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Abstract

Many Bayesian learning methods for massive

data benefit from working with small subsets of

observations. In particular, significant progress

has been made in scalable Bayesian learning via

stochastic approximation. However, Bayesian

learning methods in distributed computing en-

vironments are often problem- or distribution-

specific and use ad hoc techniques. We pro-

pose a novel general approach to Bayesian in-

ference that is scalable and robust to corruption

in the data. Our technique is based on the idea

of splitting the data into several non-overlapping

subgroups, evaluating the posterior distribution

given each independent subgroup, and then com-

bining the results. Our main contribution is the

proposed aggregation step which is based on

finding the geometric median of subset poste-

rior distributions. Presented theoretical and nu-

merical results confirm the advantages of our ap-

proach.

1. Introduction

Massive data often require computer clusters for storage

and processing. In such cases, each machine in the clus-

ter can only access a subset of data at a given point.

Most learning algorithms designed for distributed comput-

ing share a common feature: they efficiently use the data

subset available to a single machine and combine the “lo-

cal” results for “global” learning, while minimizing com-

munication among cluster machines (Smola & Narayana-

murthy, 2010). A wide variety of optimization-based ap-

proaches are available for distributed learning (Boyd et al.,

2011); however, the number of similar Bayesian methods
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is limited. One of the reasons for this limitation is related

to Markov chain Monte Carlo (MCMC) - one of the key

techniques for approximating the posterior distribution of

parameters in Bayesian models. While there are many ef-

ficient MCMC techniques for sampling from posterior dis-

tributions based on small subsets of the data (called sub-

set posteriors in the sequel), there is no widely accepted

and theoretically justified approach for combining the sub-

set posteriors into a single distribution for improved perfor-

mance. To this end, we propose a new general solution for

this problem based on evaluation of the geometric median

of a collection of subset posterior distributions. The result-

ing measure is called the M-posterior (“median posterior”).

Modern approaches to scalable Bayesian learning in a dis-

tributed setting fall into three major categories. Methods

in the first category independently evaluate the likelihood

for each data subset across multiple machines and return

the likelihoods to a “master” machine, where they are ap-

propriately combined with the prior using conditional in-

dependence assumptions of the probabilistic model. These

two steps are repeated at every MCMC iteration (Smola

& Narayanamurthy, 2010; Agarwal & Duchi, 2012). This

approach is problem-specific and involves extensive com-

munication among machines. Methods from the second

category use stochastic approximation (SA) and succes-

sively learn “noisy” approximations to the full posterior

distribution using data in small mini-batches. The accuracy

of SA increases as it uses more observations. One sub-

group of this category uses sampling-based methods to ex-

plore the posterior distribution through a modified Hamil-

tonian or Langevin Dynamics (Welling & Teh, 2011; Ahn

et al., 2012; Korattikara et al., 2013). Unfortunately, these

methods fail to accommodate discrete-valued parameters

and multimodality. The other subgroup uses determinis-

tic variational approximations and learns the parameters of

the approximated posterior through an optimization-based

method (Hoffman et al., 2013; Broderick et al., 2013). Al-

though these approaches often have excellent predictive

performance, it is well known that they tend to substan-
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tially underestimate posterior uncertainty and lack theoret-

ical guarantees.

Our approach instead falls in a third class of methods,

which avoid extensive communication among machines by

running independent MCMC chains for each data subset

and obtaining draws from subset posteriors. These subset

posteriors can be combined in a variety of ways. Some

of the methods simply average draws from each subset

(Scott et al., 2013), other use an approximation to the

full posterior distribution based on kernel density estima-

tors (Neiswanger et al., 2013), or the Weierstrass transform

(Wang & Dunson, 2013). Unlike the method proposed in

this work, none of the aforementioned algorithms are prov-

ably robust to the presence of outliers, moreover, they have

limitations related to the dimension of the parameter.

We propose a different approximation to the full data pos-

terior for each subset, with MCMC used to generate sam-

ples from these “noisy” subset posteriors in parallel. As

a “de-noising step” that also induces robustness to out-

liers, we then calculate the geometric median of the sub-

set posteriors, referred to as the M-posterior. By embed-

ding the subset posteriors in a Reproducing Kernel Hilbert

Space (RKHS), we facilitate computation of distances, al-

lowing Weiszfeld’s algorithm to be used to approximate

the geometric median (Beck & Sabach, 2013). The M-

posterior admits strong theoretical guarantees, is provably

resistant to the presence outliers, efficiently uses all of the

available observations, and is well-suited for distributed

Bayesian learning. Our work was inspired by multivariate

median-based techniques for robust point estimation devel-

oped by Minsker (2013) and Hsu & Sabato (2013) (see also

Alon et al., 1996; Lerasle & Oliveira, 2011; Nemirovski &

Yudin, 1983, where similar ideas were applied in different

frameworks).

