Scalable and Low Power LDPC Decoder Design Using High Level

Algorithmic Synthesis

Yang Sun, and Joseph R. Cavallaro
Depart. of Electrical and Computer Engineering
Rice University
6100 Main, Houston, TX 77005
{ysun,cavallar}@rice.edu

Abstract— This paper presents a scalable and low power
low-density parity-check (LDPC) decoder design for the next
generation wireless handset SoC. The methodology is based
on high level synthesis: PICO (program-in chip-out) tool was
used to produce efficient RTL directly from a sequential un-
timed C algorithm. We propose two parallel LDPC decoder
architectures: (1) per-layer decoding architecture with scalable
parallelism, and (2) multi-layer pipelined decoding architecture
to achieve higher throughput. Based on the PICO technology,
we have implemented a two-layer pipelined decoder on a TSMC
65nm 0.9V 8-metal layer CMOS technology with a core area of
1.2 mm?. The maximum achievable throughput is 415 Mbps
when operating at 400 MHz clock frequency and the estimated
peak power consumption is 180 mW.

I. INTRODUCTION

Wireless communication is experiencing rapid growth
to provide ubiquitous mobile wireless connectivity. The
continuously changing and evolving wireless specifica-
tions pose a major challenge to designers to implement
these highly complex algorithms in hardware as rapidly as
possible, while still maintaining area and power efficiency.
As a very competitive coding scheme for next generation
wireless systems, low-density parity-check (LDPC) codes
[1] are being considered for many 4G systems because
of their excellent error correction performance and highly
parallel decoding scheme. To meet the data rate and
power consumption constraints in wireless handsets, it
is very challenging to design a high performance LDPC
decoder at low area cost with reduced development time.

Because different standards employ different LDPC
codes, it is very important to design a flexible LDPC
decoder that can be tailored to different applications.
To address this challenge, some efficient ASIC archi-
tectures have been proposed in the literature [2], [3],
[4], [5], [6] to achieve flexible decoding of several LDPC
codes. However, one limitation of these partial-parallel
architectures is that the level of parallelism has to be at
the sub-circulant level. In this paper, we will explore the
design space of parallel realizations of LDPC decoders
using a high level synthesis (HLS) methodology. Under
the guidance of the designers, HLS can effectively exploit
the parallelism of a given algorithm. In this work, we
propose two parallel LDPC decoding algorithms that can

978-1-4244-4941-5/09/$25.00 ©2009 IEEE

Tai Ly
Synfora Inc.
201 San Antonio Circle Suite #172,
Mountain View, CA 94040
Tai.Ly@synfora.com

be exploited by the HLS to produce area and power
efficient hardware.

Il. PICO PLATFORM

The high level synthesis used in this paper is the PICO
Algorithmic Synthesis, which creates application acceler-
ators from un-timed C for complex processing hardware
in video, audio, imaging, wireless and encryption domains
[7]. Figure 1 shows the overall design flow for creating
application accelerators using PICO. The user provides
a C description of their algorithm along with performance
requirements and functional test inputs. The PICO sys-
tem automatically generates the synthesizable RTL, cus-
tomized test benches, SystemC models at various levels
of accuracy as well as synthesis and simulation scripts.
PICO is based on an advanced parallelizing compiler that
finds and exploits parallelism at all levels in the C code.
PICO provides multi-level hierarchical design capability
for complex designs such as LDPC decoders and block-
level clock gating to minimize power at the architecture
level. The quality of the generated RTL is competitive
with manual design, and the RTL is guaranteed to be
functionally equivalent to the algorithmic C input descrip-
tion [7]. The generated RTL can then be taken through
standard simulation, synthesis, place and route tools and
integrated into the SoC through automatically configured

scripts.
> < Synfora
Macro-lib
v
Synth Test Verilog Software SystemC
scripts Bench RTL Driver Models

System Dataset  CProgram
Requi

PICO
generated
elements

ét[)aRC,]g,ard Synﬂ!esisl RTL | System | Software Vasﬁfi;et'i';nl
Other Static
Tools Timing |
P&R
Fig. 1. PICO algorithmic synthesis

267



lll. DECODING ALGORITHM

A binary LDPC code is a linear block code specified
by a very sparse binary M x N parity check matrix:
H . x” = 0, where x is a codeword and H can be
viewed as a bipartite graph where each column and
row in H represent a variable node and a check node,
respectively. In this paper, we will focus on a special
class of LDPC codes called block-structured LDPC codes
which are adopted by many new wireless standards.
As shown in Figure 2, a block structured parity check
matrix can be viewed as a two-dimensional array of
square sub-matrices. Each sub-matrix is either a zero
matrix or a z by z weight-1 circulant matrix. The size of
the H matrix differs from standard to standard: e.g. the
maximum block length is 2304 for IEEE 802.16e and 1944
for IEEE 802.11n. To describe the decoding algorithm,
we define N, as the set of variable nodes connected to
check node m, and A,,\n as the set A, with variable
node n excluded. R,,, and @Q,,, are check and variable
messages, respectively. P, is the a posteriori probability
log-likelihood ratio of variable node n. H' is the I-th layer
of H. y, is the received channel data. o2 is the noise
variance. The layered scaled-minsum decoding algorithm
is then summarized in Algorithm 1.

