
https://doi.org/10.1007/s41688-020-00041-3

ORIGINAL ARTICLE

Scalable and Reliable Multi-dimensional Sensor Data Aggregation
in Data Streaming Architectures

Sören Henning1 ·Wilhelm Hasselbring1

Received: 10 February 2020 / Revised: 2 April 2020 / Accepted: 27 August 2020

© The Author(s) 2020

Abstract

Ever-increasing amounts of data and requirements to process them in real time lead to more and more analytics platforms

and software systems designed according to the concept of stream processing. A common area of application is processing

continuous data streams from sensors, for example, IoT devices or performance monitoring tools. In addition to analyzing

pure sensor data, analyses of data for entire groups of sensors often need to be performed. Therefore, data streams of the

individual sensors have to be continuously aggregated to a data stream for a group. Motivated by a real-world application

scenario of analyzing power consumption in Industry 4.0 environments, we propose that such a stream aggregation

approach has to allow for aggregating sensors in hierarchical groups, support multiple such hierarchies in parallel, provide

reconfiguration at runtime, and preserve the scalability and reliability qualities of stream processing techniques. We

propose a stream processing architecture fulfilling these requirements, which can be integrated into existing big data

architectures. As all state-of-the-art stream processing frameworks have to handle a trade-off between latency, resource-

efficiency, and correctness, our proposed architecture can be configured for low latency and resource-efficient computation

or for always ensuring correct results. To assist adopters in choosing appropriate configuration options, we provide an

experimental comparison. We present a pilot implementation of our proposed architecture and show how it is used in

industry. Furthermore, in experimental evaluations we show that our solution scales linearly with the amount of sensors and

provides adequate reliability in the presence of faults.

Keywords Big data · Stream processing · Stream aggregation · IoT sensor data

Introduction

Stream processing [1, 2] has evolved as a paradigm

to process and analyze continuous streams of data, for

example, coming from IoT sensors. The rapid development

of stream processing engines [3] over the last years has

paved the way for applications that process data exclusively

This article belongs to the Topical Collection: Data-Enabled

Discovery for Industrial Cyber-Physical Systems

Guest Editor: Raju Gottumukkala

� Sören Henning

soeren.henning@email.uni-kiel.de

Wilhelm Hasselbring

hasselbring@email.uni-kiel.de

1 Software Engineering Group, Kiel University, 24098 Kiel,

Germany

online, i.e., as soon as it is recorded. Whereas a couple

of years ago Lambda architectures were the de facto

standard for analytics platforms, currently more and more

platforms follow the Kappa architecture pattern, where

data is exclusively processed online [4]. Further, entire

software system architectures [5] follow patterns such

as asynchronously communicating microservices [6] and

event sourcing [7], which require data to be available

as continuous streams instead of actively polled from

databases.

When considering continuous streams of measurement

data, for example, from physical IoT sensors or software

performance metrics, often an aggregation of multiple such

streams is required. Whereas in the traditional approach

of first writing all measurements to a (relational) database

and then querying this database, this is a well-known

task, performing such an aggregation on continuous data

streams raises challenges. This is in particular true when

requirements for scalability and reliability have to be

considered.

/ Published online: 6 October 2020

Data-Enabled Discovery and Applications (2020) 4: 5

http://crossmark.crossref.org/dialog/?doi=10.1007/s41688-020-00041-3&domain=pdf
http://orcid.org/0000-0001-6912-2549
http://orcid.org/0000-0001-6625-4335
mailto: soeren.henning@email.uni-kiel.de
mailto: hasselbring@email.uni-kiel.de

In this paper, we contribute to the seminal work on

stream processing by presenting and evaluating dataflow

architectures to aggregate data of multiple streams in real

time. This paper is an extended version of a workshop paper

presented at the 2019 IEEE International Conference on

Big Data [8]. We extend it by proposing two architecture

variations (“Dataflow Architecture Variations”), providing

now support for out-of-order record, although at the

cost of increased latency and resource demand. Further,

we experimentally compare our architecture variations in

terms of their performance (“Experimental Comparison of

Architectures”) to assist adopters in choosing an appropriate

option.

The remaining paper is structured as follows: “Moti-

vating Example” motivates the demand for our aggrega-

tion approach by an example for IoT sensor data streams.

“Requirements for Stream Aggregation” derives essen-

tial requirements for an aggregation approach. “The Dual

Streaming Model” provides a brief summary of the funda-

mental model used by our stream processing architecture

for aggregating data streams, which is presented in “Basic

Dataflow Architecture.” “Pilot Implementation for IoT Sen-

sor Data” shows how we implement this architecture in an

industrial IoT monitoring platform. “Experimental Scala-

bility and Reliability Evaluation” evaluates our proposed

architecture in terms of scalability and reliability. “Dataflow

Architecture Variations” presents two architecture varia-

tions of our basic architecture from “Basic Dataflow Archi-

tecture,” supporting out-of-order records. “Experimental

Comparison of Architectures” experimentally compares all

three architecture variations in terms of their performance.

“Industrial Case Study” describes how the proposed stream

processing architecture is used in an industrial setting to

aggregate power consumption data. Finally, “Related Work”

discusses related work and “Conclusions” concludes this

paper.

Motivating Example

Operators of industrial production environments have high

interest in getting detailed insights into the resource usage

of machines and production processes. Those insights

may reveal optimization potential, provide reporting for

stakeholders, and can be used for predictive maintenance.

Today’s industrial production environments operate a

variety of network-accessible measuring instruments. Such

instruments (sensors) continuously measure, inter alia,

the resource usage of individual machines, for example,

their electrical power consumption. They may publish

these metrics via a messaging system, allowing real-time

analytics systems to collect, process, store, and visualize

those data.

