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Abstract

Digital imaging plays a critical role for image guided diagnosis and clinical trials, and the amount 

of image data is fast growing. There are two major requirements for image data management: 

scalability for massive scales and support of comprehensive queries. Traditional Picture Archiving 

and Communication Systems (PACS for short) are based on relational data management systems 

and suffer from limited scalability and query support. Therefore, new systems that support fast, 

scalable and comprehensive queries on image data are highly demanded. In this paper, we 

introduce two alternative approaches: DCMRL/XMLStore (RL/XML for short)—a parallel, hybrid 

relational and XML data management approach, and DCMDocStore (DOC for short)—a NoSQL 

document store approach. DCMRL/XMLStore manages DICOM images as binary large objects 

and metadata as relational tables and XML documents based on IBM DB2, which is parallelized 

through data partitioning. DCMDocStore manages DICOM metadata as JSON objects, and 

DICOM images as encoded attachments in MongoDB running on multiple nodes. We have 

delivered two open source systems DCMRL/XMLStore and DCMDocStore. Both systems support 

scalable data management and comprehensive queries. We also evaluated them with nearly one 

million DICOM images from National Biomedical Imaging Archive. The results show that, 

DCMDocStore demonstrates high data loading speed, high scalability and fault tolerance. 

DCMRL/XMLStore provides efficient queries, but comes with slower data loading. Traditional 

PACS systems have inherent limitations on flexible queries and scalability for massive amount of 

images.
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1 Introduction

Digital imaging is playing a critical role for image guided diagnosis and clinical trials. 

Digital Imaging and Communications (DICOM) is a standard for representing and managing 

medical images, and the standard has recently been extended to support whole slide images 

[1]. DICOM images are represented as a standard format with a header representing all the 

data elements, and a body consisting of the pixel images represented in standard image 

formats, such as JPEG, PNG, or GIF. DICOM has defined more than three thousand 

standard data elements, along with dynamic proprietary tags supported by different vendors. 

The tags can not only be used to support query and retrieval operations for PACS services, 

they are also valuable for other purposes such as semantic data integration [2], quality 

control [3] and medical physics [4–8]. While the large space of data elements and the 

extension provides high flexibility, it also makes it very challenging to represent, manage 

and query such information.

There are several requirements for managing medical images: (i) retrieval of images based 

on identifiers, such as patient IDs, study UIDs, series UIDs or image UIDs; (ii) flexible 

metadata based queries based on DICOM data elements; (iii) fast response of queries for 

real-time access of images; and (v) standard communication protocols. Traditionally, the 

management of DICOM based medical images is based on PACS. PACS are built on top of 

DICOM information model which is originally defined through an entity-relational model 

(ER model) [9]. Naturally, most PACS use relational data management systems (RDBMS) as 

for managing DICOM images [10] where the ER model is easily mapped to relational tables. 

Typically, such approach provides a database schema with a subset of common DICOM tags 

[11, 12].

Meanwhile, the amount of medical image data is fast growing with the continuing 

movement of electronic medical records and integration of massive medical images for 

decision support. With the emergence of Health Information Exchange and Accountable 

Care Organizations, the amounts of image data to be integrated and managed become 

enormous. There is a major demand to provide highly scalable data management and sharing 

infrastructure to manage, query, and share the data across the network.

The intrinsic characteristics of DICOM images and the increasing scales pose two major 

challenges for data management: scalability for massive scales and support of 

comprehensive queries. However, traditional RDBMS based approaches suffer from two 

major limitations: limited scalability due to intrinsic architecture constraints and inflexibility 

to support diverse or dynamic schemas. Relational databases use rigid table based schema 

with predefined fixed set of attributes, and it is very difficult to extend the schema to adapt to 

new tags. In reality, most schemas for PACS represent only a small fixed subset of DICOM 

header tags [10, 12]. Meanwhile, due to the rigid ACID transaction model, studies [13, 14] 

have shown that relational databases suffer from data loading bottleneck and have scalability 

limit in a distributed environment. Even though some relational database systems like DB2 

support variety tag queries by enabling XML query, the poor query performance which will 

be shown in our work limits its usability.
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Recent work on scalable medical image data management includes cloud based approach 

[15, 16] where large scale computing infrastructures are used to host PACS services, or 

NoSQL based approach where new emerging data management systems such as CoachDB 

[17, 18] and Cassandra [19, 20] are employed for managing DICOM images.