09 B B O B O | Laver 1
01 0 B B O [o] | raver 2
09 01 O B B B | rayer 3

H:

Cluster size z=4

Check node

Variable node

Fig. 2.  An example of 3 x 6 block structured parity check matrix.

IV. ARCHITECTURE DESIGN
A. Per-layer decoding architecture

In Algorithm 1, one full iteration is divided into L sub-
iterations where each sub-iteration corresponds to one
layer’s data processing. In the traditional partial-parallel
decoder architecture, each z x z sub-matrix is treated
as a block within which all the involved parity checks
are processed in parallel using z number of decoding
cores. Each core is independent from all others since
there is no data dependence between adjacent check
rows. The parallelism is only at the sub-circulant level
because it is easier to treat each circulant sub-matrix
as a whole processing block. However, different systems
demand different levels of parallelism. To the best of
our knowledge, the VLSI design of LDPC decoders with
scalable parallelism is largely missing in the literature.
Because the parity check matrices defined in different
wireless standards can be very different, this poses a
challenge for hand-coded RTL designers.

Algorithm 1 Layered scaled-minsum algorithm
Initialization:
V(m,n) with H(m,n) = 1, set R, =0, P, = 25;’
Iteration:
for iteration i =1 to I do
for layer [ =1 to L do
Stage 1) Read and pre-process:
V(m,n) with H'(m,n) = 1:
Read P, and R,,, from memory
Calculate Q,, = P, — Ry
Stage 2) Decode and write back:
V(m,n) with H (m,n) = 1:
R = 0.75% [T, S180(Qumj) X (min (o \)

FJEN\n
PTIL = an + R;r}n
Write P, and R,,,, back to memory
end for
end for
Decision making: #,, = sign(P,)

In this work, we leverage PICO high level synthesis
to automatically create scalable decoder architectures.
Take WiMax LDPC decoder as an example, where z
is between 24 and 96. The structure in Figure 3(a)
corresponds to the traditional WiMax LDPC decoder
architecture where z = 96 cores are generated to provide
the maximum parallelism. The “#pragma unroll” directive
in the C program is used to tell the PICO compiler to
unroll this loop. Figure 3(b) shows a way to partially
unroll the loop: the inner loop is unrolled by 48, with an
outer loop of 2 iterations that pipeline the data over the
48 cores, sequentially, for 2 times. In this way, multiple
parallelism levels can be realized to tailor the throughput
according to the application requirement.

#pragma unroll r for(i=0; i<2; i++){

for (k=0; k<96; k++){ I #pragma unroll I
decoder_core () ; for (k=0; k<48; k++){

} Compile “x% : decoder_core ()3 compie

}

(a) Parallelism = 96 (b) Parallelism = 48

Fig. 3. Scalable data path generation by PICO

To implement Algorithm 1 in hardware, we propose a
per-layer two-stage scheduling algorithm which is illus-
trated in Figure 4 (without loss of generality, we assume
the parallelism level is z). It is a block-serial scheduling
algorithm: data in each layer is processed block-column
by block-column. Core 1 first reads a vector (size of 1-
by-z) of P, and R,,, messages from memory, calculates
Qumn, and then finds the minimum and the second min-
imum values among array @,,, for each row m over all
column n. Core 2 computes the new R, and P, values
based on the two minimum values produced by core 1,
and writes the new R/, and P, values back to memory.

mn

Qmn values, calculated in core 1, are stored in an array

268



so that they can be re-used by core 2.

As a case study, we describe a length 2304 rate
1/2 WiMax LDPC decoder in a sequential un-timed C
code. Figure 5 shows the corresponding PICO gener-
ated hardware architecture block diagram. The top level
LDPC_decoder() will loop over I iterations. In each itera-
tion, it loops over L layers of the parity check matrix, and
calls decoder_corei() and decoder_core2(). The for loops
in decoder_core1() and decoder_core2() are unrolled. The
for loop in barrel_shifter() is also unrolled to shift P,
messages as an array of 8-bit, left by n from 0 to 95.
The top level function can return early if all the parity
checks are satisfied or the maximum number of iterations
is reached. Both P and R messages are represented
with 8-bit fixed-point numbers. All arrays shown in the
block diagram are declared as global C arrays which
are synthesized as register files implemented in flip-flops.
Large memories such as P and R memory are treated
as user-supplied macros (SRAMs).