In particular, but not exclusively in the case of

electrical power consumption, it is not only producing

machinery that uses resources but also other company

areas such as IT infrastructure, employee offices, or

building technology. This leads to the situation that the

amount of resource consuming devices is often immense,

which makes it difficult to assess. Therefore, metrics for

groups of machines in addition to consumption metrics of

the individual machines are often required. Consequently,

the data streams of the individual sensors have to

be continuously aggregated. Referring to Fig. 1, which

exemplary shows a production environment comprising

various machines and devices, operators may require to

answer questions in real time such as the following: What

is the resource usage of a certain machine type (e.g., the

total power consumption of all turning shops)? What is

the resource usage by business unit (e.g., the total power

consumption of producing machinery)? What is resource

usage by physically collocated machines (e.g., the total

power consumption per building or shop floor)? What

is the overall company-wide resource usage? Further, for

machines featuring multiple independent power supplies

(e.g., for redundancy), already obtaining consumption data

for single machines requires to aggregate data streams of

their individual power supplies.

Requirements for Stream Aggregation

Even though we motivated the need for real-time aggre-

gation of data streams by resource data recorded by IoT

devices, similar kinds of data aggregations are required by

several other types of continuous sensor data streams. Con-

tinuing our motivating example, we derive the following

requirements for a data stream aggregation architecture:

Multi-layer Aggregation Measurements of sensors are

aggregated to groups of sensors. These groups can again be

aggregated to larger groups and so forth. In the previous

example, these groups could first be groups of individual

machines of the same type, then groups of machines ful-

filling the same function, then all machines used by the

same production step and, finally, all machines in the entire

production environment.

Multi-hierarchy Aggregation In addition to a single hierar-

chy as described above, it is likely that there is a demand for

supporting multiple such hierarchies. Referring to the pre-

vious example, besides a hierarchy based on the purpose of

machines, one may also need a hierarchy which represents

the physical location. For example, in a first step machines

in the same shop floor are grouped and then all shop floors

in a certain building are grouped.

5 Page 2 of 12 Data-Enabled Discovery and Applications (2020) 4: 5

Fig. 1 Schematic illustration of

a manufacturing company

operating two buildings and a

wide range of power-consuming

machinery and infrastructure.

Operators may be, for instance,

interested in the total power

consumption of all turning

shops (red), directly required for

production processes (blue), of a

certain building (green), or of

the entire company (yellow)

Ligh�ng
Compressed

Air Genera�on

Air

Condi�oning
Turning Shops

Building A

Compressed

Air Genera�on
Ligh�ng

Milling Shops IT

Building B

Hierarchy Reconfiguration at Runtime Stream processing

applications are often characterized by demands for high

availability. Therefore, we aim for an approach that allows

to modify or extend the previously described hierarchies at

runtime to prevent reconfigurations causing downtimes.

Preserving Scalability and Reliability Stream processing is

usually used for large volume of data where the load has

to be handled by multiple CPU cores or even multiple

computing nodes. Therefore, an approach that performs

aggregations on these streams has to preserve scalability and

reliability properties to not become the overall architecture’s

bottleneck.

The Dual StreamingModel

The dual streaming model [9] is the foundation for the

stream processing architectures described in this paper.

It is a model to define the semantics of a stream

processing architecture. It adopts the notion of data streams

and streaming operators from other established stream

processing models [10–12].

A data stream is an append-only sequence of immutable

records, where records are key-value pairs augmented by a

timestamp. Key-value pairs allow for data parallelization as

records with different keys can be processed in parallel. This

is the fundamental idea of building highly scalable stream

processing applications.

Streaming operators are functions applied to each record

of an input stream, whose results are appended to an output

stream. The number of output records may be zero, one, or

more than one depending on the type of operator. Usually,

operators are distinguished as stateless or stateful. Stateless

operators produce an output solely based on the currently

processed input record, whereas stateful operators may also

take previous input records and computations into account.

Typical examples for stateless operations are filter, map,

flatMap, or merge, whereas aggregate or join are common

examples for stateful operations. Successively connecting

operator output streams with other operators allows to

define complex stream processing topology architectures,

for example, to build big data analytics applications.

The dual streaming model extends these models by

considering the result of streaming operators as successive

updates to a table. These updates may be materialized into a

versioned table or represented as a stream of insert, update,

and delete events, inducing a duality of streams and tables.

Sax et al. [9] present a reference implementation of the dual

streaming model called Kafka Streams, a stream processing

framework build on top of the distributed messaging system

Apache Kafka [13].

Basic Dataflow Architecture

In this section, we present a basic dataflow architecture

for hierarchically aggregating streams of data. We apply

the dual streaming model to model the topology of

consecutive operations on the streaming data, which are

required for aggregating sensor data. This model forces

an unidirectional and side effect–free description of the

data flow and, thus, allows the scalability and reliability

facilitated by the model to be exploited. The dataflow

architecture described in this way can be implemented

as an encapsulated component, e.g., as a microservice,

which can be integrated into existing software systems.

Since in some cases the dual streaming model abstracts

too many details to comprehensibly explain our dataflow

architecture, we use some architectural elements which are

only present in their reference implementation, but not in the

model. Figure 2 visualizes our proposed architecture. The

individual processing steps, realized as streaming operators,

are described in the following.

