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Scalable and Robust Demand Response With
Mixed-Integer Constraints

Seung-Jun Kim and Georgios B. Giannakis

Abstract—A demand response (DR) problem is considered

entailing a set of devices/subscribers, whose operating conditions

are modeled using mixed-integer constraints. Device operational
periods and power consumption levels are optimized in response

to dynamic pricing information to balance user satisfaction and

energy cost. Renewable energy resources and energy storage
systems are also incorporated. Since DR becomes more effective as

the number of participants grows, scalability is ensured through

a parallel distributed algorithm, in which a DR coordinator and
DR subscribers solve individual subproblems, guided by certain

coordination signals. As the problem scales, the recovered solution

becomes near-optimal. Robustness to random variations in elec-
tricity price and renewable generation is effected through robust

optimization techniques. Real-time extension is also discussed.

Numerical tests validate the proposed approach.

Index Terms—Lagrange relaxation, mixed-integer programs,

parallel and distributed algorithms, real-time demand response,

robust optimization.
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I. INTRODUCTION

D EMAND response (DR) is a key component of the smart
grid, which allows both consumers and utilities to benefit

through intelligent resource scheduling. By adopting electricity
prices that vary depending on the time of use and the load level,
power system operators can elicit desirable usage patterns from
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consumers, saving costs related to generation, transmission and
storage, and lowering customers’ bills [1].
DR becomes more effective when the number of devices par-

ticipating in the DR program grows large, as it will be more
likely to have adjustable loads available when the need arises
to reduce or increase the demand. DR aggregators capitalize
on this by mediating power utilities and consumers, scheduling
subscribers’ power consumption to minimize cost and provide
ancillary services. Thus, it is essential to solve large-scale DR
problems efficiently, which favors parallelized and distributed
solution approaches.
Another important issue is privacy. Under a centralized ar-

chitecture, DR participants submit private data related to their
desired power consumption charateristics to a central entity.
A distributed solution can mitigate such concerns through ex-
changing only surrogate coordination signals [2].
To best capture the gains from DR and to ensure customer

satisfaction, diverse usage profiles and operational constraints
of the devices must be taken into account. Three salient types
of devices are considered in this work. The first type is the in-
elastic load, which cannot be deferred to a later time, but its
power consumption may be traded off with the user’s degree
of satisfaction. An example is the HVAC system. The second
type of load is elastic and interruptible, which means that the
power consumption may be shifted in time as long as a spec-
ified amount of total energy is expended, and its operation is
allowed to be suspended in the middle. Examples include elec-
tric vehicles (EVs) charging and pool pumps. The third class
is an elastic yet non-interruptible kind, which, once switched
on, cannot be turned off until the task is completed, often fol-
lowing prespecified power usage patterns over time. Washing
machines or dish washers in the residential setting fall into this
class, as well as ample examples in the industrial context. While
certain restricted combinations of these requirements lead to
convex optimization problems [2], more general and descrip-
tive constraints necessitate mixed-integer nonconvex formula-
tions [3]–[6].
DR algorithms must cope with various uncertain parameters

that constitute their input. The algorithms use electricity prices
announced or forecast prior to the planning horizon, but the
prices are subject to real-time amendment or forecasting errors.
When renewable energy resources are utilized, it is critical to
take into account the volatility of such resources, as they cannot
be dispatched at will, and the reserve may be costly. Thus, it is
prudent to design DR controls with robustness to ensure cost-ef-
fective operation even under unfavorable conditions. A robust
optimization framework, successfully applied in DR contexts
for linear pricing in [7], is employed here for piecewise linear
convex pricing as well as renewable resources. Moreover, it is
beneficial to allow real-time adaptation of DR schedules, as part
of the uncertainties will have been eliminated by the time of use.
The goal of the present work is to pursue both optimality and

scalability in large-scale DR mixed-integer formulations, with
robustness to uncertainties in price prediction and renewable
generation. Key to this feat is the Lagrange relaxation approach,
which decomposes the overall problem to multiple subprob-
lems, each of which can be solved in a decentralized and paral-
lelized fashion. As the number of participating DR devices/sub-

