

st − sr =
2(cnon)

xA + xB

rmin = min(cnon)

ri = min(ri, rmin) (9.4)

We introduce another similarity threshold value, sr, to calculate the value for the

minimum number of bits that can be revealed for each pair in an iteration, rmin, as

shown in Equation 9.4. This basically expands the calculation of value ri in line 5

of Algorithm 9.2 as below. Among the values for cnon for all the pairs, the smallest

value is taken to be used as the value for the minimum number of bits that can be

revealed in all the pairs of Bloom filters in an iteration, rmin = min(cnon).



128 Two-Party Bloom Filter-based Private Matching and Classification

If ri becomes less than rmin in an iteration, especially in later iterations, then rmin

bits will be revealed. It is important to note that the similarity threshold to reveal, sr,

is only used to calculate the value for rmin while the similarity threshold st is used

to classify the pairs. This approach improves the efficiency (and thereby scalability)

of the protocol significantly without compromising the privacy of the non-matched

record pairs. This is empirically evaluated in Section 9.5.

9.3 Analysis of the Protocol

In this section we analyze our 2P-BF approach in terms of complexity, privacy, and

linkage quality.

9.3.1 Complexity

We assume both databases contain n (n = nA = nB) records, the average number of

q-grams in each record is nq, the number of hash functions used to map q-grams of

a record into a Bloom filter is k, and the length of Bloom filters is l. In phase 1 (the

preparation phase) of our protocol, the agreement of the parameters and functions

between Alice and Bob has a constant communication complexity. Hash-mapping the

nq q-grams in each of their n records into Bloom filters using k hash functions has a

computation cost of O(n ∗ nq ∗ k) hash operations for each.

Alice and Bob then exchange in the second phase (i.e., the length filtering phase)

their OA and OB lists, respectively, that contain n records with their record identifiers

and the number of 1-bits in the records’ Bloom filters. This has a communication

complexity of O(n), and computing the number of 1-bits differences between each

pair of records from Alice and Bob for length filtering (as explained in Section 9.2.2)

is of O(n2) computation complexity.

The length filtering phase reduces the number of candidate pairs by pruning

potential non-matches based on their lengths (number of 1-bits). Further applying

a private blocking protocol (such as phonetic based [103] or our SNC-based private

blocking presented in Chapters 6 and 7) can reduce more number of candidate pairs

by grouping similar records into the same block.

In the third iterative classification phase, Alice and Bob iteratively exchange bits

from (at most) each of their n Bloom filters of l length (if no blocking or length

filtering is applied). The computation cost of this phase is O((n ∗ l)2) bit comparisons,

while the communication cost is O(n ∗ l). The communication complexity of this

protocol is therefore linear in the size of the databases.

9.3.2 Privacy

As in all three previous chapters, we assume that both Alice and Bob follow the honest

but curious (HBC) adversarial model [78], in that the parties are curious and they try

to find out as much as possible about the other party’s data while following the

protocol. In this section, in order to analyze the privacy of our solution, we discuss
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what the two parties can learn from the exchanged data between them during the

iterative protocol. In the length filtering phase (Section 9.2.2), Alice and Bob exchange

the number of 1-bits in their Bloom filters, OA and OB, respectively. This might

leak some information regarding the presence of uncommon (infrequently occurring)

shorter or longer tuples of linkage attribute values in their databases that are mapped

into the Bloom filters (not the actual attribute values of tuples). This can be overcome

by noise addition or simulation techniques, as will be described further below.

In the iterative classification phase (Section 9.2.3), they iteratively reveal bits from

their Bloom filters to each other. The amount of privacy provided by any Bloom

filter based PPRL protocol depends on the number of hash functions used (k) and

the length of the Bloom filter (l) [122, 174]. The values for k and l have to be carefully

chosen as these values provide a trade-off between the quality of the classification

and privacy. The higher the value for k/l, the higher the privacy (as empirically

validated by Kuzu et al. [122]) and the lower the quality of linkage, because the

number of q-grams mapped to one single bit increases, which leads to lower linkage

quality but makes it harder for an attacker to infer the possible combinations.

The privacy of our iterative protocol depends mainly on the number of bits re-

vealed and how they are revealed. We propose to reveal ri = min(cmin) bits in each

iteration i without compromising privacy and complexity. Assume the minimum

number of bits required to be revealed in order to re-identify the revealed bit pattern

based on a linkage attack using an external dataset (as will be described in Sec-

tion 9.4) is ta. The privacy characteristics provided by our protocol (which will be

empirically evaluated in Section 9.5) are:

1. Non-matching record pairs are removed in the earlier iterations when only a

small number of bits ti have been revealed (ti < ta), which therefore cannot be

used to re-identify records using a linkage attack (Figures 9.16(a) and 9.19).

2. More bits are revealed for pairs that are more likely to be matches (Figure 9.19).

3. When a sufficient number of bits ta are revealed for a linkage attack (in iteration

i), the remaining unclassified pairs have a minimum similarity, as calculated in

Equation 9.5, that is close enough (simmin(Ci) ≈ st) to be considered as matches

(Figure 9.16).

simmin(Ci) = min

(

∀p∈Ci

2 × (cmin − ci)

xA + xB

)

(9.5)

where cmin, ci, xA, and xB are calculated for every pair p in the set of candidate

pairs Ci in iteration i.

Pruning candidate record pairs that have a higher probability of being classified

as non-matches (based on cmin calculated in Equation 9.3) at early iterations improves

the privacy of the protocol, since the non-matches are removed without revealing

more bits in the next iterations. Only the pairs that have a higher probability to
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be classified as matches, exhibit a higher probability of a linkage attack when the

number of revealed bits increases. We will empirically evaluate this in Section 9.5. In

addition, hash-mapping several attribute values from each record into one compound

Bloom filter (CLK encoding [175]) makes it harder for an attacker to infer individual

attribute values that correspond to a revealed bit pattern.

The security parameter rmax, which is the maximum number of bits to be revealed

in the Bloom filters, is agreed upon by the two database owners. This parameter

determines the privacy of the protocol. For any given Bloom filter length l, a larger

value of rmax results in lower privacy but more record pairs are being classified as

matches and non-matches, while a smaller value of rmax will lead to a smaller number

of record pairs being classified but with a higher level of privacy. The database

owners can individually simulate a linkage attack (as will be described in Section 9.4)

on their own databases to calculate the probability of suspicion with the number of

bits revealed in order to agree upon an appropriate value for rmax. This is empirically

explained in Section 9.5.

Depending on the data and the distribution of 1-bit patterns, another privacy

issue to be considered with our protocol is that revealing some bits (that have com-

paratively high sensitive information due to a small number of q-grams that are

mapped to those bits) are susceptible to a linkage attack. We propose two methods

for overcoming the problem of revealing the rare or sensitive bits in Bloom filters that

can be attacked with higher probability.

1. Adding noise: Noise can be added to Bloom filters by converting 1s into 0s and

0s into 1s individually by the database owners in the preparation phase in order

to perturb their datasets. Noise bits can either be added randomly or they can

be selectively added depending on the sensitivity of the bits. In the selective

noise addition method, bits that have high frequency (occur in many Bloom

filters) and that have more q-grams mapped to them can be added (by setting 0s

to 1s), and bits with low frequency and that have a smaller number of q-grams

mapped to them can be removed (by setting 1s to 0s) from the Bloom filters.

This is similar to the approach by Durham [56], where bit frequency ranges are

examined to eliminate sensitive bits from the field-level Bloom filters that can

be mapped back to less than a certain number of fields, when composing the

record-level Bloom filters. Privacy is improved by removing less frequent bits,

while the loss of quality that occurs due to the noise addition is reduced by

adding high frequent bits.

The question is how many noise bits need to be added or removed in order

to increase the privacy without compromising linkage quality and complexity.

