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A key task in analyzing social networks and other complex networks is role analysis: describing and cat-
egorizing nodes according to how they interact with other nodes. Two nodes have the same role if they
interact with equivalent sets of neighbors. The most fundamental role equivalence is automorphic equiva-
lence. Unfortunately, the fastest algorithms known for graph automorphism are nonpolynomial. Moreover,
since exact equivalence is rare, a more meaningful task is measuring the role similarity between any two
nodes. This task is closely related to the structural or link-based similarity problem that SimRank addresses.
However, SimRank and other existing similarity measures are not sufficient because they do not guarantee
to recognize automorphically or structurally equivalent nodes. This article makes two contributions. First,
we present and justify several axiomatic properties necessary for a role similarity measure or metric. Sec-
ond, we present RoleSim, a new similarity metric that satisfies these axioms and can be computed with a
simple iterative algorithm. We rigorously prove that RoleSim satisfies all of these axiomatic properties. We
also introduce Iceberg RoleSim, a scalable algorithm that discovers all pairs with RoleSim scores above a
user-defined threshold θ . We demonstrate the interpretative power of RoleSim on both both synthetic and
real datasets.
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1. INTRODUCTION

In social science, it is well established that individual agents tend to play roles or
assume positions within their interaction network. For instance, in a university, each
individual can be classified into the position of faculty member, administration, staff,
or student. Indeed, role discovery is a major research subject in classical social science
[Wasserman and Faust 1994]. Interestingly, recent studies have found that roles not
only appear in other types of networks, including food webs [Luczkovich et al. 2003],
world trade [Hafner-Burton et al. 2009], and even software systems [Dragan et al.
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Fig. 1. Example graph for role equivalence.

2009], but also can help to predict node functionality within their domains. For example,
in a protein interaction network, proteins with similar roles tend to serve similar
metabolic functions. Thus, if we know the function of one protein, we can predict that
all other proteins having a similar role would also have similar function [Holme and
Huss 2005]. In other cases, such as online social networks, there are no a priori role
categories. The classification must be learned based on the interaction patterns.

Role discovery is complementary to graph clustering, an important tool for analyz-
ing network structures. Graph clustering attempts to decompose a graph into densely
connected components. It produces a high-level structural model consisting of a small
number of “cluster nodes” and the “super edges” between these cluster nodes. The
clustering scheme inevitably overlooks and oversimplifies the interaction patterns of
the individual nodes. In reality, the nodes within a cluster may take very different
roles: some of them may serve as the core of the clusters, some may be peripheral
nodes, and some serve as the connectors to link between clusters. At the same time,
nodes located in different clusters might play similar roles. Furthermore, even when a
network lacks modularity structure, such as in a simple hierarchical structure, roles
can still characterize the interaction patterns of each node. Hence, roles provide an or-
thogonal abstraction for simplifying and highlighting the complex interactions among
nodes.

A central question in studying the roles in a network system is how to define role
similarity. In particular, how can we rank two nodes’ role similarity in terms of their
interaction patterns? Despite its vital importance for network analysis and decades of
work by social scientists, joined recently by computer scientists, no satisfactory metric
for role similarity has yet emerged. A key issue is the encapsulation of graph auto-
morphism into a role similarity metric: if two nodes are automorphically equivalent,
then they should share the same role and their role similarity should be maximal. From
a network topology viewpoint, automorphic nodes have equivalent surroundings, so
one can replace the other. Figure 1 illustrates a graph with nodes S1 and J1 being
automorphically equivalent.

The traditional social science approach for role analysis has been to define suitable
mathematical equivalence relations for nodes so that they can be partitioned into equiv-
alence classes (roles). An essential property of these equivalences is that they should
positively confirm automorphic equivalence—that is, if any two nodes are automor-
phic, then they are role equivalent. (The converse is not necessarily true.) Confirming
automorphism is an instance of verifying a solution, which is often algorithmically less
complex than discovering a solution. Thus, although there is no known polynomial-time
algorithm for discovering graph automorphism,1 role equivalence algorithms [Batagelj
et al. 1992; Borgatti and Everett 1993; Sparrow 1993] can still guarantee to satisfy the

1The computational complexity of graph isomorphism and automorphism are still unproven to be either P
or NP − Complete.
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aforementioned automorphism confirmation property. These equivalence rules also di-
rectly correspond to the aforementioned coloration.

However, by relying on strict equivalence rules, these role modeling schemes can
produce only binary similarity metrics: two nodes are either equivalent (similarity = 1)
or not (similarity = 0). In real-world networks, usually only a very small portion of the
node-pairs would satisfy an equivalence criteria [MacArthur et al. 2008], and among
those, many are simply trivially equivalent (such as singletons or children of the same
parent). In addition, strict rule-based equivalence is not robust with respect to network
noise, such as false-positive or false-negative interactions. Thus, it is desirable in many
real-world applications to rank node-pairs by their degree of similarity or provide a
real-valued node similarity metric.

Recent research works have proposed various measures of node similarity based on
similarity of interactions. In Leicht et al. [2005], a accrues similarity to b if a has a
neighbor that is similar to b. This assumes that neighbors (a and its neighbors) should
be somewhat similar; however, roles should be class-based, not proximity based. Jeh’s
SimRank [Jeh and Widom 2002] is based on the following principle: “two nodes are
similar if they link to similar nodes.” Mathematically, for any two different nodes x and
y, SimRank computes their similarity recursively according to the average similarity of
all neighbor-pairs (a neighbor of x paired with a neighbor of y). A single node has self-
similarity value 1. This is equivalent to the probability that two simultaneous random
walkers, starting at x and y, will eventually meet. Most other node structural similarity
measures [Antonellis et al. 2008; Fogaras and Rácz 2005; Li et al. 2009; Xi et al. 2005;
Yin et al. 2006; Zhao et al. 2009] are variants of SimRank. Although SimRank seems to
capture the intuition of the presented recursive structural similarity, its random walk
matching does not satisfy the basic graph automorphism condition. For example, in
Figure 1, although S1 and J1 are automorphically equivalent, SimRank assigns them
a value of 0.226. We discuss this further in Section 3.2. To our best knowledge, there
is no available real-valued structural similarity measure satisfying the automorphic
equivalence requirement. Since automorphic equivalence is a pivotal characteristic of
the notion of role, its lack disqualifies these existing measures from serving as authentic
role similarity measures.

Thus, we have an open problem: can we derive a real-valued role similarity measure
or ranking that complies with the automorphic equivalence requirement? In this article,
we develop the first real-valued similarity measure to solve this problem. In addition,
our measure is also a metric—that is, it satisfies the triangle inequality. The key feature
of our role similarity measure is a weighted generalization of the Jaccard coefficient
to measure the neighborhood similarity between two nodes. Unlike SimRank, which
considers the average similarity among all possible pairings of neighbors, our measure
considers only those pairs in the optimal matching of their two neighbor sets that
maximizes the targeted similarity function.

The article is organized as follows: Section 2 provides a detailed review of the ex-
isting works on node similarity. Section 3 presents axiomatic properties of any real-
valued similarity measure, including a requirement for automorphic equivalence. We
also show that SimRank does not satisfy the automorphic equivalence requirement.
Section 4 describes our RoleSim measure, its computation, and its correctness with
respect to the axiomatic properties. Section 5 presents Iceberg RoleSim, a scalable al-
gorithm that discovers all pairs with RoleSim scores above a user-defined threshold.
Section 6 provides experimental validation and evaluation of our proposed approach
for ranking the the role similarity between vertex pairs.

An earlier version of the article [Jin et al. 2011] is published in KDD’11. This article
significantly extends that work and makes the following additional contributions: (1) we
provide a detailed and extensive survey of the existing node similarity work (Section 2);
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(2) we introduce a new Iceberg RoleSim to scale the existing RoleSim computation
(Section 5); (3) we perform a detailed evaluation of Iceberg RoleSim to demonstrate
its performance and scalability (Section 6.5); and (4) we present a detailed case study
comparing RoleSim with the state-of-the-art approaches using a coauthor network
(Section 6.6).

2. RELATED WORK

This section provides a survey of prior work relevant to our core problem of role simi-
larity. The first section describes several formal definitions of role and role equivalence.
The next section reviews existing work on role similarity. The remaining sections review
numerous measures for the general problem of local structural similarity, considering
first centrality-based measures and then link-based measures.

We take this opportunity to establish some symbolic notation to use here and in the
remainder of this work. We use the terms graph and network interchangeably; the
same is true for vertex and node. In most instances, we speak of networks and nodes,
as this is the more common usage in the principal application domains of interest, but
we revert to graph and vertex at times when speaking in a graph-theoretical sense.

We define a graph or network G = (V, E) as a set of nodes V and a set of connecting
edges E ⊆ V × V . The neighbors of a node v are those nodes that are joined directly
to v with an edge. The set of neighbors N(v) = {u|(u, v) ∈ E}. The degree of v is
dv = |N(v)|. When discussing computational complexity, the number of vertices in a
graph is n = |V |, and the number of edges is m = |E|. By default, we assume that edges
are undirected, but all of the concepts and formulas in this work can be extended to
directed graphs by computing scores using in-neighbors and out-neighbors separately
and then combining the scores.

2.1. Role Equivalence

Computing role similarity encompasses two more fundamental problems: what is a role,
and how should we measure closeness to role? We use the following definition of role:

Definition 1 (Role and Role Equivalence). A role is the set of relationships between
an individual and others. In graph theory terms, the role of v is the set of all edges
incident to v. For an undirected graph: role(v) = {(u, v) ∈ E}. Two individuals fulfill
equivalent roles if they have equivalent relationships.

For example, consider Figure 1, which depicts three siblings {S1, J1, L1}, who are
each a parent in a family. Each family has two parents and either two or three children.
There are three types of relationships shown:

(1) Spouse {S1-S2, J1-J2, L1-L2}
(2) Parent–Child {S1-S3, S1-S4, S2-S3, S2-S4, J1-J3, etc.}
(3) Sibling {S1-J1, S1-L1, J1-L1}

For simplicity, we do not show the sibling relationships in the younger generation.
Intuitively, S1 and J1 appear to be role equivalent: each is a spouse, a parent of

two children, and the sibling of two others. Note we have not labeled or colored the
edges, only the nodes. For example, a parent-child relationship is defined by the two
participating nodes, not by a prelabeling of the edge. However, we do not know that the
two ends represent a parent and a child until we identify the roles. In general, even
the nodes will not be labeled or colored in advance. We will begin only with a graph
topology; the role equivalence discovery problem is to identify the colorings.

In social network analysis, the traditional approach for discovering role groups is
to define a equivalence relation and to partition the actors into equivalence classes.
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Table I. Equivalence Classes for Figure 1

Unique

Equivalence Neighbor Rule Nonsingleton Classes Partitioning?

Structural Same nodes (N(u) = N(v)) {S3,S4}, {J3,J4}, {L3,L4,L5} Yes

Automorphic For automorphism σ ,
∀x ∈ N(u), ∃y ∈ N(v) s.t.
y = σ (x)

{S1,J1}, {S2,J2}, {S3,S4,J3,J4},
{L3,L4,L5}

Yes

Equitable
partition

Same number per class {S1,J1}, {S2,J2}, {S3,S4,J3,J4},
{L3,L4,L5}

No

Regular Same classes {S1,J1,L1}, {S2,J2,L2},
{S3,S4,J3,J4,L3,L4,L5}

No

Actors who fulfill the same role are equivalent. Over the years, four definitions have
stood out. These four, in decreasing order of strictness, are structural equivalence,
automorphic equivalence, equitable partition, and regular equivalence. Table I shows
how these different definitions generate different roles from the same network.

• Structural Equivalence: Two actors are structurally equivalent if they interact
with the same set of others [Lorrain and White 1971]. Mathematically, u and v are
structurally equivalent if and only if N(u) = N(v). For example, consider the extended
family shown in Figure 1. S1, J1, and L1 are siblings; S2, J2, and L2 are spouses; and
the remaining nodes are their children. Each family’s children, {S3, S4}, {J3, J4}, and
{L3, L4, L5}, form a nontrivial equivalence class. However, none of the parents can be
grouped together via structural equivalence. Figure 2(a) illustrates this partitioning.
Nodes with the same color are in the same class, except gray nodes represent single-
ton classes. Each gray node is its own class. This model is too strict to be useful for
simplifying a large network and to discover meaningful roles.