2. Preliminaries

We first describe the notion of geometric median and the

method for calculating distance between probability distri-

butions via embedding them in a Hilbert space. This will

be followed by the formal description of our method and

corresponding theoretical guarantees.

2.1. Notation

In what follows, ‖ · ‖2 denotes the standard Euclidean dis-

tance in R
p and 〈·, ·〉

Rp - the associated dot product. Given

a totally bounded metric space (Y, d), the packing number

M(ε,Y, d) is the maximal number N such that there exist

N disjoint d-balls B1, . . . , BN of radius ε contained in Y,

i.e.,
N⋃
j=1

Bj ⊆ Y. Given a metric space (Y, d) and y ∈ Y,

δy denotes the Dirac measure concentrated at y. In other

words, for any Borel-measurable B, δy(B) = I{y ∈ B},

where I{·} is the indicator function. Other objects and def-

initions are introduced in the course of exposition when

such necessity arises.

2.2. Geometric median

The goal of this section is to introduce the geometric me-

dian, a generalization of the univariate median to higher

dimensions. Let µ be a Borel probability measure on a

normed space (Y, ‖ · ‖). The geometric median x∗ of µ
is defined as x∗ := argminy∈Y

∫
Y
(‖y − x‖ − ‖x‖)µ(dx).

We use a special case of this definition and assume that

µ is a uniform distribution on a collection of m atoms

x1, . . . , xm ∈ Y (which will later correspond to m sub-

set posteriors identified with points in a certain space), so

that

x∗ = medg(x1, . . . , xm) := argmin
y∈Y

m∑

j=1

‖y − xj‖. (1)

Geometric median exists under rather general conditions,

in particular, when Y is a Hilbert space. Moreover,

in this case x∗ ∈ co(x1, . . . , xm) – the convex hull

of x1, . . . , xm (in other words, there exist nonnegative

αj , j = 1 . . .m,
∑
j αj = 1 such that x∗ =

∑m
j=1 αjxj).

An important property of the geometric median states that

it transforms a collection of independent and “weakly con-

centrated” estimators into a single estimator with signifi-

cantly stronger concentration properties. Given q, α such

that 0 < q < α < 1/2, define

ψ(α, q) := (1− α) log
1− α

1− q
+ α log

α

q
. (2)

The following result follows from Theorem 3.1 of Minsker

(2013).

Theorem 2.1. Assume that (H, 〈·, ·〉) is a Hilbert space

and θ0 ∈ H. Let θ̂1, . . . , θ̂m ∈ H be a collection of

independent random H - valued elements. Let the con-

stants α, q, ν be such that 0 < q < α < 1/2, and

0 ≤ ν < α−q
1−q . Suppose ε > 0 is such that for all

j, 1 ≤ j ≤ ⌊(1− ν)m⌋+ 1,

Pr
(
‖θ̂j − θ0‖ > ε

)
≤ q. (3)

Let θ̂∗ = medg(θ̂1, . . . , θ̂m) be the geometric median of

{θ̂1, . . . , θ̂m}. Then

Pr
(
‖θ̂∗ − θ0‖ > Cαε

)
≤
[
e(1−ν)ψ(

α−ν
1−ν

,q)
]−m

,

where Cα = (1− α)
√

1
1−2α .
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Theorem 2.1 implies that the concentration of the geomet-

ric median around the “true” parameter value improves ge-

ometrically fast with respect to the number m of indepen-

dent estimators, while the estimation rate is preserved. Pa-

rameter ν allows to take the corrupted observations into

account: if the data contain not more than ⌊νm⌋ outliers

of arbitrary nature, then at most ⌊νm⌋ estimators amongst

{θ1, . . . , θm} can be affected. Parameter α should be

viewed as a fixed quantity and can be set to α = 1/3 for

the rest of the paper.

2.3. RKHS and distances between probability measures

The goal of this section is to introduce a special family

of distances between probability measures which provide

a structure necessary to evaluate the geometric median in

the space of measures. Since our goal is to develop compu-

tationally efficient techniques, we consider distances that

admit accurate numerical approximation.

Assume that (X, ρ) is a separable metric space, and let F =
{f : X 7→ R} be a collection of real-valued functions.

Given two Borel probability measures P,Q on X, define

‖P −Q‖F := sup
f∈F

∣∣∣∣
∫

X

f(x)d(P −Q)(x)

∣∣∣∣ . (4)

An important special case arises when F is a unit ball in a

RKHS (H, 〈·, ·〉) with a reproducing kernel k : X × X 7→
R
P so that 1

F = Fk := {f : X 7→ R, f ∈ H, ‖f‖
H
:=
√
〈f, f〉 ≤ 1}.