1. Data Sources Our proposed architecture requires two data

sources. The first one is an input stream of measurements,

keyed by a sensor identifier. This is the sensor data stream

Page 3 of 12 5Data-Enabled Discovery and Applications (2020) 4: 5

last values

join

groupBy aggregate

duplicate

as flatMap

merge

aggrega�on

results

sensor:<meas,group[]>

<sensor,group>:meas

sensor

groups

sensor data

sensor:group[]

sensor:meas

<sensor,group>:meas

group:aggr

1

2

3 4

5 6

7

Fig. 2 Topology of our basic stream processing architecture. Vertical

cylinders represent tables whereas horizontal cylinders represent data

streams. Streaming operators are represented by rectangular boxes,

which are connected to other operators, tables, or streams by directed

arrows. Annotations at connections, tables, and streams indicate the

corresponding type of contained or transmitted data, where key and

value type are separated by a colon. sensor represents a unique iden-

tifier for a sensor and group such an identifier for a sensor group,

group[] represents a set of group identifiers, meas represent a mea-

surement, and aggr represent an aggregation result. Everything located

inside the gray box corresponds to the part of our approach, which

can be deployed as an individual microservice. The tables and streams

placed outside the gray box can be considered as interfaces to other

components

as it comes, for example, from IoT devices or performance

monitoring tools. Measurements can be numeric values or

more complex data structures. The second data source is a

table, mapping sensors or sensor groups to the sensor groups

containing them. A table entry consists of a key, which is

the identifier of a sensor or group and a value, which is a

set of all groups, this sensor (group) is part of. This table

can, for example, be created from a stream, which captures

changes in the hierarchy. It is not important which hierarchy

a group belongs to, the only requirement is that identifiers

are unique among multiple hierarchies.

2. Merging Measurement Streams The first operator

merges the input stream with a stream of already calcu-

lated aggregation results. For the creation of this aggregated

stream, see step 7. Note that the aggregated stream may

require an additional converting step. In the following,

we make no distinction between sensor measurements and

aggregation results and call these values simply measure-

ments.

3. Joining Measurement Stream and Group Table The

measurement stream and the groups table are joined using

an inner join operation. This leads to a new update of the

resulting table whenever either a measurement arrives or the

groups a sensor belongs to changes. The result of this join

operation is a tuple consisting of the measurement and the

set of all groups this measurement has effect on.

4. Duplicating Join Results In the next step, the measure-

ments are duplicated in a way that for each group a new

record is forwarded. This record has the following form:

The key is a pair of sensor identifier and the corresponding

group this record is created for. The value is the measure-

ment. This operation is stateful as it always stores the last set

of sensor groups and compares them with the new one. If a

sensor was part of a group in a previous record but not in the

currently processed one, a special record is forwarded with a

“tombstone” value. This value serves for informing the fol-

lowing topology operators that the corresponding sensor is

not longer part of the corresponding group.

5. Immediate Result: Last Value Table The duplicated

records are materialized to a table, which lists the

last measured value per sensor and group. An arriving

tombstone record for a sensor-group-pair deletes the

corresponding entry in the table. This table of last values is

the entry point for the following aggregation.

6. Grouping and Aggregating Similar to an SQL “group-

by” operation, table entries are grouped by their group

name (second part of the key). The result is a grouped

table containing one entry per group identifier. This

table is then aggregated using appropriate adding and

subtracting functions resulting in one aggregation result per

group identifier. As defined by the dual streaming model,

whenever an entry in the last values table is updated,

a corresponding update record updates the grouped table

and triggers the computation of a new aggregation result.

This is done by first calling the subtract function for

the previous record (e.g., arithmetically subtracting the

sensors previous measurement from the total group’s value),

followed by calling the add function for the new value (e.g.,

arithmetically adding the sensors new measurement to the

total group’s value). Deleting an entry in the last value table

(via a tombstone record) solely causes calling the subtract

function.

5 Page 4 of 12 Data-Enabled Discovery and Applications (2020) 4: 5

7. Output: Aggregation Results As a last step, the aggre-

gated values per sensor group are published to a data stream.

On the one hand, this stream serves as an interface so that

other applications or services can use these data as they were

real measurements. On the other hand, the stream is fed

back to the beginning of the topology, where it can be used

to compute aggregated values for sensor groups containing

this group.

Pilot Implementation for IoT Sensor Data

In this section, we return to our motivating example from

“Motivating Example” and show in a pilot implementation

how our proposed architecture can be used to aggregate IoT

sensor data. The Titan Control Center [14] is a microservice-

based application for analyzing the energy consumption in

manufacturing enterprises. It integrates energy consumption

data of different data sources (e.g., machine-level data,

building technology, or external software systems) and

aggregates, analyzes, and visualizes them in near real time

(see Fig. 3).

We extended the Control Center’s architecture by an

additional microservice, which implements the topology

described above and replaces a former, less scalable and

reliable data aggregation. This microservice subscribes to

a stream providing energy consumption data of individ-

ual machines and to a stream forwarding changes to the

sensor hierarchy (provided by the Configuration microser-

vice of the Control Center). It aggregates the data of all

sensors in a group by summing them up and publishes

every result to a dedicated topic allowing other services

to subscribe to this aggregated data. Other microservices

use these data, for example, to calculate power con-

sumption statistics, to produce forecasts, or to visualize

them.

Fig. 3 Screenshot of the Titan Control Center dashboard visualizing the energy consumption in manufacturing enterprises

Page 5 of 12 5Data-Enabled Discovery and Applications (2020) 4: 5

Specifying the proposed architecture with the dual

streaming model allows for a straightforward implementa-

tion in Kafka Streams. Nevertheless, as the dual streaming

model is more abstract than the Kafka Streams API, we

had to introduce some additions: In some places, streams

had to be explicitly converted into tables via reduce opera-

tions. The data type of aggregated records does not match

the data type for sensor measurements, thus, an additional

map operation before merging with the sensor data stream

was necessary. To avoid emitting subtract events from the

table of aggregations, these events have to be explicitly fil-

tered out. The operator duplicating records for each parent

had to be implemented as a custom flatTransform opera-

tor, as Kafka Streams currently does not support flatMap

operations on tables. Using Kafka Streams promises a high

degree of scalability and reliability, as deploying multiple

instances of this microservice causes Kafka Streams to bal-

ance the load among all instance based on the topology and

the number of configured Kafka topic partitions.