• Automorphic Equivalence: Two actors (nodes) u and v are automorphically
equivalent if there is an automorphism σ of G where v = σ (u) [Borgatti and Everett
1992]. An automorphism σ of a graph G is a permutation of vertex set V such that for
any two nodes u and v, (u, v) ∈ E iff (σ (u), σ (v)) ∈ E. In social terms, u and v can swap
names, along with possibly some other name swaps, while preserving all of the actor-
actor relationships. Let Ŵ(G) be the group of all automorphisms of graph G. For any two
nodes u and v in G, u ≡ v if u = σ (v) for some σ ∈ Ŵ(G). Note that ≡ is an equivalence
relation on V; if u ≡ v, we say that u is automorphically equivalent to v. The equivalence
classes generated under Ŵ(G) (or ≡) are called orbits. The equivalence class for vertex
v ∈ V is called the orbit of v and denoted as �(v) = {σ (v) ∈ V, σ ∈ Ŵ(G)} = {u|u ≡
v}. Each orbit corresponds to a role in the automorphic equivalence. Understanding
the importance of automorphic equivalence and applying it to role modeling was a
major breakthrough in classical social network research. In our example Figure 1,
from the topology alone, we cannot distinguish between the Smith family and the
Jones family. The Lee family is distinct because it has three children instead of two.
Therefore, the equivalence classes are {S1, J1}, {S2, J2}, {S3, S4, J3, J4}, {L1}, {L2},
and {L3, L4, L5} (Figure 2(b)). Interestingly, automorphically equivalent classes must
have equivalent indirect relations as well, such as equivalent in-laws and cousins.
However, automorphic equivalence is hard to compute and still very strict.

• Exact Coloration (Equitable Partition): An exact coloration of graph G as-
signs a color to each node, such that any two nodes share the same color if and only
if they have the same number of neighbors of each color [Everett and Borgatti 1996].
Nodes of the same color form an equivalence class. An exact coloration is also referred
to as equitable partition [Godsil and Royle 2001] and graph divisor [Cvetkovı́c et al.
1998] and is often applied in the vertex classification/refinement for canonical label-
ing in a graph isomorphism test [Read and Corneil 1977; McKay 1981]. A graph may
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Fig. 2. Comparing equivalence schemes (gray nodes are not equivalent).

have several exact colorations; in general, we seek the fewest colors. In our example,
structural equivalence and automorphic equivalence offer two different exact col-
orations. Exact coloration relaxes automorphism by considering only immediate neigh-
borhood equivalence, yet it still embodies a recursive aspect to role modeling.

• Regular Equivalence (Bisimulation): Two actors are regularly equivalent if
they interact with the same variety of role classes, where class is recursively de-
fined by regular equivalence [White and Reitz 1983]. Unlike automorphic equiva-
lence and exact coloration, regular equivalence does not care about the cardinality
of neighbor relationships, only whether they are nonzero. For example, using regu-
lar equivalence, all three families could be equivalent, with only three equivalence
classes: sibling–parent{S1, J1, L1}, spouse–parent{S2, J2, L2}, and child (Figure 2(c)).
Note that under regular equivalence, any two automorphically equivalent nodes may
be merged into the same regular equivalence class. In computer science, the regular
equivalence is often referred to as the bisimulation, which is widely used in automata
and modal logic [Marx and Masuch 2003].

2.2. Existing Role Similarity Measures

We now move from strict equivalence to measuring similarity. There has been limited
work on measuring role similarity. For structural equivalence, one can count how many
neighbors they share, normalized by some factor. However, we noted in the previous
section that structural similarity is too limiting for our interest.
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Two algorithms for measuring the extent of regular equivalence are described in
Borgatti and Everett [1993]. However, the authors acknowledge “the lack of a theoreti-
cal rationale for the measure of similarity produced.” The core of the problem lies not in
their algorithms but in regular equivalence itself. Both regular equivalence and exact
coloration are problematic because there may be more than one equivalence partition-
ing for a given graph. Indeed, for regular equivalence, every graph has two degenerate
partitionings: (1) place all nodes in one class and (2) place each node in its own class
(except structurally equivalence nodes may be in the same class). If one is measuring
similarity, from which partition are you measuring the similarity?

To find the “best” regular partitioning, one can consider an information-theoretic
or Minimum Description Length (MDL) approach: group nodes into classes or blocks
that approximately describe a true regular equivalence class membership. This is the
blockmodeling approach [Batagelj et al. 1992; Doreian et al. 2005]. MDL blockmodeling
tries to solve the following optimization problem: assign nnodes to b blocks such that the
aggregate cost of describing the block structure O(b log b) plus the cost of describing the
difference between the appropriate block structure and the true structure is minimized.
Heuristically, the problem is easier if the number of blocks b is preset, but whether it
is or not, the exact optimization problem is NP hard. Furthermore, it does not truly
address our problem: we want to know the similarity of nodes at the individual level.
Blockmodeling jumps ahead to a global partitioning problem and only provides a rough
measure of distance.

2.3. Structural Similarity Measures

Due to the limited work in role similarity, we look at prior work for other types of
structural similarity, namely (1) centrality of a node with respect to the full graph and
(2) link-based similarity. We will not consider density measures. Density has been well
studied in other works [Lee et al. 2010] and is not relevant to our definition of role
similarity.

2.3.1. Similarity of Node Centrality. This section discusses properties of individual nodes
in the context of a network. By themselves, these properties are not similarity mea-
sures. However, the property values of two different nodes can be compared to produce
a similarity measure. Node degree, closeness centrality, and betweenness centrality are
three such measures. Degree counts the number of incident edges. In directed graphs,
it can be divided into in-degree and out-degree. Closeness centrality is the average
distance between a node v and every other node in the graph. Betweenness centrality
measures how frequently a node lies on the path between two other nodes [Freeman
1977]. These definitions, however, are too limited to encompass the concept of role. Role
is not merely centrality of degree, closeness, or betweenness. It is any or all of these
and possibly more; it is whatever makes the structural position of a node unique.

2.3.2. Link Similarity. Another way that node structural similarity has been defined is
in terms of link similarity—that is, how are two nodes connected to one another? One of
the earliest measures of link similarity is bibliographical coupling [Kessler 1963]. This
measures the similarity between two research publications by counting the number
of works that are listed in both of their bibliographies. Co-citation [Small 1973] turns
this around by counting the number of later works that cite both of the two original
documents. As the size of a work’s bibliography increases, the likelihood that it will
contain a particular work increases. Therefore, a common normalization of these two
measures is to divide the count by the number of distinct works cited.

We can form a citation graph, where each node is a document and a directed edge
(a, b) means that document a cites document b. Let I(a) and O(a) be the in-neighbor set
and out-neighbor set of a, respectively. Let Ia and Ob be the in-degree and out-degree
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of a. Then, the normalized bibliographic coupling index is

Sbc(a, b) =
|O(a) ∩ O(b)|

|O(a) ∪ O(b)|
, (1)

and the normalized co-citation index is

Scc(a, b) =
|I(a) ∩ I(b)|

|I(a) ∪ I(b)|
. (2)

These are simply the Jaccard coefficients of the out-neighbor sets and in-neighbors
sets, respectively.

These two are suitable for unweighted and directed graphs. If a graph is undirected,
then the two measures are the same. Suppose that we have a weighted graph, though.
This could be an author-collaboration graph, where edge (a, b) counts how many times
author a has worked with author b. Or, it could be a bipartite document-term graph,
where edge (da, tb) counts the number of times that document a uses term b. Assign
to each node a feature vector. For a coauthorship graph, each author is a feature
dimension; its feature vector is the set of edge weights to every other author. For a
document-term bipartite graph, a document has a term vector, weighted according to
term frequencies of the document. If we represent the graph as an adjacency matrix,
then the feature vector of node i is the ith row of the matrix.

Given this representation, the cosine between two objects is a convenient and mean-
ingful measure. Identical documents have cosine of 1, and documents with no features
in common are orthogonal with cosine of 0.

Scit(a, b) =
A · B

‖A‖‖B‖
, (3)

where A is the feature vector of node a.
A small modification to the denominator of Equation (3), attributed to Tanimoto

[1958], maintains the overall behavior of the similarity function while aligning it with
the Jaccard coefficient when the feature vectors are binary valued:

Stani(a, b) =
A · B

||A||2 + ||B||2 − A · B
, (4)

Schultz and Liberman [1999] adapted the well-known TF-IDF query-document sim-
ilarity measure to produce a term-weighted document-document similarity measure.
Here, A(t) is the frequency of term t for object a, and idf (t) is the inverse document
frequency for term t. More generally, it is the significance or importance of term t
appearing in a document.

Swcos(a, b) =

∑

t∈T A(t)B(t)idf(t)

||A|| ||B||
(5)

SimRank. Jeh and Widom [2002] realized that a more general way to attack the node
similarity problem was to not only look for shared neighbors—that is, neighbors that
are identical—but to look for neighbors that are similar. This produces the following
recursive statement: “two objects are similar if they are related to similar objects” [Jeh
and Widom 2002]. Formally, their SimRank measure is defined as follows:

simsr(a, b) =
c

|I(a)| |I(b)|

∑

x∈I(a)

∑

y∈I(b)

simsr(x, y) (6)

if a 
= b. If a = b, then simsr(a, b) = 1. c is a constant 0 < c < 1. In addition, for SimRank
and all of its variants, if either a or b has no neighbors, then sim(a, b) = 0. SimRank can

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 1, Article 3, Publication date: February 2014.



Scalable and Axiomatic Ranking of Network Role Similarity 3:9

be computed iteratively by initializing the matrix of sim(.) values, hereafter called the
S matrix, to the identity matrix. A SimRank similarity value can be interpreted as the
probability that two simultaneous random walkers, starting at a and b, will eventually
meet if they traverse the network backward along directed edges. At each step, there is
a probability (1−c) that one or both walkers will abandon the walk and exit the network.

Obviously, we can add the effects of in-neighbors and out-neighbors to produce a
more comprehensive measure of the neighbor similarity between two objects. Several
authors have proposed this [Lin et al. 2007; Zhao et al. 2009].

SimRank can be described as a recursive extension of the co-citation index. An im-
portant difference between the noniterative algorithms in Section 2.3.2 and SimRank
is that the earlier algorithms can be computed locally with a minimum of computa-
tional effort. With SimRank, however, to compute the similarity of even a single pair of
objects, one has to consider the entire graph. This increases the computational require-
ments by a factor of n2k, where k is the number of iterations. Consequently, several
authors [Lizorkin et al. 2008; Jia et al. 2009; Cai et al. 2009; Li et al. 2009] have worked
to reduce both the computational and memory requirements for SimRank, for general
and specific applications.

In addition to concerns about the computational efficiency of the original SimRank
formula, there are some structural flaws that mar its elegance. First, SimRank scores
sometimes decrease when we would intuitively expect them to increase. Suppose that
we have an object-pair that has all neighbors in common. Then simsr(a, b) = c/d, where
d is the degree of a or b. As d increases, this should mean stronger ties between a and
b, but clearly simsr actually decreases.

SimRank++. Antonellis et al. [2008] partially compensates for this unwanted de-
crease by inserting an evidence factor. The more neighbors in common, the higher the
evidence of similarity. They define evidence as

ev(a, b) =

|N(a)∩N(b)|
∑

i=1

1

2i
, (7)

where N(a) is the undirected neighbor set of a. If a and b have only one neighbor in
common, ev = 1/2. As the number of neighbors increases, ev → 1. This yields the
following similarity definition:

simev(a, b) = ev(a, b) · c

N(a)
∑

x=1

N(b)
∑

y=1

simev(x, y). (8)

The very narrow range [0.5, 1] of the evidence factor, however, leads to the problem
that simev(.) values are no longer bounded to a maximum of 1 or even to a constant.
Instead, the maximum depends on the maximum value of ||N(a)|| · ||N(b)|| for the
graph. The authors make one more extension to support edge-weighted graphs. Their
final measure is called SimRank++:

simspp(a, b) = ev(a, b) · c

N(a)
∑

x=1

N(b)
∑

y=1

wabwbysimspp(x, y). (9)

PSimRank. Fogaras and Rácz [2005] realize that the cause of improper weighting of
neighbor matching in SimRank is due to the paired-random walk model. Ignoring the
decay constant c for the moment, SimRank values are equal to the probability that two
simultaneous random walkers, starting at nodes a and b, will eventually encounter each
other. Even in the best-case scenario, in which a and b have all of the same neighbors
in common, so that N(a) = N(b), the probability that the two walkers will happen to
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choose the same neighbor is 1/da, which decreases as the degree increases. To amend
this situation, Fogaras and Rácz introduce coupled random walks. They partition the
event space into three cases:

(1) Probability P1 = P(a and b step to the same node) =
|I(a)∩I(b)|
|I(a)∪I(b)|

(2) Probability P2 = P(a steps to a node in I(a)\I(b)) =
|I(a)\I(b)|
|I(a)∪I(b)|

(3) Probability P3 = P(b steps to a node in I(b)\I(a)) =
|I(b)\I(a)|
|I(a)∪I(b)|

Note that in Case 1, which we would consider the direct similarity of a and b, is
described by the Jaccard coefficient. As required, the sum of these probabilities equals 1.
We can then compute a similarity measure that takes the general form

simps(a, b) =

3
∑

i=1

Pi · sim(neighbors in Case i).