Core 1 Core 1
(z copies) 2z copies)
Core 2 Core 2
(z copies) (z copies)
A J

Y Y
Layern Layer n+1

» time

Fig. 4.

External SRAM
P SRAM (24 x 768 bits) R SRAM (84 x 768 bits)
PPA

Per-layer decoding algorithm

for(i=0; i<l; i++){
for (I=0; I<L; I++){ LDPC_decoder -
#pragma unroll decoder_core1 (Ioop over matrix columns ) Parity check
N o SZ - matrix ROM
for G=0:j<z; j+){ barrel _shifter
barrel_shifter () ; ‘"
i 40 core1_dp_cluster
#pragma unroll [— - C—1
for (k=0; k<z; k++){ f 1F ]
corel_dp () ; .
- core_dp core1_dp 96 copies
in total
#pragma unroll JT T TTT1 T
for (m=0; m<z; mt+) | ! !
core2_dp ) ; = * min2_array
i 96x8 bits
|
i decoder_core2 (loop over matrix columns ) 96x5 bits;
core2_dp_cluster
Hardware Generation - 1 96x1 bits)
e
(7x786 bits
96 copies
2_dj |_ 2_dj .
L] e - 5
e s '
 m— p— ]
11
il
= <5

Fig. 5. PICO hardware architecture block diagram for per-layer
decoding of a (2304, 1/2) WiMax LDPC code

B. Multi-layer pipelined decoder architecture

In the per-layer architecture, the core utilization is low
(about 50% as shown in Figure 4). However, it is possible
to do pipelined processing between layers so that while
core 2 is operating on the current layer, core 1 could
start working on the next layer of the matrix as shown in
Figure 6. In order to pipeline core 1 and core 2, additional

conflict detection logic is needed to insert stall cycles to
avoid pipeline hazards where core 1 reads P,, messages
from a location before core 2 has written to that location.
To do this, we add a “scoreboard” variable, which is set to
contain a 1 in bit n if and only if a write to P, is pending by
core 2 for row m. As core 2 writes to each P,, it will clear
bit n of the scoreboard. As core 1 processes a column
n, it will check if scoreboard has a 1 in bit n. If it does,
then core 1 will do nothing for that iteration, thus waiting
for core 2 to write to P,, before reading from P,. Figure 7
shows a two-layer pipelined PICO hardware architecture
block diagram. This architecture is similar to the per-layer
architecture except that each core now has its own copies
of arrays, and @) array has been replaced by a @ FIFO.

Core 1 Core 1
(z copies) (z copies)
Core 2 Core 2
(z copies) (z copies)
Layern )
Laye?r( n+l

» time

Fig. 6. Multi-layer pipelined decoding algorithm

External SRAM
P SRAM (24 x 768 bits) R SRAM (84 x 768 bits)
for(i=0; i<I; i++){ PPA
Parity check
matrix ROM

for (I=0; I<L; I++){
#pragma unroll
for (j=0; j<z; j++){
barrel_shifter () ;

LDPC_decoder
decoder_core1 (loop over matrix columns )

barrel _shifter

H J5 core1_dp_cluster

?Pl‘?}%n}]& znrolll( . L T T V:II
or (k=0; k<z; kt+){ q

check_scoreboard(); L L L I 96 copies
corel_dp(); | CEOILED SR | 7 intotal
set_scoreboard (); R R] 222

} min1_at n
=2] min2_a 5
#pragma unroll ==| Pos1_alsign_array
for (m=0; m<z; m++){
core2_dp () ;
clear_scoreboard () ; J J Q_array FIFO

secoder_core2 (loop over matrix columns )

core2_dp_cluster

min1_ar P
=] min2_a
[ 10231 post_a sign_array ]

Hardware G ion

I EREE YIv ¥ )
| core2_dp core2_dp | 9§ iogfs
L] T ne
== =4 e ;
1E E |2

Fig. 7. PICO hardware architecture block diagram for two-layer
pipelined decoding of a (2304, 1/2) WiMax LDPC code

Figure 8 compares the latency and area of these two
architectures. In the analysis, RTLs are generated by
PICO and are synthesized using Synopsys Design Com-
piler on a TSMC 65nm technology. Note that the area
value shown in Figure 8 is for the total standard cells.
This will give a fair comparison because two architectures
would require the same amount of external SRAMs. In
Figure 8, we can see both latency and area increase
as clock frequency increases. This is expected because
PICO will adjust the design and find the best solution for
a given target clock frequency.

