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Abstract As typical wireless sensor networks (WSNs) have resource limitations,
predistribution of secret keys is possibly the most practical approach for secure net-
work communications. In this paper, we propose a key management scheme based on
random key predistribution for heterogeneous wireless sensor networks (HSNs). As
large-scale homogeneous networks suffer from high costs of communication, com-
putation, and storage requirements, the HSNs are preferred because they provide bet-
ter performance and security solutions for scalable applications in dynamic environ-
ments. We consider hierarchical HSN consisting of a small number high-end sensors
and a large number of low-end sensors. To address storage overhead problem in the
constraint sensor nodes, we incorporate a key generation process, where instead of
generating a large pool of random keys, a key pool is represented by a small number
of generation keys. For a given generation key and a publicly known seed value, a
keyed-hash function generates a key chain; these key chains collectively make a key
pool. As dynamic network topology is native to WSNs, the proposed scheme allows
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dynamic addition and removal of nodes. This paper also reports the implementation
and the performance of the proposed scheme on Crossbow’s MicaZ motes running
TinyOS. The results indicate that the proposed scheme can be applied efficiently in
resource-constrained sensor networks. We evaluate the computation and storage costs
of two keyed-hash algorithms for key chain generation, HMAC-SHA1 and HMAC-
MD5.

Keywords Security · Key management · Heterogeneous sensor networks · Random
key predistribution · Authentication

1 Introduction

Wireless sensor networks (WSNs) are commonly used in ubiquitous and pervasive
applications such as military, homeland security, health-care, and industry automa-
tion. WSNs consist of numerous small, low-cost, independent sensor nodes, which
have limited computing and energy resources. Secure and scalable WSN applications
require efficient key distribution and key management mechanisms. Cryptography is
the foundational technology used for protecting and securing the communication in
sensor networks [17]. This technology relies on keys as the centerpieces, and many
attacks focus on disclosing these keys. As a result, the management of the keys (the
process by which keys are generated, stored, protected, distributed, used, and de-
stroyed) is a very important and challenging problem in a large-scale network con-
sisting of several hundreds or thousands of sensor nodes.

Conventional security protocols are usually master key based or distributed key
based management schemes. In master key based schemes, every node shares a sin-
gle preloaded master key. Further, master key is used to negotiate session keys for
securing different wireless links. For example, Menezes et al. [25] use a simple three-
way handshaking and authentication protocol based on the master key for setting up
session keys. This type of key management scheme has the underlying assumption
that the sensor nodes are tamper proof and the master key that is stored inside each
node cannot be retrieved by the adversary. However, the assumption that the nodes
are tamper proof cannot be ensured in many sensor network applications because
sensor nodes are usually left unattended in hostile and remote environments. Once
the master key is compromised, the adversary can use it to break the security of the
entire network.

Other commonly used schemes in WSNs are key predistribution schemes [5, 6, 8,
9, 14, 26, 28, 33]. In these approaches, with minimal resources, one can achieve a
known probability of connectivity within a network. These efforts assume a deploy-
ment of homogeneous nodes and, therefore, use a balance distribution of random keys
among the nodes. Most existing research mainly considers homogeneous sensor net-
works, where all sensor nodes have identical capabilities in terms of communication,
computation, sensing, and reliability; however, homogeneous WSNs are not scalable.

Several recent works, on the other hand, investigate heterogeneous sensor net-
works (HSNs). Girod et al. [16] develop tools to support heterogeneous systems as
well as the measurement and visualization of operational systems. Lazos and Pooven-
dran [20] study the coverage problem in planar heterogeneous sensor networks and
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formulate the coverage problem as a set intersection problem. They formulate expres-
sions in order to determine the required number of sensors for a field of interest. Ma
et al. [24] propose a resource oriented protocol for heterogeneous sensor networks to
build the network model that adapts according to the members’ resources. Du and Lin
[10] propose a differentiated coverage algorithm which can provide different cover-
age degrees for different areas; the algorithm is energy efficient since it only keeps
minimum number of sensors in active state. Duarte-Melo and Liu [13] analyze the
energy consumption and lifetime of HSN by providing periodic data from a sensing
field to a remote receiver.

In this paper, we propose a scalable protocol for key management that is sen-
sitive to the sensor nodes resource constraints, including storage, computation and
communication. The proposed key management scheme is based on random key pre-
distribution for HSNs; the contributions of the proposed scheme are as follows:

• We consider heterogeneous sensor network consisting of two types of sensors:
high-end (H-sensor) and low-end (L-sensor). Further, for scalable solutions, the
proposed scheme uses hierarchical structure, where H-sensor act as cluster head
(CH) and L-sensors as cluster members.

• We propose an efficient method for key management that uses a keyed-hash-chain
based technique for keys generation. Instead of generating a large pool of random
keys, a key pool is represented by a small number of generation keys. For a given
generation key and a publicly known seed value, a keyed-hash function generates
a key chain; these key chains collectively make a key pool. Further, each sensor
node is assigned a small number of randomly selected generation keys. As a result,
by using generation keys, the proposed scheme significantly reduces the storage
requirements.