scribers increases, the solution recovered from Lagrange relax-
ation nears the optimum. The approach can also be extended
to real-time DR. The Lagrange relaxation approach was em-
ployed for a convex DR formulation in [8]. This is the first at-
tempt to solve nonconvex DR problems in the dual domain for
scalability and near-optimality while incorporating robustness
to major sources of uncertainties.
Prior works focused on a subset of task attributes to obtain

tractable formulations [7], [9]. The difficulty of accommodating
non-interruptible yet deferrable tasks was recognized in [10].
When applied to large-scale DR problems, DR formulations
may require excessive computational complexity. Thus, subop-
timal approximate solutions have often been advocated [4], [11].
In the absence of coupling constraints among tasks, justified in
a simple residential setup, scheduling of non-interruptible tasks
under price uncertainty is tractable [12].
The rest of the paper is organized as follows. Section II de-

scribes the systemmodel and presents the basic DR formulation.
Section III incorporates robustness against the uncertainties in
electricity prices and renewable resources. Scalable solutions
based on Lagrange relaxation are derived in Section IV. The
real-time adaptation of DR schedules is discussed in Section V.
Numerical examples are provided in Section VI, and conclu-
sions are offered in Section VII.
Notational conventions: Superscripts and refer to time in

a DR horizon, subscript indicates DR devices, and subscript
different segments of piecewise linear functions. Superscript
is an iteration index, and indexes individual elements in a
bundle in the context of the bundle method.

II. PROBLEM FORMULATION

To simplify exposition, a DR problem for multiple sub-
scribers, each with just one DR-capable device (load) is
considered. However, the proposed framework is general and
capable of handling multiple devices per subscriber, as will be
briefly explained later. First, a model for various device classes
is established.

A. Device Model

A set of devices is scheduled over a
time horizon of units, in response to the electricity price an-
nounced (or, forecast possibly with some error) [7], [9]. Let
denote the power consumption of device at time

. Collect the temporal power usage pro-
file to a vector . The device constraints are cap-
tured by a set of admissible power usage profiles as in .
It is assumed that power consumed by device im-
parts some sort of satisfaction or utility to the user, which can
be quantified by a function .
Depending on the scheduling requirements, three types of

loads are considered. The set of inelastic loads is denoted as
. This class of loads cannot be deferred, although their power

consumption may be traded off with the utility that users enjoy.
Consider a simple power constraint that device con-
sumes power between and when turned on. Sup-
pose also that the device needs to be turned on only between
times and . Introducing a binary variable that
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models the ON/OFF status of device for , one can cap-
ture the aforementioned constraints by

(1)

if (2)

if (3)

The second and third types of loads (denoted by and , re-
spectively) are elastic (deferrable) loads, which may be shifted
in time as long as a certain amount of total energy is ex-
pended. Thus, in addition to (1)–(3), one imposes

(4)

Different from the interruptible devices denoted by , the non-
interruptible devices are additionally constrained that
they cannot be turned off once switched on, until the desired
total energy has been expended. Specifically,

if (5)

where is the given constant signifying the ON/OFF status of
device at the beginning of the first time slot. Note that (5) can
be encoded into a mixed-integer linear constraint given as [13,
Ch. 9]

(6)

where is a small positive number (usually the smallest
representable by the machine precision). To make sure that the
elastic loads stay turned off once done, one can
additionally require

if (7)

which is equivalent to
. In summary, the feasible power sets are defined as

(8)

It can be seen that if , becomes convex, and
the use of integer variables is not necessary. In particular, the
distinction between interruptible and non-interruptible classes
vanishes. However, it is often the case in practice that nonzero
minimum power must be consumed when a device is on. This
requirement renders the constraint sets nonconvex. It will be
also useful later to note that becomes convex if the integer
variables are fixed.
Tomodel the user utilities of various device classes, functions

with simple structures are considered. For device , let
denote the per-time-slot utility that depends only on the

power consumption of the current time slot . Then, the overall
utility is defined as

(9)

As for the utilities of elastic devices, consider

(10)

where convex models the “disutility” due to the energy
of amount remaining to be scheduled at the beginning of time
slot .
Remark 1: Typically, is non-decreasing with
for , promoting early completion of elastic tasks, and

penalizing deferred loads. One can also penalize “load advance-
ment,” by having non-increasing with for

.