(5)

Let Pk := {P is a prob. measure,
∫
X

√
k(x, x)dP (x) <

∞}, and assume that P,Q ∈ Pk. If follows from Theorem

1 in (Sriperumbudur et al., 2010) that the corresponding

distance between measures P and Q takes the form

‖P −Q‖Fk
=

∥∥∥∥
∫

X

k(x, ·)d(P −Q)(x)

∥∥∥∥
H

. (6)

Note that when P and Q are discrete measures (say, P =∑N1

j=1 βjδzj and Q =
∑N2

j=1 γjδyj ), then

‖P −Q‖2Fk
=

N1∑

i,j=1

βiβjk(zi, zj) (7)

+

N2∑

i,j=1

γiγjk(yi, yj)− 2

N1∑

i=1

N2∑

j=1

βiγjk(zi, yj).

The mapping P 7→
∫
X
k(x, ·)dP (x) is thus an embedding

of Pk into the Hilbert space H which can be seen as an ap-

plication of the “kernel trick” in our setting. The Hilbert

1We will say that k is a kernel if it is a symmetric, positive
definite function; it is a reproducing kernel for H and such that
for any f ∈ H and x ∈ X, 〈f, k(·, x)〉

H
= f(x) (see Aronszajn,

1950, for details).

space structure allows to use fast numerical methods to ap-

proximate the geometric median.

In this work, we will only consider characteristic kernels,

which means that ‖P − Q‖Fk
= 0 if and only if P = Q.

It follows from Theorem 7 in (Sriperumbudur et al., 2010)

that a sufficient condition for k to be characteristic is strict

positive definiteness: we say that k is strictly positive def-

inite if it is measurable, bounded, and for all non-zero

signed Borel measures µ,
∫∫

X×X

k(x, y)dµ(x)dµ(y) > 0.

When X = R
p, a simple sufficient criterion for the kernel k

to be characteristic follows from Theorem 9 in (Sriperum-

budur et al., 2010):

Proposition 2.2. Let X = R
p, p ≥ 1. Assume that

k(x, y) = φ(x − y) for some bounded, continuous, inte-

grable, positive-definite function φ : Rp 7→ R.

1. Let φ̂ be the Fourier transform of φ. If |φ̂(x)| > 0 for

all x ∈ R
p, then k is characteristic;

2. If φ is compactly supported, then k is characteristic.

Remark 2.3.

(a) It is important to mention that in practical applications,

we (almost) always deal with empirical measures based

on a collection of independent samples from the poste-

rior. A natural question is the following: if P and Q
are probability distributions on R

p and Pn, Qm are their

empirical versions, what is the size of the error em,n :=∣∣∣‖P −Q‖Fk
− ‖Pm −Qn‖Fk

∣∣∣? A useful fact is that em,n

often does not depend on p: under weak assumptions on

k, en,m has an upper bound of order m−1/2 + n−1/2 (see

corollary 12 in Sriperumbudur et al., 2009).

(b) Choice of the kernel determines the “richness” of the

space H and, hence, the relative strength of induced norm

‖ · ‖Fk
. For example, the well-known family of Matérn ker-

nels leads to Sobolev spaces (Rieger & Zwicknagl, 2009).

Gaussian kernels often yields good results in applications.

Finally, we recall the definition of the well-known

Hellinger distance. Assume that P and Q are probability

measures on R
D which are absolutely continuous with re-

spect to Lebesgue measure with densities p and q respec-

tively. Then

h(P,Q) :=

√
1

2

∫

RD

(√
p(x)−

√
q(x)

)2
dx

is the Hellinger distance between P and Q.

3. Contributions and main results

3.1. Construction of “robust posterior distribution”

Let {Pθ, θ ∈ Θ} be a family of probability distributions

over RD indexed by Θ. Suppose that for all θ ∈ Θ, Pθ has
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a Radon-Nikodym derivative pθ(·) = dPθ

dx (·) with respect

to the Lebesgue measure on R
D. In what follows, we equip

Θ with a “Hellinger metric”

ρ(θ1, θ2) := h(Pθ1 , Pθ2), (8)

and assume that the metric space (Θ, ρ) is separable.

Let X1, . . . , Xn be i.i.d. R
D-valued random vectors de-

fined on some probability space (Ω,B,Pr) with unknown

distribution P0 := Pθ0 for θ0 ∈ Θ. A usual way to “esti-

mate” P0 in Bayesian statistics consists in defining a prior

distribution Π over Θ (equipped with the Borel σ-algebra

induced by ρ), so that Π(Θ) = 1. The posterior distri-

bution given the observations Xn := {X1, . . . , Xn} is a

random probability measure on Θ defined by

Πn(B|Xn) :=

∫

B

∏n
i=1 pθ(Xi)∫

Θ

∏n
i=1 pθ(Xi)dΠ(θ)

dΠ(θ)

for all Borel measurable sets B ⊆ Θ. It is known (Ghosal

et al., 2000) that under rather general assumptions the pos-

terior distribution Πn “contracts” towards θ0, meaning that

Πn(θ ∈ Θ : ρ(θ, θ0) ≥ εn|Xn) → 0

in probability as n → ∞ for a suitable sequence εn →
0. One of the question that we address can be formulated

as follows: what happens if some observations in Xn are

corrupted, e.g., if Xn contains outliers of arbitrary nature

and magnitude? In this case, the usual posterior distribution

might concentrate “far” from the true value θ0, depending

on the amount of corruption in the sample. We show that

it is possible to modify existing inference procedures via a

simple and computationally efficient scheme that improves

robustness of the underlying method.

