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ABSTRACT

Recently, Kernel Additive Modelling (KAM) was proposed as a
unified framework to achieve multichannel audio source separation.
Its main feature is to use kernel models for locally describing
the spectrograms of the sources. Such kernels can capture source
features such as repetitivity, stability over time and/or frequency,
self-similarity, etc. KAM notably subsumes many popular and
effective methods from the state of the art, including REPET and
harmonic/percussive separation with median filters. However, it
also comes with an important drawback in its initial form: its
memory usage badly scales with the number of sources. Indeed,
KAM requires the storage of the full-resolution spectrogram for
each source, which may become prohibitive for full-length tracks
or many sources. In this paper, we show how it can be combined
with a fast compression algorithm of its parameters to address the
scalability issue, thus enabling its use on small platforms or mobile
devices.

Index Terms—sound source separation, Kernel Additive
Modelling, randomized algorithms

I. INTRODUCTION

Musical audio source separation aims at recovering the con-
stituent isolated instrumental stems from a musical track. It is a
topic that has many applications in the entertainment industry such
as automatic karaoke [19], [29], music upmixing [21], [22], [23] or
audio restoration [31]. For this reason, it has gathered the attention
of a large community of researchers in the past 15 years [35],
[34]. The inherent difficulty of audio source separation comes
from the fact that it is essentially an ill-posed inverse problem:
in a typical setting, we have more signals to estimate than the
number of signals we observe. Indeed, music most often comes in
mono or stereo recordings, while our objective is to recover all its
constituent instrumental sources, with there being typically 5 to 10
sources. Hence, we have more unknowns than available equations
to describe the complex mixing process we want to invert. Without
any further regularization scheme, there is an infinite number of
solutions to this so-called underdetermined problem.

In order to perform audio source separation, all techniques
therefore include some kind of knowledge in the modelling in order
to restrict the search for solutions. This enforces the fact that neither
the mixing process nor the source signals should be completely
arbitrary. In the overdetermined case, i.e. when there are more mix-
tures than sources, only a linear mixing model and very loose prob-
abilistic assumptions on the sources signals were shown necessary
for building a time-invariant demixing filter, as demonstrated by the
popular Independent Components Analysis (ICA, see e.g. [14]) or
Second-Order Blind Identification (SOBI [1]) approaches (see [5]
for an overview). On the contrary, it is not possible to design such
a time-invariant demixing filter in the underdetermined case: only
time-varying adaptive processing permits separation of sources.
Many approaches were explored for this purpose, including state-
space modelling [4], sparse decompositions [27] and, finally, local
Gaussian modelling (LGM, [6], [26], [15]). In this latter model, it

has been showed that very good separation can be obtained through
generalized Wiener filtering, provided good estimates for the Power
Spectral Densities (PSD) of the sources are available; these are
commonly called spectrograms in the literature.

While blind underdetermined separation can be achieved under
the LGM by exploiting only spatial (multichannel) information [6],
experience shows that further constraining the sources PSD models
yields much better results in practice. This track of research
increasingly showed that prior assumptions about the sources leads
to improved performance in practice [33], [16], [34]. The common
ground of most related work on audio source separation then
becomes the building of models for the spectrograms of the sources
that have a strong expressive power while requiring the fitting of
only a small number of parameters. On this topic, we can identify
two main directions in recent research.

First, instead of assuming the PSD of a source to be completely
arbitrary, as done in [6], we can suppose that it exhibits some kind
of known structure through the use of a global parametric model.
A popular choice for this purpose is to express the spectrogram of
a source as the activation over time of only a few spectral patterns.
This idea leads to the celebrated Nonnegative Matrix Factorization
framework (NMF, [32], [24], [7], [26], [15]).