B. Electricity Price

Function models the electricity price at time for
power delivered from the grid. The cost function captures
time and load-dependent electricity cost, and can be used to in-
centivize peak demand reduction. A convex is used to
model the progressive price increase for higher load. A piece-
wise linear convex function is often employed for computa-
tional merits [9]. Note that in the special case where is
linear and the load is served entirely on the power purchased
from the grid, the overall cost can be re-ex-
pressed as the sum of the cost due to the individual devices.
The power drawn from the grid must obey
for , where represents the cap on the total deliver-
able power, e.g., due to the capacity of transmission/distribution
lines.

C. Renewable Generation and Storage

Renewable energy sources such as wind turbines or photo-
voltaic (PV) generators are incorporated in this section, along
with energy storage devices such as batteries, flywheels or hy-
drogen storage. The amount of power generated from the re-
newable sources can be forecast over time horizon . To model
energy storage and retrieval, let be the total energy stored at
the end of the th time slot. Let represent the energy stored if

, and the energy drawn from the storage if ,
respectively. Then,

(11)

holds, where ideal energy conversion efficiency has been as-
sumed for simplicity. Energy storage devices may have ramp
constraints modeled as , where
and are the maximum power that can be drawn from or
charged to the storage per time interval, respectively. Also, due
to the capacity of the energy storage,
holds for each .
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D. Optimization Problem

The DR problem can now be formulated as

(12a)

(12b)

(12c)

(12d)

Here, represents the total load at time , which is the sum of
power consumption of all devices as expressed in (12b). The left
inequality in (12c) constrains the power drawn from the storage
not to exceed the actual load. The right inequality in (12c) states
that the total load is served by the power drawn from the grid,
the renewable source, and the storage. The initial state of the
energy storage device is a given constant.
The objective in (12a) pursues balancing the energy cost and

the subscribers’ satisfaction. Relative importance of the two
terms can be represented by weights, which can be absorbed
into the definition of the utility functions . Fairness among
the subscribers’ power consumption can also be handled by set-
ting the weights appropriately. Such a strategy is often adopted
for fair scheduling in wireless networks [14].
In the case of having multiple DR-capable devices per sub-

scriber, set can be interpreted as the set of subscribers, and
captures the total power usage accounting for all devices in

the premises of subscriber . Utility should also
be viewed as the aggregate utility of subscriber ’s devices. The
feasible power set can also be defined similarly, respecting
the characteristics of individual devices.

III. ROBUST FORMULATION

The optimization problem (12) assumes that the electricity
price is announced in advance, and does not change at the time
of use. Also, the amount of renewable energy available per time
instant is assumed to be perfectly known, or predicted accu-
rately. In practice, the price may change in real time, reflecting
the uncertainty of the load and the contingencies of grid opera-
tion. Renewable energy resources are random in nature, leading
to forecasting errors.
To cope with uncertainties, a robust optimization approach is

taken in this section, which essentially tackles the worst case.
That is, upon presuming bounded uncertainty, the solution that
remains feasible in all cases at a minimal sacrifice of optimality
is pursued [15]. An important issue in robust optimization is to
strike a reasonable trade-off between robustness and optimality
[16]. If one pursues robustness against too large an uncertainty
region, the corresponding solution may become unacceptably
conservative and inefficient.
To mitigate this issue, techniques that allow only up to a

preset number of uncertain parameters to deviate from the nom-
inal values have been proposed [16], [17]. By adjusting the
number of deviating parameters, the desired level of protection
can be achieved. Moreover, the complexity of the robust version

