Scalable and Memory-Efficient Clustering of Large-Scale Social Networks

Joyce Jiyoung Whang, Xin Sui, Inderjit S. Dhillon Department of Computer Science The University of Texas at Austin

IEEE International Conference on Data Mining (ICDM) December 10 - 13, 2012

Contents

- Introduction
 - Problem Statement
 - Contributions
 - Preliminaries
- Multilevel Graph Clustering Algorithms
 - Multilevel Framework for Graph Clustering
 - Limitations of Multilevel Framework
- Proposed Algorithm: GEM
 - Graph Extraction
 - Clustering of Extracted Graph
 - Propagation and Refinement
- Parallel Algorithm: PGEM
- Experimental Results
- Conclusions

Introduction

Problem Statement

- Graph Clustering
 - Graph $G = (\mathcal{V}, \mathcal{E})$
 - k disjoint clusters $\mathcal{V}_1, \cdots, \mathcal{V}_k$ such that $\mathcal{V} = \mathcal{V}_1 \cup \cdots \cup \mathcal{V}_k$.
- Social Networks
 - Vertices: actors, edges: social interactions
 - Distinguishing properties
 - Power law degree distribution
 - Hierarchical structure

Contributions

- Multilevel Graph Clustering Algorithms
 - PMetis, KMetis, Graclus
 - ParMetis (Parallel implementation of KMetis)
 - Performance degradation
 - KMetis 19 hours, more than 180 Gigabytes memory to cluster a Twitter graph (50 million vertices, one billion edges).

- **GEM** (Graph Extraction + weighted kernel k-Means)
 - Scalable & memory-efficient clustering algorithm
 - Comparable or better quality
 - Much faster and consumes much less memory
 - PGEM (Parallel implementation of GEM)
 - Higher quality of clusters
 - Much better scalability
 - GEM takes less than three hours on Twitter (40 Gigabytes memory).
 - PGEM takes less than three minutes on Twitter on 128 processes.

Preliminaries: Graph Clustering Objectives

- Kernighan-Lin objective
 - PMetis, KMetis
 - k equal-sized clusters

$$\min_{\mathcal{V}_1,...,\mathcal{V}_k} \sum_{i=1}^k \frac{\textit{links}(\mathcal{V}_i,\mathcal{V}\setminus\mathcal{V}_i)}{|\mathcal{V}_i|} \text{ such that } |\mathcal{V}_i| = \frac{|\mathcal{V}|}{k}.$$

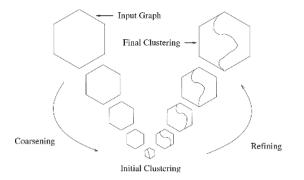
- Normalized cut objective
 - Graclus
 - Minimize cut relative to the degree of a cluster

$$\min_{\mathcal{V}_1,...,\mathcal{V}_k} \sum_{i=1}^k rac{\mathit{links}(\mathcal{V}_i,\mathcal{V}ackslash\mathcal{V}_i)}{\mathit{degree}(\mathcal{V}_i)}.$$

Preliminaries: Weighted Kernel k-Means

- A general weighted kernel k-means objective is equivalent to a weighted graph clustering objective.
- Weighted kernel k-means
 - Objective

$$J = \sum_{c=1}^{k} \sum_{\mathbf{x}_i \in \pi_c} w_i ||\varphi(\mathbf{x}_i) - \mathbf{m}_c||^2, \text{ where } \mathbf{m}_c = \frac{\sum_{\mathbf{x}_i \in \pi_c} w_i \varphi(\mathbf{x}_i)}{\sum_{\mathbf{x}_i \in \pi_c} w_i}.$$

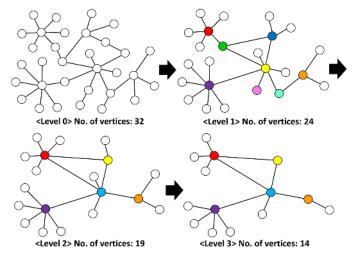

- Algorithm
 - Assigns each node to the closest cluster.
 - After all the nodes are considered, the centroids are updated.
 - Given the Kernel matrix K, where $K_{ij} = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_j)$,

$$||\varphi(\mathbf{x}_i) - \mathbf{m}_c||^2 = K_{ii} - \frac{2\sum_{\mathbf{x}_j \in \pi_c} w_j K_{ij}}{\sum_{\mathbf{x}_j \in \pi_c} w_j} + \frac{\sum_{\mathbf{x}_j, \mathbf{x}_j \in \pi_c} w_j w_l K_{jl}}{(\sum_{\mathbf{x}_j \in \pi_c} w_j)^2}$$