Experimental Scalability and Reliability
Evaluation

We experimentally evaluate the scalability and the reliability

of the proposed stream processing architecture. For these

evaluations, we simulate different numbers of power

metering sensors and aggregate their data streams to pre-

defined groups using the Titan Control Center (see above).

Each simulated sensor emits one measurement per second.

We record both the number of sensor measurements per

sensor and the number of computed aggregation results per

second as well as the average event-time latency per second.

The event-time latency is the time passed between sensor

record generation and obtaining the result of an aggregation

[3]. The experimental setup is deployed in a Kubernetes

cluster of 4 nodes, each equipped with 384 GB RAM and

2 × 16 CPU cores providing 64 threads (overall 256 parallel

threads).

Evaluation of Scalability

A software system is considered scalable if it is able to

continue processing an increasing workload with additional

resources provided [15]. In order to assess the scalability

of our proposed approach, we therefore evaluate how

an increasing amount of input data can be handled by

an increasing number of aggregation instances. For this

purpose, we identify the number of instances required to

aggregate the data streams of a given workload. We group 8

simulated sensors into one group and group 8 of such groups

again into one larger group. We evaluate 4 workloads, where

we simulate 2, 3, 4, or 5 nested groups, resulting in a total

1

2

4

8

16

32

64

64 128 256 512 1024 2048 4096 8192 16384 32768

generated records/second

re
q

u
ir
e

d
 i
n

s
ta

n
c
e

s

Fig. 4 Number of required instances for aggregation in relation to the

number of generated records per second. The size of points indicates

the frequency of the respective observation. The black line connects

the median numbers of required instances per workload

amount of sensors of 82, 83, 84, and 85 and a corresponding

number of records per second. For each scenario, we deploy

different numbers of instances ranging from 1 to 128.

We consider a deployment (i.e., a certain set of deployed

instances) as being sufficient to handle the given workload

if all simulated data can be processed such that no data

records are piling up between their generation and the

aggregation. To obtain this information, we measure the

event-time latency between generation and aggregation. If

this latency remains largely constant, we conclude that

records are aggregated at approximately the same speed as

they are generated. We apply linear regression to compute a

trend line and consider the processing to be largely constant

if the trend line’s slope is less than 100 ms.1 For each

evaluated workload, we determine the minimum number of

instances, which is required to handle that workload, i.e.,

shows an event-time latency trend line with a slope of less

than 100 ms. This evaluation is repeated 10 times.

Figure 4 shows the median over all repetitions of the

required number of instances per workload. We observed

that the required number of instances scales linearly with

the amount of data to be aggregated.

Evaluation of Reliability

In order to assess the reliability of our proposed approach,

we evaluate how the architecture behaves when components

fail. We generate the workload described in the scalability

evaluation, which simulates 4 nested groups of sensors, and

aggregate the data with 24 instances of the aggregation

component. After 10 min of processing, we inject a

1Due to Kafka Streams’ task model, the throughput is subject to large

fluctuations. The calculated trend line can therefore be inaccurate,

suggesting a more conservative threshold for the slope of 100 ms.

Lower thresholds return similar median results, but produce more

outliers.

5 Page 6 of 12 Data-Enabled Discovery and Applications (2020) 4: 5

failure during operation by shutting down 18 instances and

starting them again after 5 more minutes. We measure

both the number of generated messages and the amount of

aggregation results during the entire evaluation. Since both

values fluctuate strongly, we additionally calculate a moving

average over a 60-s window.

The average number of processed records per second

over time is presented in Fig. 5. It can be seen

that the amount of performed aggregations decreases

sharply during the simulated failure. This is reasonable

as there are not enough resources available anymore to

process all data. However, if the stopped instances are

replaced by new instances, the amount of processed data

increases again. Furthermore, as we set the number of

processing instances twice the number actually necessary

(cf. scalability evaluation), the piled up data is also

processed.

Dataflow Architecture Variations

While the basic architecture described in “Basic Dataflow

Architecture” provides correct results when all measure-

ments from the input stream arrive in the order of their

timestamps, out-of-order records would produce wrong

aggregation results. According to the dual streaming

model, a late-arriving record would cause a recompu-

tation of all consecutive steps. While this is in princi-

ple desired, the corresponding lookup in the last values

table only yields the most recent value causing wrong

results. A simple, yet in many cases sufficient solu-

tion is to simply reject late-arriving records. A more

complex, but also correct solution is to explicitly con-

sider measurement times during the aggregation pro-

cess. In the following, we present two architecture vari-

ations and compare them with our basic architecture in

Table 1.

start fault

injection

end fault

injection

0

2500

5000

7500

10000

0 500 1000 1500

seconds since evaluation start

p
ro

c
e
s
s
e
d
 r

e
c
o
rd

s
/s

e
c
o
n
d

Fig. 5 Number of processed records per second over a moving average

of 60 s in the course of time. The two dashed vertical lines indicate the

point in time at which the simulated failure starts or ends

TumblingWindow–Based Dataflow Architecture

In order to support out-of-order records, we extend our

previously described architecture by a windowing operator

located after the duplicate step and before the creation

of the last values table (see Fig. 6). This operator splits

the absolute timeline into tumbling windows, that is,

time windows of constant but configurable size [9], and

associates each record with the time window it was recorded

in. The windowing operator transforms each input record

by extending its key by the corresponding window, where a

window is represented by a pair of start and end timestamp.