We proceed with the general description of the proposed

algorithm. Let 1 ≤ m ≤ n/2 be an integer, and divide the

sample Xn into m disjoint groups Gj , j = 1 . . .m of size

|Gj | ≥ ⌊n/m⌋ each: Xn =
m⋃
j=1

Gj , Gi∩Gl = ∅ for i 6= j.

A typically choice ofm ism ≃ log n, so that the groupsGj
are sufficiently large (however, other choices are possible

as well depending on concrete practical scenario).

Let Π be a prior distribution over Θ, and let
{
Π

(j)
n (·) :=

Πn(·|Gj), j = 1 . . .m
}

be the family of posterior distri-

butions depending on disjoint subgroups Gj , j = 1 . . .m:

Πn(B|Gj) :=

∫

B

∏
i∈Gj

pθ(Xi)∫
Θ

∏
i∈Gj

pθ(Xi)dΠ(θ)
dΠ(θ).

Define the “median posterior” (or M-posterior) Π̂n,g as

Π̂n,g := medg(Π
(1)
n , . . . ,Π(m)

n ), (9)

where the median medg(·) is evaluated with respect to

‖ · ‖Fk
introduced in (1) and (5). Note that Π̂n,g is always

a probability measure: due to the aforementioned proper-

ties of a geometric median, there exists α1 ≥ 0, . . . , αm ≥

0,
m∑
j=1

αj = 1 such that Π̂n,g =
m∑
j=1

αjΠ
(j)
n . In practice,

small weights αj are set to 0 for improved performance;

see Algorithm 2 for details of implementation.

While Π̂n,g possesses several nice properties (such as ro-

bustness to outliers), in practice it often overestimates the

uncertainty about θ0, especially when the number of groups

m is large. To overcome this difficulty, we suggest a mod-

ification of our approach where the random measures Π
(j)
n

(subset posteriors) are replaced by the stochastic approxi-

mations Πn,m(·|Gj), j = 1 . . .m of the full posterior dis-

tribution. To this end, define the stochastic approximation

to the full posterior based on the subsample Gj as

Πn,m(B|Gj) :=

∫

B

(∏
i∈Gj

pθ(Xi)
)⌊n/|Gj |⌋

dΠ(θ)

∫
Θ

(∏
i∈Gj

pθ(Xi)
)⌊n/|Gj |⌋

dΠ(θ)

.

(10)

In other words, Πn,k(·|Gj) is obtained as a posterior dis-

tribution given that each data point from Gj is observed

⌊n/|Gj |⌋ times. Similarly to Π̂n,g , we set

Π̂st
n,g := medg(Πn,m(·|G1), . . . ,Πn,m(·|Gm)). (11)

While each of Πn,k(·|Gj) might be “unstable”, the geo-

metric median Π̂st
n,g of these random measures improves

stability and yields smaller credible sets with good cov-

erage properties. Practical performance of Π̂st
n,g is often

superior as compared to Π̂n,g in our experiments. In all nu-

merical simulations below, we evaluate Π̂st
n,g unless noted

otherwise.

3.2. Convergence of posterior distribution and

applications to robust Bayesian inference

Let k be a characteristic kernel defined on Θ×Θ; k defines

a metric on Θ

ρk(θ1, θ2) := ‖k(·, θ1)− k(·, θ2)‖H (12)

=
(
k(θ1, θ1) + k(θ2, θ2)− 2k(θ1, θ2)

)1/2
,

where H is the RKHS associated to kernel k. We will as-

sume that (Θ, ρk) is separable.

Assumption 3.1. Let h(Pθ1 , Pθ2) be the Hellinger distance

between Pθ1 and Pθ2 . Assume there exist positive constants

γ and C̃ such that for all θ1, θ2 ∈ Θ,

h(Pθ1 , Pθ2) ≥ C̃ργk(θ1, θ2).
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Example 3.2. Let {Pθ, θ ∈ Θ ⊆ R
p} be the exponential

family

dPθ
dx

(x) := pθ(x) = exp
(
〈T (x), θ〉

Rp −G(θ) + q(x)
)
,

where 〈·, ·〉
Rp is the standard Euclidean dot product. Then

the Hellinger distance can be expressed as h2(Pθ1 , Pθ2) =

1−exp
(
− 1

2

(
G(θ1)+G(θ2)−2G

(
θ1+θ2

2

)))
(Nielsen &

Garcia, 2011). If G(θ) is convex and its Hessian D2G(θ)
satisfies D2G(θ) � A uniformly for all θ ∈ Θ and some

symmetric positive definite operator A : Rp 7→ R
p , then

h2(Pθ1 , Pθ2) ≥ 1− exp

(
−

1

8
(θ1 − θ2)

TA(θ1 − θ2)

)
,

hence assumption 3.1 holds with Ck = 1√
2

and γ = 1 for

k(θ1, θ2) := exp

(
−
1

8
(θ1 − θ2)

TA(θ1 − θ2)

)
.