When adding noise three cases can occur. The first is when the bits added

or removed (flipped 0s to 1s and 1s to 0s, respectively) by the two database

owners lead to the same number of additional matching 1-bits at the same

positions (common 1-bits), which results in almost the same similarity value.

The second case is where only some of the flipped bits are matching with the

already existing bits in the other database owner’s Bloom filters, and thus the
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number of additional common 1-bits introduced by the noise bits is lower than

the total number of noise bits added by the database owners. The third case

occurs when the added noise bits do not match with any existing 1-bits and

thus no additional common 1-bits are introduced by the noise bits.

In both the second and third cases, the new similarity value decreases because

of the noise bits. However, the third case is the worst case and needs to be

considered in determining the similarity threshold value. The database owners

must agree on a minimum acceptable lower bound of the similarity threshold,

sl , with sl < st. If the values for xA
min, xB

min, st, and sl are known, then the

maximum number of noise bits that can be added by the database owners,

zmax, can be estimated under the worst case (the third case described above,

i.e. no additional common 1-bits are introduced due to adding zmax noise bits)

using Equation 9.6.

st =
2 × cmin

xA
min + xB

min

sl =
2 × (cmin + 0)

(xA
min + zmax) + (xB

min + zmax)

sl =
st × (xA

min + xB
min)

(xA
min + zmax) + (xB

min + zmax)

zmax =

⌊

(st − sl)× (xA
min + xB

min)

2 × sl

⌋

(9.6)

Figure 9.8 shows the maximum number of noise bits (zmax) that can be indi-

vidually added to each Bloom filter by the database owners to perturb the bit

distribution in Bloom filters against the minimum similarity threshold value

that is acceptable (sl) without much quality loss in the classification results.

The maximum number of noise bits linearly increases when the minimum sim-

ilarity threshold value decreases.

2. Simulation attack: The database owners can each individually simulate the

protocol and attack their own database before exchanging the values in order

to identify if there exist any sensitive bits that map only to a small number of

q-grams. Based on that, they can either change the values for k, l, and q, or

they can agree on an appropriate value for the security parameter rmax. The

bit distribution in Bloom filters (based on the number of q-grams mapped) in

a real Australian telephone database (OZ dataset, as described in Section 5.4)

with 17,294 records, for example, shows that an average of 22 q-grams (q = 2)

and a minimum of 14 q-grams are mapped to one single bit when k = 30 and

l = 1000, while when k = 30 and l = 200 the bit distribution has a minimum of

88 and an average of 101 q-grams mapped to the bits (Figure 9.9). The number

of q-grams mapped to one bit decreases with l while it increases with k.
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the OZ-17,294 dataset for different values of l
and k. The numbers shown are mean values.

9.3.3 Linkage Quality

Similar as with the three-party Bloom filter-based solutions [56, 174, 175], our 2P-BF

approach’s linkage quality is dependent on the Bloom filter parameterization and

the encoding method (as will be discussed further below). In order for a string s1’s

Bloom filter b1 to be considered as a match with another string s2’s Bloom filter b2, the

bit positions that are set to 1 in b1 when hash-mapping the sub-strings (q-grams) of s1

into b1 using k hash functions, must have been set to 1 in b2 as well. However, there

can be false positives due to collisions between bits (i.e., two different q-grams of s1

and s2 are hash-mapped into the same bit and classified as a match). Equation 9.7

shows the probability f that a classification of two Bloom filters into a match (s1

matches with s2) becomes a false positive. From the equation, we can see that the

probability of false positive depends on the length of Bloom filters (l), the number of

hash functions k, and the number of elements nq (q-grams) in the string [144]. This

probability of false positives f provides privacy in privacy-preserving solutions at

the cost of linkage quality loss. Therefore, the parameter values (l and k) have to be

chosen carefully to balance this trade-off between privacy and linkage quality.

f = (1 − e−knq/l)k (9.7)

Several Bloom filter encoding methods have been proposed in the literature [56,

174, 175]. As discussed in Section 9.1, hash-mapping the q-grams of all the linkage

attribute values of a record into one Bloom filter is known as cryptographic longterm

key (CLK) [174, 175] encoding.

Durham [56] studied this approach in detail by using record-level Bloom filter

encoding (RBF) to improve the quality of linkage based on the weights of the link-
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Figure 9.10: An attack method for Bloom filter-based private matching and classification
solutions (taken from [190]). As the membership theory states [122], all the bit positions that
are set to 0 in the Bloom filter of record r1 must also be set to 0 in the Bloom filters in GM that
are possible matches to r1. Hence, in the shown example two of four global values’ Bloom
filters (‘smitth’ and ‘smitthe’) in GM match with the Bloom filter of r1 and therefore Ps = 1/2.

In the iterative classification approach, Ps increases with more bits revealed.

age attributes. In her approach, first the attribute values (q-grams) are hash-mapped

into different Bloom filters (field-level Bloom filters). Then bits are selected from

each of the attributes’ (field-level) Bloom filters according to their weights calculated

based on Fellegi and Sunter’s agreement and disagreement weights [65] (more bits

are selected from attributes with higher weights) and frequencies (bits with certain

frequencies are not included to improve privacy) in order to compose the RBF. Ran-

dom shuffling of bits is also used by the database owners in order to hide the order

of bits in the Bloom filters (RBF) from the third party (however, it is is not applicable

in two-party solutions).

In a hybrid encoding we can combine both CLK and RBF (which we call CLKRBF)

to select different numbers of hash functions k for different attributes according to

their weights and map them into the same Bloom filter of length l. Having different

numbers of hash functions for different attributes based on weights provides more

linkage quality as with RBF [56], and mapping them into the same Bloom filter im-

proves privacy due to collisions between bits as with CLK [175]. In Chapter 10 we

will empirically evaluate and compare these encoding methods in our 2P-BF solution

with respect to the linkage quality and privacy.

9.4 Linkage Attack

In order to check if a q-gram qj(qj ∈ s, 1 ≤ j ≤ nq) is a member of a Bloom filter b,

all the k integer values (positions in the Bloom filter) returned by the hash functions

hi(qj), 1 ≤ i ≤ k should be set to 1 in b [122]. If at least one of the bits (returned

integers) is set to 0 in b, then qj cannot be a member of b.

A simple example of the linkage attack method and the calculation of DR mea-

sures for Bloom filter-based private matching and classification is presented in Fig-

ure 9.10. The main idea of a cryptanalysis attack [122] is that if a bit position is set

to 0 in a Bloom filter, then all the possible matches (members or sub-strings of the

string which is mapped to this Bloom filter) must not independently set the specific

bit position to 1, as proven in [122]. In our 2P-BF, the probability of suspicion (Ps)



134 Two-Party Bloom Filter-based Private Matching and Classification

1,730 17,294 172,938 1,729,379
Dataset size - OZ

100

101

102

103

104

T
im

e
 i
n
 s

e
co

n
d
s

(a) Total time for record linkage - OZ datasets

No-mod
Mod

1,730 17,294 172,938 1,729,379
Dataset size - OZ

101

102

103

104

105

M
e
m

o
ry

 i
n
 m

e
g
a
b
y
te

s

(b) Total memory required for record linkage - OZ datasets

No-mod
Mod

4,611 46,116 461,167
Dataset size - OZ Cor

100

101

102

103

104

T
im

e
 i
n
 s

e
co

n
d
s

(c) Total time for record linkage - OZ Cor datasets

2P-BF

5,488 54,886 548,860
Dataset size - NC Cor

100

101

102

103

104

T
im

e
 i
n
 s

e
co

n
d
s

(d) Total time for record linkage - NC Cor datasets

2P-BF

Figure 9.11: (a) Total linkage time, and (b) total memory size required for the 2P-BF ap-
proach on the OZ datasets, (c) total linkage time on the OZ Cor datasets, and (d) total linkage

time on the NC Cor datasets averaged over the results of all variations of each dataset.

increases with the number of bits revealed, as shown in Figure 9.10. We did not

consider error bounds in our attack methods that allow for approximate matching

errors. Developing attack methods for randomized masking [67] with error bounds

in Bloom filter-based PPRL solutions is left out for future work.