For the consecutive last value table, this means the

table does not only store the last value per sensor-group-

pair anymore, but instead stores this value for each time

window. However, to not let the table grow indefinitely,

a decision has to be made for how long data of passed

time windows have to be retained. This can be configured

via a “grace period,” which effectively specifies for how

long out-of-order records are considered by the architecture

since records, which arrive after the grace period of their

corresponding window has expired, are discarded. The

following grouping and aggregation is then not exclusively

made by the key’s “group” part, but by its “group”

and “window” attribute. Afterwards, a result is only

emitted when the window ended. In contrast to our basic

architecture, a result for a group is thus no longer published

to the aggregations stream with every update of a sensor, but

only at the end of each window. This is achieved by using

a suppression function [16] called before publishing to the

aggregation result streams. Suppressing record forwarding

is not part of the dual streaming model but is implemented

as an operator in Kafka Streams.

With this extended architecture, out-of-order records are

associated with their corresponding time window. Thus,

they neither have to be discarded nor their consideration has

influence on the aggregation results for other windows. In

comparison with our basic architecture of “Basic Dataflow

Architecture,” the memory usage of the last value table

in this architecture is larger by a constant factor, which

corresponds to the number of simultaneously opened

windows. The number of simultaneously open windows at

any time corresponds to the number of windows whose

grace period has not expired until that time and, thus, only

depends on the choice of the grace period (see Table 1).

The major drawback of this architecture is that an emit

rate has to be chosen in advance. Since for computing an

aggregation result for a group of sensors only measurements

within the respective time window are considered, this

architecture requires each sensor to provide at least one

measurement per window. The frequency sensors delivering

data with must therefore be known in advance (or at

least an upper estimate), so that the window size is

Page 7 of 12 5Data-Enabled Discovery and Applications (2020) 4: 5

windowBy
duplicate

asflatMap

last values

join

groupBy aggregate

merge

aggrega�on

results

sensor:<meas,group[]>

<window,sensor,group>:meas

sensor

groups

sensor data

sensor:group[]

sensor:meas

<window,sensor,group>:meas

group:aggr

<sensor,group>:meas

Fig. 6 Extended dataflow architecture, which allows considering the

recording time of measurements to calculate correct results for out-of-

order records. The notation of architectural elements corresponds to

the one in Fig. 2. The added data type window represents a time win-

dow consisting of an inclusive start timestamp and an exclusive end

timestamp

chosen sufficiently large. Furthermore, this frequency

automatically corresponds to the frequency of publishing

aggregation results. However, these two frequencies may

conflict if individual sensors generate measurements with

different frequencies but the frequency of generating

aggregation results should not be bounded by the lowest of

these frequencies.

HoppingWindow–Based Dataflow Architecture

Our second architecture variation is a modification of the

tumbling window–based architecture depicted in Fig. 6.

In order to support out-of-order records as well as to

allow configuring the aggregation emit rate independently

from the lowest measurement frequency, it modifies the

windowing operator in a sense that it creates hopping

windows [9] instead of tumbling windows. That is, the

windowing operator does not split the timeline in successive

windows, but instead in windows, which overlap by a

configurable duration. Thus, a measurement does not

belong to one window anymore but to multiple windows,

causing the windowing operator to not emit one windowed

record per input anymore but instead to produce multiple

windowed records. The semantics of the following operators

do not change. However, duplicating a record for different

windows causes the following grouping and aggregate

operations to be performed for each open window. The

final suppress operation, however, causes an aggregation

result to be emitted only when the window closes. Thus, on

average only one of the aggregation results is emitted per

measurement.

The hopping window–based architecture thus allows to

choose the window size according to the maximal expected

duration between two measurements of the same sensor.

On the other hand, it allows to specify an additional emit

rate, which can be significantly smaller and configures

the interval with which aggregation results are emitted.

Consequently, if no new measurements for a sensor were

received since emitting the last aggregation result, this

architecture allows to rely on previous measurements, which

were recorded before the last emission of an aggregation

result (but are still within the window size). Unlike to our

basic architecture but identically to the tumbling window–

based architecture, the hopping window–based architecture

only emits results at certain points in time (i.e., whenever a

window closes). In contrast to the tumbling window–based

architecture, however, the emit rate can be set arbitrary

small without compromising correctness. However, the

greater the difference between window size and emit rate

is, the more records will be generated. The windowing

operator duplicates each measurement as often as there

are overlapping windows. According to this factor, records

are created that need to be processed by the consecutive

streaming operators and the last value table has to store

accordingly more values. “Experimental Comparison of

Architectures” presents our experimental comparison of

how the choice of the window size influences the required

computing resources.

Experimental Comparison of Architectures

In this section, we experimentally evaluate and compare

the performance of the individual architectures presented

in “Basic Dataflow Architecture” and “Dataflow Architec-

ture Variations.” For this purpose, we reuse the experiment

setup from “Experimental Scalability and Reliability Eval-

uation” and simulate 512 sensors organized in a pre-defined

hierarchy with 3 nested levels of groups. Again, each sensor

emits one measurement per second and we use the Titan

Control Center to aggregate sensor measurements according

to the hierarchy. The Kafka Streams application executing

the stream processing architecture is configured with a

commit interval of 1 s meaning that Kafka Streams stores

5 Page 8 of 12 Data-Enabled Discovery and Applications (2020) 4: 5

and forwards intermediate results in the stateful operations

every second. We evaluate different numbers of Kafka

partitions and set the number of Kafka Streams threads to

4 times the number of partitions ensuring that each Kafka

Streams task can be executed in a separate thread. For the

two window-based architectures, we set the emit rate to 1 s

and the grace period to 10 s. For the hopping window–

based architecture, an additional window size has to be

configured, which we set in individual experiments to 10 s

as well as to 60 s. Each configuration is executed for 10 min,

where we discard all monitoring results for the first minute

and we repeat each execution 10 times. The experimental

setup is deployed on the same Kubernetes cluster as

described in “Experimental Scalability and Reliability Eval-

uation.” However, in contrast to the previously described

evaluations of scalability and reliability, we only deploy

one aggregation instance but configure it to use multiple

threads.