In our work, we propose two solutions of high performance scalable data management of 

medical image big data with powerful query support: DCMRL/XMLStore using traditional 

relational data management based approach and DCMDocStore using NoSQL based 

approach, respectively. DCMRL/XMLStore models DICOM data with hybrid relational and 

XML model supported through a native XML database engine integrated in relational 

database engine. It is implemented with a data partitioning based approach running multiple 

database instances in a distributed environment for scalable data management. 

DCMDocStore models DICOM data as documents represented in JSON objects [21]. We 

provide comparative studies of the two systems with nearly one million DICOM images 

downloaded from NBIA [12], and conclude that both systems meet the requirements of 

query flexibility and scalability, and can be adopted for different environments.

2 System design

2.1 Hybrid relational/XML based management

2.1.1 XML based DICOM modeling—DICOM headers contain structured metadata 

represented as data element name and value pairs, and the Value Representation (VR) 

defines the data type and format of the values. The Value Multiplicity (VM) of a data 

element specifies the number of values that can be encoded in the value field of that Data 

Element. A data dictionary defines the tags and the identifiers, and extension for proprietary 

tags is possible.

XML is not only a markup language, but also a hierarchical data model for representing 

information. A major advantage of XML data modeling is extensibility—an XML schema 

can be easily extended to accommodate new data elements. In particular, DICOM tags can 

be well represented in XML. Figure 1 shows an example of XML based representation of 

DICOM tags. A new tag can be easily added as a new XML element in the document. The 

XML representation also supports multi-value tags, by repeating the value element inside a 

tag element, for example, “ImageType” is a multi-valued tag and three child value elements 

are provided. XML based DIOM format has also been proposed in [22] for improving the 

readability of DICOM files, but it depends on a small set of tags and does not provide the 

extensibility. In fact, the flexibility of XML based modeling can be supported by “schema-

less” native XML database.

2.1.2 XML based data management—XML data management systems provide 

significant advantages as they support standard data definition languages based on XML 

standards such as XML Schema, and standard XML query languages such as XPath [23] and 

XQuery [24]. Furthermore, the XML-in and XML-out approach greatly simplifies the 

translation of data models and query languages. XML database technology becomes mature, 

and XML database products are proliferating [25, 26]. XML database systems are developed 

through extension of traditional relational databases or new database systems, where an 
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XML document is the logic data object for manipulation. For example, major relational 

database engines such as Oracle and DB2 extend their systems with a new native data type 

XML or XMLType with specialized storage and indexing support. Native XML databases 

provide high flexibility on the schema of the XML documents. XML schemas can evolve 

which allows high extensibility. For example, if a new DICOM tag is added, it can be simply 

added as a new XML element, and there is no change needed for the database.

Meanwhile, many DICOM data elements are well-known and fixed. Indeed, most DICOM 

image management systems use DICOM ER model [9] based on a subset of fixed data 

elements to build the database [10, 12].

In DCMRL/XMLStore, we take a hybrid approach for modeling and managing DICOM 

images in XML. We combine both relational model and XML model (Fig. 2). Relational 

tables built on DICOM ER model will be used for managing a subset of frequently used tags 

to enable fast retrieval based on IDs, including PATIENT, STUDY, GENERAL_SERIES and 

GENERAL_IMAGE. XML (attribute FULL_HEADER in table GENERAL_IMAGE) is 

used to model the full set of DICOM header tags, which could be dynamic. The XML data 

type is embedded in relational tables as a special column, which is stored, indexed and 

queried separately, but logically integrated into a unified data model to support 

comprehensive queries. Original DICOM images are stored as binary large objects (BLOBs) 

and linked to the tables.

2.1.3 Querying DICOM images on RL/XML—The coexistence of the data rows for 

the relational model and the XML documents increases the flexibility of queries conducted 

on the fields that are predefined in the schema. For instance, below is a SQL query to return 

all image instance UIDs for a given patient name.