Noting that there are |I(a)\I(b)| · |I(b)| neighbor-pairs in Case 2 and |I(b)\I(a)| · |I(a)|
in Case 3, this produces the logical but somewhat unwieldy formula:

simps(a, b) = c

⎡

⎢

⎣
P1 · 1 +

P2

|I(a)\I(b)| |I(b)|

∑

x∈I(a)\I(b)
y∈I(b)

simps(x, y)

+
P3

|I(b)\I(a)| |I(a)|

∑

x′∈I(b)\I(a)
y′∈I(a)

simps(x
′, y′)

⎤

⎥

⎦
. (10)

MatchSim. The authors of MatchSim [Lin et al. 2009] take this amendment of
random walking to its limit. They observe that when a human compares the features
of two objects, a human does not select random features to see if they match. Rather,
people look to see if there exists an alignment of features that produces a perfect or
near-perfect matching. Therefore, their similarity measure discards the idea of random
walk and replaces it with “the average similarity of the maximal matching between
their neighbors” [Lin et al. 2009]:

simms(a, b) =

∑

(x,y)∈m⋆
ab

simms(x, y)

max(|I(a)|, |I(b)|)
, (11)

where m⋆ represents the maximal matching. MatchSim omits the usual decay factor
c, but this seems to be an idealization rather than a necessary alteration. Note that
the size of the maximal matching is min(|I(a)|, |I(b)|). Without loss of generality, as-
sume that a has fewer neighbors than b. The upper bound for simms(a, b) occurs when
every neighbor of a is also a neighbor of b. In this special case, max(simms(a, b)) =

max( min(|I(a)|,|I(b)|)
max(|I(a)|,|I(b)|) ) =

|I(a)∩I(b)|
|I(a)∪I(b)| , which is the Jaccard coefficient.

PageSim. All of the previous works are modifications of the original SimRank mea-
sure and principles. We now consider two measures that are markedly different from
SimRank. We first consider PageSim [Lin et al. 2006], which not only borrows the entire
PageRank computation as a starting point but also borrows the meaning of PageRank’s
iterative computation to devise a related computation. The canonical interpretation of
PageRank is that for each step, each page sends out an equal fraction of its own im-
portance to each of its neighbors. Its importance for the next step is the sum of the
fractional importance that it received from its in-neighbors. PageSim also uses this
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spreading or propagating mechanism; however, rather than there being a universal
importance feature that can be summed, each node begins with a distinct self-feature,
which is orthogonal to every other node feature. The authors describe the propagation
process as occurring over distinct paths, and they sum the contributions of each path
to compute the total distribution. As long as we permit self-intersecting paths, this is
equivalent to measuring the random walk destination distribution for each node after
k steps. PageSim follows a multistep procedure:

(1) For each node a, define feature vector FV (a). FVb(a) is the bth element of FV (a).
(2) Initialize all vectors: FV 0

a (a) = PageRank(a). FV 0
b (a) = 0, b 
= a.

(3) For t = 1 to k iterations, FV t = c ·
∑

a∈V
FV t−1(a)

|O(a)|

(4) Measure the similarity between pairs of feature vectors. In their original paper
[Lin et al. 2006], the similarity measure is defined as such:

simpg1(a, b) =

n
∑

i=1

min(FVi(a), FVi(b))2

max(FVi(a), FVi(b))
. (12)

In an expanded work [Lin et al. 2007], they modify the formula to more closely
resemble the Jaccard coefficient:

simpg2(a, b) =

∑n
i=1 min(FVi(a), FVi(b))

∑n
i=1 max(FVi(a), FVi(b))

. (13)

Leicht’s Vertex Similarity. The last measure that we consider addresses the other
major weakness of SimRank: it considers only equal-length paths of similarity. As
stated earlier, a SimRank value equals the probability that a given pair of nodes will
meet if they take steps simultaneously with the other. That is, it would not count a case
where Walker a takes three steps to reach c, and Walker b takes four steps to reach
c. To address this limitation, [Leicht et al. 2005] formulate their measure from the
following maxim: vertex a is similar to b if a has any neighbor c that is itself similar
to b. On one hand, this statement explicitly supports asymmetrical pairs of paths. On
the other hand, it assumes that being neighbors implies similarity. In Leicht’s model,
it follows that neighbors are somewhat similar, which describes clustering rather than
role classification.

The authors did not give a catchy or convenient name to their measure, so for conve-
nience we will call it VertexSim (notated simv or Sv). The initial version of VertexSim,
written in matrix form, is

Sv = φASv + I, (14)

where A is the adjacency matrix, and φ is a parameter to be determined. Solving for
Sv and performing a power series expansion, we get

Sv = I + φA + φ2A2 + · · ·.

After normalizing for the expected number of paths from a to b and some simplifying
approximations, the authors finally derive the following:

Sv = D−1

(

I −
c

λ1

A

)−1

D−1, (15)

where λ1 is the largest eigenvalue of A, and D is the degree matrix (dii = degree of node
i; all other di j = 0). Here we have a closed form solution, which seems convenient, but
we also need to invert two matrices. An iterative computation process being simpler,
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Table II. Structural Similarity Measures

Measure Formula

bibliographic
coupling

Sbc(a, b) =
|O(a) ∩ O(b)|

|O(a) ∪ O(b)|

co-citation Scc(a, b) =
|I(a) ∩ I(b)|

|I(a) ∪ I(b)|

cosine Scos(a, b) =
A · B

||A|| ||B||

Tanimoto Stani(a, b) =
A · B

||A||2 + ||B||2 − A · B

weighted cosine Swcos(a, b) =

∑

t∈T A(t)B(t)idf (t)

||A|| ||B||

SimRank simsr(a, b) =
c

|I(a)|I(b)|

∑

x∈I(a)

∑

y∈I(b)

simsr(x, y)

SimRank++ simspp(a, b) = c

(

|N(a)∩N(b)|
∑

i=1

1

2i

)

N(a)
∑

x=1

N(b)
∑

y=1

wabwbysimspp(x, y)

PSimRank simps(a, b) = c

⎛

⎜

⎜

⎜

⎝

|I(a) ∩ I(b)|

|I(a) ∪ I(b)|
+

∑

x∈I(a)\I(b),
y∈I(b)

simps(x, y)

|I(a) ∪ I(b)| |I(b)|
+

∑

x′∈I(b)\I(a),
y′∈I(a)

simps(x′, y′)

|I(b) ∪ I(a)| |I(a)|

⎞

⎟

⎟

⎟

⎠

MatchSim simms(a, b) =

∑

(x,y)∈m⋆
ab

simms(x, y)

max(|I(a)|, |I(b)|)

PageSim simpg2(a, b) =

∑n
i=1 min(FVi(a), FVi(b))

∑n
i=1 max(FVi(a), FVi(b))

VertexSim DSv D =
c

λ1
A(DSv D) + I

the authors rewrite the equation this way:

DSvD =
c

λ1

A(DSvD) + I, (16)

which we see resembles Equation (14). The authors claim that DSvD can be initialized
to any values such as 0 and will converge after 100 iterations or fewer.

We summarize these structural similarity measures in Table II.

3. AXIOMATIC ROLE SIMILARITY

An equivalence relation is like a simple true-false indicator: it tells us nothing about
degree of similarity. The real-world need is for a measure that not only recognizes auto-
morphic equivalence, such as Smith child/spouse/parent to Jones child/spouse/parent
(Figure 1), but also tells us that a Lee child is strongly similar to a Smith or Jones
child, although not as similar to a Smith or Jones parent.

To deal with this shortcoming and to clarify the problem, we first identify a list of
axiomatic properties that all role similarity measures should obey.

Definition 2 (Axiomatic Role Similarity Properties). Given a graph G = (V, E), any
sim(a, b) that measures the neighbor-based role similarity between vertices a and b in
V should satisfy properties P1 to P5:
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—P1) Range: 0 ≤ sim(a, b) ≤ 1, for all a and b.
—P2) Symmetry: sim(a, b) = sim(b, a).
—P3) Automorphism confirmation: If a ≡ b, sim(a, b) = 1.
—P4) Transitive similarity: If a ≡ b, then sim(a, c) = sim(b, c).
—P5) Triangle inequality: d(a, c) ≤ d(a, b) + d(b, c), where distance d(a, c) is defined as

1 − sim(a, c).

Any node similarity measure satisfying the first four conditions (without triangle
inequality) is called an admissible role similarity measure. Any node similarity
measure satisfying all five conditions is an admissible role similarity metric.

Some of these properties are representative of any node similarity measure, but
Property 3 is an essential criterion that distinguishes a role similarity measure from
other measures. Property 1 describes the standard normalization where 1 means fully
similar and 0 means completely dissimilar (i.e., the two neighborhoods have nothing
in common). That is, we should always be able to recognize a purportedly equivalent
node-pair by their similarity score of 1. Property 2 indicates that similarity, like dis-
tance, must be symmetric. Property 3 expresses the requirement that if any nodes are
automorphically equivalent, they must have full similarity to one another. As we dis-
cussed earlier, other definitions of role similarity are possible based on exact coloration
or regular equivalence. Property 4 claims that the similarity between c and a is equal
to the similarity between c and any node equivalent to a. In other words, we can define
the similarity between equivalence classes or orbits: sim(�(u),�(v)) = sim(u, v). This
guarantees consistency of values at an orbit level. If Property 5 holds, the measure is
metric like (i.e., it satisfies the triangle inequality).

The triangle inequality requirement is much stronger than transitivity, enforcing an
ordering of values. In a pure metric space, the distance between any two distinct items
cannot be zero. Since our automorphic equivalence property allows equivalent items to
have zero distance between them, our axioms define a pseudometric space.

Interestingly, Property 5 (triangle inequality) implies Property 4 (transitive simi-
larity), which we prove next. Since not all similarity measures satisfy the triangle
inequality, we specify Property 4 separately.

COROLLARY 1. If Axioms P1, P2, P3, and P5 hold, then P4 holds.

PROOF. Let a and b be equivalent nodes. From the triangle inequality, we have
d(a, c) ≤ d(a, b) + d(b, c) ≤ d(b, c) because d(a, b) = 0. Likewise, d(b, c) ≤ d(b, a) +
d(a, c) ≤ d(a, c). The only way to reconcile d(a, c) ≤ d(b, c) and d(b, c) ≤ d(a, c) is if
d(a, c) = d(b, c). ✷

The following corollary emphasizes a fundamental difference between role similarity
measures and proximity-based similarity measures: role similarity does not decrease
merely because distance increases.

COROLLARY 2 (DISTANCE INDEPENDENCE). For every finite k, there exists a graph and
a pair of nodes a and b such that the distance between a and b is at least k, and
sim(a, b) = 1.

PROOF. Let G(V, E) be a linear path graph with n edges and n + 1 vertices,
where n ≥ k. We label the vertices so that V = {v0, v1, . . . , vn}, and the edge set
E = {(v0, v1), (v1, v2), . . . , (vn−1, vn)}. It is clear that nodes that are the same distance
from the endpoints are automorphically equivalent and thus role equivalent. That is,
v j ≡ vn− j , for all 0 ≤ j ≤ ⌊n/2⌋. ✷

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 1, Article 3, Publication date: February 2014.



3:14 R. Jin et al.

We make a final observation. Our axiomatic role similarity model can just as eas-
ily find similarities between two or more graphs, because automorphism can be ex-
tended beyond single graphs. Graph isomorphism (an equivalence relation between
two graphs) is a special case of graph automorphism (an equivalence relation within
a single graph) in which we declare that the two graphs are indeed a single graph
that is not connected. This distance independence is absent from proximity-based node
similarity measures.

3.1. Binary-Valued and Real-Valued Role Similarity Measures

Every equivalence relation σ has a corresponding binary-valued indicator function:
Iσ (u, v) = 1 iff u ≡ v. Otherwise, Iσ (u, v) = 0. This indicator function is a admissible
axiomatic role similarity metric.