• Dynamic network topology is native to WSNs because nodes can fail or be added.
As result, the proposed scheme allows dynamic node addition and removal. In the
case of node addition, the proposed scheme is able to distinguish between legit-
imate and malicious nodes. Further, as adversaries can compromise sensors and
acquire all security information, a rekeying scheme is incorporated to update all
types of keys periodically.

• We implement our scheme in a real sensor network, where we consider the com-
putation and storage costs of two keyed-hash algorithms for key chain generation,
HMAC-SHA1 and HMAC-MD5.

The rest of paper is organized as follows: Section 2 provides the related work,
Sect. 3 describes the network and threat models, Sect. 4 describes the proposed
scheme in detail, Sect. 5 gives the results and performance evaluation, Sect. 6 pro-
vides the TinyOS implementation details, and Sect. 7 concludes the paper.

2 Related work

The key management problem is a very active research area in WSNs. Two clas-
sical solutions to this problem are: (1) public-key cryptography (Deffie Hellman)
and (2) schemes based on a trusted server (Kerberos). The first solution is infeasible
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for sensor network because public key cryptography such as RSA or Elliptic Curve
cryptography (ECC) is unsuitable for most sensor architectures due to high energy
consumption and increased code storage requirements. The second solution is also
not applicable in sensor networks since most of the sensors in the field are unable
to directly communicate with the sink due to their very short communication range
and the wide-spread distribution of the sensors. Hence, sensor networks cannot rely
on a trusted server for key distribution. Several alternative approaches have been de-
veloped to perform key management on resource-constrained sensor networks which
includes random key predistribution schemes, plaintext key exchange schemes, and
transitory master key schemes.

Eschenauer and Gligor [14] propose a probabilistic key predistribution technique
to bootstrap the initial trust between sensor nodes. Generate a large pool of random
symmetric keys and then preconfigured each node with a number of keys randomly
selected from the key pool without replacement. Neighboring nodes use their precon-
figured keys to set up their pairwise keys. A communication channel secured between
two nodes using pairwise keys is called a key path. To protect confidentiality, every
key is usually assigned an index, and during shared key discovery, nodes exchange
the index of keys with neighbors to ultimately determine their shared pairwise keys.
Finally, during path-key establishment phase, pairs of neighboring nodes that do not
share a key can set up their own keys, as long as they are connected by two or more
key path at the end of shared key discovery. If the network density, the size of the key
pool, and the number of keys preconfigured in each sensor node are carefully chosen,
it is highly likely that all nodes in the network will be connected via key paths.

Chan et al. [5] propose the q-composite key predistribution, which allows two sen-
sors to setup a pairwise key only when they share at least q common keys. It is shown
in [5] that the q-composite scheme can achieve greatly strengthened security under a
small scale attack while trading off increased vulnerability in the face of a large scale
physical attack on network nodes. In addition, they also propose scheme allowing
keys to be distributed to nodes in pairs so that keys may be associated with spe-
cific nodes, thus allowing authentication. Chan and Perrig [4] also develop a protocol
named PIKE for key establishment by using peer sensor nodes as trusted intermedi-
aries.

Some location-aware schemes which improve the security of the key pre-
distribution schemes are proposed in [21, 31]. These techniques divide the target field
into nonoverlapping square areas and randomly deploy the sensors in every area. The
exact location of a sensor in any area is unknown, but there is knowledge about the
identity of sensors in every area. This information helps to eliminate the dependency
of keys between nonadjacent cells. The idea of threshold key predistribution schemes
is proposed in [1] and further studied in [2].

In one of the variations of such key predistribution schemes, every sensor stores
the coefficients of a symmetric bivariate polynomial that is evaluated at one of its vari-
ables. Liu et al. [22] propose two key distribution schemes based on bivariate polyno-
mials. They propose the random subset assignment scheme and the hypercube-based
key predistribution scheme in which the key pool consists of multiple instances of
polynomial. Oliveira et al. [26] use random key predistribution for secure commu-
nication in hierarchical (cluster-based) protocols such as LEACH [18]. These and
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some others [6, 8, 9, 28, 33] have assumed a deployment of homogeneous nodes,
and have, therefore, suggested a balanced distribution of random keys to each of the
nodes to achieve security. Most of these schemes suffer from high communication
and computation overhead and/or high storage requirement.

There is also active research in key management for heterogeneous sensor net-
works. Du et al. [12] propose the asymmetric predistribution (AP) scheme for het-
erogeneous sensor networks which provides better security with low complexity and
significant reduction on storage requirement by storing more numbers of preconfig-
ured keys on high end sensors and a small number of pre-configured keys on low end
sensors. Liu et al. [23] propose a framework for key management schemes in distrib-
uted wireless sensor networks with heterogeneous sensor nodes. Traynor et al. [29]
demonstrate that a probabilistic unbalanced distribution of keys throughout the net-
work that leverages the existence of a small percentage of more capable sensor nodes
cannot only provide an equal level of security, but also reduce the consequences of
node compromise.