is on par with the original problem. The technique was applied
in the DR context to price uncertainty in [7] for linear pricing.
This is extended here to account for piecewise linear convex
prices, as well as renewable resources.
A limitation of the approaches in [16] and [15] is that they

require the worst-case protection adopted per constraint, and do
not truly correspond to the min-max approach that minimizes
the cost against the maximum degradation due to the deviation
of uncertain parameters present acrossmultiple constraints [18].
The latter formulation is often very difficult to solve. Such an
issue emerges when incorporating renewable energy resources,
but is mitigated here using a simple heuristic considered in a
different application also by [19].

A. Robustness Against Price Uncertainty

Consider a piecewise linear convex function defined
for with segments. Suppose that the slopes of the
segments satisfy , and the breakpoints

. Then, (12a) can be re-written as [20]

(13)

with the following additional constraints:

(14)

(15)

(16)

where auxiliary , for , signifies the portion of
that lies in (with and ).

To model price uncertainty, assume that the coefficient is
forecast to have a nominal value along with a bounded un-
certainty of ; that is, . A naive approach
would just replace in (13) with . However, this may
be overly conservative, as it will be rare that all uncertain pa-
rameters simultaneously take the extreme values.
The approach in [16] is to tune the trade-off between robust-

ness and conservatism by confining the uncertainty to

(17)

where is the tuning parameter. Setting recovers
the nominal formulation, while corresponds to
the naive worse-case approach. Under , the robust version is
given by

(18a)

over (18b)

and (18c)

(18d)
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B. Robustness to Renewable Generation

The amount of renewable energy naturally contains uncer-
tainty, which can be modeled as taking values in an interval

. Similar to (17), the desired uncertainty region for
is

(19)
The issue is that the technique in [16] effects the protection

constraint-wise. Since (12c) involves one uncertain parameter
per constraint, the robust counterpart under with
simply amounts to replacing in (12c) to , which
yields the worst-case solution. In principle, what is desired is
the min-max approach: first maximize w.r.t. , and
then minimize the resulting objective w.r.t. the rest of the opti-
mization variables in (12). Unfortunately, such yields a difficult
nonconvex problem.
A number of alternatives for bypassing this hurdle exist. One

could consider cumulative sums of the constraints in (12c)

(20)

and apply the robust formulation with the tuning parameters
that gradually increase with [21]. A more systematic (albeit
more complex) approach based on Benders decomposition is
proposed in [18].
Here, a simple heuristic is adapted from [19]. The idea is to

first consider a single sum of all the constraints in (12c) across
entire , and formulate the robust counterpart:

(21)

(22)

(23)

Since the sum constraint does not guarantee the individual con-
straints for to be satisfied, an additional set of constraints
are imposed as

(24)

which is intuitively a “disintegrated” version of the sum con-
straint (21). The constraints give some protection to the indi-
vidual constraints (12c) via and associated with (21),
where the total protection is controlled through .
The overall formulation for robust DR is thus given by

(25a)

over

(25b)

subj. to (12b), (12d), (14)–(16), (18d), (21)–(22), and (24)

(25c)

Problems (12) and (25) are mixed-integer programs that can be
solved in principle using dynamic programming (DP). How-
ever, as they are coupled across different devices through (12b),
they cannot be solved separately per individual device. Thus,
complexity grows rapidly as the number of devices increases,
posing a major scalability hurdle. In what follows, a Lagrange
relaxation approach is adopted, which enables parallelized dis-
tributed solution of the DR problems.

IV. SCALABLE DISTRIBUTED SOLUTION

The formulated optimization problems possess separable
structures in the sense that the objectives in (12a) and (25a)
as well as the coupling constraints (12b) can be represented
as the sums of separate terms, where each term involves vari-
ables associated only with the corresponding device. When
an optimization problem exhibits a separable structure, the
Lagrange relaxation method can be adopted to decompose the
problem into smaller subproblems that can be solved indepen-
dently, coordinated by the Lagrange multipliers [22, Ch. 6].
Moreover, the duality gap tends to diminish as the number of
separable terms increases, allowing the dual method to obtain
a near-optimal solution.1 Such an approach has been applied
successfully in various domains including unit commitment in
power systems [23], [27], and resource allocation in communi-
cation networks [25].