THEOREM 1 (BINARY ADMISSIBILITY). Given any equivalence relation that also satis-
fies automorphism confirmation (P3), its binary indicator function is an admissible
similarity metric.

PROOF. Binary values satisfy the range requirement (P1). Any equivalence relation
satisfies symmetry (P2) and transitivity (P4), by definition. We prove that this indicator
function satisfies the triangle inequality (P5), namely, d(a, c) ≤ d(a, b) + d(b, c), where
d(a, b) = 1 − sim(a, b), by considering all possible class assignments for a, b, and c:

Case Description Distances Tri. Inequality
1 All in the same class d(a, c) = d(a, b) = d(b, c) = 0 0 ≤ 0 + 0
2 All in different classes d(a, c) = d(a, b) = d(b, c) = 1 1 ≤ 1 + 1
3 a and c in the same class d(a, c) = 0 0 ≤ 1 + 1
4 b and one other in the same class d(a, b) = 0 or d(b, c) = 0 1 ≤ 0 + 1

We have shown that a binary indicator function for an equivalence relation satisfies
properties P1, P2, P4, and P5. Thus, if we are given that P3 is also met, then all
properties are met. ✷

Note that automorphic equivalence, regular equivalence, and exact coloration all
satisfy P3, so they are admissible metrics. Although these binary-valued similarity
measures are admissible, they do not help us to understand the degree of similarity
or dissimilarity. We would like a real-valued measure that ranks the degree of role
similarity.

However, from the earlier discussion, we can see that the basic five axioms (P1-5) do
not provide enough constraint for selecting real-valued role similarity. To achieve this,
we introduce a basic property that can serve as a basic guideline for helping to measure
the degree of the role similarity. Note that this property is not an axiom—that is, a
real-valued role similarity may not meet its criterion. But it is intuitively appealing
and can be a desirable supplement to help derive the real-valued role similarity.

Similarity Ordering: For any two vertices a and b, let da and db be their degrees,
respectively. Without loss of generality, let da = min{da, db} and db = max{da, db}. Con-
sider a hypothetical pair of vertices a and b where da = da and db = db. Moreover, every
neighbor of a is also a neighbor of b: N(a) ⊆ N(b). Given this, the role similarity of a and
b should be no higher than the role similarity of a and b—that is, sim(a, b) � sim(a, b).
In other words, a and b serve as an upper-bound benchmark to rank the role similarity.
This is based on the insight that for any da and db, a is the best possible replacement
for b in terms of role (assumingthat each neighbor has equal importance).

The similarity ordering criterion can be considered a supplement to automorphism
confirmation (P3). It aims to deal with P3’s limitation of only applying when two

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 1, Article 3, Publication date: February 2014.



Scalable and Axiomatic Ranking of Network Role Similarity 3:15

Table III. Properties of Similarity Measures

Automorphism

Similarity Measure Confirmation Transitivity Similarity Ordering

bibliographic coupling No Yes Yes

co-citation No Yes Yes

SimRank No – –

SimRank++ No – –

PSimRank No – –

MatchSim No Yes Yes

PageSim Yes Yes No

VertexSim No – –

nodes are automorphic; P3 becomes silent when nodes are not equivalent. The criterion
provides guidance for the many node-pairs that are not equivalent: in what way are
they not equivalent, and how can we measure this easily? There are two ways to be
different: having a different number of neighbors, or having neighbors that are not quite
equivalent to one another. The similarity ordering bounds the similarity based on only
the former—that is, the difference between the number of neighbors. Note that here
the underlying assumption is that each neighbor is considered to be an equal factor in
measuring the role similarity. As our experimental results will show (Section 6), a real-
valued role similarity measure satisfying this criterion (Section 4) produces superior
role measure compared with the existing state-of-the-art approaches. (The alternative
assumption that permits some neighbors to be more important can be a valid choice
and may violate this criterion. However, it is beyond the scope of this article, and we
leave it for future work.)

In the next section, we will leverage this criterion to develop a real-valued role
similarity measure. Now, before presenting our proposed metric, we first examine some
similarity measures proposed in earlier works.

3.2. Similarity Measures That Are Not Axiomatically Admissible

Table III categorizes the previous section’s similarity measures with respect to key
axiomatic role similarity properties: automorphism confirmation (P3) and transitiv-
ity (P4). We also include the similarity ordering property. We omit range (P1) and
symmetry (P2) axioms because they are not cause for rejecting any of these measures.

Bibliographic coupling and co-citation fail to meet the automorphism confirmation
property because they only count similarity if nodes share the same neighbors. They
require a path of length of 2 between the two nodes, so these measures do not satisfy
the distance independence corollary.

Although SimRank and its variants seem to capture the intuition of recursive struc-
tural similarity, the random walk matching does not satisfy the basic graph automor-
phism condition. The SimRank similarity [Jeh and Widom 2002] between nodes u and
v is based on the average similarity between u’s neighbors and v’s neighbors:

simsr(u, v) =
(1 − β)

|N(u)||N(v)|

∑

x∈N(u)

∑

y∈N(v)

simsr(x, y), for u 
= v,

simsr(v, v) = 1,

where β is a decay factor, 0 < β < 1, so that the influence of neighbors decreases
with distance. The original SimRank measure is for directed graphs, but it works
equally well for undirected graphs. SimRank values can be computed iteratively, with
successively iterations approaching a unique solution, much as PageRank [Page et al.
1999] does.
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Fig. 3. Problematic configurations for SimRank, MatchSim, and PageSim.

SimRank is not an admissible role similarity measure. We give examples where
property 3 (automorphism confirmation) does not hold. In Figure 3(a), a and b have
the same neighbors. By even the strictest definition (structural equivalence), a and
b have the same role. However, since SimRank’s initial assumption is that there is
no similarity among c, d, and e, when it computes the average similarity of a and b’s
neighbors, it does not discover that a and b have equivalent neighborhoods. Assuming
the best case where c, d, and e are in fact equivalent and using β = 0.15, simsr(a, b)
converges to only 0.667. Even if the neighbors are not equivalent to one another, a to b
should still be equivalent, but SimRank will never discover this. We note that variants
of SimRank [Antonellis et al. 2008; Fogaras and Rácz 2005; Li et al. 2009; Xi et al.
2005; Yin et al. 2006; Zhao et al. 2009] also do not meet the automorphic equivalence
property for similar reasons.

MatchSim is not an admissible role similarity measure. MatchSim seems to
solve SimRank’s problem of using average neighbor similarity by using maximal match-
ing instead. If two nodes have equivalent neighborhoods, then they will have a simi-
larity score of 1. MatchSim still falls short, however, because its initial state is too pes-
simistic, and its iterations do not explore all possible equivalences. Initially, each node
is equivalent to itself (sim0(v, v) = 1), but all distinct node-pairs are not (sim0(u, v) = 0
if u 
= v). With each iteration, it checks for similar neighbors. In the first iteration, it
detects structural equivalence, identical to co-citation and bibliographic coupling. In
the second iteration, it builds on the previous similarity scores and compares neighbor-
hoods again. However, consider Figure 3(b), in which there is an odd distance between
two nodes. Nodes u and v are automorphically equivalent, but because there are no
nodes that are an equal distance from both u and v, simms(u, v) = 0!

PageRank-based measures, such as PageSim, meet the automorphism and transi-
tivity axioms, so they are axiomatically admissible. However, they do not satisfy the
similarity ordering property. Sharing neighbors does not guarantee that similarity will
be at least as good as not sharing neighbors. Consider Figure 3(c), where every neigh-
bor of a is also a neighbor of b. However, their PageRank scores are quite different:
PR(a) = 0.119, but PR(b) = 0.175, using β = 0.9. Vertex a has the same degree as a and
has no neighbors in common with b. Its PageRank score is 0.139, so sim(a, b) > sim(a, b).
We also note that in experimental evaluation (Section 6.6), PageSim performs poorly
on measuring the real-world role similarity.

To our best knowledge, there is no available real-valued structural similarity mea-
sure satisfying the automorphic equivalence requirement and similarity ordering.

4. RoleSim: A REAL-VALUED ADMISSIBLE ROLE SIMILARITY

To produce an admissible real-valued role similarity measure, we face two key chal-
lenges. First, it is computationally difficult to verify the automorphic equivalence
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Fig. 4. RoleSim(u,v) Based on Similarity of Their Neighbors.

property. Although not proven to be NP complete, the graph automorphism problem has
no known polynomial algorithm [Fortin 1996]. Second, all of the existing real-valued
role similarity measures have problems dealing with even simple conditions such as
structural equivalence (Section 3.2). To meet these challenges, we take the following ap-
proach: given an initial simplistic but admissible role similarity measurement for each
pair of nodes, refine the measurement by expressing similarity in terms of neighboring
values while maintaining the automorphic and structural equivalence properties. Us-
ing this approach, we formally introduce RoleSim, the first admissible real-valued role
similarity measure (metric) and its associated properties. It also satisfies the similarity
ordering property.

4.1. RoleSim Definition

Given a graph G = (V, E), the RoleSim measure realizes the recursive node structural
similarity principle “two nodes are similar if they relate to similar objects” as follows.

Definition 3 (RoleSim Metric). Given two vertices u and v, where N(u) and N(v) de-
note their respective neighborhoods and du and dv denote their respective degrees, then

RoleSim(u, v) = (1 − β) max
M(u,v)

∑

(x,y)∈M(u,v) RoleSim(x, y)

du + dv − |M(u, v)|
+ β. (17)

where x ∈ N(u), y ∈ N(v), and M(u, v) is a matching between N(u) and N(v)—that is,
M(u, v) = {(x, y)|x ∈ N(u), y ∈ N(v), and no other (x′, y′) ∈ M(u, v), s.t., x = x′ or y =
y′}. The parameter β is a decay factor, 0 < β < 1.

The decay factor, similar to the one used in PageRank [Page et al. 1999], both
dampens the recursive effect and guarantees a minimal RoleSim score of β. We will
sometimes abbreviate RoleSim(u, v) as R(u, v). R refers to the entire matrix of values.
Figure 4 illustrates the matching process. Vertex u has three neighbors (x1, x2, x3), and
v has four neighbors (y1, y2, y3, y4). The (x, y) grid is the subset of the RoleSim matrix
of values corresponding to the pairings of neighbors of these two vertices. A matching
selects one cell per row and column. If the number of rows differs from the number
of columns, then the matching size is limited to |M(u, v)| = min(du, dv). A maximal
matching is a matching where the total value of selected cells is maximum. In contrast,
SimRank computes the average of every cell in the neighbor grid.

4.1.1. Relation to Jaccard and Tanimoto Coefficients. RoleSim employs a generalization of
the Jaccard coefficient, which measures the commonality between two sets A and B

as J(A, B) =
|A∩B|

|A∪B|
. Previous works [Fogaras and Rácz 2005] have used this index to
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compare node neighborhoods; several variants exist [Melançon and Sallaberry 2008].
Our denominator is similar to that of the Tanimoto coefficient [Tanimoto 1958], which
measures similarity between multisets or between vectors. In our generalization,
however, sets A and B are not vectors and need not share any common elements;
instead, there is a weighted matching M between similar elements in A and B—that
is, (a, b) ∈ M, a ∈ A, b ∈ B. Let r(a, b) ∈ [0, 1] record the similarity between a and b.

Definition 4 (Generalized Jaccard Coefficient). The generalized Jaccard coefficient
measures the similarity between two sets A and B under matching M, defined as

J(A, B|M) =

∑

(a,b)∈M r(a, b)

|A| + |B| − |M|
. (18)

The original Jaccard coefficient is a special case that uses the following matching M:
let r(x, y) = 1 if x = y; otherwise, 0. Then define M = {r(x, x)|x ∈ A, x ∈ B}. Thus, the
generalized Jaccard coefficient J(A, B|M) reduces to J(A, B). Comparing Equations (17)
and (18), we see that the heart of RoleSim(u, v) is equivalent to the maximum of the
generalized Jaccard coefficient between N(u) and N(v), among all matchings M(u, v).
Then,

RoleSim(u, v) = (1 − β) max
M(u,v)

J(N(u), N(v)|M(u, v)) + β. (19)

4.1.2. Relation to Weighted Matching. The definition and significance of RoleSim(u, v) is
closely related to maximal weighted matching. In our case, the matching is between
the neighboring nodes of u and v.

Definition 5 (Maximal Neighborhood Matching M(u, v)). Let R(x, y) be a similarity
score between any two nodes x and y (0 if no score exists). Given two nodes u and v, their
neighborhood matching M(u, v) is a weighted bipartite matching between neighbor sets
N(u) and N(v) where the weights are the R(x, y) scores. The weight of the matching is
w(M) =

∑

(x,y)∈M R(x, y). A maximal matching M(u, v) is an M with maximum weight.