In particular, it implies that for the family {Pθ =
N(θ,Σ), θ ∈ R

D} with Σ ≻ 0 and the kernel

k(θ1, θ2) := exp

(
−
1

8
(θ1 − θ2)

TΣ−1(θ1 − θ2)

)
,

assumption 3.1 holds with Ck = 1√
2

and γ = 1 (moreover,

it holds with equality rather than inequality).

Assume that Θ ⊂ R
p is compact, and let k(·, ·) be a kernel

defined on R
p × R

p. Suppose that k satisfies conditions

of proposition 2.2 (in particular, k is characteristic). Recall

that by Bochner’s theorem, there exists a finite nonnegative

Borel measure v such that k(θ) =
∫
Rp

ei〈x,θ〉dv(x).

Proposition 3.3. Assume that
∫
Rp

‖x‖22dv(x) < ∞ and for

all θ1, θ2 ∈ Θ and some γ > 0,

h(Pθ1 , Pθ2) ≥ c(Θ)‖θ1 − θ2‖
γ
2 . (13)

Then assumption 3.1 holds with γ as above and C̃ =
C̃(k, c(Θ), γ).

Let δ0 := δθ0 be the Dirac measure concentrated at θ0 ∈ Θ
corresponding to the “true” distribution P0.

Theorem 3.4. Let Xl = {X1, . . . , Xl} be an i.i.d. sample

from P0. Assume that εl > 0 and Θl ⊂ Θ are such that for

a universal constant K > 0 and some constant C > 0

1) logM(εl,Θl, ρ) ≤ lε2l ,

2) Π(Θ \Θl) ≤ exp(−lε2l (C + 4)),

3) Π

(
θ : −P0

(
log

pθ
p0

)
≤ ε2l , P0

(
log

pθ
p0

)2

≤ ε2l

)

≥ exp(−lε2lC),

4) e−Klε
2
l /2 ≤ εl.

Moreover, let assumption 3.1 be satisfied. Then there exists

a sufficiently large M =M(C,K, C̃) > 0

Pr
(
‖δ0 −Πl(·|Xl)‖Fk

≥Mε
1/γ
l

)
≤

1

Clε2l
+ e−Klε

2
l /2.

(14)

Note that the right-hand side in (14) may decay very slowly

with l. This is where the properties of the geometric me-

dian become useful. Combination of Theorems 3.4 and 2.1

yields the following inequality for Π̂n,g which is our main

theoretical result.

Corollary 3.5. Let X1, . . . , Xn be an i.i.d. sample from

P0, and assume that Π̂n,g is defined with respect to the

‖ · ‖Fk
as in (9) above. Let l := ⌊n/m⌋. Assume that

conditions of Theorem 3.4 hold, and, moreover, εl is such

that q := 1
Clε2

l

+ 4e−Klε
2
l /2 < 1

2 . Let α be such that

q < α < 1/2. Then

Pr
(∥∥δ0 − Π̂n,g

∥∥
Fk

≥ CαMε
1/γ
l

)
≤
[
eψ(α,q)

]−m
,

(15)

where Cα = (1− α)
√

1
1−2α and M is as in Theorem 3.4.

The case when the sample Xn contains ⌊νm⌋ outliers of ar-

bitrary nature can be handled similarly. This more general

bound is readily implied by Theorem 2.1.

For many parametric models (see Section 5 in Ghosal

et al. (2000)), (15) holds with εl ≃ τ
√

m log(n/m)
n for

τ small enough. If m ≃ log n (which is a typical sce-

nario), then εl ≃
√

log2 n
n . At the same time, if we

use the “full posterior” distribution Πn(·|Xn) (which cor-

responds to m = 1), conclusion of Theorem 3.4 is that

Pr
(
‖δ0 − Πn(·|Xn)‖Fk

≥ M
(

logn
n

)1/(2γ) )
. log−1 n,

while Corollary 3.5 yields a much stronger bound for Π̂n,g:

Pr
(∥∥δ0 − Π̂n,g

∥∥
Fk

≥ CαM
(

log2 n
n

)1/(2γ) )
≤ r− logn

n

for some 1 > rn → 0.