9.5 Experimental Evaluation

In this section we present the results of the empirical study of our 2P-BF approach

conducted on the datasets described in Section 5.4 using the evaluation framework

proposed in Chapter 5. Following previous work [174], we set the values for the

Bloom filter parameters as l = 1000, k = 30, and q = 2. The minimum similarity

threshold to classify was set to st = 0.8 and the threshold to reveal bits was set to

sr = 0.77. All four attributes in the datasets were used as linkage attributes.

Figure 9.11 shows the total linkage time and memory size required for private

matching and classification of the 2P-BF approach on different datasets. The result

figures exhibit an almost linear complexity trend in the size of the databases which

makes the protocol scalable to large databases.
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Figure 9.12: A comparison of precision against recall of the 2P-BF solution on the (a) OZ
Cor-46,116 and (b) NC Cor-54,886 datasets with No-mod, Light-mod, Med-mod, and Heavy-

mod variations.
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Figure 9.13: Total number of bits revealed at each iteration (a) without the similarity
threshold to reveal, sr, and (b) after introducing the threshold sr (as described in
Section 9.2.4) on the OZ datasets. The values for the similarity thresholds were set as

st = 0.8 and sr = 0.77.

A comparison of precision and recall of the 2P-BF protocol is presented in Fig-

ure 9.12 on the OZ Cor-46,116 and NC Cor-54,886 datasets with different levels of

data modifications (corruptions). Different levels of modifications applied to the

datasets (as was described in Section 5.4) allow us to evaluate the performance of

approximate matching of our protocol in the presence of data errors. As shown in

the figure, the 2P-BF approach achieves high precision and recall when no modifica-

tion is applied to the datasets, and then recall drastically decreases while precision

slightly increases as the level of modifications increases. This is because the number

of false non-matches increases while the number of matches decreases due to the

modifications applied.

As discussed in Section 9.2.4, the number of bits revealed in the later iterations is

very small and therefore it takes more iterations to classify all the record pairs into
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Figure 9.14: Reduction ratio of classified
pairs at each iteration on the OZ datasets.
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Figure 9.15: Recall of matches at each itera-
tion on the OZ datasets.

matches and non-matches (see Figure 9.13(a)). With the proposed method of using a

second similarity threshold, sr = 0.77, this has been significantly improved, as shown

in Figure 9.13(b). The total number of iterations required to classify all the record

pairs is reduced 6-fold (from 300 to 50 iterations on the largest dataset - OZ-172,938)

with the proposed approach using a second threshold sr = 0.77.

The reduction ratio (RR) of record pairs with unknown match status after clas-

sifying record pairs as ‘matches’ and ‘non-matches’ at each iteration is shown in

Figure 9.14. As can be seen from the figure, our approach shows a high increment

rate in the reduction ratio after the first few iterations. The recall ratio (as shown in

Figure 9.15) is almost 1.0 for the datasets with no modifications (‘No-mod’). It is high

(nearly 0.8) with modified datasets as well (a total of 8 edits per record that results in

almost 50% modifications in the corresponding q-grams), which explains the aspect

of fault-tolerance to data errors by performing approximate matching.

The privacy characteristics of this protocol (as discussed in Section 9.3.2) are em-

pirically evaluated in Figure 9.16(a) based on the attack method proposed in Sec-

tion 9.4 using the Australian telephone database (OZ) as the global dataset. This

study empirically validates that the probability of a linkage attack increases with the

number of bits revealed, and the maximum probability of an attack (maximum dis-

closure risk) becomes greater than 0.05 (i.e. > 1/20) only after 800 bits have been re-

vealed. However, when 800 bits are revealed, most of the non-matching record pairs

have already been removed (as can be seen from Figure 9.19), and the minimum sim-

ilarity value of the remaining record pairs is nearly 0.7 (illustrated in Figure 9.16(b)),

which assures that the privacy of non-matches with similarity less than 0.7 is not

compromised with the iterative pruning approach.

We also tested noise addition techniques into the Bloom filters to perturb the

bit distributions (as discussed in Section 9.3.2) that improve privacy against linkage

attacks at the cost of quality loss. The minimum accuracy loss threshold was set to

sl = 0.78, so that a maximum of zmax = 6 noise bits can be included (see Figure 9.8).
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Figure 9.16: (a) Disclosure risk values against the number of bits revealed on the
OZ-17,294 dataset and (b) the minimum similarity value of unclassified record pairs

at each iteration on the OZ datasets.
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Figure 9.17: (a) Disclosure risk and (b) recall of matches at each iteration for noise
addition techniques on the OZ-17,294 No-mod dataset.

Noise bits are added or removed (flipped) either randomly (‘random’, i.e. bits are

flipped with the probability of zmax/l) or selectively according to the sensitivity of the

bits (‘selective’, i.e. bits with a smaller number of q-grams mapped to them are highly

sensitive compared to bits with a larger number of q-grams mapped and thus they

are less likely to be flipped). As shown in Figure 9.17, the noise addition techniques

reduce the disclosure risk significantly at the cost of some loss in recall. When no

noise is added disclosure risk increases with bits revealed, since more information

is revealed with more bits and thus a smaller number of global values match with

longer bit patterns. However, when noise bits are added into or removed from the

Bloom filters the number of global values that match with the perturbed bit patterns

becomes zero with more bits, and thus the disclosure risk decreases as more bits are

revealed. Disclosure risk is reduced more with the selective noise addition technique

than with the random noise addition at the cost of similar loss in recall.
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Figure 9.18: Percentage of remaining unclassified record pairs in the class of possible
matches against different values of rmax on the OZ-172,938 and NC datasets.

Table 9.2: Blocking combined with the 2P-BF private matching and classification
solution on the OZ-1,730 Mod dataset.

No blocking Phonetic SNC-2P

Time (seconds) 173.92 6.6233 15.1179

Precision 0.9208 1.0000 0.9972

Recall 1.0000 0.7680 0.9504

F-measure 0.9588 0.8688 0.9732

DRMean 0.0010 0.9909 0.0217

DRMark 0.0000 0.9908 0.0046

Figure 9.18 shows the percentage of remaining record pairs that are unclassified

after rmax bits have been revealed from the Bloom filters for different values of rmax.

Around 50% of record pairs are classified into matches and non-matches when 50%

(rmax = 500, l = 1000) of the bits have been revealed, and when rmax = 800 only

15% of pairs remain unclassified (in the class of possible matches which need to be

re-hashed with different Bloom filter parameters in order to re-conduct the iterative

classification process, as was explained in Section 9.2.3).

As can be seen from Figure 9.19, many non-matches are being classified in the

first few iterations and then matches are being classified more towards the middle

and later iterations. The overall RR of candidate record pairs is thus high (as shown

in Figure 9.19(c)), while the recall ratio of matches being classified is also high (as

was shown in Figure 9.15).

Finally, similar as in the previous chapter, we studied how a private blocking

solution combined with our 2P-BF private matching and classification solution de-

termines the three properties of scalability, quality, and privacy. We evaluated the

2P-BF private matching and classification solution with no blocking, Soundex [23]-

based phonetic blocking (a standard blocking approach that has been used in non-

PPRL, as described in Chapter 2), and our SNC-based private blocking proposed in

Chapter 7. In Table 9.2, we present the total time required for blocking and linkage,
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Figure 9.19: (a) Total number of record pairs classified as matches, (b) non-matches,
(c) possible matches, and (d) number of record pairs classified as matches, and (e)

non-matches at each iteration on the OZ datasets.

linkage quality results, and the DR measures in the worst case setting (G ≡ D) of

our 2P-BF solution with these three blocking scenarios. As the results show, when

no blocking is applied the DR values are very low. However, it requires significantly

longer linkage time compared to when a blocking technique is applied. Phonetic-

based blocking requires shorter time than our SNC-based blocking, though privacy
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and linkage quality results are comparatively better with the SNC based approach.