Using this, we can represent RoleSim(u, v) in terms of maximal weighted matching
M. In Figure 4, the shaded cells represent the maximal matching: 0.7 + 0.6 + 0.3 = 1.6.

THEOREM 2 (MAXIMAL WEIGHTED MATCHING). The RoleSim between nodes u and v

corresponds linearly to the maximal weighted matching M for the bipartite graph
(N(u), N(v), N(u) × N(v)), with each edge (x, y) ∈ N(u) × N(v) having the weight
RoleSim(x, y):

RoleSim(u, v) = (1 − β)
w(M)

max (du, dv)
+ β. (20)

PROOF. We need to show that Equations (17) and (20) are equivalent. Without loss
of generality, let du ≥ dv. First, we show that the cardinality of the maximal weighted
matching |M| = min (du, dv) = dv. It cannot be greater, because there are insufficient
elements in dv. It cannot be smaller, because if it were, there would exist an avail-
able edge between an uncovered node in du with one in dv. Adding this edge would
increase the matching (every edge has weight ≥ β). If |M| = min (du, dv), it follows that
du + dv − |M| = max (du, dv). Thus, the denominators in Equations (17) and (20) are
constant and identical. It is then a trivial observation that the numerators are in fact
the same. Therefore, the maximal value for the entire Equation (17) is the same as the
value in Equation (20). ✷

Theorem 2 not only shows the key equilibrium of role similarities between pairs of
nodes in a graph G, but it also shows that RoleSim may be computed using existing
maximal matching algorithms. Finally, given Theorem 2, we can state the following
lemma:
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LEMMA 4.1. RoleSim satisfies the similarity ordering criterion.

PROOF. Consider any two vertices a and b where a’s degree is not larger: da ≤ db. Let a

and b be hypothetical vertices where da = da, db = db. Moreover, every neighbor of a is a
neighbor of b: N(a) ⊆ N(b). Due to this maximal sharing of neighbors, RoleSim(a, b) =

(1 − β) da

db
+ β. In general, however, w(M) ≤ da. Thus, RoleSim(a, b) ≤ (1 − β) da

db
+ β =

RoleSim(a, b). ✷

4.2. RoleSim Computation

RoleSim values can be computed iteratively and can be guaranteed to converge, just
as in PageRank and SimRank. First, we outline the iterative procedure. In the next
section, we prove that the calculated values comprise an admissible role similarity
metric.

Step 1: Let the initial matrix of RoleSim scores be R0, estimated but admissible
scores between any pair of nodes in G. Simple initialization schemes are described in
Section 4.4.

Step 2: Compute the kth iteration Rk scores from the (k−1)th iteration’s values, Rk−1.
Specifically, for any nodes u and v,

Rk(u, v) = (1 − β) max
M(u,v)

∑

(x,y)∈M(u,v) Rk−1(x, y)

du + dv − |M(u, v)|
+ β. (21)

Based on Theorem 2, we compute Equation (21) by finding the maximal weighted
matching in the weighted bipartite graph (N(u), N(v), N(u) × N(v)) with each edge
(x, y) ∈ N(u) × N(v) having weight Rk−1(x, y)).

Step 3: Repeat Step 2 until |Rk−Rk−1| < some threshold δ for each pair of nodes in G.

THEOREM 3 (GUARANTEED TERMINATION). For any admissible set of initial RoleSim0

values and any termination threshold δ > 0, the change in RoleSim values between
iterations will become arbitrarily small—for example, for any (u, v) pair,

lim
k→∞

|RoleSimk(u, v) − RoleSimk−1(u, v)| < δ. (22)

This can be proven by showing that the sequence of maximum absolute differences be-
tween any Rk(u, v) and Rk+1(u, v), for k = 1, 2, . . . , is a nonnegative geometric sequence
monotonically decreasing and converging to 0. The detailed proof is in Appendix A.

Unlike PageRank and SimRank, which converge to values independent of the ini-
tialization, RoleSim values are sensitive to the initialization. Rather than being a dis-
advantage, this sensitivity provides the necessary relaxation to compute automorphic
role similarity in polynomial time by utilizing the initialization as prior knowledge.

4.3. Admissibility of RoleSim

Here we present one of the key contributions of this article: the axiomatic admissibility
of RoleSim. If the initial computation is admissible, and because the iterative compu-
tation of Equation (20) maintains admissibility (i.e., is an invariant transform of the
axiomatic properties), then the final measure is admissible.

THEOREM 4 (INVARIANT TRANSFORMATION). If the kth iteration RoleSimk is an admissible
role similarity metric, then so is RoleSimk+1.

For each axiomatic property P, we must show “If the kth iteration RoleSimk satisfies
Axiom P, then so does RoleSimk+1.” Properties 1 (range) and 2 (symmetry) are trivially
invariant, so we will focus on the other three.
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Automorphism Confirmation Invariance Proof: For nodes where u ≡ v, there
is a permutation σ of vertex set V , such that σ (u) = v, and any edge (u, x) ∈ E iff
(v, σ (x)) ∈ E. This indicates that σ provides a one-to-one equivalence between nodes
in N(u) and N(v). In addition, u and v have the same number of neighbors—that is,
du = dv. So, it is clear that the maximal weighted matching M in the bipartite graph
(N(u), N(v), N(u)×N(v)) selects du = dv pairs of weight 1 each. Thus, RoleSimk+1(u, v) =

(1 − β) w(M)
max (du,dv ) + β = (1 − β) du·1

du
+ β = 1. ✷

Transitive Similarity Invariance Proof: Assume that transitivity holds for it-
eration k: for any a ≡ b, c ≡ d, RoleSimk(a, c) = RoleSimk(b, d). Denote the maximal
weighted matching between N(a) and N(c) as M. Since there is a one-to-one equivalence
correspondence σ between neighborhoods N(a) and N(b) and a one-to-one equivalence
correspondence σ ′ between N(c) and N(d), we can construct a matching M

′ between N(b)
and N(d) as follows: M

′ = {(σ (x), σ ′(y))|(x, y) ∈ M}. Since transitive similarity holds for
RoleSimk, we have RoleSimk(x, y) = RoleSimk(σ (x), σ ′(y)). Thus, w(M′) = w(M), and

(1 − β)
w(M)

max (da, dc)
+ β = (1 − β)

w(M′)

max (db, dd)
+ β

RoleSimk+1(a, c) = RoleSimk+1(b, d). ✷

Triangle Inequality Invariance Proof: For iteration k, for any nodes a, b, and c,
dk(a, c) ≤ dk(a, b)+dk(b, c), where dk(a, b) = 1− RoleSimk(a, b). We must prove that this
inequality still holds for the next iteration: dk+1(a, c) ≤ dk+1(a, b) + dk+1(b, c).

Observation: If there is any matching M between N(a) and N(c) that satisfies 1 −

((1 − β)w(M)
dc

+ β) ≤ dk+1(a, b) + dk+1(b, c), then dk+1(a, c) ≤ dk+1(a, b) + dk+1(b, c). This is

because w(M)
dc

≤ w(M)
dc

, where M is the maximal weighted matching between N(a) and

N(c), and thus, 1 − ((1 − β)w(M)
dc

+ β) ≥ 1 − ((1 − β)w(M)
dc

+ β) = dk+1(a, c).

We break down the proof into three cases:
Case 1. (db ≤ da ≤ dc),
Case 2. (da ≤ db ≤ dc), and
Case 3. (da ≤ dc ≤ db).

Case 1: Since db is smallest, this sets the size for the maximal neighborhood match-
ings: |M(a, b)| = |M(b, c)| = db. Define candidate matching M between N(a) and N(c) as
M = {(x, z)|(x, y) ∈ M(a, b) ∧ (y, z) ∈ M(b, c)}. Then, using our earlier observation:

dk+1(a, b) + dk+1(b, c) −

(

1 − (1 − β)
w(M)

dc

− β

)

= (1 − β)

[

−
w(M(a, b))

da

−
w(M(b, c))

dc

+
w(M)

dc

]

+ 1 − β

= (1 − β)

[

db − w(M(a, b))

da

−
db

da

+
db − w(M(b, c))

dc

−
db

dc

−
db − w(M)

dc

+
db

dc

]

+ 1 − β

≥ (1 − β)

[

1 −
db

da

+

∑

(x,y)∈M(a,b)(1 − Rk(x, y))

dc
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+

∑

(y,z)∈M(b,c)(1 − Rk(y, z))

dc

−

∑

(x,z)∈M(1 − Rk(x, z))

dc

]

≥ (1 − β)

[

∑

(x,y,z)(d
k(x, y) + dk(y, z) − dk(x, z))

dc

]

≥ 0,

where (x, y, z) means (x, y) ∈ M(a, b), (y, z) ∈ M(b, c), and (x, z) ∈ M. ✷

Cases 2 and 3 can be proven by a similar technique; the complete proof is in
Appendix A.

By combining the admissible initial configurations given in Section 4.4 with
Theorem 4 on invariance, we have shown that the iterative RoleSim computation
generates a real-valued, admissible role similarity measure.

THEOREM 5 (ADMISSIBILITY). If the initial RoleSim0 is an admissible role similarity
measure, then at each kth iteration, RoleSimk is also admissible. When RoleSim compu-
tation converges, the final measure limk→∞ RoleSimk is admissible.

4.4. Initialization

According to Theorem 5, an initial admissible RoleSim measurement R0 is needed
to generate the desired real-valued role similarity ranking. What initial admissible
measures or prior knowledge should we use? We consider three schemes:

(1) ALL-1: R0(u, v) = 1 for all u, v.
(2) Degree-Binary (DB): If two nodes have the same degree (du = dv), then R0(u, v) =

1; otherwise, 0.
(3) Degree-Ratio (DR): R0(u, v) = (1 − β) min(du,dv )

max(du,dv ) + β.

These schemes come from the following observation: nodes that are automorphically
equivalent have the same degree. Equal degree is a necessary, but not sufficient, condi-
tion for automorphism. This observation is key to RoleSim: degree affects both the size
of a maximal matching set and the denominator of the Jaccard coefficient.

We make the following interesting observations about these initialization schemes.

LEMMA 4.2. Let R1(ALL − 1) be the matrix of RoleSim values at the first iteration
after R0 = 1 (ALL-1 initialization). Let R0(DR) be the matrix of RoleSim initialized by
the DR scheme. Then, R1(ALL − 1) = R0(DR).

This lemma can be easily derived by following the definition of RoleSim formula.
Basically, the DR is exactly equal to the RoleSim state one iteration after ALL-1 ini-
tialization. Thus, ALL-1 and DR generate the same final results. The simple formula
for DR is much faster than neighbor matching, so DR is essentially one iteration faster.
On the other hand, we may consider the simple ALL-1 scheme to be sufficient, since
it works as well as the more sophisticated DR. After the simple ALL-1 initialization,
RoleSim’s maximal matching process automatically discriminates between nodes of dif-
ferent degree and progressively learns the differences among neighbors as it iterates.

THEOREM 6 (ADMISSIBLE INITIALIZATION). ALL-1, DB, and DR are all admissible role
similarity metrics.

PROOF. It is easy to see that ALL-1 degenerately satisfies all of the axioms of a role
similarity metric. For DR, Lemma 4.2 shows that its matrix of values is equivalent
to ALL-1’s matrix after one RoleSim iteration. Since RoleSim iterations will preserve
the admissibility of a metric (Theorem 4), DR is also a metric. For DB, it trivially sat-
isfies range (P1), symmetry (P2), and automorphism confirmation (P3). For transitive
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similarity (P4), we only need to show that R0(u, v) depends only on class membership.
Class is defined by degree, and the measurement clearly depends only on degree. Fi-
nally, because DB is a binary indicator of equivalence, Theorem 1 states that it is a role
similarity metric. ✷

Note that SimRank’s and MatchSim’s initialization (sim0(u, v) = 1 iff u = v) is NOT
admissible, because it sets the initial value of any potentially equivalent node-pairs
to 0. SimRank and MatchSim iterations try to build up from zero. However, due to
problems with structural equivalence and odd-length paths that we noted, they will
never increase the value enough to discover all of the equivalent pairs that were
neglected at the start.

In addition, both ALL-1 and DR initialization have the following convergence prop-
erty, which is stronger than our earlier guaranteed termination property:

THEOREM 7 (MONOTONE CONVERGENCE). If ALL-1 initialization is used, each RoleSim
value is monotonically decreasing (or nonincreasing): Rk+1(u, v) ≤ Rk(u, v) for all k.