Bulusu et al. [3] propose two key predistribution based scheme for heterogeneous
networks which consist of nodes which are stationary as well as highly mobile. They
use a separate disjoint key pool to establish links between the stationary and mobile
nodes of the network because if the same key pool is used in multiple networks, the
compromise of keys in one network would lead to compromise of keys in all the net-
works. Traynor et al. [30] characterize the effects of the unbalanced key management
system, and design a complementary suite of key establishment protocols known as
LIGER. Using their predeployed keys, nodes operating in isolation from external net-
works can securely and efficiently establish keys with each other.

3 Network model

We consider the heterogeneous sensor network consisting of three types of nodes:
base station, H-sensor, and L-sensor, as described below:

• Base Station: The base station is assumed to be secure, not prone to failures, and
does not have any resource constraints such as bandwidth, energy, memory, and
processing.

• H-Sensors: H-sensors have more memory and processing capability. These nodes
are equipped with tamper resistant hardware and communicate directly with the
base station. Although H-sensors have rich resources, but these are still limited as
compared to the base station. For instance, Crossbow’s stargate nodes can be used
as H-sensors.

• L-Sensors: L-sensors are ordinary sensor nodes that are limited in terms of mem-
ory and processing capability. The L-sensors acquire data from the surrounding
environment and forward the collected data to the H-sensor.

In a typical initial HSN deployment, there would be a small number of H sensors
and a large number of L-sensors. Further, for scalability and easy maintenance, both
H-sensors and L-sensors can be added as needed. H-sensors and L-sensors are as-
sumed to be uniformly and randomly distributed in the field. Clustering of sensors
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Fig. 1 Network model

enable local data processing, which reduces communication load in the network in
order to provide scalable solutions.

HSN consists of a hierarchical structure where sensors are divided into clusters and
each cluster is managed by a cluster head, as shown in Fig. 1. All H-sensors act as
cluster heads; whereas each L-sensor is a cluster member and cannot act as a cluster
head. Each L-sensor is able to securely communicate with all other L-sensors in its
neighborhood and its cluster head (H-senor). Moreover, H-sensors maintain secure
communication with following entities: base station, cluster member (L-sensor) and
other cluster heads (H-sensors).

3.1 Threat model

A malicious node can be either an external node that does not know the cryptographic
keys, or an internal node (L-sensor), that possesses the keys. An adversary can create
an internal compromised node by capturing a legitimate L-sensor node. All these
malicious nodes can exhibit Byzantine behavior which can be described as a behavior
when one or more sensors or devices work in collusion to disrupt the network. It
could include several security challenges such as denial of service attack, dropping
or altering packets, topology distortion, impersonation, and wormholes.

4 Proposed scheme

In this section, we present an efficient key management scheme designed for hetero-
geneous sensor networks. The proposed scheme uses a symmetric-key mechanism
to distribute, revoke, and renew keys during the lifetime of HSN. A few terms and
definitions used in the rest of the paper are as follows:
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Table 1 Notations

Notation Definition

BS Base station

CH Cluster head

K A pool of keys

M Total number of key chains

Ci Key chain i

gki Generation key of i-th key chain

RX Set of the keys in node X’s key ring

r A number of keys in L-sensor key ring

S A number of keys in H-sensor key ring

KM Master key

KC Cluster broadcast key

KM,Li
Authentication key of L-sensor i

KX,Y A shared key between X and Y

idLi
Identity of L-sensor i

EK(m) An encryption of message m with key K

nonceLi
A random number string generated by L-sensor i

MACK(A||B) MAC calculated using key K on message A and B

Definition 1 A one way hash function is a function H satisfying the following con-
ditions:

• The argument x can be of arbitrary length and the result H(x, k) has fixed length
of n bits.

• The hash function must be one way in the sense that given a y in the image of
H , it is computationally infeasible to find a message x such that H(x) = y, and
given x and H(x), it is computationally infeasible to find a message x́ �= x such
that H(x́) = H(x).

Terms

• Key Pool: A key pool K is a large pool of random symmetric keys.
• Key Chain: A key chain C is a subset of K , C ⊆ K . Each key chain is generated in-

dependently via a unique generation key and a publicly known seed S by applying
a keyed hash algorithm repeatedly. A publicly known seed value is same for every
key chain. Each key chain can be uniquely identified as Ci , where i = 0 . . .M − 1.
The key pool K consists of M equal sized key chains as given below:

K = C0 ∪ C1 · · · ∪ CM−1. (1)

• Key Ring: A key ring R consists of randomly selected generation keys of corre-
sponding key chains. Each sensor node is assigned a ring of R keys.
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Fig. 2 Key chain generation
process

4.1 Key predistribution phase

The key predistribution phase includes key pool generation and key ring assignment.