Second, even if NMF often yields good performance, it is limited
in the sense that some sources cannot be well described as the
superposition of only a few spectral templates. Rather, there are
cases where it is more convenient to impose only some kind of
local regularities on the spectrograms of the sources to identify
them from the mixture instead of a global and much constrained
model. For instance, if we know that a musical background is
repetitive whereas the vocal signal is not, it is much more efficient
to enforce this knowledge rather than to choose a NMF model.
This line of thought leads to the REPET algorithm [28], [19], [29],
that proved very efficient for music/voice separation. Likewise,
if our objective is to separate harmonic and percussive sounds,
there is no real advantage in trying to build dictionaries of such
sounds to use for NMF as in [15]. On the contrary, experience
shows that it is much more effective to directly exploit the fact
that harmonic spectrograms should be locally constant along time
while percussive spectrograms are locally constant along frequency.
Enforcing this knowledge is very easily done through simple
median filters as in [9].

More generally, we recently showed that all those techniques
may be seen as particular cases of a general framework called
Kernel Additive Modelling (KAM, [17]), where the spectrogram
of each source is modelled only locally. We showed in [17], [20]
that the resulting iterative Kernel Back-Fitting audio separation
algorithm (KBF) basically amounts to median-filtering the spectro-
gram of each source estimate at each iteration. The kernel used
for this median filter depends on the source and encodes our
prior knowledge about it. This approach generalizes many state
of the art techniques and was shown to give good results for
different audio separation tasks such as voice/music separation [20]
or harmonic/percussive separation [11].

Although it gives a very satisfying performance in many cases,



the KAM framework comes with an important drawback, which
is memory usage: it requires storing the full spectrogram of each
source. Indeed, since the assumptions about a source spectrogram
in KAM are only described in terms of local constraints: it does
not automatically come with a concise model as NMF modelling
does. Hence, if we are to separate 10 sources, say, from a 4 minutes
song, we need to store the equivalent of 40 minutes of audio at full
resolution in a highly redundant representation, in practice requiring
approximately 32GB of RAM in our implementations [17], [20].
This prevents the method being used on today’s standard laptop
computers or mobile devices, in sharp contrast with NMF-based
methods whose memory usage is much smaller.

In this paper, we address this memory usage issue of KAM.
The main idea is the following: at each iteration and for each
source, KAM produces a new estimate for the full-resolution
spectrogram through median filtering. Instead of storing it as such,
we apply a factorization procedure on this spectrogram estimate,
so as to compress it efficiently before the next source is processed.
Whatever the number of sources, this “light” version of KAM,
that we call KAML, never requires storing more than two full-
length signals: the mixture and the current source being processed.
Inspired by recent work on optimal parameter compression in
the Informed Source Separation literature (ISS, [25]), we discuss
the choice of the spectrogram compression technique to use, and
show that a computationally efficient approach lies in recently
proposed randomized matrix factorization algorithms [13]. This
choice guarantees that while yielding a similar computational cost
and performance as the original KAM, KAML has a memory usage
equivalent to that of NMF-based techniques.

This paper is structured as follows. In section II, we recall the
KAM approach for audio source separation. In section III, we
address the compression and its parameters, as well as deriving the
KAML technique. In section IV, we study how KAML performs
on music/voice separation of musical full-length tracks.

II. KERNEL ADDITIVE MODELLING

II-A. Notations and separation

Let x̃ denote the multichannel waveform of the audio mixture,
where I is the number of channels, e.g. I = 2 for stereo
mixtures. The mixture is taken as the sum of J underlying sources
waveforms, each one of them also being a I-multichannel signal.

We write {sj}j=1···J and x as the Short Term Fourier Trans-
forms (STFTs) of the sources and mixture, respectively. Each one
of them is a Nω×Nt×I tensor, Nω being the number of frequency
bands and Nt the number of frames. sj (ω, t) is the I × 1 vector
giving the STFT sj for all channels (e.g. left and right) of source j
at Time-Frequency (TF) bin (ω, t).