For each evaluated architecture, we continuously monitor

the required computing resources as well as the average

aggregation latency and the consumer lag. The aggregation

latency is the time passed between receiving a sensor

measurement and emitting the corresponding aggregation

result. The consumer lag describes the difference between

the number of stored records in Kafka and the number

of already consumed records by the aggregation. For

determining the required computing resources, we measure

the memory usage of the aggregation as well as Kafka

Streams’ disk usage since Kafka Streams stores the

operator’s state on the local disk but also uses in-memory

caching. Furthermore, we determine the required number of

threads by finding a configuration which does not lead to an

increasing consumer lag over time.

Figure 7 shows the average value of all monitored prop-

erties. We provided sufficient memory on the experiment

nodes, which explains the low usage of the local disk in

comparison with main memory. It is remarkable that the

resource consumption is almost the same for our basic archi-

tecture and the tumbling window–based one. This leads us

to conclude, that for a better correctness no more hardware

resources have to be provided. Also the aggregation latency

scarcely differs. However, if larger aggregation window

sizes are required, as enabled by the hopping window–based

architecture, these can only be achieved with significantly

increased resources. For example, an aggregation window

that is 10 times larger than the emit rate requires 42% more

memory compared with a window size that equals the emit

rate. An aggregation window of 1 min for a 1-s emit rate

requires even 69% more memory. Kafka Streams allows

to store the state of operators at the local disk, which is

typically cheap compared with main memory. Whereas the

increasing memory usage is therefore probably not an issue

for many use cases, the increasing amount of generated data

requires accordingly more threads for processing them. An

0

2

4

6

Basic Tumbling
window

Hopping
window
(10 sec.)

Hopping
window
(60 sec.)

m
e
m
o
ry
 u
s
a
g
e
 i
n
 G
B

(a) Memory usage

0

30

60

90

Basic Tumbling
window

Hopping
window
(10 sec.)

Hopping
window
(60 sec.)

d
is
k
 u
s
a
g
e
 i
n
 M
B

(b) Disk usage

0

5

10

15

Basic Tumbling
window

Hopping
window
(10 sec.)

Hopping
window
(60 sec.)

n
u
m
b
e
r
o
f
th
re
a
d
s

(c) Required number of threads

0

500

1000

1500

Basic Tumbling
window

Hopping
window
(10 sec.)

Hopping
window
(60 sec.)

la
g
 /
 o
p
e
n
 w
in
d
o
w
s

(d) Normalized consumer lag

0

5

10

15

Basic Tumbling
window

Hopping
window
(10 sec.)

Hopping
window
(60 sec.)

la
te
n
c
y
 i
n
 s
e
c
.

(e) Aggregation latency

Fig. 7 Average monitored value of different performance attributes for the individual architecture variations. a Memory usage. b Disk usage. c

Required number of threads. d Normalized consumer lag. e Aggregation latency

Page 9 of 12 5Data-Enabled Discovery and Applications (2020) 4: 5

aggregation window of 60 s requires, for example, 4 times

the amount of threads than an aggregation window of 10 s.

We normalize the consumer lag by dividing the measured

lag by the amount of parallel open windows, which

corresponds to the number of updates triggered per

measurement (see Table 1). Compared with the number

of measurements generated per second, the consumer lag

stays on a fairly low level for all architectures. From the

basic to the tumbling window–based and from the tumbling

window–based to the hopping window–based architecture

with a 10-s window, the aggregation latency only increases

slightly. In further experiments, we observed that with

a shorter commit interval the latency can be reduced at

the cost of increased resource consumption. In order to

reduce the amount of intermediate data, our Kafka Streams

implementation uses a suppress operator, which ensures that

aggregation results are only emitted after the aggregation

time window passes. Unfortunately, with this configuration,

late-arriving records (i.e., those arriving during the grace

period) cause significantly delayed aggregation updates,

which probably explains the large delay for the architecture

with a hopping window of 60 s.

Industrial Case Study

Our implementation is used in production with two

manufacturing enterprises to apply Industrial DevOps [17].

In these enterprises, the aggregation results are used, for

example, to gain insights into how much energy is used by

certain types of machines (e.g., the overall air conditioning),

how big the difference is between measured company-

wide energy consumption and the sum of all known

consumers, or how much an individual machine contributes

to the overall consumption of all machines of that type.

Figure 8 shows a screenshot of the Titan Control Center’s

comparison view. It provides a continuously updating view

of the total electrical power consumption of our partner

Kieler Nachrichten Druckzentrum, a newspaper printing

company, in comparison with the consumption of its major

consumers.

RelatedWork

Analyzing sensor data, often from IoT device, is a frequent

use case for stream processing [18]. In such analytics

systems, aggregating individual measurements to reduce the

overall amount of data is a common task [19].

The primary type of data aggregation studied in literature

is aggregating data streams along the dimension of time.

In this case, records within the same time window having

the same key are aggregated to a new record. Depending

on the actual requirements, records can be aggregated

within fixed windows, sliding windows, or session-based

windows [12]. In addition to research on the efficient

computation of window aggregations [20–22], there are

also publications proposing software architectures for a

temporal aggregation platform, for example by Twitter [23].

Temporal aggregations are compatible with our approach,

which means that temporal aggregated streams of sensor

data can be further aggregated to groups and streams for

sensor groups can be further aggregated over time.