Theoretical guarantees for Π̂st
n,g , the median of “stochastic

approximations” defined in (11), are very similar to results

of Corollary 3.5, but we omit exact formulations here due

to the space constraints.

4. Numerical Experiments

In this section, we describe a method based on Weiszfeld’s

algorithm for implementing the M-posterior, and compare

the performance of M-posterior with the usual posterior in

the tasks involving simulated and real data sets.

We start with a short remark discussing the improvement

in computational time complexity achieved by M-posterior.
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Algorithm 1 Evaluating the geometric median of probabil-

ity distributions via Weiszfeld’s algorithm

Input:
1. Discrete measures Q1, . . . , Qm;
2. The kernel k(·, ·) : Rp × R

p 7→ R;
3. Threshold ε > 0;

Initialize:
1. Set w

(0)
j := 1

m
, j = 1 . . .m;

2. Set Q
(0)
∗ := 1

m

m∑

j=1

Qj ;

repeat
Starting from t = 0, for each j = 1, . . . ,m:

1. Update w
(t+1)
j =

‖Q
(t)
∗ −Qj‖

−1
Fk

m∑

i=1
‖Q

(t)
∗ −Qi‖

−1
Fk

; (apply (7) to eval-

uate ‖Q
(t)
∗ −Qi‖Fk

);

2. Update Q
(t+1)
∗ =

m∑

j=1

w
(t+1)
j Qj ;

until ‖Q
(t+1)
∗ −Q

(t)
∗ ‖Fk

≤ ε

Return: w∗ := (w
(t+1)
1 , . . . , w

(t+1)
m ).

Algorithm 2 Approximating the M-posterior distribution

Input:

1. Samples {Zj,i}
Nj

i=1 ∼ i.i.d. from Πn,m(·|Gj), j =
1 . . .m (see equation (10));

Do:

1. Qj := 1
Nj

Nj∑

i=1

δZj,i , j = 1 . . .m - empirical approxima-

tions of Πn,m(·|Gj).
2. Apply Algorithm 1 to Q1, . . . , Qm; return w∗ =

(w∗,1 . . . w∗,m);
3. For j = 1, . . . ,m, set w̄j := w∗,jI{w∗,j ≥ 1

2m
}; define

ŵ∗
j := w̄j/

∑m

i=1 w̄i.

Return: Π̂st
n,g :=

∑m

i=1 ŵ
∗
i Qi.

Given the data set Xn of size n, let t(n) be the running

time of the subroutine (e.g., MCMC) that outputs a sin-

gle observation from the posterior distribution Πn(·|Xn).
Assuming that our goal is to obtain a sample of size N
from the (usual) posterior, the total computational com-

plexity is O (N · t(n)). We compare this with the running

time needed to obtain a sample of same size N from the

M -posterior given that the algorithm is running on m ma-

chines (m ≪ n) in parallel. In this case, we need to gen-

erate O (N/m) samples from each of m subset posteriors,

which is done in time O
(
N
m · t

(
n
m

))
. According to Theo-

rem 7.1 in (Beck & Sabach, 2013), Weiszfeld’s algorithm

approximates the M-posterior to degree of accuracy ε in at

most O(1/ε) steps, and each of these steps has complexity

O(N2) (which follows from (7)), so that the total running

time is O
(
N
m · t

(
N
m

)
+ N2

ε

)
. If, for example, t(n) ≃ nr

for some r ≥ 1, then N
m · t

(
n
m

)
≃ 1

m1+rNn
r which should

be compared to N · nr required by the standard approach.

4.1. Simulated data

The first example uses data from a Gaussian distribution

with known variance and unknown mean, and demonstrates

the effect of the magnitude of an outlier on the posterior

distribution of the mean parameter. The second example

demostrates the robustness and scalability of nonparamet-

ric regression using M-posterior in presence of outliers.

4.1.1. UNIVARIATE GAUSSIAN DATA

The goal of this example is to demonstrate the effect of

a large outlier on the posterior distribution of the mean

parameter µ. We generated 25 sets containing 100 ob-

servations each. Every sample {xi}
25
i=1, where xi =

(xi,1, . . . , xi,100), contains 99 independent observations

from the standard Gaussian distribution (xi,j ∼ N (0, 1)
for i = 1, . . . , 25 and j = 1, . . . , 99), while the last

entry in each sample, xi,100, is an outlier, and its value

linearly increases for i = 1, . . . , 25, namely, xi,100 =
imax(|xi,1|, . . . , |xi,99|). Index of an outlier is unknown

to the algorithm, while the variance of observations is

known. We use a flat (Jeffreys) prior on the mean µ
and obtain its posterior distribution, which is also Gaus-

sian with mean

∑100
j=1 xij

100 and variance 1
100 . We generate

1000 samples from each posterior distribution Π100(·|xi)
for i = 1, . . . , 25. Algorithm 2 generates 1000 samples

from the M-posterior Π̂st
100,g(·|xi) for each i = 1, . . . , 25:

to this end, we set m = 10 and generate 100 samples from

every Π100,10(·|Gj,i), j = 1, . . . , 10 to form the empirical

measures Qj,i; here, ∪10
j=1Gj,i = xi. Consensus MCMC

(Scott et al., 2013) as a representative for scalable MCMC

methods, and compared its performance with M-posterior

when the number of data subsets is fixed.