Multilevel Graph Clustering Algorithms

Multilevel Framework for Graph Clustering

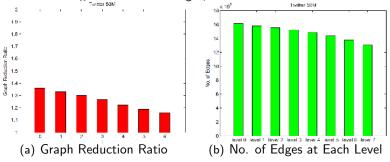
- PMetis, KMetis, Graclus
- Multilevel Framework
 - Coarsening phase
 - Initial clustering phase
 - Refinement phase


Problems with Coarsening Phase

- Coarsening of a scale-free network can lead to serious problems.
 - Most low degree vertices tend to be attached to high degree vertices.
 - Low degree vertices have little chance to be merged.
 - Example:
 - No. of vertices in the original graph: 32
 - No. of vertices in the coarsened graph: 24

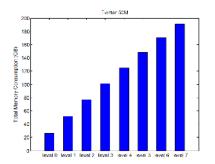
Problems with Coarsening Phase

- Coarsening of a scale-free network
 - Transform the original graph into smaller graphs level by level


Joyce Jiyoung Whang, The University of Texas at Austin IEEE International Conference on Data Mining (ICDM 2012)

Limitations of Multilevel Framework

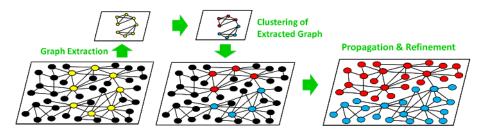
- Difficulties of Coarsening in Large Social Networks
 - In the coarsening from G_i to G_{i+1} ,


Graph Reduction Ratio
$$= \frac{|\mathcal{V}_i|}{|\mathcal{V}_{i+1}|}.$$

- Ideally, graph reduction ratio would equal 2.
- The success of multilevel algorithms high graph reduction ratio
- Power law degree distribution graph reduction ratio becomes small.

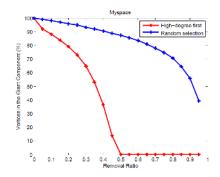
Limitations of Multilevel Framework

- Memory Consumption
 - Multilevel algorithms generate a series of graphs.
 - Total memory consumption increases rapidly during coarsening phase.



- Difficulties in Parallelization
 - Coarsening requires intensive communication between processes.

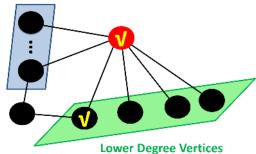
Proposed Algorithm: GEM


Overview of GEM

- Graph Extraction
- Clustering of Extracted Graph
- Propagation and Refinement

Graph Extraction

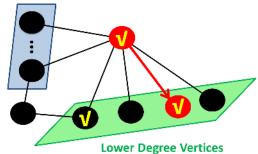
• Extract a skeleton of the original graph using high degree vertices.



- High degree vertices
 - Tend to preserve the structure of a network
 - Popular and influential people

• Down-Path Walk Algorithm

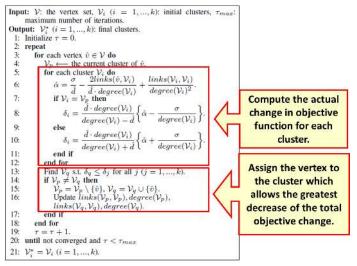
- Refer to a path $v_i \rightarrow v_j$ as a *down-path* if $d_i \ge d_j$.
- Follow a certain number of down-paths.
- Generate a seed by selecting the final vertex in the path.
- Mark the seed, and its neighbors.
- Repeat this procedure until we get k seeds in the graph.


Higher Degree Vertices

• Down-Path Walk Algorithm

- Refer to a path $v_i \rightarrow v_j$ as a *down-path* if $d_i \ge d_j$.
- Follow a certain number of down-paths.
- Generate a seed by selecting the final vertex in the path.
- Mark the seed, and its neighbors.
- Repeat this procedure until we get k seeds in the graph.