SELECT i.sop_instance_uid

FROM ad.general_image i, general_series se, study s, patient p 

WHERE p.patient_name=‘1.3.6.1.4.1.9328.50.2.0075’

AND p.patient_pk_id=s.patient_pk_id

AND s.study_pk_id=se.study_pk_id

AND se.general_series_pk_id = i.general_series_pk_id;

The query can also be expressed in XQuery as follows, with only XML document:

for $dicom in fn:distinct-values(db2-fn:xmlcolumn 

(‘GENERAL_IMAGE.FULL_HEADER’)/dicom)

where $dicom/PatientName/value/text() = ‘1.3.6.1.4.1.9328.50.2.0075’

return $dicom/SOPInstanceUID/value;

One the other hand, a major advantage of the XQuery is that it can query upon all tags, 

compared to SQL queries relying only a small subset of tags which are predefined in the 
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database schema. For example, we may have a query to find all patients whose injected 

contrast volume, which is not defined in the relational schema, is between 100 and 150 ml:

for $dicom in fn:distinct-values(db2-fn:xmlcolumn 

(‘GENERAL_IMAGE.FULL_HEADER’)/dicom)

where $dicom/ContrastBolusVolume/value > 100 AND $dicom/ContrastBolusVolume/

value <= 150

return $dicom/PatientName/value;

The performance of XQuery is proved to be slower than SQL for most cases. Therefore, In 

RL/XML, data requests which can be served by the relational model will be dispatched to 

the relational database engine and the rest requests will be dispatched to the XML query 

engine.

2.1.4 Scalable data management with parallel database architecture—One 

critical challenge for imaging big data is scalable data management. There are two major 

architecture principles for scalability: scaling up (or vertical scaling) and scaling out (or 

horizontal scaling). Scaling up is based on increasing the power of computer servers, for 

example, adding new expensive big servers with more computing power or storage. This 

approach requires higher level of skills and is not reliable in some cases. Besides, such 

systems such as IBM mainframe machines are also very expensive. Scaling out, on the other 

hand, is through data sharding or data partitioning, by dividing the database across many 

(inexpensive) machines. As a major bottleneck in managing and querying large data is the 

I/O bottleneck, by partitioning a database running on many independent machines, where 

each of them has its own storage, such system could significantly improve I/O throughput. 

Such architecture is also called a shared-nothing architecture [27].

Figure 3 illustrates the RL/XML architecture in which a parallel database runs on separate 

physical nodes. Each database node has multiple partitions, for example, partition 1–15 on 

node 1, and partition 16–30 on node 2. Each partition has its own disks, CPU and memory, 

and the partitions are connected through a fast switched network. Each database instance 

runs on one partition, for example, there are 30 database instances running together in Fig. 3. 

One partition is assigned as a master partition. The master partition accepts queries from 

users, translates and parallelizes queries across all partitions, and aggregates the results—

this enables the simplicity and expressiveness of SQL queries as such distributed parallel 

query execution is transparent to users. Our implementation employs IBM DB2’s parallel 

query execution support [28]. This support provides a single logical view of partitioned data 

so that clients can compose SQL queries as if they interacted with a serial database with no 

data partitioning.

While partitioning is used for balancing data across database partitions, for example, 

splitting GENERAL_IMAGE table based on image SOP_INSTANCE_UIDs, replication is 

another technique for replicating data in multiple database partitions to reduce data 

movement between nodes, normally for small tables, such as PATI ENT table.
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2.2 Document store based DICOM data management

Recently, “NoSQL” databases [18, 29–31] emerge as a set of open-source databases which 

mostly are not using SQL. Such databases share common characteristics: they are non-

relational, schema-free, and horizontally scalable with easy replication. They come with 

simple APIs for queries, and they are not following traditional “ACID” transaction model 

[32]. To achieve scalability, two orthogonal techniques are used for data distribution: 

replication and sharding (or partitioning). Replication takes the same data and copies it over 

multiple nodes, and sharding puts different data on different nodes.

2.2.1 Modeling DICOM images with a JSON document model—NoSQL database 

takes an aggregated data model by grouping multiple data elements into a single document 

represented in JSON object [21]. JSON (or JavaScript Object Notation) is an open-standard 

format for representing and transmitting data objects consisting of attribute-value pairs, as an 

alternative to XML. JSON can also handle hierarchical data structures as XML, but takes a 

lightweight approach. Similarly to XML based data modeling, for NoSQL database, we take 

JSON for representing DICOM header metadata, as shown in Fig. 4. Such document based 

model allows for new attributes to be created without the need to define them or to change 

the existing documents. As a primary motivation for NoSQL is the ability to run databases 

on a large cluster, such aggregate oriented data model fits well with scaling out because the 

aggregated document is a natural unit for data distribution. For DICOM image pixels, we 

store them as GridFS objects, which manages files as chunks (in the size of 255 KB) and 

their associated metadata.