Phonetic-based blocking provides lower privacy guarantees.

9.6 Summary

In this chapter we have proposed a practical two-party private matching and clas-

sification solution for privacy-preserving record linkage (PPRL) by addressing the

three main challenges, which are scalability to large databases, high linkage quality

results, and sufficient privacy characteristics. With the appropriate determination of

values for the parameters, the experimental studies conducted on real-world datasets

show that our proposed two-party protocol can perform efficient linkage with high

linkage quality while providing adequate privacy characteristics.

Learning other advanced Bloom filter encoding methods to improve the linkage

quality without compromising the privacy in this two-party protocol is one interest-

ing direction for future work. Another avenue of future work is to develop efficient

linkage attack methods with approximation of error bounds for privacy evaluation

of Bloom filter-based private matching and classification solutions.

As we identified in Chapter 4, conducting a comprehensive empirical study of dif-

ferent PPRL solutions is an important avenue of research in PPRL. In the next chapter,

we will empirically compare and evaluate our proposed solutions with some of the

state-of-the-art solutions using our evaluation framework proposed in Chapter 5.



Chapter 10

Comparative Evaluation

We have addressed some of the shortcomings identified in Chapter 4 by proposing

novel and practical solutions for privacy-preserving record linkage (PPRL) in Chap-

ters 6 to 9. In this chapter, we comparatively evaluate the proposed solutions with

some of the state-of-the-art solutions using the evaluation framework proposed in

Chapter 5. We first present the comparative empirical evaluation results of several

private blocking solutions in Section 10.2, and then we present the results of private

matching and classification solutions in Section 10.3. Finally, we discuss our findings

in Section 10.4 and summarize our evaluation in Section 10.5.

10.1 Introduction

Developing novel algorithms for viable real-world PPRL applications that address the

three key challenges (or properties) of PPRL, which are scalability, linkage quality,

and privacy, is an important research problem in PPRL. We have proposed several

novel algorithms in Chapters 6 to 9 for PPRL addressing the three challenges.

The general pipeline of the PPRL process of two data sources is outlined in Fig-

ure 10.1. We described the steps of this process and their challenges in a privacy-

preserving setting in Chapter 2. The scalability challenge of PPRL can be addressed

by using two-step algorithms, where in the first step (Step 1 in Figure 10.1) a block-

ing or indexing technique is applied to reduce the number of candidate record pairs

that need to be compared [30]. These candidate record pairs are then compared and

classified into matches and non-matches in the second step (Step 2 in Figure 10.1)

using approximate and effective private matching and classification techniques (ad-

dressing the linkage quality challenge). Privacy is addressed by applying a masking

function (as described in Chapter 5) to the linkage attributes and / or blocking keys

in such a way that besides the record pairs classified as matches no other sensitive

information is revealed to any internal or external parties, using privacy techniques

as detailed in Chapter 4.

We proposed efficient private blocking solutions (three-party and two-party) based

on the sorted neighborhood clustering in Chapters 6 and 7. We then proposed two

different two-party solutions for private matching and classification in PPRL in Chap-

ters 8 and 9. Efficient perturbation-based privacy techniques such as k-anonymous

141
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Figure 10.1: A general outline of the privacy-preserving record linkage pipeline of
two databases (taken from [190]).

mapping [72, 182], reference values [154], Bloom filters [17], and random noise [108]

are used in these proposed solutions. In addition, the use of efficient perturbation-

based privacy techniques reduces the computation and communication complexities

of the algorithms and thus improves the scalability.

In the following, we compare and evaluate our proposed solutions with some of

the state-of-the-art solutions using our evaluation framework (which was proposed

in Chapter 5) in terms of all three properties of PPRL. Figures 10.2 to 10.13 and

Tables 10.3 and 10.4 present the results of our empirical study (taken from [190]). We

prototyped all the solutions in Python version 2.7.3 (as detailed in Section 5.6), and

all the experiments were conducted on the datasets described in Section 5.4.

10.2 Private Blocking Techniques

We comparatively evaluated the scalability, quality, and privacy of the following six

private blocking approaches: our sorted neighborhood clustering (SNC)-based three-

party private blocking solutions proposed in Chapter 6 (labelled as SNC-3PSim for

similarity-based merging and SNC-3PSize for size-based merging); our SNC-based

two-party private blocking solution proposed in Chapter 7 (labelled as SNC-2P);

Karakasidis et al.’s [104] three-party private blocking based on k-nearest neighbor

clustering and reference values (labelled as k-NN); Durham’s [56] Hamming-based

locality sensitive hashing three-party private blocking (labelled as HLSH); and Kuzu

et al.’s [124] two-party private blocking based on hierarchical clustering and differ-

ential privacy (labelled as HCLUST). We reviewed the details of k-NN, HLSH, and

HCLUST in Chapter 3 (named as Kar12 on Page 31, Dur12 on Page 30, and Kuz13

on Page 31, respectively).

We used parameter settings for the k-NN, HLSH, and HCLUST methods in sim-

ilar ranges as used by the authors of these private blocking techniques.

• For k-NN, k was set to 3 and the minimum similarity threshold was st = 0.6.

• In the HLSH method, the number of iterations was set to µ = 40, the number

of hash functions was k = 30, the length of Bloom filters was l = 1, 000 bits,
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Figure 10.2: A comparison of scalability (evaluated by total blocking time) of the six private
blocking approaches on the OZ datasets.

and the number of bits to be sampled from the Bloom filters at each iteration

was φ = 45.

• In the HCLUST method, the number of clusters was set as one tenth of the

number of records in the dataset, the differential privacy parameter ǫ = 0.3,

and the fake records tolerance parameter wn was set as the number of records

in the datasets to be linked.

• The default parameters for the SNC-based approaches were set as minimum

block size k = 100, minimum similarity threshold st = 0.8, and window size

w = 2 (as discussed in Sections 6.5 and 7.5).

Figure 10.2 shows the scalability of private blocking approaches to different sizes

of the OZ datasets measured by total blocking time (averaged over the results of all

parties over all variations of each dataset). As can be seen from the figure, the SNC-

based approaches (SNC-2P, SNC-3PSim and SNC-3PSize) require shorter time than

the other approaches and are scalable to large databases. k-NN and HCLUST take

significantly longer blocking time than HLSH and the SNC-based approaches.

The efficiency of blocking (scalability) measured by reduction ratio (RR) and the

effectiveness of blocking (quality) measured by pairs completeness (PC) of the six

private blocking approaches are compared on the OZ-172,938 Mod and NC datasets

in Figure 10.3. SNC-2P achieves the highest PC at the cost of some reduction in

RR, while the other approaches comparatively have lower PC with RR being almost

1.0. HLSH performs better by achieving high values for both RR and PC. These

scalability and quality values for the private blocking approaches are mapped into

a RR and PC plot, as shown in Figure 10.4, to compare the solutions in the trade-

off of scalability (efficiency) and quality (effectiveness) of blocking. As the figure

clearly shows, the HLSH approach achieves high values for both scalability and

quality, following the SNC-2P approach. The k-NN blocking approach achieves

comparatively lower values for both properties.
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Figure 10.3: A comparison of reduction ratio (RR) and pairs completeness (PC) of the six
private blocking approaches on the OZ-172,938 Mod and NC datasets.
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Figure 10.4: Reduction ration (RR) against pairs completeness (PC) of the six private block-
ing approaches on the (a) OZ-172,938 Mod and (b) NC datasets. The best solutions are the

ones closest to the upper right corner.