4.1.1 Key pool generation

In this section, we describe the process of key pool generation. Generate a large pool
of random symmetric keys as follows. First, the cardinality (size) of key pool |K|
is selected. Then the number of key chains M is chosen accordingly. A key pool K

consists of M different key chains, as given in (1). Further, there are no common keys
between any two key chains, which is formally given as follows:

Ci ∩ Cj = φ, ∀i �= j. (2)

As a key chain Ci is generated independently via a unique generation key gki and
publicly known seed S by applying a keyed hash algorithm repeatedly [28], the j -th
key of the key chain Ci is computed as:

kCi,j
=

{
H(gki , S): j = 0,

H(gki , kCi,j−1) : 1 ≤ j ≤ N − 1.
(3)

Figure 2 shows a block diagram to illustrate the process of key generation. The
first key is generated by using seed S and gki as inputs to Hash (H); however, the
remaining keys are generated by applying H over gki and the previous key. The total
number of keys in a key chain is N , where

N = K

M
. (4)

Further, base station generates a special key KM known as master key, which is
used for authentication.

4.1.2 Key ring assignment

For each node (L-sensor or H-sensor), a unique identity (id) is generated using a
pseudo-random function (PRF). Before deploying the nodes, each node is loaded
with its assigned key ring R, where R consists of the number of generation keys used
to generate corresponding key chains. The assigning rules are as follows:
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• Each L-sensor node is assigned r number of randomly selected generation keys of
corresponding key chains. First, input the L-sensor id as seed to pseudo-random
number generator (PRNG) of a large enough period to produce a sequence of r

numbers, as given below: PRNG(idi ) = n1, n2, . . . , nr . Second, the set of key ids
assigned to L-sensor can then be obtained by mapping each number in the sequence
to its correspondent value modulus M , as given below:

idgki
= ni mod M, (5)

where 0 ≤ idgki
≤ M − 1. From these r generation keys, r×N random keys can be

calculated effectively. In addition, each L-sensor is preloaded with an authentica-
tion key KM,Li

, which is generated by applying one way hash function on the id
of L-sensor and master key, i.e., KM,Li

= f (KM, idLi
).

• Each H-sensor node is preloaded with S randomly selected generation keys of
corresponding key chains as described above. However, it should be noted that
S � r . Each H-sensor is also preloaded with a master key KM .

4.2 Cluster formation phase

During the cluster formation phase, all H-sensors broadcast Hello messages to nearby
L-sensors with some random delay, in order to avoid collisions of Hello messages
from neighboring H-sensors. The probability of collision is quite small when a non-
persistent CSMA protocol is used for medium access control [32]. Moreover, an H-
sensor can broadcast its ID multiple times to increase the probability that it is re-
ceived by all its neighbors. The Hello message includes the ID of the H-sensor. The
transmission range of the broadcast is large enough so that all L-sensors can receive
Hello messages from several H-sensors. Then each L-sensor selects the H-sensor as
the cluster head whose Hello message has the best received signal strength indicator
(RSSI) value. Each L-sensor also records the ids of other H-sensors from which it
receives the Hello messages, and these H-sensors are listed as backup cluster heads
in case the primary cluster head fails. Only H-sensor can act as a cluster head (CH);
whereas the L-sensors act as cluster members; the details of clustering scheme can
be found in [11].

4.3 Cluster head based shared key discovery phase

The shared key discovery phase begins after cluster formation phase. First, each clus-
ter member sends to its cluster head a message, which includes its ID, nonce, its
neighboring nodes information, and MAC which is calculated on all these values
using a key KM,Li

.
Second, this phase also includes a neighborhood discovery, as shown in Fig. 3.

In message 1, L-sensor (Li ) broadcasts hello messages for a short range in order to
discover neighbors. In message 2, one of Li ’s neighbor, say Lj acknowledges with
HelloReply message. Then Li adds Lj ’s id in its neighbors list. The neighborhood
discovery phase ends when all the L-sensors have obtained neighborhood informa-
tion.
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Fig. 3 Neighboring node
discovery

1: Li ⇒ ∗ : Hello(idLi
)

2: Lj ⇒ L1 : HelloReply(idLj
)

3: Li: adds the idLj
into List

4: Lj: Repeat 2 and 3 for every HelloReply

1 : Li ⇒ CH : idLi
,nonceLi

,List,
: MACKM,Li

(idLi
‖nonceLi

‖List)
2 : Lj ⇒ CH : idLj

,nonceLj
,List,

: MACKM,Lj
(idLj

‖nonceLj
‖List)

3 : CH ⇒ Li : n, idgkm
, idLi

, idLj
,

: MACKM,Li
(n‖idgkm

‖idLi
‖idLj

‖nonceLi
)

4 : CH ⇒ Lj : n, idgkm
, idLi

, idLj
,

: MACKM,Lj
(n‖idgkm

‖idLi
‖idLj

‖nonceLj
)

Fig. 4 Neighboring L-sensors with common preloaded generation key

Fig. 5 Session key generation 1: function GetKey (n,gkm)
/* param n: random number */
/* param gkm: common generation key */

2: KCm,0 = H(gkm, seed)

3: for i=1 to n-1 do
4: KCm,i

= H(gkm,KCm,i−1 )