Joins in stream processing (analogous to those in SQL)

[24] allow to connect different or identical streams. As the

join operation is a bivariate function and thus aggregating

multiple streams would require a chain of join operations,

a corresponding pipeline can only statically be created

and not dynamically adjusted at runtime. This contrasts

our approach, which allows reconfigurations at runtime by

changing the sensor groups table or an underlying stream.

As most approaches applying stream processing, our pre-

sented approach is primarily based on data parallelism [2],

meaning that (sub)topologies exist in multiple instances,

each processing a portion of the data. Pipe-and-Filter frame-

works such as TeeTime [25] employ task parallelism, where

the individual filters (operators) are executed in parallel.

Since in this way all data pass each filter, the identified

Table 1 Comparison of our three proposed architectures. k corresponds to the number of different sensor-group-pairs, e is the emit rate, w is the

window size, and g is the grace period

Architecture Basic Tumbling window–based Hopping window–based

Support for out-of-order records

Unknown record frequency

Updates triggered per record 1 1 w
e

Memory usage O(k) O(k
g+e

e
) O(k

g+w
e

)

Note that for the tumbling window–based architecture, e equals w. Whereas our basic architecture does not support out-of-order records and

the tumbling window–based architecture requires the measurement frequency of sensors to be known beforehand, the hopping window–based

architecture is able to handle both. However, in contrast to the former two, it generates significantly more intermediate records and thus uses more

memory in the last value table.

5 Page 10 of 12 Data-Enabled Discovery and Applications (2020) 4: 5

Fig. 8 Screenshot of the Titan Control Center’s comparison view.

It shows the overall power consumption of the Kieler Nachrichten

Druckzentrum in comparison with the main subconsumers. The overall

consumption was continuously computed by aggregating the measure-

ments of all subconsumers

requirements can be realized in a single filter. In contrast

to our solution, however, scalability would be significantly

compromised.

Conclusions

Software systems, which analyze or react on sensor data

streams, often have to process not only raw measurements

but also aggregated data for groups of sensors. In

this paper, we presented a stream processing dataflow

architecture for continuously aggregating sensor data. It

supports the aggregation of hierarchical groups, multiple

such groups in parallel, allows for reconfigurations at

runtime and can be integrated (e.g., as a microservice)

into existing big data architectures. We presented three

variations of this dataflow architecture having different

characteristics regarding correctness and performance. Our

experimental comparison assists adopters in choosing an

appropriate variation. We provide an implementation of

this architecture for power consumption data and show

how our implementation can be integrated into an analytics

platform used in industry. Furthermore, in an experimental

evaluation, we showed that our proposed architecture scales

linearly with the amount of sensors and tolerates faults

during operation. A replication package and experimental

results provided as supplemental material allow to repeat

and extend our work [26].

For future work, we plan to optimize the hopping

window–based architecture in terms of its resource usage,

while still being able to handle out-of-order records and tol-

erate varying measurement frequencies. Furthermore, future

work may explore how our architecture can be imple-

mented with other stream processing engines, for example,

by considering recent trends towards uniform stream query

languages [27]. As we were not able to discover any scal-

ability limitations in our conducted experimental evalua-

tion, we also plan to conduct experiments with even larger

amounts of sensors.

Funding This research is funded by the German Federal Ministry of

Education and Research (BMBF) as part of the Titan project (https://

www.industrial-devops.org, grant no. 01IS17084B). Open Access

funding is enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in

this article are included in the article’s Creative Commons licence,

unless indicated otherwise in a credit line to the material. If material

is not included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://

creativecommonshorg/licenses/by/4.0/.

References

1. G. Cugola, A. Margara, Processing flows of information:

from data stream to complex event processing. ACM Comput.

Surv. 44(3), 15:2-15:62 (2012). https://doi.org/10.1145/2187671.

2187677

2. H. Röger, R. Mayer, A comprehensive survey on parallelization

and elasticity in stream processing. ACM Comput. Surv. 52(2),

36:1–36:37 (2019). https://doi.org/10.1145/3303849

3. J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen,

V. Markl, Benchmarking distributed stream data processing

systems. in Proc. IEEE International Conference on Data

Engineering, (2018)

4. J. Lin, The Lambda and the Kappa. IEEE Internet Comput. 21(5),

60–66 (2017). https://doi.org/10.1109/MIC.2017.3481351

Page 11 of 12 5Data-Enabled Discovery and Applications (2020) 4: 5

https://www.industrial-devops.org
https://www.industrial-devops.org
http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/3303849
https://doi.org/10.1109/MIC.2017.3481351

5. W. Hasselbring, Software architecture: past, present, future. in The

Essence of Software Engineering, Springer, ed. by V. Gruhn, R.

Striemer, (2018)

6. W. Hasselbring, G. Steinacker, Microservice architectures for

scalability, agility and reliability in e-commerce. in Proc. IEEE

International Conference on Software Architecture Workshops,

(2017)

7. M. Fowler, Event sourcing. https://martinfowler.com/eaaDev/

EventSourcing.html (2005)

8. S. Henning, W. Hasselbring, Scalable and reliable multi-

dimensional aggregation of sensor data streams. in Proc. IEEE

International Conference on Big Data, (2019)

9. M.J. Sax, G. Wang, M. Weidlich, J.-C. Freytag, Streams and

tables: two sides of the same coin. in Proc. International Workshop

on Real-Time Business Intelligence and Analytics, (2018)

10. D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C.

Convey, S. Lee, M. Stonebraker, N. Tatbul, S. Zdonik,

Aurora: a new model and architecture for data stream

management. The VLDB Journal 12(2), 120–139 (2003).

https://doi.org/10.1007/s00778-003-0095-z

11. T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haber-

man, R. Lax, S. McVeety, D. Mills, P. Nordstrom, S.