Finally, the privacy protection of the solutions are evaluated using the disclosure

risk measures presented in Section 5.3.1. Due to time and memory constraints, we

used the original dataset as the global dataset (G ≡ D) for privacy evaluation under

the worst case assumption. The size of blocks generated by the six private blocking

approaches are compared on the OZ-172,938 Mod and NC datasets in a box-and-

whisker plot in Figure 10.5. The SNC-based approaches and HCLUST have lower

variances between the block sizes which make a frequency attack using block sizes

more difficult. The HLSH approach generates overlapping blocks of smaller sizes

and the variance between block sizes is comparatively very high. It is important to

note that if the third party (in three-party solutions) does not have any information

regarding the parameters used and / or if it does not collude with any of the database

owners, then trying to mount a frequency attack even with variant block sizes is non-

trivial, because the third party does not know the parameter values (that can be used

to mount a frequency attack using a global dataset) and therefore learning the actual
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Figure 10.5: A comparison of block sizes generated by the six private blocking approaches
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Figure 10.6: A comparison of the distributions of probability of suspicion (Ps) values of the
blocked datasets generated by the six private blocking approaches on the (a) OZ-172,938 Mod

and (b) NC datasets.

blocking key values (BKVs) in the masked datasets is difficult.

Figure 10.6 shows the distributions of probability of suspicion (Ps) values (similar

to the examples illustrated in Figures 5.4, 5.5, and 5.6) in the OZ-172,938 Mod and NC

datasets blocked by the six private blocking approaches. The records in the datasets

are sorted according to their ps values. The median line in the blocked datasets

(which is used to calculate the median Ps and consequently the median disclosure
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Table 10.1: Disclosure risk (DR) measures of the six private blocking approaches.
Best values in each row are shown in bold font.

Dataset DR SNC-2P SNC-3PSim SNC-3PSize HCLUST k-NN HLSH

OZ-172,938 Max 0.4999 0.0085 0.0086 0.0896 0.4999 1.0000
Mean 0.0008 0.0037 0.0036 0.0036 0.0085 0.0067
Med 0.0015 0.0059 0.0031 0.0043 0.0096 0.0092
RIG 0.4690 0.5603 0.5613 0.5365 0.6049 0.9387

NC Max 0.4999 0.0087 0.0087 0.0278 1.0000 0.4999
Mean 0.0007 0.0037 0.0036 0.0033 0.0085 0.0015
Med 0.0017 0.0062 0.0068 0.0038 0.0050 0.0017
RIG 0.5118 0.6028 0.6031 0.5784 0.6483 0.8870

risk DRMed) is marked by a vertical dotted line in the figures. SNC-2P generates the

lowest probability of suspicion curve on both datasets. However, its maximum Ps

goes higher compared to SNC-3PSim, SNC-3PSize, and HCLUST approaches.

A comparison of disclosure risk (DR) measures (DRMax, DRMean, and DRMed cal-

culated from the probability of suspicion values Ps, as shown in Figure 10.6 and ex-

plained in Section 5.3.1.1, and relative information gain RIG calculated as explained

in Section 5.3.1.1) of the six private blocking approaches on the OZ-172,938 Mod

and NC datasets is given in Table 10.1. SNC-2P has the lowest values for DRMean,

DRMed, and RIG measures. However, DRMax is relatively higher than SNC-3PSim,

SNC-3PSize and HCLUST approaches. The disclosure risk values for the HLSH and

k-NN approaches are higher compared to the other approaches, with DRMax being

1.0 or 0.5 where there exists a block with a single or two BKVs.

The trade-off between privacy (measured by DRMax, DRMean, DRMed, and RIG)

and quality (measured by PC) of private blocking solutions is illustrated in Fig-

ure 10.7 for all six private blocking approaches on the OZ-172,938 Mod and NC

datasets. SNC-2P provides the highest PC with reasonably lower DR. Next follow

the SNC-3PSim, SNC-3PSize, and HCLUST approaches, which perform better com-

pared to the k-NN and HLSH ones by achieving higher PC with lower values for DR

measures.

10.3 Private Matching and Classification Techniques

In this section, we empirically evaluate the following private matching and classi-

fication solutions: our two-party private matching and classification solution based

on reference values and binning proposed in Chapter 8 (labelled as 2P-Bin); our

two-party Bloom filter-based private matching and classification solution proposed

in Chapter 9 with Schnell’s cryptographic longterm (CLK) encoding [175] (labelled

as 2P-BF CLK); Durham’s record level Bloom filter (RBF) encoding [56] (labelled as

2P-BF RBF); and our hybrid encoding of CLK and RBF proposed in Chapter 9 (la-

belled as 2P-BF CLKRBF). For the 2P-Bin [191] solution, the number of bins was

used in the range of k = [4, 6, 8, 10, 12] and the minimum similarity threshold was set

to st = 0.8. As in previous work [174, 175], the default parameters for the 2P-BF [188]
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Figure 10.7: A comparison of disclosure risk measures (DRMax, DRMean, DRMed, RIG)
against pairs completeness (PC) of the six private blocking approaches on the OZ-172,938
Mod (left column) and NC (right column) datasets. The best solutions are the ones closest to

the upper left corner.
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Table 10.2: Bloom filter parameterization for CLK, RBF, and CLKRBF methods.
First name Last name City Postcode

CLK hash functions (k) 30 30 30 30
CLK length (l) 1, 000 1, 000 1, 000 1, 000

RBF hash functions (k) 30 30 30 30
Agreement weight 2.5834 2.8908 1.2415 2.0852

Disagreement weight −1.3757 −1.1752 −0.7708 −0.3543
Range (weight) 3.9591 (32%) 4.0660 (33%) 2.0123 (16%) 2.4395 (19%)

Average q-grams (g) 5.0762 5.3255 7.7592 3.9861
Dynamic BF length [59] 223 233 334 173

RBF length [59] (l) 668 689 334 397

Weight 32% 33% 16% 19%
CLKRBF hash functions (k) 29 30 15 17

CLKRBF length (l) 1, 000 1, 000 1, 000 1, 000

based solutions were set as the number of hash functions k = 30, the length of Bloom

filters l = 1, 000, q = 2, and the minimum similarity threshold st = 0.8. Weights, l for

each attribute in the RBF method, and k for each attribute in the CLKRBF method

on the NC dataset are given in Table 10.2. Soundex-based phonetic blocking [23] was

employed in all these solutions to reduce the number of candidate record pairs.

We first compared the three Bloom filter encoding methods of CLK, RBF, and

CLKRBF in our 2P-BF solution. As Figure 10.8 illustrates, the RBF encoding requires

more iterations to converge but achieves a higher recall of matches compared to the

CLK method that completes the task in a smaller number of iterations. The hybrid

CLKRBF method achieves a higher recall in a smaller number of iterations. The

minimum similarity value of record pairs that remain unclassified shows that the

CLK and CLKRBF encoding methods have a minimum similarity of 0.5 (i.e., non-

matches with less than 0.5 similarity are removed) when half of the iterations are

completed, while the RBF encoding requires three quarter of iterations to classify

pairs so that the remaining pairs have a minimum of 0.5 similarity value.

We also investigated the distribution of bits (number of q-grams mapped to the

bits) in Bloom filters, and frequencies of bits in the NC dataset by the three encoding

methods (CLK, RBF, and CLKRBF) for the 2P-BF solution in Figure 10.9. A min-

imum of 24 bigrams are mapped to every bit in the Bloom filters by the CLKRBF

encoding method, while with the CLK and RBF methods a minimum of 10 and

15 bigrams are mapped, respectively (Figure 10.9(a)). Every bit with the CLKRBF

method appears in at least 100, 000 records in the NC dataset, which is significantly

larger than the minimum number of records a bit appears with the CLK and RBF

methods (Figure 10.9(b)). These results reveal that the CLKRBF encoding provides

higher privacy than the other two encoding methods, because higher value for the

number of bigrams mapped to a bit and higher frequency of a bit make a frequency

linkage attack more difficult.