Figure 1 compares the performance of the “consensus pos-

terior”, the overall posterior and the M-posterior using the

empirical coverage of (1-α)100% credible intervals (CIs)

calculated across 50 replications for α = 0.2, 0.15, 0.10,

and 0.05. The empirical coverages of M-posterior’s CIs

show robustness to the size of an outlier. On the contrary,

performance of the consensus and overall posteriors deteri-

orate fairly quickly across all α’s leading to 0% empirical

coverage as the outlier strength increases from i = 1 to

i = 25.

4.1.2. GAUSSIAN PROCESS REGRESSION

We use function f0(x) = 1 + 3 sin(2πx − π) and simu-

late 90 (case 1) and 980 (case 2) values of f0 at equidis-

tant x’s in [0, 1] (hereafter x1:90 and x1:980) corrupted by

Gaussian noise with mean 0 and variance 1. To demon-

strate the robustness of M-posterior in nonparametric re-

gression, we added 10 (case 1) and 20 (case 2) outliers

(sampled on the uniform grids of corresponding sizes) to
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Relative magnitude of the outlier
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Figure 1. Effect of outlier on the empirical coverage of (1-

α)100% credible intervals (CIs). The x-axis represents the out-

lier magnitude. The y-axis represents the fraction of times the

CIs include the true mean over 50 replications. The panels show

the coverage results when α = 0.2, 0.15, 0.10, and 0.05. The

horizontal lines (in violet) show the theoretical coverage.

the data sets such that f0(x91:100) = 10 max(f0(x1:90))
and f0(x981:1000) = 10 max(f0(x1:980)).

The gausspr function in kernlab R package (Karat-

zoglou et al., 2004) is used for GP regression. Based on

the standard convention in GP regression, the noise vari-

ance (or “nugget effect”) is fixed at 0.01. Using these

settings for GP regression without the “standard” poste-

rior, gausspr obtains an estimator f̂1 and a 95% con-

fidence band for the values of the regression function at

100 equally spaced grid points y1:100 in [0, 1] (note that

these locations are different from the observed data). Algo-

rithm 2 performs GP regression with M-posterior and ob-

tains an estimator f̂2 described below. The posterior draws

across y1:100 are obtained in cases 1 and 2 as follows. First,

{(xi, fi)} are split intom = 10 and 20 subsets (each living

on its own uniform grid) respectively, and gausspr esti-

mates the posterior mean µj and covariance Σj for each

data subset, j = 1, . . . ,m. These estimates correspond

to the Gaussian distributions Πj(·|µj ,Σj) that are used to

generate 100 posterior draws at y1:100 each. These draws

are further employed to form the empirical versions of sub-

set posteriors. Finally, Weiszfeld’s algorithm is used to

combine them. Next, we obtained 1000 samples from the

M-posterior Πg(·|{(xi, fi)}). The median of these 1000

samples at each location on the grid y1:100 represents the

estimator f̂2. Its 95% confidence band corresponds to 2.5%

and 97.5% quantiles of the 1000 posterior draws across

y1:100.

Figure 2 summarizes the results of GP regression with and

without M-posterior across 30 replications. In case 1, GP

regression without M-posterior is extremely sensitive to the

outliers, resulting in f̂1 that is shifted above the truth and

distorted near the x’s that are adjacent to the outliers; in

turn, this affects the coverage of 95% confidence bands

and results in the “bumps” that correspond to the location

of outliers. In contrast, GP regression using M-posterior
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Figure 2. Performance of M-posterior in Gaussian process (GP)

regression. The top and bottom row of panels show simulation

results for M-posterior (in blue) and GP regression (in red). The

size of data increases from column 1 to 2. The true noiseless curve

f0(x) is in green. The shaded regions around the curves represent

95% confidence bands obtained over 30 replicated data sets.

produces f̂2 which is close to the true curve in both cases;

however, in case 1, when the number of data points is small,

the 95% bands are unstable.