Whittle, Millwheel: fault-tolerant stream processing at inter-

net scale. Proc. VLDB Endow. 6(11), 1033–1044 (2013).

https://doi.org/10.14778/2536222.2536229

12. T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R.J.

Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills,

F. Perry, E. Schmidt, S. Whittle, The dataflow model: a

practical approach to balancing correctness, latency, and

cost in massive-scale, unbounded, out-of-order data pro-

cessing. Proc. VLDB Endow. 8(12), 1792–1803 (2015).

https://doi.org/10.14778/2824032.2824076

13. G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M. Zadeh,

N. Narkhede, J. Rao, J. Kreps, J. Stein, Building a replicated

logging system with Apache Kafka. Proc. VLDB Endow. 8(12),

1654–1655 (2015). https://doi.org/10.14778/2824032.2824063

14. S. Henning, W. Hasselbring, A. Möbius, A scalable architecture

for power consumption monitoring in industrial production

environments. in Proc. IEEE International Conference on Fog

Computing, (2019)

15. N.R. Herbst, S. Kounev, R. Reussner, Elasticity in cloud

computing: what it is, and what it is not. in Proc. International

Conference on Autonomic Computing, (2013)

16. J. Roesler, Kafka streams’ take on watermarks and triggers.

https://www.confluent.io/blog/kafka-streams-take-on-watermarks-

and-triggers (2019)

17. W. Hasselbring, S. Henning, B. Latte, A. Möbius, T. Richter,

S. Schalk, M. Wojcieszak, Industrial DevOps. in Proc. IEEE

International Conference on Software Architecture Companion,

(2019)

18. A. Shukla, S. Chaturvedi, Y. Simmhan, RIoTBench: an IoT bench-

mark for distributed stream processing systems. Concurrency

and Computation: Practice and Experience 29(21), e4257 (2017).

https://doi.org/10.1002/cpe.4257

19. A.B.A. Alaasam, G. Radchenko, A. Tchernykh, Stateful stream

processing for Digital Twins: microservice-based Kafka Stream

DSL. in Proc. International Multi-Conference on Engineering,

Computer and Information Sciences, (2019)

20. J. Li, D. Maier, K. Tufte, V. Papadimos, P.A. Tucker, No

pane, no gain: efficient evaluation of sliding-window aggre-

gates over data streams. SIGMOD Rec. 34(1), 39–44 (2005).

https://doi.org/10.1145/1058150.1058158

21. J. Traub, P. Grulich, A.R. Cuéllar, S. Breß, A. Katsifodimos, T.

Rabl, V. Markl, Efficient window aggregation with general stream

slicing. in Proc. International Conference on Extending Database

Technology, (2019)

22. L. Benson, P.M. Grulich, S. Zeuch, V. Markl, T. Rabl, Disco:

efficient distributed window aggregation. in Proc. International

Conference on Extending Database Technology, OpenProceed-

ings.org, (2020)

23. P. Yang, S. Thiagarajan, J. Lin, Robust, scalable, real-time

event time series aggregation at Twitter. in Proc. International

Conference on Management of Data, (2018)

24. A. Arasu, S. Babu, J. Widom, The CQL continuous query lan-

guage: semantic foundations and query execution. VLDB J. 15(2),

121–142 (2006). https://doi.org/10.1007/s00778-004-0147-z

25. C. Wulf, W. Hasselbring, J. Ohlemacher, Parallel and generic pipe-

and-filter architectures with TeeTime. in Proc. IEEE International

Conference on Software Architecture Workshops, (2017)

26. S. Henning, W. Hasselbring, Replication package for:

scalable and reliable multi-dimensional sensor data

aggregation in data-streaming architectures. Zenodo.

https://doi.org/10.5281/zenodo.3736689 (2020)

27. E. Begoli, T. Akidau, F. Hueske, J. Hyde, K. Knight, K. Knowles,

One SQL to rule them all – an efficient and syntactically

idiomatic approach to management of streams and tables.

in Proc. International Conference on Management of Data,

(2019)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

5 Page 12 of 12 Data-Enabled Discovery and Applications (2020) 4: 5

https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.14778/2536222.2536229
https://doi.org/10.14778/2824032.2824076
https://doi.org/10.14778/2824032.2824063
https://www.confluent.io/blog/kafka-streams-take-on-watermarks-and-triggers
https://www.confluent.io/blog/kafka-streams-take-on-watermarks-and-triggers
https://doi.org/10.1002/cpe.4257
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.5281/zenodo.3736689

	Scalable and Reliable Multi-dimensional Sensor Data Aggregation in Data Streaming Architectures
	Abstract
	Introduction
	Motivating Example
	Requirements for Stream Aggregation
	Multi-layer Aggregation
	Multi-hierarchy Aggregation
	Hierarchy Reconfiguration at Runtime
	Preserving Scalability and Reliability

	The Dual Streaming Model
	Basic Dataflow Architecture
	1. Data Sources
	2. Merging Measurement Streams
	3. Joining Measurement Stream and Group Table
	4. Duplicating Join Results
	5. Immediate Result: Last Value Table
	6. Grouping and Aggregating
	7. Output: Aggregation Results

	Pilot Implementation for IoT Sensor Data
	Experimental Scalability and Reliability Evaluation
	Evaluation of Scalability
	Evaluation of Reliability

	Dataflow Architecture Variations
	Tumbling Window–Based Dataflow Architecture
	Hopping Window–Based Dataflow Architecture

	Experimental Comparison of Architectures
	Industrial Case Study
	Related Work
	Conclusions
	References