From the results shown in Figures 10.8 and 10.9, it can be seen that the CLKRBF

encoding method outperforms the other two encoding methods in the 2P-BF solution

by achieving higher linkage quality, and better privacy in terms of bit distribution
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Figure 10.8: (a) The percentage of bits revealed, (b) reduction ratio (RR) of compared record
pairs, (c) recall of matches, and (d) minimum similarity value of unclassified record pairs
at each iteration for CLK, RBF, and CLKRBF encodings in the 2P-BF solution on the NC

dataset.
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Figure 10.9: Summary of (a) number of bigrams mapped to bits in the Bloom filters and (b)
frequencies of bits in the NC dataset for the 2P-BF solution with different encoding methods.
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Figure 10.10: A comparison of (a) disclosure risk values of the 2P-BF solution against num-
ber of bits revealed, and (b) disclosure risk values of private blocking solutions, on the D =

OZ-17,294 dataset using G ≡ D and G = full OZ database.

and pruning of non-matches.

The experiments described above assumed the worst case setting of global dataset.

Since we used the original dataset as the global dataset (G ≡ D) in this worst case,

the number of global values ng in GM that match a certain masked value in DM

is very small, which results in high disclosure risk values. Ideally, a global dataset

would not necessarily be equivalent to the original dataset and would have many

combinations of different attribute values resulting in lower disclosure risk values,

as was discussed in Section 5.5. Testing the privacy of the 2P-BF technique and sev-

eral private blocking techniques such as SNC-3PSim, SNC-3PSize, and k-NN on

the OZ-17,294 dataset using a global dataset that is the full Australian telephone

database (containing around 6.9 million records) provides much lower (around 2.5

magnitudes) disclosure risk results compared to the results in the worst case setting

of G ≡ D, as shown in Figure 10.10.

Figure 10.11 shows the scalability to different sizes of datasets (calculated by total

linkage time) of the four private matching and classification techniques (2P-Bin, 2P-

BF CLK, 2P-BF RBF, 2P-BF CLKRBF) on the OZ datasets. Bin size was used as k = 6

for the binning-based approach (2P-Bin) and all four attributes in the OZ datasets

were used as linkage attributes for all four techniques. The 2P-Bin approach requires

shorter linkage time and is efficient than the 2P-BF based approaches (2P-BF CLK,

2P-BF RBF, 2P-BF CLKRBF). However, the disclosure risk is higher and the linkage

quality is lower for the 2P-Bin approach compared to the 2P-BF based approaches, as

will be compared in Figure 10.12. All three variations of the 2P-BF based approaches

require similar linkage time. The CLKRBF encoding method is faster than the CLK

and RBF encoding methods as it requires a smaller number of iterations to converge

compared to the other two encoding methods (which we discussed in Figure 10.8).

A comparison of disclosure risk measures (DRMax, DRMark, DRMean, DRMed)

against linkage quality (calculated by F-measure) of the four private matching and

classification techniques on the OZ-17,294 Mod dataset is given in Figure 10.12. The
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Figure 10.11: A comparison of scalability (measured by linkage time) of the four private
matching and classification techniques on the OZ datasets.
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(c) DR Mean against F-measure of the four approaches
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(d) DR Med against F-measure of the four approaches

2P-Bin
2P-BF CLK
2P-BF RBF
2P-BF CLKRBF

Figure 10.12: A comparison of disclosure risk measures ((a) DRMax, (b) DRMark, (c) DRMean,
and (d) DRMed) against linkage quality (measured by F-measure) of the four private matching
and classification approaches on the OZ-17,294 Mod dataset. The best solutions are the ones

closest to the upper left corner.
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2P-Bin solution leads to higher disclosure risk values (i.e. lower privacy) and lower

linkage quality than the 2P-BF based approaches. In 2P-BF approaches, as can be

seen from Figures 10.11 and 10.12, the CLKRBF encoding method performs better

by achieving high F-measure, providing low disclosure risk, and requiring shorter

linkage time than the other two encoding methods.

10.4 Discussion

The empirical evaluation of several private blocking and private matching and clas-

sification solutions using the proposed evaluation framework provides a compre-

hensive view of the performances of these solutions with regard to the three main

properties of privacy, quality, and scalability.

The empirical results of private blocking solutions on the NC dataset and private

matching and classification solutions on the OZ-17,294 Mod dataset are summarized

in Tables 10.3 and 10.4, respectively, in terms of the three properties, scalability, qual-

ity, and privacy. We calculated overall scores (using Equation 5.9 on page 62 with

α = 0.33 and β = 0.33) based on different combinations of measures to compare the

viability of PPRL solutions with respect to all three properties (as was discussed in

Section 5.3.4). Different scores are calculated with different combinations of measures

for the three properties, as presented in Tables 10.3 and 10.4.

For private blocking solutions we calculated the following four scores: score 1 is

an average of RR, PC, and DRMax, score 2 is an average of RR, PC, and DRMean, score

3 is an average of RR, PC, and RIG, and score 4 is an average of time, PC, and DRMean.

The scores calculated for the private matching and classification solutions are: score

1 is an average of time, F-measure, and DRMax, score 2 is an average of time, F-

measure, and DRMark, and score 3 is an average of time, F-measure, and DRMean. We

used equal weights for all measures in the calculation of scores. Scores with different

weights would provide the ranking of solutions in the preferred context depending

upon the application and / or user requirements. However, scoring is a cumbersome

task that requires domain and application knowledge to determine the appropriate

weight for each aspect.

The comparison results of the six private blocking solutions presented in Ta-

ble 10.3 show that SNC-2P outperforms the other solutions in terms of all the mea-

sures except DRMax (and thus except score 1). The HLSH is faster and achieves

higher RR and PC compared to the other four approaches, however the DR and RIG

measures are higher (i.e. lower privacy). SNC-3PSim and SNC-3PSize are faster as

well with lower values for DR and RIG and achieve moderately higher RR and PC

values. The k-NN and HCLUST require longer runtime though the other aspects

provide moderate results.

Among the four private matching and classification solutions compared in Ta-

ble 10.4, the 2P-BF based approaches provide higher linkage quality results than

the binning based approach (2P-Bin), while the DR measures are also lower (which

means privacy is higher compared to the 2P-Bin approach). However, the 2P-Bin
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Table 10.3: Comparison of the six private blocking approaches on the NC dataset.
Best values in each row are shown in bold font. Four different scores are calculated as
averages of the measures for the three properties of scalability, quality, and privacy.
Measures marked with (+) have a positive impact on the overall score (i.e., high
values are better) and measures with (-) have a negative impact (i.e., low values are

better).
SNC-2P SNC-3PSimSNC-3PSize HCLUST k-NN HLSH

Time (-) 1044.02 2.6439 4.5502 95225.82 47075.76 1098.73
(normalized, see Section 5.3.3) 0.0109 0.0000 0.0001 1.0000 0.4943 0.0115

RR (+) 0.9901 0.9993 0.9994 0.9985 0.9992 0.9988

PC (+) 0.9924 0.9546 0.9454 0.9538 0.9264 0.9609

DRMax (-) 0.4999 0.0087 0.0087 0.0278 1.0000 0.4999

DRMean (-) 0.0007 0.0037 0.0036 0.0033 0.0085 0.0015

RIG (-) 0.5118 0.6028 0.6031 0.5784 0.6483 0.8870

Score 1: RR, PC, DRMax 0.8275 0.9817 0.9787 0.9748 0.6419 0.8199

Score 2: RR, PC, DRMean 0.9939 0.9834 0.9804 0.9830 0.9724 0.9861

Score 3: RR, PC, RIG 0.8236 0.7837 0.7806 0.7913 0.7591 0.6909

Score 4: Time, PC, DRMean 0.9936 0.9836 0.9806 0.6502 0.8079 0.9826

Table 10.4: Comparison of the four private matching and classification approaches
on the OZ-17,294 Mod dataset. Best values in each row are shown in bold font. Three
different scores are calculated as averages of the measures for the three properties of
scalability, quality, and privacy. Measures marked with (+) have a positive impact on

the overall score and measures with (-) have a negative impact.
2P-Bin 2P-BF CLK 2P-BF RBF 2P-BF CLKRBF