An attractive property of M-posterior based GP regression

is that numerical instability due to matrix inversion can be

avoided by working with multiple subsets. We investigated

such cases when the number of data points n was greater

than 104. Chalupka et al. (2012) compare several low rank

matrix approximations techniques used to avoid matrix in-

version in massive data GP computation. M-posterior–

based GP computation does not use approximations to ob-

tain subset posteriors. By increasing the number of sub-

sets (m), M-posterior based GP regression is both compu-

tationally feasible and numerically stable for cases when

n = O(106) and m = O(103). On the contrary, stan-

dard GP regression using the whole data set was intractable

for data size greater than 104 due of numerical instabili-

ties in matrix inversion. In general, for n data points and

m subsets, the computational complexity for GP with M-

posterior is O(n( nm )2); therefore, m > 1 is computation-

ally better than working with the whole data set. By care-

fully choosing the n
m ratio depending on the available com-

putational resources and n, GP regression with M-posterior

is a promising approach for GP regression for massive data

without low rank approximations.

4.2. Real data: PdG hormone levels vs day of ovulation

North Carolina Early Pregnancy Study (NCEPS) measured

urinary pregnanediol-3-glucuronide (PdG) levels, a proges-

terone metabolite, in 166 women from the day of ovula-

tion across 41 time points (Baird et al., 1999). These data

have two main features that need to be modeled. First, the

data contains information about women in different stages
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of conception and non-conception ovulation cycles, so the

probabilistic model should be flexible and free of any re-

strictive distributional assumptions; therefore, we choose

non-parametric regression of log PdG on day of ovulation

using GP regression. Second, missing data and extreme ob-

servations are very common in these data due the nature of

observations and diversity of subjects in the study; there-

fore, we use M-posterior based GP regression as a robust

approach to automatically account for outliers and possible

model misspecification.

NCEPS data have missing PdG levels for multiple women

across multiple time points. We discarded subjects that did

not have data for at least half the time points, which left us

with 3810 PdG levels across 41 time points. The size of

the data enables the use of gausspr function for GP re-

gression, and its results are compared against M-posterior

based GP regression (similar to Section 4.1.2). The data

was divided into 10 subsets. On each stage, 9 of them

were used to evaluate the M-posterior while the remain-

ing was a test set; the process was repeated 10 times for

different test subsets. Our goal is to obtain posterior pre-

dictive intervals for log PdG levels given the day of ovu-

lation. Figure 3 shows the posterior predictive distribution

obtained via GP regression with and without M-posterior.

Across all folds, the uncertainty quantification based on M-

posterior is much better than its counterpart without the

M-posterior. The main reason for this poor performance

of “vanilla” GP regression is that NCEPS data have many

data points for each day relative to ovulation, but with

many outliers and missing data. The vanilla GP regression

does not account for the latter feature of NCEPS data, thus

leading to over-optimistic uncertainty estimates across all

folds. M-posterior automatically accounts for outliers and

model misspecification; therefore, it leads to reliable pos-

terior predictive uncertainty quantification across all folds.

5. Discussion

We presented a general approach to scalable and robust

Bayesian inference based on the evaluation of the geomet-

ric median of subset posterior distributions (M-posterior).

To the best of our knowledge, this is the first technique that

is provably robust and computationally efficient. The key

to making inference tractable is to embed the subset pos-

terior distributions in a suitable RKHS, and pose the ag-

gregation problem as convex optimization in this space,

which in turn can be solved using Weiszfeld’s algorithm,

a simple gradient descent-based method. Unlike popular

point estimators, the M-posterior distribution can be used

for summarizing uncertainty in the parameters of interest.

Another advantage of our approach is scalability, so that it

can be used for distributed Bayesian learning: first, since

it combines the subset posteriors using a gradient-based al-
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Figure 3. Comparison of 95% posterior predictive intervals for

GP regression with and without M-posterior. The x and y axes

represent day of ovulation and log PdG levels. Panels show the

result of GP regression of log PdG on day of ovulation across 10-

folds of NCEPS data. The mean dependence log PdG on day of

ovulation is shown using solid lines. The dotted lines around the

solid curves represent the 95% posterior predictive intervals. The

intervals for GP regression without M-posterior severely under-

estimate the uncertainty in log PdG levels. On the other hand,

posterior predictive intervals of M-posterior appear to be reason-

able and the trend of dependence of log PdG on day of ovulation

is stable.

gorithm, it naturally scales to massive data. Second, since

Weiszfeld’s algorithm only uses the samples from subset

posteriors, it can be implemented in a distributed setting

via MapReduce/Hadoop.

Several important questions are not included in the present

paper and will be addressed in subsequent work. These

topic include applications to other types of models; alter-

native data partition methods and connections to the in-

ference based on the usual posterior distribution; different

choices of distances, notions of the median and related sub-

set posterior aggregation methods. More efficient computa-

tional alternatives and extensions of Weiszfeld’s algorithm

(which is currently used due to its simplicity, stability, and

ease of implementation) can be developed for estimating

the M-posterior; see (Bose et al., 2003; Cardot et al., 2013;

Vardi & Zhang, 2000), among other works. Applications of

distributed optimization methods, such as ADMM (Boyd

et al., 2011), is another potentially fruitful approach.
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