Higher Degree Vertices


• Online Weighted Kernel k-means

Initialization of clusters

Input: \mathcal{V} : the vertex set, s_i (i = 1, ..., k): seeds. **Output:** \mathcal{V}_i (i = 1, ..., k): initial clusters. 1: for each cluster \mathcal{V}_i do Initialize clusters: each cluster $\mathcal{V}_i = s_i$ only contains the seed. 3: end for for each vertex $\hat{v} \in \mathcal{V}$ do 5: for each cluster \mathcal{V}_i do $\hat{\alpha} = \frac{\sigma}{\hat{d}} - \frac{2links(\hat{v}, \mathcal{V}_i)}{\hat{d} \cdot degree(\mathcal{V}_i)} + \frac{links(\mathcal{V}_i, \mathcal{V}_i)}{degree(\mathcal{V}_i)^2}$ 6: $\delta_i = \frac{\hat{d} \cdot degree(\mathcal{V}_i)}{dearee(\mathcal{V}_i) + \hat{d}} \bigg\{ \hat{\alpha} + \frac{\sigma}{degree(\mathcal{V}_i)} \bigg\}.$ 7: end for 8: Find \mathcal{V}_p s.t. $\delta_p \leq \delta_j$ for all $j \ (j = 1, ..., k)$. 9: $\mathcal{V}_p = \{\hat{v}\} \cup \dot{\mathcal{V}}_p.$ 10:11: end for Assign each vertex to the cluster which allows the least increase of the total objective.

• Online Weighted Kernel k-means

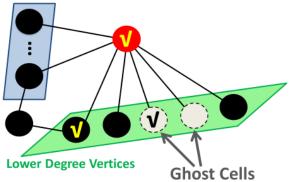
• Graph clustering using online weighted kernel k-means

Propagation and Refinement

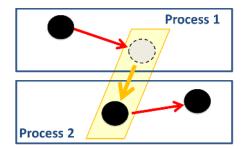
Propagation

- Propagate clustering of extracted graph to the entire original graph.
- Visit vertices not in extracted graph in a breadth-first order (starting from vertices of extracted graph).
- Arrive at initial clustering of the original graph (by online weighted kernel *k*-means).

Refinement


- Refine the clustering of the original graph.
- Good initial clusters are achieved by the propagation step.
- Refinement step efficiently improves the clustering result (by online weighted kernel *k*-means).

Parallel Algorithm: PGEM


- GEM is easy to parallelize for large number of processes.
- Graph distribution across different processes
 - Each process: an equal-sized subset of vertices & their adjacency lists.
- Graph extraction
 - Each process scans its local vertices, and picks up high degree vertices.
 - The extracted graph is randomly distributed over all the processes.
- Seed selection phase
 - Seeds are generated in rounds.
 - Leader process decides the number of seeds each process will generate.
 - Proportional to the number of currently unmarked vertices in that process

- Parallel Down-Path Walk Algorithm
 - Neighbor vertices might be located in a different process.
 - Ghost Cells
 - For each remote neighbor vertex, a mirror vertex is maintained.
 - Buffer the information of its remote counterpart

Higher Degree Vertices

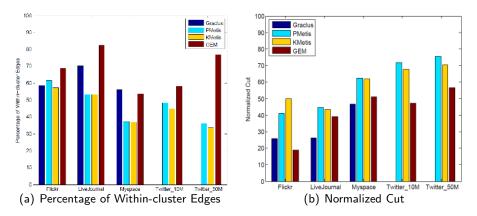
- Parallel Down-Path Walk Algorithm (continued)
 - Passing a walk to another process
 - Process 1 finds that the next vertex it will visit belongs to process 2.
 - Then process 1 stops this walk and notifies process 2 to continue it.