PROOF. At any iteration, the RoleSim value for any (u, v) is the maximal matching
of its neighbors. The value can increase only if some neighbor matchings increase. If
no value increased in the previous iteration, then no value can increase in the current
iteration. In the first iteration after ALL-1, clearly no value increases. Therefore, no
value ever increases. Any function that decreases monotonically and has a lower bound
will converge. The lower-bound value is β, so RoleSim with ALL-1 initialization is
guaranteed to converge. ✷

Indeed, this monotone convergence property can be generalized into the following
format: if R1 ≤ R0 (that is, for every (u, v) pair, R1(u, v) ≤ R0(u, v)), then Rk+1 ≤ Rk.
Note that the DB initialization scheme does not have this property. In our experiments,
we make an empirical comparison of these initialization schemes.

4.5. Computational Complexity

Given n nodes, we have O(n2) node-pair similarity values to update for each iteration.
For each node-pair, we must perform a maximal weighted matching. For weighted
bipartite graph (N(u), N(v), N(u) × N(v)), the fastest algorithm based on augmenting
paths (Hungarian method [Kuhn 1955]) can compute the maximal weighted matching
in O(x(x log x + y)), where x = |N(u)| + |N(v)|, and y = |N(u)| × |N(v)|.

A fast greedy algorithm offers a 1
2 -approximation of the globally optimal matching

in O(y log y) time [Avis 1983]. Furthermore, if an equivalence matching exists (i.e.,
w(M) = max (du, dv)), the greedy method will find it. This is important, because it
means that a greedy RoleSim computation still generates an admissible measure.
Using greedy neighbor matching, the time complexity of RoleSim is O(kn2d′), for k
iterations, where d′ is the average of y log y over all vertex-pair bipartite graphs in G.
The space complexity is O(n2). In the next section, we will introduce an approach for
reducing both the time and memory cost.

5. ICEBERG RoleSim: A SCALABLE ALGORITHM

Node similarity ranking in general is computationally expensive because we need
to compute the similarity for ( n

2 ) = O(n2) node-pairs. A graph with 100,000 nodes
needs about 40GB memory to simply maintain the similarity values, assuming 8
bytes per value. Indeed, this is a major problem for almost all node similarity ranking
algorithms. However, in most applications, we are interested only in the highest
similarity pairs, which typically compose only a very small fraction of all pairs. Thus,
in order to improve the scalability of RoleSim, we ask the following question: can we
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identify the high-similarity pairs without computing all pair similarities? Formally,
we consider the following question:

Definition 5.1 (Iceberg RoleSim). Given a threshold θ , the Iceberg RoleSim problem
is to discover all (u, v) pairs for which RoleSim(u, v) ≥ θ and then approximate their
RoleSim scores.

The goal is to identify and compute those high-similarity pairs without materializing
the majority of the low-similarity pairs. To solve Iceberg RoleSim, we consider a two-
step approach: (1) use pruning rules to rule out pairs whose score must be less than θ ,
and (2) apply RoleSim iterative computation to the remaining candidate pairs. Since
RoleSim computation must match all neighbor-pairs (N(u) × N(v)) of a candidate pair
(u, v), we have to handle neighbor-pairs (such as x, y) that are not themselves candidate
pairs. Here, we employ upper and lower bounds for estimating RoleSim values for the
noncandidate pairs.

Upper and Lower Bound for RoleSim:

LEMMA 5.2. Given nodes u, v and without loss of generality, du ≥ dv, if dv ≤ θdu, then
similarity R(u, v) ≤ (1 − β)θ + β.

PROOF. R(u, v) = (1 − β)w(M)
du

+ β ≤ (1 − β) dv

du
+ β. ✷

Given this, assuming du ≥ dv, since matching 0 ≤ w(M) ≤ dv, then R(u, v) is in the
range [β, (1 − β) dv

du
+ β]. Furthermore, to facilitate our discussion, we further define

θ ′ = (θ − β)/(1 − β). Now, we introduce the following pruning rules to filter out those
pairs whose RoleSim cannot be greater than or equal to threshold θ , without knowing
their exact RoleSim scores (without loss of generality, let du ≥ dv):

(1) If dv < θ ′du, then R(u, v) < θ.

(2) If maximal matching weight w(M) < θ ′du, then R(u, v) < θ.

(3) Assume that neighbor lists N(u) and N(v) are sorted by degree, with du
1 and dv

1
being the degrees of the first items. The maximum possible similarity of this pair

is m11 = (1 −β)
min(du

1 ,dv
1 )

max(du
1 ,dv

1 ) +β. If the shorter list has the smaller degree (dv
1 ≤ du

1 ), and

if m11 + dv − 1 < θ ′du, then R(u, v) < θ .

Rule 1 is just a restatement of Lemma 5.2. Rule 2 is based on the upper bound of
RoleSim value. Rule 3 requires more explanation: continuing from Rule 2, we begin to
consider all pairings of neighbors. Because dv is the shorter list, every member must
contribute to the final matching. Either m11 will be in the matching or not. If it is, then
an upper bound for M is if every remaining pair has weight 1, yielding m11 + (dv − 1).
Additionally, because the lists are sorted, dv

1/du
1 ≥ dv

1/du
x , for x > 1. So, if m11 is too

small to satisfy Rule 2, then all pairings using dv
1 are too small. This rule allows us to

short circuit the full neighbor matching.

5.1. Iceberg Algorithm

We now outline our approach, which is formalized in Algorithm 1. To generate the
initial iceberg hash map, we sort nodes by degree (line 3) and sort each node’s list of
neighbors by degree (lines 4 to 6). The first sort allows us to consider only those node-
pairs that are sufficiently similar in degree (line 8, pruning Rule 1). We compute the
estimated similarity for the first pair of neighbors. Note that this estimation formula
is the same as DR initialization. If this weight is below the limit defined in Rule 3, we
terminate this pair’s candidacy and move on (lines 9 through 12). Otherwise, compute
the remainder of neighbor-pair initial similarities, and perform a maximal matching.
If the matching weight exceeds the θ ′ minimum bound (Rule 2), then this node-pair

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 1, Article 3, Publication date: February 2014.



3:24 R. Jin et al.

ALGORITHM 1: IcebergRoleSim(G(V, E), θ , β, α)

1: H ← empty hash table indexed by node-pair ID (u, v);
2: d(v) ← degree of v;
3: Sort vertices V by degree;
4: for all v ∈ V do
5: Dv = {dv

1 , dv
2 , . . . , dv

d(v)} ← degrees of neighbors of v, sorted by increasing order;
6: end for
7: for all u ∈ V do
8: for all v ∈ V, θ ′d(u) ≤ d(v) ≤ d(u) (Rule 1) do

9: m11 ← (1 − β)
min(du

1 ,dv
1 )

max(du
1 ,dv

1 )
+ β;

10: if dv
1 ≤ du

1 and dv − 1 + M11 < θ ′du then
11: Skip to the next v; (Rule 3)
12: end if
13: Compute maximal matching weight w(M);
14: if w(M) ≥ θ ′d(u) (Rule 2) then
15: Insert H(u, v) ← (1 − β)w(M)/d(u) + β;
16: end if
17: end for
18: end for
19: Perform iterative RoleSim on H. For neighbor-pairs /∈ H, use R̃(x, y) = α(1 − β)Nx/Ny + β.

and its similarity are inserted into the hash table (lines 13 through 16). After iterating
through all qualified node-pairs, we have our full hash table. We now perform RoleSim
iterations, but only on members of the table, which is orders of magnitude smaller
than a complete similarity matrix. When a noncandidate pair’s value is needed (as a
neighbor-pair of a candidate pair), we apply the following estimate based on its lower
and upper bound (assuming du ≥ dv):

R̃(u, v) = α(1 − β)
dv

du

+ β, where 0 ≤ α ≤ 1.

In the experimental evaluation, we will empirical study the effect of α on the estimation
accuracy.

5.2. Iceberg Computational Complexity

Iceberg RoleSim’s time and memory requirements are best understood as multiplicative
improvement factors over standard RoleSim. For memory complexity, the factor is
mainly the reduction in the number of stored node-pairs due to pruning. Let us define
pruning factor p as the ratio between the number of node-pairs stored in standard
RoleSim and the number of top similarity values stored in an Iceberg hash table. Thus,

p = ( n
2 )/|H| ≈ n2

2|H|
. Larger values mean a lower space requirement. Each hash table

entry is a little more expensive than an equivalent similarity matrix entry, because
it must store the vertex IDs u and v as well as R(u, v). Consequently, the memory
improvement factor is somewhat less than p.

The hash table size |H| varies according to the graph’s structural characteristics
and the pruning threshold θ . In our experiments with random power law graphs, we
measured values of p ranging from 33 to 814. The largest reductions, by nearly three
orders of magnitude, occur when higher values of θ are applied to graphs that are
denser and larger, exactly when the improvement is needed most. This may be because
these graphs have more internal structural diversity and thus less role similarity.

There are two major contributing factors to time complexity: the initial pruning
and estimation of values, followed by the iterative refinement of values. The time
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complexity of the second stage (line 19) is p times faster than the time complexity
of standard RoleSim, because Iceberg RoleSim iterates over the pruned hash tables
instead of a complete n × n matrix. Moreover, the algorithm typically converges after
fewer iterations, because there are fewer values being updated. Let us take a closer look
at the initial stage, as detailed in Algorithm 1. Sorting the vertices by degree (Step 3)
is a bucket sort, so it requires only O(n) time. Sorting the neighbors of each node by
degree (Steps 4 through 6) is O(n · d̂ log d̂), where d̂ = expected (weighted average)
node degree. Next comes the nested for loops (lines 7 through 18), which implement a
modified RoleSim iteration, incorporating pruning and estimation of values. Because
the pruning is occurring amidst this loop, the time complexity falls in between that of
a full standard RoleSim iteration and a p-pruned iteration. In practice, it is closer to a
fully p-pruned iteration. So, the overall time complexity is O(n· d̂ log d̂+k′|H|d′), where
d′ is the same as in Section 4.5.

6. EXPERIMENTAL EVALUATION

In this section, we experimentally investigate the ranking ability and performance
of the RoleSim algorithm for computing role similarity metric values. We compare
RoleSim to several state-of-the-art node similarity algorithms, analyze the effect of dif-
ferent initialization schemes, and measure the scalability of Iceberg RoleSim. Specifi-
cally, we focus on the following questions:

(1) How do different initialization schemes perform in terms of their final RoleSim
score and computational efficiency?

(2) Do node-pairs with high RoleSim scores actually have similar network roles? For
any two nodes known to have similar network roles, do they receive high role
similarity scores?

(3) How much less memory and time does Iceberg RoleSim use, and how closely does
its rankings match that of standard RoleSim?

Clearly, the ideal validation study requires an explicit role model and role similarity
measure, which often do not exist. In the following study, we utilize a well-known
role-related random graph model and external measures of real datasets that provide
strong role indication for these evaluations.

We set β = 0.1 for both RoleSim and SimRank, defining convergence to be when
values change by less than 1% of their previous values. We ran several RoleSim tests
with both exact matching and greedy matching. The results were nearly identical
(>90% of cells have no difference; maximum difference was small), so we focus on
greedy matching from here on. We implemented the algorithms in C++. The large
graph scalability tests were performed on Linux servers with 3.2GHz quad-core Xeon
CPUs, 2MB cache, and 16MB RAM.

For our tests, we use three types of graphs:

• BL: The probabilistic blockmodel [Wang and Wong 1987], where each block is gen-
erally considered to be corresponding to a role [White et al. 1976]. Here, nodes are
partitioned into blocks. Each node in block i has probability pi j of linking to each
node in block j. Thus, the underlying blockmodel may serve as the ground truth for
testing role similarity.

• SF: Large Scale-Free random graphs2 are used for testing scalability of the Iceberg
RoleSim computation.

• Real-world networks, with a measurable feature similar to social role, are used for
validating RoleSim performance.

2http://pywebgraph.sourceforge.net/.
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Table IV. Performance Comparison of Initialization Methods

Performance Relative to DR DB Init.

ALL-1 Initialization Init. Min. Avg. Max.

Difference in percentile rank none 0.14% 0.38% 11.17%

Pearson correlation coefficient 1 0.9994 0.9998 0.9999

Relative execution time ≈0.9 0.32 0.52 0.80

Relative # iterations 1 fewer 0.38 0.58 0.88

Fig. 5. Average similarity ranking for nodes in the same block.