A. Lagrange Relaxation Approach

Consider first the non-robust formulation (12). Introducing
multipliers , the partial Lagrangian with the
coupling constraint (12b) relaxed can be written as

(26)

(27)

Thus, the dual function is given by

(28)

(29)

(30)

(31)

1The exact claims and proofs can be found in various forms [23]–[25], but the
most comprehensive version seems to be the one in [26, Sec.5.6.1]. In essence,
the claim is that under certain conditions, the duality gap of an optimization
problem involving separable objectives and constraints, is proportional to the
number of constraints in the primal problem, but not dependent on the number
of the separable terms; see also Remark 2. Thus, as the number of terms grows,
the duality gap averaged over the number of terms vanishes.
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Thus, given , the overall problem decomposes to a subproblem
related to the grid and the distributed energy resources, and a set
of subproblems, each corresponding to a DR-participating de-
vice. In fact, can be interpreted as a pricing signal that coordi-
nates energy procurement and consumption. Specifically,
can be viewed as minimizing the net cost of power, which is
the cost paid to the grid minus total revenue from
serving energy to devices; cf. (30). Similarly, the per-device
subproblems trade-off energy cost for the utility of using
the devices; cf. (31).
Subproblem (30) is convex, and in fact, a linear program

when is piecewise linear convex, for which efficient
solvers are available. Subproblems (31) are mixed-integer pro-
grams. However, as each subproblem concerns only one device,
it is much more tractable than the original coupled version.
When can be expressed as a sum of per-time utilities,
as was assumed in (9)–(10), the problems are DPs, solvable by
standard techniques such as backward induction. Closed form
solutions were obtained for very simple task models in [12].
In the case of using the robust formulation in (25), the per-

device subproblems (31) remain unchanged. The coordinator’s
problem in (30), on the other hand, is replaced by

(32)

s. to: (12b), (12d), (14)–(16), (18d), (21)–(22), (24) and (25c).

B. Dual Problem

To obtain the optimal Lagrangemultiplier , the dual problem
needs to be solved, where is maximized. The goal is to re-
cover primal solutions from the optimal dual variables. How-
ever, due to the nonzero duality gap, the primal solution re-
covered as an optimizer of (30)–(31) at the dual optimal solu-
tion does not necessarily satisfy the constraints of the primal
problem.
In [23], the exponential method of multipliers was employed

to solve not only the dual of a unit commitment problem, but
also the “dual-to-dual” as a byproduct. That is, the preferred
method is the one that provides not only the optimal dual vari-
ables, but also the solution to the convexified primal problem,
which can help obtain a primal feasible solution through an
easily implementable heuristic rule. Since the duality gap di-
minishes as the number of devices grows, the so-obtained primal
feasible solution is close to the optimal solution when a large-
scale problem is concerned. However, the method in [23] is ap-
plicable only to piecewise concave (including linear) objectives
and constraints, and requires enumeration of all extreme points.
This may not be applicable or straightforward for the problem
at hand.
An alternative approach is to use the proximal bundle method

[24], [28]. The method can handle non-differentiable objectives

and yields solutions to the convexified problem at no additional
cost. Consider a separable problem of the form

(33a)

(33b)

Then, based on the Lagrangian dual, the method in [24] yields
the solution to the following “convexified” problem2

(34a)

(34b)

(34c)

If one views the variable as the probability of operating unit
using “mode” , the solution to (34a)–(34c) is seen to mini-

mize the expectation of the original objective, while satisfying
the constraints in the average sense. Moreover, it turns out that
the number of units with fractional is at most [24], [26], and
oftentimes smaller in practice. Therefore, for large-scale prob-
lems in which , the solutions for only a few units need
to be perturbed to obtain a near-optimal feasible solution to the
original problem (33).
The correspondence between the model problem (33) and the

DR problems at hand can be easily identified by inspection.
For example, for problem (12), consider defining first

where . Then, and for
can be identified as

(35)

(36)

Moreover, , ,
and for .