5: end for
6: return KCm,n−1

Third, CH discovers the shared generation keys between neighboring L-sensors in
its cluster, as shown in Fig. 4. In messages 1 and 2, L-sensors Li and Lj send mes-
sages to CH, where messages contain their ids, nonce, the list of their neighboring
L-sensors ids, and MAC on all these values. CH determines the generation keys in Li

and Lj ’s key rings (Ri and Rj ) by using the pseudo-random scheme described above
in Sect. 4.1. The CH chooses the common generation key gkm, where gkm ∈ Ri ∩Rj ;
a generation key with minimum index is selected in case of multiple common keys.
Then CH determines the shared pairwise key between Li and Lj by generating a ran-
dom number n, where [0 ≤ n ≤ N −1], which is used as an index in the key chain Cm

for selecting the pairwise shared key, i.e., KCm,n . Then CH disseminates the shared-
key information to Li and Lj sensors, as shown in messages 3 and 4. The shared-key
information consists of the following: (a) ids of neighboring L-sensors (Li and Lj ),
(b) id of the common generation key, i.e., idgkm

, (c) n that represents the index of
shared pairwise key of Cm key chain, (d) nonce, and (e) MAC that is calculated on
all these values using corresponding authentication keys KM,Li

and KM,Lj
. In other

words, L-sensors Li and Lj share n-th key of Cm key chain by applying the common
key generation algorithm shown in Fig. 5 on n and gkm. Further, L-sensors Li and
Lj also share the same n-th key of Cm key chain with their CH.
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Fig. 6 Neighboring L-sensors
without common preloaded
generation key

1 : Lx ⇒ CH : idLx ,nonceLx ,List,
: MACKM,Lx

(idLx ‖nonceLx ‖List)
2 : Ly ⇒ CH : idLy ,nonceLy ,List,

: MACKM,Ly
(idLy ‖nonceLy ‖List)

3 : CH ⇒ Lx : idLx , idgi
,p,

: MACKM,Lx
(idLx ‖idgi

‖p‖nonceLx )

4 : CH ⇒ Ly : idLy , idgj
, q,

: MACKM,Ly
(idLy ‖idgj

‖q‖nonceLy )

5 : CH ⇒ Lx : (EKCH,Lx
(KLx,Ly ))

6 : CH ⇒ Ly : (EKCH,Ly
(KLx,Ly ))

4.3.1 No common preloaded generation key between L-sensors

Some L-sensors may not share any preloaded generation key with their neighbors. For
each pair of L-sensors (say X and Y ) that do not share any generation key, Rx ∩Ry =
φ, CH obtains a shared-key between CH and Lx and a shared-key between CH and
Ly . Then CH generates a pair-wise key for each pair (Lx and Ly ), and securely sends
the key to them.

Figure 6 shows an example for neighboring L-sensors that do not share common
preloaded generation key. CH first checks if it has a preloaded generation key shared
with the L-sensors (e.g., Lx and Ly ), Rx ∩ RCH �= φ and Ry ∩ RCH �= φ. As CH is
preloaded with a large number of generation keys, there is a high probability that CH
can find at least one shared generation key with Lx and Ly , i.e., gki ∈ Rx ∩ RCH and
gkj ∈ Ry ∩ RCH . CH generates random numbers p, where [0 ≤ p ≤ N − 1] and q

where [0 ≤ q ≤ N −1]. CH sends messages 3 and 4, which means that CH shares the
p-th key (KCi,p

) of Ci key chain with node Lx and q-th key (KCj,q
) of Cj key chain

with node Ly . Then CH generates a new shared key between Lx and Ly and sends
this key to both Lx and Ly , encrypting with shared key between nodes (Lx , Ly ) and
CH, as shown in messages 5 and 6.

4.3.2 No common preloaded generation key between CH and L-sensor

In case that an L-sensor does not share any preloaded generation key with its CH,
then CH finds a key to communicate securely with that L-sensor. CH generates a key
KCH,Li

and sends the key to L-sensor encrypted with that L-sensor’s authentication
key KM,Li

, as given below:

CH → Li : EKM,Li
(KCH,Li

).

4.4 Inter-cluster communication

An intercluster communication between CHs is achieved through a key KCHi ,CHj

generated by applying hash function on idCHi
and idCHj

using key KM , as given
below:

KCHi ,CHj
= H(KM, idCHi

‖idCHj
).
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1 : La ⇒ CHi : idLa , idLb
,nonceLa ,

: MACKM,La
(idLa‖idLb

‖nonceLa )

2 : CHi ⇒ La : idLa , idLb
, idgki

, n,

: MACKM,La
(idLa‖idLb

‖idgki
‖n‖nonceLa )

3 : CHi ⇒ CHj : idLa , idLb
, idgki

, n,

: MACKM
(idLa‖idLb

‖idgki
‖n)

4 : CHj ⇒ Lb : idLa , idLb
, idgki

, n,

: MACKM,Lb
(idLa‖idLb

‖idgki
‖n)

Fig. 7 L-sensor to L-sensor inter-cluster communication

If node La wishes to communicate with a node that lies in a different cluster, then
two CHs are involved in order to setup a session key between L-sensors. Say La lies
in Cluster Ci and Lb in Cj and the respective CHs are CHi and CHj . As shown in
Fig. 7, in line 1, La sends request to CHi consisting of its id (idLa ), the id of L-sensor
with which it wants to communicate (idLb