Time (-) 11.2641 48.6865 39.8932 25.1866
(normalized, see Section 5.3.3) 0.0000 1.0000 0.7650 0.3720

Precision (+) 1.0000 0.9995 0.9997 0.9997

Recall (+) 0.5059 0.7719 0.7721 0.7720

F-measure / F (+) 0.6719 0.8711 0.8713 0.8712

DR Max (-) 1.0000 1.0000 1.0000 1.0000

DR Mark (-) 0.2886 0.0166 0.0214 0.0143

DR Mean (-) 0.2887 0.0198 0.0119 0.0086

Score 1: Time, F, DRMax 0.5573 0.2904 0.3687 0.4997

Score 2: Time, F, DRMark 0.7944 0.6181 0.6950 0.8283

Score 3: Time, F, DRMean 0.7944 0.6171 0.6981 0.8302

solution is efficient and requires much shorter linkage time compared to others. The

2P-BF with the CLKRBF encoding outperforms all others in terms of overall scores.

Figure 10.13 maps score 2 of the six private blocking solutions on the NC dataset,

and score 3 of the four private matching and classification solutions on the OZ-17,294

Mod dataset into three-dimensional (3D) plots. Such a graphical representation of

evaluation results allows us to analyze where a solution is placed in terms of the

three properties of privacy, quality, and scalability and to compare different solutions.

These 3D plots are better suited for interactive exploration or visualization than static

visualization in a printed form.
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Figure 10.13: Three dimensional plots showing the comparison of (a) score 2: RR, PC, and
DRMean of the six private blocking approaches, and (b) score 3: time, F-measure, and DRMean

of the four private matching and classification approaches (right). The best solutions are the
ones closest to the front upper right corner.

10.5 Summary

In this chapter, we have conducted a comprehensive evaluation and comparison of

our proposed PPRL algorithms with several existing state-of-the-art techniques on

large real-world databases using our evaluation framework proposed in Chapter 5.

The experimental results on the datasets used show that our proposed algorithms

perform better compared to several other existing solutions in terms of all three

properties of PPRL: scalability, linkage quality, and privacy. Such large scale em-

pirical study using our proposed evaluation framework allows extensive evaluation,

analysis, and comparison of different PPRL solutions with respect to the three prop-

erties of PPRL.

Further work is required on large scale empirical evaluation [36] on other real

datasets or realistic synthetic datasets generated using our GeCo tool [35, 183] in or-

der to justify and generalize these empirical results. Investigating efficient and inter-

active linkage attacks for privacy evaluation, and approximation with error bounds

in the linkage attacks would be another direction for future research.



Chapter 11

Conclusions and Future Work

In this thesis, we have addressed several shortcomings in the area of privacy-preserving

record linkage (PPRL). These shortcomings have been identified by characterizing ex-

isting approaches using our taxonomy of PPRL techniques proposed in Chapter 4. In

this chapter we summarize our contributions (in Section 11.2) and discuss directions

for future research (in Section 11.3). Finally we conclude our work in Section 11.4.

11.1 Introduction

Based on our taxonomy proposed in Chapter 4 we characterized existing techniques

that have been developed for PPRL in the last two decades (existing techniques are

reviewed in Chapter 3). The taxonomy contains five main topics, namely privacy as-

pects, linkage techniques, theoretical analysis, evaluation, and practical aspects, each

of which contains three dimensions (resulting in a total of fifteen dimensions). The

characterization of existing techniques along these fifteen dimensions of our taxon-

omy (in Table 4.1 on page 42) allowed us to identify gaps in existing approaches and

research directions. We formulated research questions along the five main topics of

our taxonomy based on this study and addressed some of the identified gaps in our

thesis. The addressed research questions among the identified gaps and the remain-

ing questions for future work are presented in Figure 11.1. The research questions are

numbered in the form of x.y, where x (1 ≤ x ≤ 5) denotes the main topic and y de-

notes the research question under each topic. We will next summarize the addressed

gaps in Section 11.2 and discuss the gaps left for future research in Section 11.3.

11.2 Summary of our Contributions

The contributions of our work to address the shortcomings identified in the existing

PPRL literature (as represented in Figure 11.1 by darker boxes with solid lines) are

listed below:

1.1. Efficient two-party PPRL: We have addressed this question by developing two-

party algorithms for PPRL based on efficient perturbation-based privacy tech-

niques including k-anonymous mapping [72, 182], reference values [154], and

155
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Figure 11.1: A summary of gaps identified in the existing PPRL research in Chapter 4
that have been addressed in this thesis, and future research questions. The research
gaps represented by darker boxes with solid lines have been addressed in this thesis,

while the lighter boxes with dotted lines are left for future work.

Bloom filters [17]. In Chapter 7, we proposed an efficient two-party private

blocking technique based on k-anonymous sorted neighborhood clustering (ad-

apted from the efficient three-party private blocking developed in Chapter 6);

and in Chapters 8 and 9 we proposed efficient private matching and classifica-

tion techniques based on reference values and Bloom filters, respectively.

1.2. Efficient privacy techniques: This question has been addressed in our solutions

(proposed in Chapters 6 to 9) by replacing the expensive (in terms of computa-

tion and communication complexities) SMC-based privacy techniques with effi-

cient perturbation-based privacy techniques such as k-anonymous mapping [72,

182], reference values [154], binning [132], random noise [108], and Bloom fil-

ters [17]. Empirical evaluation studies conducted on real-world datasets have

shown that our approaches based on these perturbation techniques provide

sufficient privacy guarantees while achieving high linkage quality.

2.1. Efficient private blocking: We have investigated the efficient blocking tech-

nique of sorted neighborhood approach [52, 84] in a privacy-preserving con-

text for efficient private blocking (three-party and two-party) in Chapters 6

and 7. The comparative empirical evaluation conducted on real-world datasets

in Chapter 10 validates the efficiency of our approach compared to several other

existing private blocking solutions, including the k-nearest neighbor clustering-

based approach [104], the Hamming-based locality sensitive hashing approach

[56], and the hierarchical clustering-based approach [124].

4.1. An evaluation framework for PPRL: We have presented a comprehensive eval-

uation framework for PPRL (in Chapter 5) that contains numerical and nor-

malized measures for the three key challenges of PPRL, which are scalability,

linkage quality, and privacy. We used this framework to empirically evaluate
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several private blocking and private matching and classification solutions for

PPRL using real-world and synthetic datasets in Chapter 10. The empirical re-

sults have validated that our framework allows extensive evaluation, analysis,

and comparison of different PPRL solutions on the same scale with respect to

all three challenges of PPRL.

4.2. Privacy measures: We have proposed a novel set of disclosure risk measures

(in Chapter 5) according to an evaluation model for privacy evaluation of PPRL

solutions. The proposed disclosure risk measures provide a statistical summary

of disclosure risk of revealing a masked dataset to an internal adversary, based

on a linkage attack using an external global dataset with known values. The

experiments conducted in Chapters 6 to 10 using our disclosure risk measures

for privacy evaluation have shown that the proposed measures provide a prac-

tical way of quantifying the amount of privacy provided by a PPRL technique

and allow for comparison with other techniques in terms of privacy provision.