Remark 2: A set of sufficient conditions for the van-
ishing duality gap claim can be easily verified for (12). Three
conditions are given in [26, Sec. 5.6.1,]: c1) The problem
must be feasible; c2) for each , the set

must be compact;
and c3) for each , for any , where

2Problem (34) is not convex per se, but its optimal objective can be shown
to be the same as that of the convex problem

where

and denotes the closed convex hull of [29].
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denotes the convex hull operator, there exists such that
, where , and

(37)

Condition c1) holds trivially. Condition c2) is met if and
are continuous. As for c3), the condition is again readily

satisfied by considering and for all .

C. Recovery of Primal Feasible Solution

As noted in Section II-A, once the ON/OFF profiles
of all devices are determined, the feasible power sets
become convex, and thus optimal can be obtained by
solving convex program (12) (or (25)). As was discussed in
Section IV-B, the proximal bundle method yields a set of
with the fractions , which solve (34). Thus, a simple
heuristic of coin toss is adopted, where is employed with
probability for each . In our numerical tests, this always
yielded a feasible solution. Since most of the devices obtain a
single with when , such a heuristic provides
a solution close to the optimum, with the chance of affecting
feasibility being slim.
Remark 3: The heuristic does not guarantee finding a fea-

sible solution. In case of failure, a branch-and-bound procedure
can be employed in principle, where Lagrange relaxation can
again be useful [30]. A more practical approach, especially for
real-time DR, may be to presume infeasibility upon failure and
consider load shedding.

D. Parallelized Distributed Implementation

In the envisioned architecture, the DR aggregator commu-
nicates through the advanced metering interface (AMI) of the
smart grid with the subscribing entities to solve the overall DR
problem in a distributed fashion. The procedure with the asso-
ciated signal exchanges can be described as follows. The DR

aggregator comes up with candidate Lagrange multipliers
at iteration , and solve the coordinator’s subproblem (30) for

. The multipliers are broadcast to individual devices.
Each device solves the per-device subproblems (31)

with , and reports the optimal power profiles as

well as the scalar . Then, the coordinator updates the La-
grange multipliers and repeats the procedure until convergence.
The detailed algorithm is provided in Table I; see also [28] and
[24], where it is shown that the algorithm converges to the op-
timal Lagrange multipliers that solve the dual problem.
Upon convergence, the DR coordinator transmits to

each device . Each device can now choose the ON/OFF
schedule based on a coin toss, as discussed in Section IV-C.
Then, a feasible solution is found by solving a convex problem
with fixed. Note that this can be accomplished also in a
distributed fashion by means of the proximal bundle method,
or other methods [2], [31].

TABLE I
OVERALL DISTRIBUTED ALGORITHM.

Remark 4: Thanks to the parallel and distributed architec-
ture, the algorithm can scale when the number of DR devices
grows large, since the computational burden becomes dis-
tributed across the entire system. Note that while it is true that
the DR aggregator needs to solve quadratic programs (QPs)
of commensurate dimensions, the run time of the QP solver
increases quite modestly with the dimension in practice. In
terms of time complexity, it is known that the proximal bundle
method can find an -optimal solution to a convex problem with
at most iterations [28]. The complexity of evaluating
the dual objective and the subgradients is linear in due to
the dual decomposition. The QP inside the proximal bundle
method can also be solved in polynomial time [32]. Thus, the
overall complexity is polynomial in . Furthermore, it is a
well-documented merit of Lagrange relaxation techniques that
high-quality solutions can be attained within a small number
of iterations. This is also observed in our numerical tests; see
Fig. 4 in Section VI and the associated discussion.