), a nonce, and MAC that is calculated on
all these values using KM,La . CHi determines the common generation key (gkm) in
the key rings of L-sensors (La and Lb). Then CHi generates a random number n and
sends the shared key message to La consisting of both L-sensors ids (idLa , idLb

), id
of the common generation key (idgkm

), n, nonceLa and MAC that is calculated by
using KM,La , as shown in line 2 of Fig. 7. Similarly, in line 3, CHi sends a message
to CHj containing the shared key information between La and Lb. After receiving
this message, CHj forwards the shared key message to Lb consisting of ids of both
La and Lb, id of the common generation key, n, and MAC that is calculated on all
these values using KM,Lb

, as shown in line 4. Now L-sensors La and Lb use n-th key
of Ci key chain to communicate securely.

4.5 Addition of new nodes

A desirable property in a scalable key management scheme is the ability of adding
new sensors to the network. These newly deployed sensor nodes need to establish
secret key with existing nodes. However, before adding new nodes into network, it
should be ensured that the newly deployed sensor node is not an adversary node.
The proposed scheme is robust for adding new legitimate L-sensors in the network.
After an L-sensor Lx is deployed in the network, Lx determines its neighbors using
neighboring node discovery as described in Fig. 3. Lx sends join request to the CH,
for which it has the best RSSI and LQI values, as given below:

Lx → CH: idLx ,nonceLx ,List,

MACKM,Lx
(idLx ‖nonceLx ‖List).

The CH authenticates the node Lx by verifying the MAC. If authenticated, CH deter-
mines the shared key for each of Lx ’s neighbors and unicasts the shared key message
to Lx and its neighbors.
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Fig. 8 The probability of key
sharing

(a)

(b)

4.6 Setting up cluster key

Cluster key is used by both CH and cluster members to securely broadcast messages
within a cluster. After setting up shared pairwise key between cluster members, CH
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generates a cluster key KC , which is sent to each cluster member, where KC is en-
crypted with the corresponding shared key between CH and the cluster member. For
example, CH sends to Lu (cluster member) the following message:

CH → Lu : EKCH,Lu
(KC),

where KCH,Lu is the shared key between L-sensor Lu and CH.

4.7 Key revocation

Revocation procedures are involved after detecting compromised or faulty nodes. The
base station is responsible for monitoring sensor behavior and detecting a sensor fail-
ure or compromise. For a compromised node, the base station sends this information
to the corresponding CH. The CH broadcasts to its member the Revocation message
containing the list of key ids to be revoked, where the message is signed with KC .
The Revocation message is formed as follows:

list(idgk1 , idgk2 , . . . idgkr
),MACKC

(list).

Each L-sensor when receives a Revocation message, it verifies the MAC to check the
integrity of message and to locate those key ids in its key ring, and remove the keys
(if any). After key revocation, some links may disappear and affected nodes need to
reconfigure those links by restarting the shared key discovery phase.

4.8 Rekeying

Using the same encryption key for extended duration may result in a cryptanalytic
attack. A remedy could be to ignore this threat because it is anticipated that in most
cases the lifetime of nodes would be less than the lifetime of the shared key between
two nodes [27]. However, in some cases, since it is possible that lifetime of keys
expires, it is necessary to renew the encryption keys (session keys). In order to ac-
complish the renewal of the session keys, the affected nodes remove the expired keys
and restart the shared key discovery phase with CHs.

5 Performance evaluation

In this section, the proposed key distribution scheme is compared with other com-
monly used key distribution techniques. The results show that the proposed scheme
can significantly reduce the storage requirements, while providing similar probability
of key sharing among nodes.

The key pool size ‖K‖ is a critical parameter because in random key distribution
schemes the amount of storage reserved for keys in each node is likely to be a preset
constraint, which makes the size of the key ring ‖R‖ a fixed parameter. Once R is
set then for larger values of ‖K‖, the probability that two L-nodes will share a key
is small. Further, the probability that a randomly chosen link is compromised when a
node that is at neither end of the compromised link decreases by increasing the value
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Fig. 9 The compromising
probability

of ‖K‖. We want to find the largest key pool size ‖K‖, such that the probability of
key sharing between two L-sensors, as well as L-sensor and H-sensor is not less then
the threshold p.

Let p be the probability that an L-sensor and H-sensor share at least one common
key in their key ring. The number of possible key ring assignments for an L-sensor is

M!
r!(M − r)! . (6)

The number of possible key ring assignment for an H-sensor is

M!
S!(M − S)! . (7)

The total number of possible key ring assignment for an L-sensor and H-sensor is

M!
r!(M − r)! × M!