6.1. Comparing Initialization

In Section 4.4, we discussed that DR initialization generates the same results as ALL-
1 by short cutting the first iteration. This reduces the computation time by roughly
10%. Now we ask: does DB initialization (binary indicator that equals 1 when degrees
du = dv) give similar results, quickly?

We ran RoleSim using both ALL-1 and DB on 12 graphs, some scale free and some
blockmodel, having 500 to 10,000 nodes, and edge densities from 1 to 10. We then
converted values to percentile ranking, where 100% means the highest value, and 50%
is the median value. Test results are summarized in Table IV. The high correlation
coefficient means the rankings are virtually identical, so the rankings are not very
sensitive to the initialization method. Moreover, DB took 20% from 68% less time
to converge. Overall, DB seems to be the preferred initialization scheme in terms of
computational efficiency. Thus, we adopt it for the rest of the experiments.

6.2. General Role Detection

How well does RoleSim discover roles in complex graphs? Specifically, given a ground-
truth knowledge of roles, do nodes having similar roles have high scores? To answer
this question, we generated probabilistic blockmodel graphs, where blocks behave like
“noisy” roles, due to sampling variance. We generated graphs with N = 1,000 nodes
and either three or five blocks. We varied the edge density |E|

|V |
, with higher densities for

graphs with more blocks. The size of each block and the pi j values were randomized;
we generated three random instances for each graph class. We compared RoleSim to
the state-of-the-art SimRank, SimRank++ [Antonellis et al. 2008], and P-SimRank
[Fogaras and Rácz 2005].

For each measure and trial, we ranked the similarity scores. This serves to normalize
the scoring among the four measures. Then, for each graph, we computed the average
ranking of all pairs of nodes within the same block. We then averaged the three trials
for each graph class.

Our results (Figure 5) show that RoleSim outperforms all other algorithms across
all the tested conditions. None of the algorithms score perfectly, due to the inher-
ent edge distribution variance of the probabilistic model. P-SimRank is better than
SimRank, perhaps because it uses Jaccard coefficient weighting, a step toward our
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Fig. 6. Similarity of nodes for top-ranked node-pairs.

RoleSim approach. Accuracy takes time. SimRank and SimRank++ run at the same
speed. P-SimRank is about 1.5 to 2 times slower, and standard RoleSim is about twice
as slow as SimRank.

6.3. Real Dataset: Coauthor Network

Historically, structural role has not been measured precisely in large graphs, so it is
difficult to find datasets with established ground-truth roles. In this experiment, we
use a coauthor network and take author impact, as measured by G-index and H-index
scores, as the ground truth. Based on recent studies, we expect network role in a
coauthor network to correlate well to author impact and thus serve as a predictive
measure. Earlier investigations [Newman 2004; Otte and Rousseau 2002] observed
structural patterns of collaboration in coauthor networks and speculated that hubs
(nodes with high degree) and connectors (nodes with high betweenness) would be
likely candidates for high-impact authors. Recently, Yan and Ding [2009] discovered
significant correlation between the number of citations and certain coauthor network
measures: betweenness centrality and PageRank similarity.

Our first dataset [Tang et al. 2008] is a coauthor network of 2,000 database re-
searchers. Two authors are linked if they coauthored a paper from 2003 to 2008. We
pruned the network to the largest connected component (1,543 nodes and 15,483 edges).
An author’s role depends recursively on the number of connections to other authors,
and the roles of those others. Hence, it measures collaboration. We use the G-index as a
proxy measure for coauthor role (H-index provides similar results and thus is omitted
here). The G-index measures the influence of a scientific author’s publications, its value
being the largest integer G such that the G most cited publications have at least G2

citations. While G-index and coauthor role are not precisely the same, G-index score
is influenced strongly by the underlying role. High-impact authors tend to be highly
connected, especially with other high-impact authors. If a paper is highly cited, this
boosts the score of every coauthor. Thus, we expect that if two authors have similar
G-index scores, their node-pair is likely to have a high role similarity value. To nor-
malize RoleSim, P-SimRank, and G-index values, we converted each raw value to a
percentile rank.

Figure 6(a) addresses our second validation question (high rank→ similar roles?).
For the top-ranked 0.01% of author-pairs, their difference in G-index ranking is about
20 points, for both RoleSim and P-SimRank, well below the random-pair value of 33. A
below-average difference confirms that the authors are relatively similar. However, as
we expand the search toward 10%, RoleSim continues to detect authors with similar
authorship performance, whereas P-SimRank converges to random scoring.
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Fig. 7. Similarity of authors binned by K-index.

To validate role → rank performance, we binned the authors into 10 roles based on
G-index value (bottom 10%, next 10%, etc.). For every pair of authors within the same
role decile, we looked up role similarity percentile rank and computed an average per
bin. We also computed averages for pairs of authors not in the same bin (dissimilar
roles). Figure 7 shows our results. The average within-bin RoleSim value is consistently
between 55% and 60%, better than the random-pair score of 50, and independent of
whether the G-index is high or low. It performs equally well for all roles. P-SimRank
within-bin scores (dashed line), however, are inconsistent. Performance of P-SimRank
is worse than random for low G-scores, perhaps due to low density of links in the
network. For the cross-bin data, the X-axis is the difference in decile bins for the two
authors in a pair. The falling line of RoleSim indicates that role similarity correctly
decreases as G-index scores become less similar. For P-SimRank, however, the cross-bin
scores (dashed line) hover around 50, equivalent to random scoring.

6.4. Real Dataset: Internet Network

Our second dataset is a snapshot of the Internet at the level of autonomous systems
(22,963 nodes and 48,436 edges), as generated by Newman [2006]. Several studies have
confirmed that the Internet is hierarchically organized, with a densely connected core,
medium density islands, a low-density connecting mesh, and stubs (singly connected
nodes) at the periphery [Tauro et al. 2001; Carmi et al. 2007]. A node’s position within
the network (proximity to a hub or to a bridge between hubs) and its relation to others
(such as density of connections) affects its efficiency for routing and its robustness.
Proximity to the core is not a sufficient descriptor of role. For example, nodes that are
in different local hubs might play the same role, even though they are far apart and
may have somewhat different relationships to the main core. In Carmi et al. [2007],
K-shell decomposition is shown to be an effective way to partition the graph into its
hierarchical components, because it addresses how many connections and to whom.
We use RoleSim to partition the nodes into role classes and compare this to the K-shell
partitions.

The K-core of a graph is the induced subgraph where every node connects to at
least K other nodes in the subgraph. If K′ > K, then the K′-core must be an induced
subgraph of the K-core. The K-shell is defined as the ‘ring’ of nodes that are included
in a graph’s (K − 1)-core but not its K-core. In other words, we can decompose a graph
into a set of nested rings, becoming denser as we move inward.

Using K-shells as our roles, we perform tests and analyses similar to those of the
coauthor network. In Figure 6(b), we see that both measures do well for the top 0.1%,
but P-SimRank’s falters significantly when the range is expanded to the top 1%.

Next, we treat K-shells the same way that we treated G-index decile bins in the
previous test (see Figure 8). Unlike decile bins, the shells do not have equal sizes.
K-shells 1, 2, and 3 together contain 92% of all nodes. To clarify how these three shells
dominate, we also show horizontal lines representing the combined weighted average
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Fig. 8. Similarity of authors grouped by K-shell.

rank of all within-shell comparisons. RoleSim’s within-shell values are consistently
high, averaging 70%. Conversely, P-SimRank finds strong above-average similarity for
the small high–K-shells but nearly random similarity for shells 1 through 3, pulling
its overall performance down to 50%.

In cross-shell analysis, RoleSim is able to distinguish different shells very well:
RoleSim approaches zero as shell difference approaches maximum. On the other hand,
P-SimRank shows almost no correlation to shell difference. Many of its scores are above
average when they should be below average (dissimilar). On the whole, it seems that
P-SimRank is not detecting role, but something related to connectedness and density.

In all of these experiments, we can see that RoleSim provides a positive answer to the
role similarity ranking: (1) node-pairs with similar roles have higher RoleSim ranking
than node-pairs with dissimilar roles, and (2) high RoleSim ranking indicates that
nodes have similar roles. P-SimRank scores, however, do not correlate with network
role similarity.

6.5. Performance of Iceberg RoleSim

In this experiment, we study how Iceberg RoleSim performs in terms of reducing
computational time and storage, and its accuracy at approximating the RoleSim score
for high similar node-pairs. Here, we generated 12 scale-free graphs with up to 100K
nodes and edge densities of 2 and 5, yielding up to 500K edges. We compared standard
RoleSim to Iceberg RoleSim, with θ values of 0.8 and 0.9. The parameter α, which is
the weighting for estimated nonstored values, is set to midpoint 0.5. For the scale-
free graphs, the relative scale of the iceberg compared to the full similarity matrix
depends on θ and edge density, but it is almost independent of the number of nodes.
Table V shows that the icebergs’ hash tables are only 0.15% to 3.5% of the full similarity
matrices. Higher-density graphs tend to have more structural variation and thus fewer
highly similar node pairs. In Figure 9, we see that Iceberg RoleSim is at least an order of
magnitude faster. To check that the ranking has not changed significantly, we computed
the Pearson correlation coefficient for each graph’s Iceberg RoleSim’s rankings versus
the rankings from the corresponding portion of the full similarity matrix. For θ = 0.8,
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Table V. Iceberg Size Relative to RoleSim Matrix

Edge Density Iceberg Size (as fraction of full matrix)

(|E|/|V |) θ = 0.8 θ = 0.9

1 2.77% 1.47%

2 2.47% 0.63%

5 3.53% 0.15%

Fig. 9. Execution time: Standard versus Iceberg.

Fig. 10. Iceberg accuracy versus α.

the average coefficient is 0.823, and for θ = 0.9, it is 0.880. Both show very strong
correlation, indicating Iceberg-RoleSim’s very good accuracy at ranking role similarity
pairs.

Next we fixed θ at 0.9 and varied α from 0 to 1.0 to measure sensitivity of the accuracy
of Iceberg RoleSim with respect to α. The results from six scale-free graphs are shown
in Figure 10. The labels describe the number of nodes and edges of each graph. Most
graphs prefer α = 0, but some prefer a midrange value. Any value in the lower half
seems acceptable.

6.6. Case Study: Coauthor Similarity

To better illustrate the role similarity ranking ability of RoleSim, we performed the
following case study. We generated the coauthor network by taking all publications
for SIGMOD, VLDB, ICDE, KDD, ICDM, and SDM from 2006 to 2011, as extracted
from the DBLP database [Ley et al. 2012]. The resulting network contains 7,072 nodes
with 18,994 edges. We computed the node similarity for all pairs of nodes using four
algorithms (Iceberg RoleSim, SimRank, SimRank++, and PageSim). Then, for a given
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Table VI. Top 10 Authors Similar to “Jiawei Han, G-index=162, H-index=76”

Iceberg RoleSim SimRank++ PageSim

Author G H Author G H Author G H

Philip S. Yu 112 63 Hyungsul Kim 0 0 Hong Cheng 31 17

Christos Faloutsos 134 67 Yuanyuan Zhou 54 32 Xifeng Yan 55 27

Haixun Wang 47 24 Gopal Krishna 4 2 Yizhou Sun 9 6

Jeffrey Xu Yu 41 28 Zhenmin Li 58 12 Hyungsul Kim 0 0

Jian Pei 89 37 Shobha Vasudevan 8 5 Bolin Ding 13 7

Beng Chin Ooi 56 35 Xiao Ma 16 8 Jing Gao 16 10

Divesh Srivastava 81 44 Tarek F. Abdelzaher 88 50 Chi Wang 6 5

Wei Fan 45 24 David Sheridan 4 2 Dong Xin 37 18

Anthony K. H. Tung 39 21 Kyuhyung Lee 2 2 Xiaolei Li 23 14

Samuel Madden 96 41 Joshua M. Hailpern 6 5 Philip S. Yu 112 63

Mean 74 38.4 Mean 24 11.8 Mean 30.2 16.7

Std. Dev. 33.35 15.99 Std. Dev. 31.01 16.34 Std. Dev. 33.08 18.04

Table VII. Top 10 Authors Similar to “Xifeng Yan, G-index=55, H-index=27”

Iceberg RoleSim SimRank++ PageSim

Author G H Author G H Author G H

Hong Cheng 31 17 Shu Tao 22 13 Shu Tao 22 13

Wei Fan 45 24 Arijit Khan 2 1 Hong Cheng 31 17

Charu C. Aggarwal 76 36 Supriyo Chakraborty 3 2 Ziyu Guan 5 3

Jimeng Sun 31 17 Nan Li 22 10 Nan Li 22 10

Hans-Peter Kriegel 111 45 Louise E. Moser 55 30 Nikos Anerousis 7 5

Jie Tang 45 26 Gengxin Miao 7 3 Xiaohui Gu 29 17

Xuemin Lin 37 22 Chen Chen 39 13 Arthur Gretton 38 19

Qiang Yang 56 36 Le Song 14 8 Le Song 14 8

Nick Koudas 65 35 Arthur Gretton 38 19 Marisa Thoma 0 0

Raghu Ramakrishnan 99 52 Marisa Thoma 0 0 Chen Chen 39 13

Mean 59.6 31 Mean 20.2 9.9 Mean 20.7 10.5

Std. Dev. 28.04 11.79 Std. Dev. 18.67 9.41 Std. Dev. 13.82 6.43

focal author, we found the 10 other authors that were most similar. We then used both
G-index and H-index scores, obtained from the Microsoft Academic Search database
[Microsoft Research 2012], as candidate measures of coauthorship role. If a particular
similarity measure is a good role measure, then the 10 other authors should tend to
have roles similar to that of the focal author, as measured by G- and H-indices. For
example, we used Jaiwan Hei as our first focal author, who has a G-index score of 162.
Our results are summarized in Table VI. Iceberg RoleSim found other high G-index
authors, such as Philip Yu and Christos Faloutsos. All 10 had high G-index and H-index
scores. SimRank and SimRank++, on the other hand, found mostly low-index authors.
Since SimRank++ always performed better than SimRank, our tables show only the
SimRank++ results. PageSim did a bit better. Its list includes a few strong authors,
but most of the top 10 were also low G-index authors. We performed the same test
for two other focal authors: Xifeng Yan, with G-index of 55 (Table VII), and Xiaolei Li,
with G-index of 23 (Table VIII). Again, RoleSim was successful at finding authors with
similar prestige, whereas the other algorithms were not.