2.2.2 MongoDB and its parallel architecture—MongoDB is one type of NoSQL 

databases with a document oriented store which takes a JSON document based data model. 

MongoDB extensively uses sharding for partitioning data across multiple shards. For 

example, Fig. 5 shows a setup for MongoDB database on a two node cluster with 30 shards, 

with 15 shards on each node. Meanwhile, MongoDB supports replication for fault tolerance. 

A dataset can be replicated across multiple shards with multiple copies, and in case of 

failure of one copy, the other copies are still available for access. The replication is different 

from the shared-nothing database architecture, where only a small fraction of data is 

replicated for query efficiency instead of fault tolerance. Setup of MongoDB sharding and 

replication in a cluster is straightforward, and the replication also makes the system robust 

instead of fault tolerance. However, MongoDB takes a relaxed transaction model and does 

not follow a rigid transaction model as traditional relational databases.

The ACID property of traditional relational databases guarantees consistency of a database 

transaction. For example, if there is an update to a record replicated across two nodes, the 

update is committed only if the update operation has received confirmation from both nodes. 

Intermediate transaction status is preserved in a log file which may be rolled back if the 

transaction fails. Such model achieves high consistency but comes with a cost of 

bookkeeping and long wait for synchronization.

In a distributed computer system, CAP theorem [33] states that it is impossible to 

simultaneously provide all three of the following guarantees: Consistency (all nodes see the 
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same data at the same time), Availability (a guarantee that every request receives a response 

about whether it was successful or failed), and Partition tolerance (the system continues to 

operate despite arbitrary message loss or failure of part of the system). Traditional relational 

databases preserve the CA properties, and MongoDB preserves the CP properties. Thus, 

MongoDB can survive failed nodes in a cluster gracefully, but not a relational database. 

MongoDB takes an “eventual consistency” approach, and it has a window during which an 

observer might not see consistent updated values in multiple replicas. The system does 

guarantees that the observer will be able to see consistent values after this window.

2.2.3 Querying DICOM images in MongoDB—To make it consistent, MongoDB 

provides a JSON based query language, which is intuitive and expressive. For example, to 

return all image instance UIDs for a given patient name, the query looks as follows (Here 

“dicom” represents the collection name):

db.dicom.find({“PatientName”:”1.3.6.1.4.1.9328.50.2.0075”});

Due to its flexibility on schema, we can also easily specify queries for one specific tag, for 

example, to find all patients whose injected contrast volumes were between 100 and 150 ml:

db.dicom.find({ContrastBolusVolume:{$lte:150,$gt:100}});

3 Implementation

RL/XML is built with a hybrid relational and XML database engine, scaled through a 

shared-nothing parallel database architecture. RL/XML is implemented on top of IBM DB2 

database [28] with data partitioning feature (DPF). The software includes SQL scripts for 

creating the tables and indexes for the database, a DICOM header to XML converter based 

on dcm4che [10], a data loading tool for loading DICOM images and extracted header data 

into the database, and querying APIs for specifying queries. A WADO [34] based 

implementation of the query APIs will be planned for future release. A DICOM dictionary 

table is also provided to quickly map DICOM tag IDs to tag names. Single value or multi-

value attributes are automatically detected at parsing time. RL/XML can be setup on a single 

machine or a cluster with multiple nodes. The setup of the parallel database server on 

multiple nodes requires sharing of the installed DB2 binaries through network sharing, and 

each node comes with its own running instance. Database partitions can be created for each 

node and grouped into a partition group to be used by the database. Once the installation is 

done, a database can be created, and the tables can be created by the table creation SQL 

scripts. As the DICOM image table (GENERAL_IMAGE) dominates the storage, this table 

is created with a partition key on the table key GENERAL_IMAGE_PK_ID. When data gets 

loaded, DICOM images are hashed into different database partitions based on an internal 

hashing algorithm.