If we choose a Local Gaussian Model for the sources [6], all
vectors {sj (ω, t)}ω,t are assumed independent and distributed with
respect to a multivariate complex isotropic Gaussian distribution:

∀ (ω, t) , sj (ω, t) ∼ Nc (0, pj (ω, t)Rj (ω)) , (1)

where pj (ω, t) ≥ 0 is the Power Spectral Density (PSD) of
source j at TF bin (ω, t) and Rj (ω) is a I×I positive semidefinite
matrix called the spatial covariance matrix of source j at frequency
band ω, encoding inter-channel correlations for that source at that
frequency. This probabilistic model generalizes the common linear
instantaneous and convolutive cases [6].

Being the sum of J independent random Gaussian vec-
tors sj (ω, t), the mixture x (ω, t) is also Gaussian. Given estimates

p̂j and R̂j of the parameters, the Minimum Mean-Squared Error
(MMSE) estimates ŝj of the STFTs of the sources are obtained by
generalized spatial Wiener filtering [2], [3], [15], [6] through:

ŝj (ω, t) = p̂j (ω, t) R̂j (ω)

[

J
∑

j′=1

p̂j′ (ω, t) R̂j′ (ω)

]

−1

x (ω, t) .

(2)

Fig. 1. Examples of kernels to use for KAM in audio (from [17])

The waveforms are then easily recovered with an inverse STFT.

II-B. The kernel backfitting algorithm

In this section, we very briefly summarize the main ideas from
KAM as applied to audio. The interested reader is referred to [17],
[20], [11] for a more thorough treatment.

Most audio source separation algorithms based on the LGM are
iterative and can be understood as alternating between two different
and complementary steps. In a separation step, the parameters are
assumed completely known and fixed, and separation is performed
to yield new source estimates ŝj . Conveniently, the LGM model
automatically comes with an optimal way (2) to achieve this
separation. In a fitting step, the sources estimates ŝj are assumed

good and fixed, and the model parameters p̂j and R̂j are learned
anew. This algorithm is iterated until some criterion for convergence
is reached, usually the simple number L of iterations.

In some cases, it can be shown that this iterative procedure
actually is an Expectation-Maximization algorithm [8], [26], when
the fitting step bears the probabilistic meaning of maximizing the
likelihood of the parameters. However, sticking to this probabilistic
perspective is not really mandatory: it may also be understood from
an optimization viewpoint as fitting source parameters given some
arbitrary cost function. This line of thought has notably led to
the popular Denoising Source Separation procedure in the overde-
termined case (DSS, [30]) and to KAM in the underdetermined
case [17], [20].

In practice, we choose a specific binary kernel for each source
to separate, as exemplified in Fig. 1. For a percussive or harmonic
source, we may choose the vertical or horizontal kernels 1(a)
or 1(b), respectively. For a repeating source as in the REPET
method, we may choose the periodic kernel 1(c). Finally, for
a source with only a spectral smoothness assumption, we can
choose 1(d) (see [20], [17]). Then, during the fitting step of each
source, a simple 2D median filter is applied on the estimated
spectrogram so as to enforce the desired local structure suggested
by its kernel. This leads to a new spectrogram estimate p̂j for
this source. The whole process is iterated until convergence. This
algorithm is called Kernel Back-Fitting (KBF).

III. EFFICIENT COMPRESSION OF SPECTROGRAMS

III-A. Parametric spectrogram models

Even if it permits much flexibility in modelling the sources
through adequate kernels, the KBF algorithm as described above
leads to a whole estimated spectrogram p̂j (ω, t) for each source,
thus requiring a significant amount of storage capacity if J or Nt

are large. To address this issue, we propose to compress each of
these spectrograms p̂j by a parametric approximation pj . Indeed, p̂j
may be seen as a large Nω×Nt matrix and many approaches were



proposed in the past to approximate it with only a few parameters,
through a matrix factorization algorithm. As an example, a natural
choice would be to approximate p̂j with a NMF model as:

p̂j ≈ pj (ω, t) =

K
∑

k=1

Wj (ω, k)Hj (t, k) , (3)

where K is called the number of components (typically 20) and Wj

and Hj are Nω×K and Nt×K nonnegative matrices, respectively.
We see that storing Wj and Hj instead of p̂j brings the memory
usage from O (JNωNt) to O (JK (Nω +Nt)), which is remark-
able. When iterating KBF, all p̂j are then simply replaced by pj ,
which yields no performance degradation provided the compression
parameters Wj and Hj have been correctly estimated.