7. CONCLUSION

We have developed RoleSim, the first real-valued role similarity measure that confirms
automorphic equivalence. We have also presented a set of axioms that can test any

ACM Transactions on Knowledge Discovery from Data, Vol. 8, No. 1, Article 3, Publication date: February 2014.



3:32 R. Jin et al.

Table VIII. Top 10 Authors Similar to “Xiaolei Li, G-index=23, H-index=14”

Iceberg RoleSim SimRank++ PageSim

Author G H Author G H Author G H

Zhijun Yin 8 3 Tianyi Wu 8 5 Tianyi Wu 8 5

Yintao Yu 6 4 Jacob Lee 5 4 Zhijun Yin 8 3

Peixiang Zhao 9 4 Ricardo Redder 2 1 Hector Gonzalez 17 10

Qiaozhu Mei 24 14 Xiaoxin Yin 29 16 Jacob Lee 5 4

Jae-Gil Lee 16 7 John Paul Sondag 1 1 Ricardo Redder 2 1

Hector Gonzalez 17 10 Margaret Myslinska 1 1 Peixiang Zhao 9 4

Tianyi Wu 8 5 Peixiang Zhao 9 4 Yizhou Sun 9 6

Dong Xin 37 18 Zhijun Yin 8 3 Margaret Myslinska 1 1

Xin Jin 20 12 Lu An Tang 2 1 John Paul Sondag 1 1

Marina Danilevsky 1 1 Diego Klabjan 18 10 Dong Xin 37 18

Mean 14.6 7.8 Mean 8.3 4.6 Mean 9.7 5.3

Std. Dev. 10.56 5.49 Std. Dev. 8.94 4.88 Std. Dev. 10.74 5.25

future measure to see if it is an admissible measure or metric. Our experimental
tests demonstrate RoleSim’s correctness and usefulness on real-world data, opening
up exciting possibilities for scientific and business applications. At the same time, we
see that other well-known measures, while suitable for other tasks, are not suitable for
role similarity. This axiomatic approach may prove useful for developing and validating
solutions to other related tasks.

APPENDIX

A. PROOFS OF THEOREMS AND LEMMAS

Proof for Theorem 3: Guaranteed Termination. Let δk(u, v) denote
RoleSimk(u, v) − RoleSimk−1(u, v), the difference of RoleSim(u, v) scores between it-
erations k and (k − 1). In addition, let Dk = max(u,v) |δ

k(u, v)| be the maximum absolute
difference across all u and v in iteration k. For any node-pair (u, v), let the maximal
weighted matching between N(u) and N(v) computed at iteration k + 1 be Mk+1. Note
that its weight w(Mk+1) =

∑

(x,y)∈Mk+1 RoleSimk(x, y), a summation of |M| = min(du, dv)
terms. |M| is independent of k. Without loss of generality, assume du ≤ dv so that
max(du, dv) = dv and |M| = du. Given this, we observe that

w(Mk+1) − (dv · Dk) ≤ w(Mk+1) − |M| · Dk

≤ w(Mk)

≤ w(Mk+1) + |M| · Dk

≤ w(Mk+1) + (dv · Dk).

Therefore, |w(Mk+1) − w(Mk)| ≤ dv × Dk. Then,

|δk+1(u, v)| = |RoleSimk+1(u, v) − RoleSimk(u, v)|

= |(1 − β)
w(Mk+1)

dv

− (1 − β)
w(Mk)

dv

|

=
(1 − β)

dv

|w(Mk+1) − w(Mk)|

≤
(1 − β)

dv

dv × Dk.
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Then Dk+1 = max(u,v) |δ
k+1(u, v)| ≤ (1 − β)Dk, so Dk decreases exponentially as k in-

creases. Thus, limk→∞ Dk = 0 and limk→∞ |RoleSimk(u, v) − RoleSimk−1(u, v)| < δ, for
any δ > 0. ✷

Proof for Lemma 4.3: Triangle Inequality Invariant. For iteration k, for any
nodes a, b, and c, dk(a, c) ≤ dk(a, b) + dk(b, c), where dk(a, b) = 1 − RoleSimk(a, b).
We must prove that this inequality still holds for the next iteration: dk+1(a, c) ≤
dk+1(a, b) + dk+1(b, c). To facilitate our discussion, we abbreviate RoleSimk(u, v) as
r(u, v), and without loss of generality let Na ≤ Nc.

We utilize the following observation: if there is a matching M between N(a) and N(c)
that satisfies 1 − ((1 − β)w(M)

Nc
+ β) ≤ dk+1(a, b) + dk+1(b, c), then dk+1(a, c) ≤ dk+1(a, b) +

dk+1(b, c). This is because w(M)
Nc

≤ w(M)
Nc

, where M is the maximal weighted matching

between N(a) and N(c), and thus 1− ((1−β)w(M)
Nc

+β) ≥ 1− ((1−β)w(M)
Nc

+β) = dk+1(a, c).

In addition, we also denote the maximal weighted matching between N(a) and N(b)
as M(a, b) and the maximal weighed matching between N(b) and N(c) as M(b, c). Now
we consider three cases characterizing the relationship between N(a), N(b), and N(c).

Case 1 (Nb ≤ Na ≤ Nc): In this case, we observe |M(a, b)| = |M(b, c)| = Nb. Given
this, we consider the following matching M between N(a) and N(c):

M = {(x, z)|(x, y) ∈ M(a, b) ∧ (y, z) ∈ M(b, c)}, |M| = Nb.

Then, we have the following relationships:

dk+1(a, b) + dk+1(b, c) −

(

1 − (1 − β)
w(M)

Nc

− β

)

= (1 − β)

[

−
w(M(a, b))

Na

−
w(M(b, c))

Nc

+
w(M)

Nc

]

+ 1 − β

= (1 − β)

[

Nb − w(M(a, b))

Na

−
Nb

Na

+
Nb − w(M(b, c))

Nc

−
Nb

Nc

−
Nb − w(M)

Nc

+
Nb

Nc

]

+ 1 − β

≥ (1 − β)

[

1 −
Nb

Na

+

∑

(x,y)∈M(a,b)(1 − r(x, y))

Nc

+

∑

(y,z)∈M(b,c)(1 − r(y, z))

Nc

−

∑

(x,z)∈M(1 − r(x, z))

Nc

]

≥ (1 − β)

[

∑

(x,y,z)(d
k(x, y) + dk(y, z) − dk(x, z))

Nc

]

≥ 0,

where (x, y) ∈ M(a, b), (y, z) ∈ M(b, c), (x, z) ∈ M.

Case 2 (Na ≤ Nb ≤ Nc): In this case, we observe |M(a, b)| = Na and |M(b, c)| = Nb. It
follows that there is a subset n(b) of N(b) of size Na that participates in both M(a, b) and
M(b, c): n(b) = {y|(y, z) ∈ M(b, c)\{(y, z)| 
 ∃ (x, y) ∈ M(a, b)}}. Given this, we consider
the following matching M between N(a) and N(c):

M = {(x, z)|(x, y) ∈ M(a, b) ∧ (y, z) ∈ M(b, c)},
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where |M| = Na. Then, we have the following relationships:

dk+1(a, b) + dk+1(b, c) −

(

1 − (1 − β)
w(M)

nc

− β

)

= (1 − β)

[

−
w(M(a, b))

nb

−
w(M(b, c))

nc

+
w(M)

nc

]

+ 1 − β

= (1 − β)

[

na − w(M(a, b))

nb

−
na

nb

+
na − w(M(b, c))

nc

−
na

nc

−
na − w(M)

nc

+
na

nc

]

+ 1 − β

≥ (1 − β)

[

1 −
na

nb

+

∑

(x,y)∈M(a,b)(1 − r(x, y))

nc

+

∑

(y,z)∈M(b,c)\{(y,z)|
∃(x,y)∈M(a,b)}(1 − r(y, z))

nc

−
nb − na

nc

−

∑

(x,z)∈M(1 − r(x, z))

nc

]

≥ (1 − β)

[

1 −
na

nb

−
nb − na

nc

+

∑

(x,y,z)(d
k(x, y) + dk(y, z) − dk(x, z))

nc

]

,

where (x, y) ∈ M(a, b), (y, z) ∈ M(b, c), (x, z) ∈ M

≥ (1 − β)

[

1 −
na

nb

−
nb

nc

+
na

nc

]

= (1 − β)
nbnc − nanc − n2

b + nanb

nbnc

= (1 − β)
(nb − na)(nc − nb)

nbnc

≥ 0

Case 3 (Na ≤ Nc ≤ Nb): In this case, we observe |M(a, b)| = Na and |M(b, c)| = Nc.
Given this, we consider the following matching M between N(a) and N(c):

M = {(x, z)|(x, y) ∈ M(a, b) ∧ (y, z) ∈ M(b, c)}.

In addition, we define

M1 = {(x, y)|(x, y) ∈ M(a, b)∧ 
 ∃(y, z) ∈ M(b, c)}.

M2 = {(y, z)|(y, z) ∈ M(b, c)∧ 
 ∃(x, y) ∈ M(a, b)}.

In other words, M1 ⊂ M(a, b) and M2 ⊂ M(b, c) do not link to each other using
intermediate node y ∈ N(b). We further denote m1 = |M1|, m2 = |M2|, m3 = |M|. Note
that m1 = Na − m3, m2 = Nc − m3, and Nb ≥ m1 + m2 + m3.
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Then, we have the following relationships:

dk+1(a, b) + dk+1(b, c) −

(

1 − (1 − β)
w(M)

Nc

− β

)

≥ dk+1(a, b) + dk+1(b, c) −

(

1 − (1 − β)
w(M)

Nb

− β

)

≥ 1 − β − (1 − β)

(

w(M(a, b))

Nb

+
w(M(b, c))

Nb

−
w(M)

Nb

)

= (1 − β)

(

1 +
m3 − w(M(a, b))

Nb

−
m3

Nb

+
m3 − w(M(b, c))

Nb

−
m3

Nb

−
m3 − w(M)

Nb

+
m3

Nb

)

≥ (1 − β)

(

1 −
m3

Nb

+

∑

(x,y)∈M(a,b)\M1
(1 − r(x, y))

Nb

−
m1

Nb

+

∑

(y,z)∈M(b,c)\M2
(1 − r(y, z))

Nb

−
m2

Nb

−

∑

(x,z)∈M(1 − r(x, z))

Nb

)

≥ (1 − β)

(

1 −
m3

Nb

−
m1

Nb

−
m2

Nb

+

∑

(x,y,z)(d
k(x, y) + dk(y, z) − dk(x, z))

Nb

)

≥ ((x, y) ∈ M(a, b), (y, z) ∈ M(b, c), (x, z) ∈ M)

(

1 − β)(1 −
m1 + m2 + m3

Nb

)

≥ 0

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.
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