DOC is built on top of MongoDB, using JSON document model for representing DICOM 

headers, and GridFS for representing binary images. The software includes DICOM header 
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to JSON conversion tool developed using dcm4che, DICOM data loading tool and querying 

tool, and a DICOM tag ID to tag name mapping table. Different from RL/XML, no schema 

creation is needed. To accelerate queries for common attributes and UIDs, scripts for 

creating indexes are also provided. MongoDB can be setup with multiple instances or 

shards, and replication can be setup by defining replica set to provide redundancy and 

increase data availability.

Both systems are implemented in Java and available for download at github repository [35, 

36].

4 Evaluation

4.1 Experiment setup

We have performed experiments to evaluate and compare the effectiveness of the two 

systems. We use a two-node cluster, with each node equipped with two AMD Opteron 6128 

Eight-Core CPUs (16 cores in total), 128 GB RAM, and 8 TB RAID5 storage, and installed 

with CentOS 5.10. RL/XML uses IBM DB2 Infosphere data warehouse edition 9.7.5, which 

comes with native XML support and database partitioning support. There are 30 database 

partitions created for DB2 to run on the two nodes. DOC uses MongoDB 2.6, and 30 

MongoDB instances on the two nodes, 15 instances per node. Three Config Servers are used 

for reliable storage of metadata.

We use a dataset with one million DICOM images from 9298 patients downloaded from 

NCIA [37], and the total size of the images is 523 GB.

4.2 Performance studies

In this section, we study the performance of data loading, querying and scalability of 

RL/XML and DOC.

4.2.1 Performance of data loading—The tag-value pairs parsed out from DICOM 

images are translated into human-readable key words, and then be uploaded into the 

parallelized databases together with the original files by multiple threads. During this 

process, the number of loading threads and the number of partitions may influence the data 

loading performance.

Firstly, we compare the impact of exploiting multiple threads on the loading performance. 

For fairness, the partition numbers of both RL/XML and DOC are set to 20. Start from 1, we 

increase the upload threads number linearly until the uploading throughput stops increasing 

or starts to drop. As shown in Fig. 6a, the loading process can be accelerated with multiple 

threads for RL/XML. However, the increase ratio decreases along with the increasing of the 

threads number. The throughput stops increasing when 13 and more threads are issued. All 

tests are on a machine with 16 CPU cores, thus it is comfortable to increase the threads 

number to as many as 16 before computation resource competition between loading threads 

may occur. Therefore, the loading speed reaches the acceptance limitation of RL/XML when 

the number of loading threads increased to 13. On the other hand, no performance 

improvement is gained while the number of loading threads increases for DOC. That is 
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because for document based database like MongoDB, no complicate arithmetic calculations 

are needed to fit the source information into restricted schema and inserted into multiple 

tables, instead, only log operations are needed to append the documents into the database. 

Thus, the loading process is highly I/O bounded. Overall, the loading speed of DOC can be 

up to 3X faster than that of RL/XML.

Secondly, we run tests to evaluate how the number of partitions influences the loading 

performance. In this set of tests, the number of partitions for RL/XML and DOC varies from 

1, 10, 20 and 30. The number of threads used to loading images for RL/XML and DOC is 

set to 13 and 2 respectively, which are all big enough to feed the two systems as much 

DICOM images as they can digest. Figure 6b shows the number of images loaded per 

second as partition number increases. It shows that using more partitions can slightly 

increase the loading performance for XML/RL, but cannot improve the loading performance 

for DOC. For DB2, the base that XML/RL is built on, the insertion requests are assigned to 

different partitions to be served in parallel. However, for MongoDB, the base that DOC is 

built on, all newly inserted records will be dispatched to one single node called primary 

node, and then data in the primary node will be spitted and drained to other nodes once the 

data size of the primary node reaches a threshold. Therefore, using more partitions cannot 

bring performance enhancement as DICOM images are newly loaded into the DOC. User 

can improve the loading performance by assigning each node a specific key range. All 

images belong to a certain key range will be sent to the specific node instead of the primary 

node. However, this optimization needs priori knowledge, which is not applicable to all 

cases.

4.2.2 Query performance of systems—Queries on DICOM images can come in 

different forms. In this DICOM image management case, we classify them into following 

categories, as shown in Table 1: (1) Key-Value based lookups with low selectivity. (2) Key-

Value based lookups with high selectivity. (3) Queries with aggregation operations. (4) 

Queries on fields which are not defined in the relational model. (5) Queries on fields which 

contain multiple values.