S!(M − S)! . (8)

The probability that an L-sensor and H-sensor share a common key can be given as

p = 1 − (M − r)!(M − S)!
M!(M − r − S)! . (9)

Figure 3 shows probability of key sharing for different schemes. For different val-
ues of K , M , S, and r , we plot the probability of sharing at least one key under our
proposed scheme, the key predistribution scheme [14], which we will refer as ba-
sic scheme, and Asymmetric Predistribution scheme [12], which we will refer as AP
scheme. In Fig. 8(a), the key pool size ranges from 1,000 to 50,000 and key ring size
is fixed to 100 for basic scheme. For AP scheme, H-sensor keys are 500 and L-sensor
keys are 20. For our proposed scheme, the number of key chains (M) varies from 100
to 1,000, S = 90, and r = 2. In other words, the number of key chains (M) is 0.02
times of the corresponding key pool size.
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Figure 8(a) shows that for the proposed scheme, the same probability of key shar-
ing among nodes can be achieved by just loading 2 generation keys in sensor node
as compared to 100 keys in basic scheme [14], and 20 keys in AP scheme [12]. For
instance, if there are 1,000 L-sensors and 10 H-sensors in an HSN, where each L-
sensor is preloaded with 2 generation keys and each H-sensor is preloaded with 100
generation keys, the total memory requirement for our proposed scheme in the unit
of key length is 2 × 1000 + 100 × 10 = 3,000. However, in AP scheme [12], if each
H-sensor is loaded with 500 keys and each L-sensor is loaded with 10 keys, the total
memory requirement for storing these keys will be 500 × 10 + 1000 × 20 = 25,000,
which is 8 times larger than our proposed scheme. Further, for a homogeneous sensor
network with 1,000 L-sensors, where each L-sensor is preloaded with 100 keys, the
memory requirements will be 100 × 1000 = 100,000, which is 33 times larger than
our proposed scheme.

Figure 8(b) shows that the probability of key sharing among nodes and CH in-
creases by a very little increase in the number of preloaded generation keys in L-
sensors. For instance, if preloaded keys are increased from 2 to 5, the key sharing
probability increases from 0.5 to 0.8 approximately, for 400 key chains.

5.1 Security evaluation

In this section, we investigate the security resilience of our proposed scheme against
node compromise attack. Further, we calculate the expected number of compromised
links due to key revealing of captured nodes.

Each L-sensor has a knowledge of r×N keys. The probability that a given key
does not belong to an L-sensor is 1 − r

M
. If there are n compromised nodes, the

probability that a given key is not compromised is (1 − r
M

)n. The probability of
total number of compromised keys, where n number of L-sensors are captured, is as
follows:

p = 1 −
(

1 − r

M

)n

. (10)

Figure 9 shows the compromising probability with respect to the number of com-
promised nodes. In this figure, the proposed scheme (PS) is compared to EG [14]
and q-composite [5] schemes. For the given parameters: M = 1,000, K = 50,000,
r = 5, and m = 100, the results show that PS is more resilient against node capture
as compared to EG and q-composite schemes.

6 Implementation in real sensor network

In this section, the implementation issues are investigated to show that the proposed
scheme can be efficiently implemented on resource-constrained sensor nodes.

For L-sensors, we use Crossbow’s Micaz sensor nodes; the details are as follows:
4 MHz Atmel ATmega128L processor, 128 KB of program Flash memory, 512 KB
of measurement flash memory, and a 2.4 GHz ChipCon radio.

Crossbow’s stargate nodes are used as H-sensors. The stargate is a gateway node
with the following specifications: 400 MHz Intel PXA255 Xscale processor, 64 MB
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Table 2 Time and memory
requirements for MicaZ Primitive Time RAM ROM

(msec) (Bytes) (Bytes)

SHA-1 10.545 128 4,048

MD5 5.757 176 12,500

HMAC-SHA1 21.959 30 4,424

HMAC-MD5 12.217 90 12,986

of SDRAM and 32 MB of flash memory. Further, on another set of tests, stargates
were replaced by desktops—desktop specifications: 1.8 GHz AMD Turion(tm) 64X2
mobile TL-56 processor and 2 GB of RAM running Windows XP.

The proposed protocols are implemented for TinyOS using nesC [15] program-
ming language. Our assessment includes how to discover the neighbors, the delay
overhead of generating the shared key by applying keyed hash algorithm on gener-
ation keys and seed, and an evaluation of the overall key setup time for proposed
scheme.

First, two one-way hash algorithms, SHA-1 and MD5, are implemented. We take
data stream of 64 bytes. As shown in Table 2, for SHA-1 the code consumes 128
bytes of RAM, 4048 bytes of ROM, and takes approximately 10.5 ms to produce a
160-bit hash of a 64-byte message. MD5 produces a 128-bit message digest for a
given data stream. The code consumes 176 bytes of RAM, 12.5 KB of ROM, and
takes approximately 5.75 ms to hash a message of 64 bytes using 64-byte blocks.

A keyed hash message authentication code (HMAC) is a MAC calculated using a
cryptographic hash function in combination with a secret key. As with any MAC, it
can be used to verify the data integrity and the authenticity of a message. However,
in our proposed scheme, we use HMAC to generate key chains from generation keys.
Any iterative cryptographic hash function, such as MD5 or SHA-1 may be used in
the calculation of an HMAC; the resulting MAC algorithm is termed HMAC-MD5
or HMAC-SHA-1 accordingly, where size of the output is same as the underlying
hash function. Further, both HMAC-SHA1 and HMAC-MD5 implementations were
validated using the test cases given in [7].