269



250 0.5

@ Per-layer =] Per-layer
B Two-layer pipelined 0.45 [im Two-layer pipelined

0.4

0.35
0.3
0.25
0.2

0.15

100 200 300
(a) Latency per iteration

400 MHz 100 200 300 400 MHz

(b) Standard cell area in total (65nm)

Fig. 8. Latency and area (65nm) comparisons of two PICO hardware
architectures synthesized for different target clock frequency goals

C. Low power implementation via clock-gating

PICO scheduler can analyze the underlying data flow
graph, and set those idle registers’ “enable” signals to
“0” when the module has no activity. PICO also provides
block-level clock gating which shuts off entire processing
blocks to minimize power at an architectural level. Table
| compares the power consumption of a (2304, 1/2)
pipelined LDPC decoder with and without clock-gating.
SpyGilass [8] was used to conduct the gate-level power
estimation (not including external SRAMs). From Table |,
we can see a 29% reduction of the “sequential internal
power” via clock-gating.

TABLE |
SPYGLASS POWER ESTIMATES WITH AND WITHOUT CLOCK GATING
Power Leakage | Internal | Switching Total
W/ clock-gating 3.43mW | 46.1mW | 22.5mW | 72.0mW
WI/O clock-gating 3.43mW | 64.5mW | 225mW | 90.4mW

V. IMPLEMENTATION RESULTS AND COMPARISONS

A flexible LDPC decoder which fully supports the IEEE
802.16e WiMax standard has been described in “PICO-
rized” C. Then the PICO tool was used to produce Verilog
RTL for the proposed two-layer pipelined LDPC decoder
architecture. The generated RTL was synthesized using
Synopsys Design Compiler, and placed & routed using
Cadence SoC Encounter on a TSMC 65nm 0.9V 8-
metal layer CMOS technology. The VLSI layout view of
this decoder with a core area of 1.2 mm? (standard
cells + SRAMs) is shown in Fig. 9. Table Il compares
our decoder with the state-of-the-art LDPC decoders
of [2] and [3]. A fair comparison is difficult to make
because of different design parameters. However, it can
be roughly inferred that the PICO-generated decoder can
achieve comparable performance with the hand designed
decoders in terms of throughput, area, and power.

VI. CONCLUSION

A high performance low power LDPC decoder has
been implemented based on PICO high level synthesis

Fig. 9. VLSI layout view of the LDPC decoder

TABLE I
COMPARISON WITH EXISTING LDPC DECODERS

This Work [2] [3]
Core Area 1.2mm? | 0.74 mm? | 1.337 mm?
Max Frequency 400 MHz 240 MHz 400 MHz
Max Power 180 mW 235 mW NA
Technology 65 nm 65 nm 65 nm
Quantization 6 5 6
Number of Iterations 10 13 25-20
Max Code Length 2304 1944 2304
Memory (SRAM) 82,944 bit | 68,256 bit | 0.551 mm?
Max Throughput @ R=1/2 415 Mbps | 178 Mbps 333 Mbps
Max Latency @ R=1/2 2.8 us 5.75 us 6.0 us

flow. Two parallel decoder architectures are introduced
and compared. The decoder, which was implemented on
a 65nm CMOS technology, delivers comparable results to
the hand-coded designs while significantly reducing the
development time.

VII. Acknowledgement

The first and second authors at Rice University were
supported in part by Nokia, NSN, Xilinx, and NSF under
grants CCF-0541363, CNS-0551692, and CNS-0619767.

References

[1] R. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf.
Theory, vol. 8, pp. 21-28, Jan. 1962.

[2] M. Rovini, G. Gentile, F. Rossi, and L. Fanucci, “A Scalable Decoder
Architecture for IEEE 802.11n LDPC Codes,” in GLOBECOM, 2007,
pp. 3270-3274.

[38] T. Brack, et al.,, “Low complexity ldpc code decoders for next
generation standards.” in Design, Automation, and Test in Europe.
ACM, 2007, pp. 331-336.

[4] Y. Sun, M. Karkooti, and J. R. Cavallaro, “VLSI Decoder Architec-
ture for High Throughput, Variable Block-size and Multi-rate LDPC
Codes,” in IEEE International Symposium on Circuits and Systems
(ISCAS), May. 2007, pp. 2104-2107.

[5] Y. Sun and J. R. Cavallaro, “A low-power 1-Gbps reconfigurable
LDPC decoder design for multiple 4G wireless standards,” in IEEE
International SOC Conference (SoCC), Sept. 2008, pp. 367-370.

[6] K. Gunnam, G. S. Choi, M. B. Yeary, and M. Atiquzzaman, “VLSI
Architectures for Layered Decoding for Irregular LDPC Codes of
WiMax,” in Int. Conf. Commun. (ICC), June 2007.

[71 S. Aditya and V. Kathail, Algorithmic Synthesis Using PICO.
Springer Netherlands, 2008, pp. 53-74.

[8] SpyGlass datasheet, http://www.atrenta.com.

270