5.1. Realistic (synthetic) datasets: We have developed an effective synthetic data

generator and corruptor tool [35, 183] that models real-world data character-

istics (such as data errors, variations, and attribute dependencies) in order to

synthetically generate and / or corrupt datasets exhibiting similar character-

istics as real data. We have used two real-world databases (OZ - Australian

telephone database and NC - North Carolina voter registration database, as

detailed in Section 5.4) for the empirical study of our solutions in Chapters 6

to 10. While the NC database contains real duplicate records with errors and

variations, the OZ database does not contain any duplicate records. We there-

fore applied several corruption functions from our data corruptor to generate

duplicate records for the OZ datasets with errors and variations, and to syn-

thetically corrupt both the OZ and NC datasets. Such synthetically corrupted

datasets allowed us to evaluate the quality of approximate matching of our pro-

posed solutions in Chapter 6 to 10 in the presence of data errors and variations.

5.3. Comprehensive PPRL evaluation: We have conducted a comprehensive evalu-

ation of several PPRL solutions in Chapter 10 using our evaluation framework

proposed in Chapter 5. This study provided us with a baseline to compara-

tively evaluate and discuss different PPRL solutions with respect to the three

properties (or challenges) of PPRL. Conducting such extensive experimental

studies is one avenue of research that is highly beneficial to better understand

the characteristics of different PPRL techniques and their applicability in real-

world contexts.

11.3 Future Work

We now discuss several open research questions that are left to future work. These

research questions (as represented in Figure 11.1 by lighter boxes with dotted lines)

are:
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1.3. PPRL on multiple databases: A main research gap we identified through the

taxonomy is efficient PPRL of databases from multiple (more than two) data

sources. PPRL on multiple databases introduces additional challenges with re-

spect to complexity, linkage quality, and privacy [36]. Complexity increases

significantly with multiple parties in terms of both computational efforts and

communication size. Second, private matching and classification on multiple

databases is challenging due to similarity calculations of multiple values. How

to efficiently calculate the similarity of multiple values using approximate com-

parison functions in PPRL is an open question. Finally, the risk of privacy

breaches increases with multiple parties due to possible collisions between a

subset of parties with the aim to learn about another (subset of) party’s pri-

vate data. Despite these challenges, PPRL on multiple databases is useful and

required in many real-world applications (as was described in Section 1.2).

1.4. PPRL for other adversarial models: Another limitation of most of the existing

PPRL approaches is the assumption of the honest but curious (HBC) adver-

sarial model which is not suffice in many real-world applications, because it

is suitable only when the parties essentially trust each other. The malicious

adversarial model, on the other hand, provides strong privacy guarantees by

assuming dishonest parties, but it is computationally expensive and is therefore

difficult to be adopted in practice. Limited work has been done in PPRL for the

malicious adversarial model [69, 128, 145]. Future work is required in devel-

oping PPRL solutions under appropriate models such as the covert model [8]

or accountable computing [95]. The covert model guarantees that the honest

parties can detect the misbehavior of an adversary with high probability [8],

while the accountable computing model provides accountability for privacy

compromises by the adversaries without excessive complexity and cost that in-

cur with the malicious model [95]. Transforming perturbation privacy-based

HBC PPRL protocols into these models and proving privacy of solutions under

these models are difficult which necessitate further research.

2.2. Distributed PPRL: Distributed PPRL would help improving the scalability

property of PPRL by parallelising computations among different computational

resources. Initial work on parallelism in PPRL based on locality sensitive hash-

ing using the MapReduce framework [50] has been done by Karapiperis and

Verykios [107]. Investigating how parallelism can improve the scalability of

our proposed algorithms without compromising privacy is one challenging yet

interesting avenue for future research.

2.3. Matching different data types: Developing approximate comparison functions

for private matching of different data types such as numeric, date, time, ge-

ographic, and other complex types of data in PPRL is a beneficial next step

of research in order to improve the quality of linkage. However, calculating

similarities of such data without revealing their actual values is a challenge. In

addition, techniques are required that deal with missing attribute values.
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2.4. Advanced classification: Another important research question with regard to

improving linkage quality is how the advanced classification techniques that

have been developed for record linkage (such as machine learning-based [16,

25, 62], graph-based [85, 147], collective [15, 100], and group-based [153] tech-

niques) can be efficiently employed in a privacy-preserving context. More ef-

forts are required in this direction of research to improve the quality of linkage

in PPRL applications [36].

3.1. Theoretical privacy assessment: Many PPRL solutions that have been pro-

posed in the literature lack in theoretical assessment of privacy provided by

those solutions. Therefore, more attention is required towards this direction.

We have partially addressed this gap by analyzing the privacy of our proposed

solutions in Chapter 6 to 9 in terms of what can be learned by the internal

adversaries (parties involved in the protocols) from the data they communicate

among them during the protocols. However, conducting an extensive analysis

of privacy regarding different types of attacks by using a standard set of nota-

tions (similar to the big-O notation [155] used for complexity analysis) would

be a constructive research direction in PPRL.

4.3. Clerical review in PPRL: Clerical review of unclassified record pairs (pairs that

have been classified as possible matches by a private matching and classifica-

tion technique) with manual efforts is difficult in PPRL, since the actual values

of record pairs cannot be revealed to human expert(s) to enable the process

of reviewing and decision making. How semi-supervised active learning tech-

niques [6] for clerical review can be efficiently and effectively applied in PPRL

applications is an open research question [36].

5.2. A language for PPRL: The final research gap that is left for future work is

a language for PPRL. Researchers have used various languages, datasets, and

measures to evaluate their PPRL algorithms. Crucially, there is currently no

overarching framework available that allows researchers to implement and in-

tegrate their novel algorithms to PPRL based on a standard language which

can then be evaluated comparatively. Developing a language for PPRL with

abstract modules for each of the steps in the PPRL process would provide a

key standard to model different PPRL approaches, which would be valuable

for PPRL researchers.

11.4 Conclusions

In this thesis we have presented comprehensive research in scalable and approximate

privacy-preserving record linkage (PPRL). First we conducted an extensive survey

of existing PPRL techniques based on our taxonomy of PPRL. This taxonomy covers

fifteen dimensions of PPRL along which existing techniques have been characterized.

Based on this analysis, we have identified several shortcomings in existing PPRL for

research directions and contributed to address some of the identified gaps.
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The primary contributions of this work are scalable and approximate PPRL solu-

tions in a two-party context (without the need of a third party to perform linkage and

therefore no collusion between parties is possible) using efficient privacy techniques.

We have proposed novel solutions for private blocking, and for private matching

and classification in two-party PPRL, that address the three crucial properties of

PPRL, which are scalability, linkage quality, and privacy. Specifically, we have pro-

posed two efficient private blocking techniques (three-party, and two-party adapted

from three-party) based on sorted neighborhood clustering [52, 84] to improve the

scalability property; and two effective private matching and classification solutions

based on reference values [154] and Bloom filters [17], respectively, that provide high

linkage quality for approximate matching. Efficient data perturbation-based privacy

techniques (in terms of computation and communication complexities compared to

the SMC-based techniques) including k-anonymous mapping [72, 182], reference val-

ues [154], binning [132], Bloom filters [17], and random noise [108] have been used

in our proposed solutions.

Another major contribution of our work relates to the evaluation of PPRL algo-

rithms. Since a general framework for evaluation of PPRL has been missing in the

literature, we have proposed an evaluation framework for PPRL with a standard set

of measures for all three properties of PPRL. In this framework, we have also pre-

sented a novel set of disclosure risk measures for privacy evaluation (which has been

another key gap in the existing literature) based on an evaluation model using an

external global dataset. We have empirically evaluated all our proposed solutions on

real and synthetically corrupted (with realistic data characteristics) datasets using our

evaluation framework. We have also conducted a comprehensive and comparative

evaluation of our proposed solutions and several other state-of-the-art solutions. The

empirical results validate that our approaches perform equal or superior compared

to several existing approaches by addressing all three properties of PPRL.
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