We implement both HMAC-SHA1 and HMAC-MD5 algorithms. The HMAC-
SHA1 code consumes 30 bytes of RAM, 4424 bytes of ROM, and takes approxi-
mately 21.9 ms to produce of MAC of 64 bytes of data stream, as shown in Table 2.
Whereas the HMAC-MD5 code consumes 90 bytes of RAM, 12986 bytes of ROM,
and takes approximately 12.2 ms to produce a MAC of 64 bytes of data.

The proposed scheme is implemented with both algorithms (HMAC-SHA1 and
HMAC-MD5) for key generation. The memory consumption for HMAC-SHA1 (780
bytes RAM and 22.2 KB ROM) is less than HMAC-MD5 (840 bytes RAM and
30.7 KB ROM), as shown in Table 3. However, the time required to generate MAC
using HMAC-SHA1 is greater than HMAC-MD5, as shown in Fig. 10. We generate
keys from generation keys (8 bytes) and seed (28 Bytes) using both HMAC-MD5 and
HMAC-SHA1. Figure 10 shows that as the number of keys are increased, the process-
ing time for key-chain generation increases accordingly. However, the increase in
HMAC-SHA1 is significantly greater than HMAC-MD5.
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Fig. 10 The comparison of key
generation process

Table 3 Memory usage for
proposed scheme Proposed scheme RAM ROM

using (Bytes) (Bytes)

HMAC-SHA1 780 bytes 22206 bytes

HMAC-MD5 840 bytes 30728 bytes

One of the major constraints on implementing any scheme on a sensor platform is
the small available payload size of packets. Specifically, under TinyOS, this limita-
tion is commonly set to 29 bytes. As a result, all of the wireless interactions between
nodes must adhere to this restriction. For instance, each of the generation keys de-
ployed in L-sensors or H-sensors are of 8 bytes, which matches the key size used for
the TinySec implementation of the RC5 block cipher [19]. We allocate 2 bytes for
node identifier as well as 2 bytes for nonce value. We believe that 2 bytes (65,536
or 216) would be sufficient for a large sensor network. Further, for current battery
lifetimes, 2 bytes for nonce would provide sufficient protection against nonce reuse.
Authentication is provided by TinySec’s CBCMAC and it occupies a total of 4 bytes.
While not appropriate for other environments, an online attack of this authentication
mechanism would require an average attack span of 20 months because of the limited
bandwidth in this setting [19].

Figure 11 gives the details of the interfaces that are provided and used by the
implementation of our proposed scheme in TinyOS. The component provides only
one interface Sensor. The component uses either SHA1 or MD5 interface with HMAC
interface. Further, we also use the interface BlockCipher provided by component
RC5 of TinySec. Moreover, there are several standard TinyOS interfaces used in the
implementation, such as Boot, Leds, Packet, and SplitControl.



Scalable and efficient key management for heterogeneous

module SensorP {
/* Provides Interfaces */
provides interface Sensor;

/* Uses Interfaces */
/* Interfaces defined in Proposed Scheme */
uses interface SHA1;
uses interface MD5;
uses interface HMAC;

/* TinySec Interface */
uses interface BlockCipher;

/* Standard TinyOS interfaces */
uses interface Boot;
uses interface Leds;
uses interface Packet;
uses interface AMPacket;
uses interface AMSend as RadioSend[am_id_t id];
uses interface Receive as RadioReceive[am_id_t id];
uses interface SplitControl as AMControl;
uses interface Timer<TMilli> as Timer0;
...

}

Fig. 11 The provides and uses interfaces for the proposed scheme implementation in TinyOS

7 Conclusion

In this paper, we propose a key management scheme for heterogeneous sensor net-
works based on random key predistribution. In our scheme, instead of storing all the
assigned keys in a sensor node, we store a small number of generation keys. Adver-
sary or malicious nodes are precluded to join the cluster as each L-sensor is authen-
ticated by CH using L-sensor’s authentication key. In predeployment phase, each H-
sensor is preloaded with the master key and L-sensor with authentication key (which
is generated using master key). We also provide secure intercluster communication.
Further, for scalable solution and easy maintenance, we provide dynamic nodes’ ad-
dition and keys’ revocation in case of node compromise. The results show that our
scheme can significantly reduce the storage requirements as compared to other ran-
dom key predistribution schemes. For instance, storage requirements can be reduced
by 8 times as compared to AP [12], and 33 times as compared to basic scheme [14].
Also, the resiliency against node capture is better than previous key predistribution
schemes. The TinyOS implementation shows that the proposed scheme can be effi-
ciently implemented in real sensor networks. We compare both HMAC-SHA1 and
HMAC-MD5 to generate key chains. The results show that although HMAC-SHA1
consumes less memory resources than HMAC-MD5, it is more computationally in-
tensive.
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