- Parallel Online Weighted Kernel k-means
 - Initialization of clusters
 - Ghost cells: accessing cluster information of remote vertices
 - Each process maintains a local copy of cluster centroids
 - Refinement
 - Visit local vertices in random order
 - Updating cluster centroids and ghost cells relax the synchronization
- Propagation Phase
 - Similar to initialization of clusters in the extracted graph
- Refinement of the entire graph
 - Same strategy as clustering of the extracted graph

Experimental Results

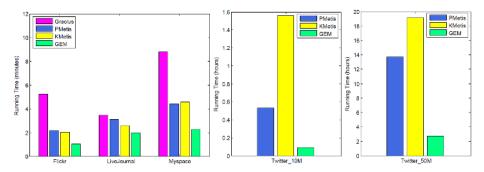
Experimental Setting & Dataset

Sequential experiments


- GEM vs. PMetis, KMetis (Metis), Graclus
- Shared memory machine (AMD Opteron 2.6GHz CPU, 256GB memory)
- Parallel experiments
 - PGEM vs. ParMetis
 - Ranger at Texas Advanced Computing Center (TACC)
 - 3,936 machine nodes (4×4-core AMD Opteron CPU, 32GB memory)

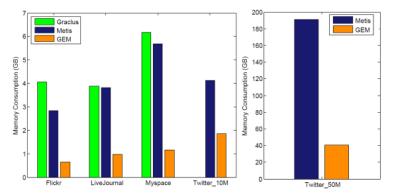
Dataset

Graph	No. of vertices	No. of edges
Flickr	1,994,422	21,445,057
LiveJournal	1,757,326	42,183,338
Myspace	2,086,141	45,459,079
Twitter (10M)	11,316,799	63,555,738
Twitter (50M)	51,161,011	1,613,892,592


Evaluation of GEM

- Quality of clusters
 - Higher percentage of within-cluster edges / lower normalized cut indicates better quality of clusters.

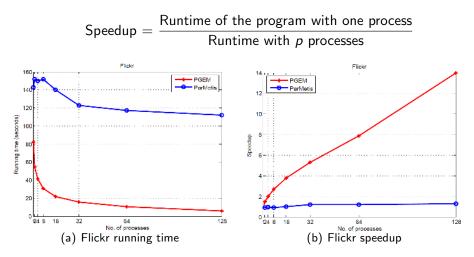
Evaluation of GEM


- Running Time
 - GEM is the fastest algorithm across all the datasets.
 - Twitter 10M: GEM (6 min.) vs. PMetis (30 min.) vs. KMetis (90 min.)
 - Twitter 50M: GEM (3 hrs.) vs. PMetis (14 hrs.) vs. KMetis (19 hrs.)

Evaluation of GEM

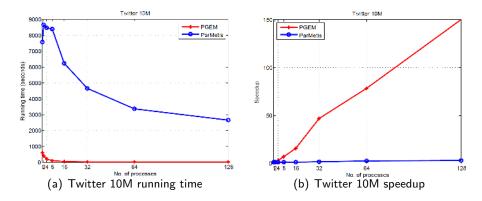
Memory Consumption

- PMetis and KMetis use the same coarsening strategy (as in Metis).
- GEM directly extracts a subgraph from the original graph.
- Multilevel algorithms gradually reduce the graph size by multilevel coarsening.

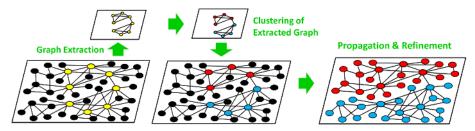

Evaluation of PGEM

- PGEM performs consistently better than ParMetis in terms of normalized cut, running time and speedup across all the datasets.
 - Quality of clusters

Evaluation of PGEM


• Running time & speedup on Flickr

Joyce Jiyoung Whang, The University of Texas at Austin IEEE International Conference on Data Mining (ICDM 2012)


Evaluation of PGEM

- Running time & speedup on Twitter 10M
 - PGEM achieves a super-linear speedup.
 - In all cases, the speedup of ParMetis is less than 10.
 - The multilevel scheme is hard to be scaled to large number of processes.

Conclusions

GEM & PGEM

- GEM produces clusters of quality better than state-of-the-art clustering algorithms while it saves much time and memory.
- PGEM achieves significant scalability while producing high quality clusters.
- Future Research
 - Theoretical justification (can we theoretically show that extracted graph preserves structure of original graph).
 - Automatical detection of number of clusters.

References

- I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors: A multilevel approach. *IEEE Trans. on Pattern Analysis and Machine Intelligence*, vol. 29, no. 11, pp. 1944-1957, 2007.
- G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs. *Journal of Parallel and Distributed Computing*, vol. 48, pp. 96129, 1998.