V. REAL-TIME DR

The DR algorithm discussed so far is suitable for planning
the energy consumption ahead of the time of actual electricity
use. At the time of use, the forecast parameters used in the DR
scheduling are realized. Thus, it may be prudent to adjust the
pre-planned schedule in real time by accommodating the newly
acquired information to increase economic benefit.
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To show how the present optimization framework can be ex-
tended to real-time DR, consider the formalism of [7]. Given
a time horizon , let denote the current time index.
By the beginning of the th time interval, the device demands
and the amount of renewable generation up to time
have materialized. Also, the DR scheduler has been informed
about the exact electricity cost up to current time . How-
ever, the cost as well as the renewable resources for are
still subject to forecasting errors. The idea for the real-time ex-
tension is to adopt a receding horizon approach. That is, a ro-
bust DR problem is solved at time for the remaining
DR horizon , but the solution is applied only
for the current time slot , which is repeated in the next slot.
To formulate a robust real-time DR problem at time , define

for . The set of admissible
can also be defined appropriately. Specifically, for ,
can be defined as (1)–(3), but with . Likewise,
for is defined by additionally imposing [cf. (4)]

(38)

where represents the energy remaining
to be scheduled at the beginning of the th interval. For ,
one adds [cf. (5)]

if and

Let and denote the counterparts of and , re-
spectively, for robust DR at time . The relevant optimization
problem for real-time DR at time can now be written as

(39a)

and with (39b)

(39c)

(39d)

(39e)

(39f)

(39g)

(39h)

over

(39i)

Fig. 1. Electricity price.

Note that this problem can be solved in a distributed fashion
using the same technique as for the pre-planning problem.
The real-time DR is operated by employing the solution of

only the current time slot. That is, although (39) is solved at
time for the entire time horizon , only the solution for
the current time, e.g., , is actually used. At the next
time slot, (39) is solved again for the receded horizon, and the
solution for time is deployed. This is repeated until the
end of the horizon at .

VI. NUMERICAL EXPERIMENTS

The proposed DR algorithms were tested using numerical ex-
periments. A total of 50 devices were scheduled over a
hour period, starting at 6 a.m. The first 15 devices are inelastic
loads, for which utility for all was modeled to be piece-
wise concave with two pieces and , where the first
segment has a slope of 5 for , and the second one
has a slope of 4 for . The rest are elastic devices,
and was used for all . The detailed opera-
tional conditions of the devices are given in Table II. An en-
ergy storage system with capacity and

was assumed with . The electricity price
was modeled as a three-piece piecewise linear convex

function with breakpoints at and for all .
The slopes of the three pieces at different times of use are
depicted as the thick curves in Fig. 1, where the first segment
was taken from the day-ahead price announced by Ameren Illi-
nois Co. on Dec. 15, 2009 for a residential zone [33].
Fig. 2 shows the result of solving (12). The variation of the

renewable resources is shown as the dotted curve. It can be seen
that the energy is drawn from the grid only when the price is
low. Also, it is observed that the high load in the evening hours
is partly supported by using the energy stored during the off-
peak hours. Fig. 3 depicts the power consumption profiles of
the individual devices. The dual objective value at the optimum
turns out to be , and the primal objective . The
small gap verifies that the obtained solution is indeed very close
to the optimum. Fig. 4 shows the evolution of the primal and
the dual objectives, as well as the Lagrange multipliers, as



KIM AND GIANNAKIS: SCALABLE AND ROBUST DEMAND RESPONSE 2097

Fig. 2. Optimized power profile.

Fig. 3. Optimized power consumption of devices.

Fig. 4. Evolution of objectives and dual variables.

the iteration count grows. It can be seen that high-quality primal
solutions are reached in just several iterations.

TABLE II
DEVICE CHARACTERISTICS.

Fig. 5. Evolution of duality gaps in the number of devices.