We conduct all five queries on both RL/XML and DOC. Both systems are equipped with 30 

partitions, and indices are issued for all columns\fields referenced by any queries. For RL/

XML, queries 1, 2 and 3 are served by the RDBMS, and queries 4 and 5 are served by XML 

database engine due to the inability of the RDBMS on querying fields which are not 

predefined.

As shown in Fig. 7, RL/XML system achieves a better performance on queries 2 and 3, 

which are all served by the RDBMS. Surprisingly, DOC achieves a better performance on 

query 1 than the RDBMS which is mature and highly optimized. Furthermore, for queries 4 

and 5 which are not supported by relational database model and have to be served by XML 

query engine, the performance of DOC is much better than the RL/XML system. For query 

5 specifically, DOC is 100 folds faster than RL/XML. Different from RL/XML, the data on 

DOC are stored as independent records. As a result, DOC is suitable for point lookups but is 

not as efficient as the RL/XML in aggregation queries.
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4.2.3 Scalabilities—To evaluate the scalabilities of RL/XML and DOC on DICOM 

image management, we further run query 2 with variant partition numbers. Due to the high 

selectivity of query 2, most of the records or rows will be retrieved even the indices are 

issued. As shown in Fig. 8, for queries which can be divided and conquered using multiple 

nodes, like query 1, increasing the number of nodes can significantly improve the query 

performance for both systems. However, the latency of test on RL/XML with 30 nodes is 

even slower than the test with 20 nodes. That is because when the number of partitions is 

large enough, the overhead of transporting and merging the final results becomes the 

bottleneck.

4.3 Discussion

DCMRL/XMLStore provides comprehensive query support with scarification of 

performance. By using multiple partitions, both the loading and query performance can be 

significantly improved. Traditional RDBMS based approach will not be able to support all 

queries, but it is most efficient on the performance of queries it is capable to support. 

DCMRL/XMLStore provides strict transaction support for high reliabil ity. Partitioned 

databases with robust XML support are only available for commercial DBMS vendors, and 

come with high licensing fee.

DCMDocStore based on MongoDB also provides comprehensive query support. It has best 

loading performance, which cannot be further improved by increasing the number of 

partitions. Scalability of queries for DCMDocStore is good for small number of partitions, 

but limited for large number of partitions. MongoDB is open source and free.

5 Conclusion

We have developed two open source data management systems to support the modeling, 

managing, loading and querying large scale DICOM image data. We have tested the systems 

with nearly one million DICOM images and the experiment results demonstrate support of 

comprehensive queries and high performance of queries. In particular, DCMDOCStore has 

higher data loading performance.

Traditional RDBMS based PACS systems have inherent limitations on supporting flexible 

queries and scalable queries. Parallel XML DBMS based approach inherits the strict 

transaction model and is suitable for transaction-oriented image applications. NoSQL 

document store based approach is cost-effective, highly scalable, and provides superior data 

loading performance, with scarification of real-time data consistency.
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Fig. 1. 

XML based representation of DICOM headers (only a fraction listed)
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Fig. 2. 

Hybrid DICOM modeling with relational and XML models
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Fig. 3. 

Shared-nothing parallel database architecture of the DCMRL/XMLStore

Teng et al. Page 15

Distrib Parallel Databases. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 

JSON based representation of DICOM headers (only a fraction listed)
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Fig. 5. 

Shared-nothing parallel database architecture of the DCMDOCStore
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Fig. 6. 

Image loading performance
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Fig. 7. 

Performance of RL/XML and DOC on all queries
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Fig. 8. 

Influence of partition number for query 1

Teng et al. Page 20

Distrib Parallel Databases. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Teng et al. Page 21

Table 1

Queries

Query Description Note

1 Retrieve all images of one patients Random access with low selectivity

2 Retrieve all images of all patients excludes one’s Random access with high selectivity

3 Retrieve five patients with most images Table scan/query with aggregation

4 Retrieve all images whose field ContrastBolusVolume covered by a 
certain value range

Query on field which is not predefined in RDBMS

5 Retrieve all images whose type field contains “ORIGINAL” and 
“PRIMARY” and “AXIAL”

Query on field with variable number of values, which is 
not supported by RDBMS
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