To see how the duality gap evolves as more DR devices
participate, tests were done with varied. The proportion
of devices with different characteristics was maintained as in
Table II. For example, when , all the numbers in the
second column in Table II were divided by 5. Also, the values
of , , , , and were adjusted in
proportion to . The duality gaps obtained from solving (12),
averaged over 20 coin flips (cf. Section IV-C) and normalized
by the dual optimal objectives are depicted in Fig. 5. It is
verified that the normalized gap tends to diminish as grows,
achieving less than of the objective when .
To verify the robust formulations, robustness to price uncer-

tainty is first tested. Problem (25) was solved using the nom-
inal values as depicted (as the thick curves) in Fig. 1, and
the deviations set to 1 for all and . No renewable re-
sources or energy storage was included. The actual prices
were generated by sampling from independent Gaussian distri-
butions centered at with standard deviation ,
and then clipping the samples so that only positive deviations
were allowed. One such realization is depicted as the thin curves
in Fig. 1. Fig. 6 shows the histograms of the DR objectives

, obtained from 100 trials. The
top panel in Fig. 6 corresponds to the performance of the non-ro-
bust schedule from (12), and the bottom panel the robust version
from (25) with . It can be seen that the robust DR
achieves better (smaller) objectives, although the optimal ob-
jective 321 of the robust DR formulation is actually higher than
313 of the non-robust counterpart.
Robustness to the uncertainty of renewable sources were

tested similarly. The nominal values were set to what is
shown in Fig. 2, while was set equal to for all . The
realizations were generated from Gaussian distributions,
followed by clipping so as to allow only negative deviations.
The prices were not randomized. Since there is discrepancy
between the actual and the anticipated renewable resource
amounts, one has to adjust the energy drawn from the grid. We
adopt a simple policy, where at each time , (and if there
is surplus) is adjusted to meet all scheduled loads as well as the
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Fig. 6. Histograms of DR objectives.

planned level of stored energy. Table III presents the average
DR objectives obtained from 100 trials for different values of

. Setting corresponds to the non-robust case. It
seems that of around provides the best protection.
In practice, it is important to tune parameters and
using actual data and statistics for best performance. More test
results for tuning can be found in [7]. To test the real-time
DR case, a robust DR schedule with the uncertainty margins
for the prices and the renewables as before, was obtained for
comparison. The values and were used.
The resultant power profiles are depicted in Fig. 7 as thick lines.
Real-time adjustments were made by sequentially solving (39)
with and . The realizations of the
prices and the renewable resources are shown as the thin curves
in Fig. 1, and the thin dotted curves in Fig. 7, respectively. It
can be seen from Fig. 7 that there was a significant drop from
the forecast in the renewable resources around midnight, which
the real-time DR coped with by deferring a portion of the loads.
The DR objective achieved by the real-time DR was ,
much smaller than , achieved by trying to enforce the
non-real-time schedule.

VII. CONCLUSIONS

DR formulations were considered that can optimize power
consumption schedules of participating devices/subscribers,
whose operating requirements may necessitate nonconvex
mixed-integer models. Uncertainties in electricity prices and
renewable energy resources were tackled by incorporating
robustness, which can be adjusted to avoid excessive conser-
vatism. A Lagrange relaxation approach with the proximal
bundle method allowed a parallel and distributed implemen-
tation, which is advantageous for scalability and privacy.
Real-time DR could be effected through a receding horizon
approach. The efficacy of the proposed algorithms were verified
by numerical examples.
There are other approaches for developing decentralized

solutions to large-scale mixed-integer problems, such as the

Fig. 7. Power profiles of robust and real-time DR.

TABLE III
AVERAGE DR OBJECTIVES UNDER RENEWABLES UNCERTAINTY.

Dantzig-Wolfe decomposition and Benders decomposition
[34]. Given our problem structure, which involves a small
number of coupled constraints, employing Dantzig-Wolfe
decomposition offers a viable direction. However, a standard
application will require subscribers to fully disclose their
utility functions to the central coordinator. Deriving custom
algorithms that can mitigate such an issue, along with detailed
analysis and comparison is left for future work. Performing
comprehensive tests of the proposed algorithms based on real
market and renewable generation data is also a topic for further
study.
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