The main issue with choosing model (3) for compressing spec-
trograms comes from the fact that fitting Wj and Hj for each source
at each iteration brings a significant computational overhead to the
method, because NMF algorithms are quite involving.

Another approach we adopt instead is to drop the nonnegativity
assumption in (3) for Wj and Hj . Indeed, even if this assumption
has proved important in yielding meaningful source spectrograms in
blind audio separation studies [26], it is not crucial in our context,
because we are only using (3) to efficiently approximate p̂j as a
whole and not for decomposing it into its constituent components.
Hence, we can simply approximate each large matrix p̂j using a
standard matrix factorization method such as a truncated Singular
Value Decomposition (SVD), that minimizes the squared error
between p̂j and its approximation pj . To this purpose, we will
shortly see in section III-B that computationally efficient methods
for this exist.

However, audio spectrograms do yield a very large dynamic
range, which makes the choice of the squared error criterion,
minimized by SVD, a poor cost function for compression. In the
same context, previous work on compressing spectrograms [18]
showed that it is advantageous to apply some kind of range
reduction method prior to MMSE compression. This justifies our
strategy to rather apply a matrix decomposition on a fractional
version of p̂j :

p̂γj ≈ pγj (ω, t) =

K
∑

k=1

Uj (ω, k)λj (k)Vj (k, t)
⋆ , (4)

where γ ∈ [0 1] is a compression exponent (typically 0.5),
Uj , λj , Vj are the parameters for the truncated SVD of p̂γj and ·⋆

denotes Hermitian conjugation. Provided an efficient method is
available to compute these parameters, we see that the resulting
light KAM, abbreviated KAML in the following, has a memory
usage cost of O (JK (Nω +Nt)) instead of O (JNωNt), which
makes it suitable for execution on low-end devices.

III-B. Computationally efficient factorization

Recent research has demonstrated that randomized algorithms
(see [13] and references therein) could be extremely efficient at
analyzing and finding latent factors in huge amounts of data,
compared to their deterministic counterparts. As an example, the
complexity for the computation of a full SVD on a Nω × Nt

matrix is at best O
(

4N2
ω + 22N3

t

)

[12]. When using a ran-
domized algorithm for truncated SVD, this complexity can drop

down to O
(

NωNt logK + (Nω +Nt)K
2
)

[13]. For all practical
purposes, this means that computing the parameters Uj , λj and Vj

in (4) only takes approximately a second on a small laptop com-
puter, even for complete tracks. For completeness, the factorization
method used in this study is summarized as algorithm 1, where
diagv is the diagonal matrix whose diagonal entries are given
by the vector v and i.i.d. stands for “independent and identically
distributed”.

Algorithm 1 randomSVD: Randomized computation of truncated
SVD of K components over a m× n matrix A [13, p. 9]

• Generate a random n× 2K Gaussian i.i.d. matrix Ω
• Form Y = AΩ
• Compute an orthonormal basis Q for the range of Y
• Form the small B = Q⋆A
• Compute

[

Ũ , diagλ, V ⋆
]

= SVD (B) with standard algo-
rithm

• Form U = QŨ

Algorithm 2 KAML. Kernel Additive Modelling for audio with
compact models

1) Input:

• Mixture STFT x (ω, t)
• Kernels wj as in figure 1.
• Number L of iterations
• compression exponent γ ∈ [0 1]

2) Initialization

• l← 1
• p0 (ω, t)← x (ω, t)⋆ x (ω, t) /IJ
• ∀j,

[

Uj , diagλj , V
⋆
j

]

= randomSVD (pγ0 )
• Rj (ω)← I × I identity matrix

3) For each source j:

a) Compute ŝj using (2) with p̂j replaced by
[

pγj
]1/γ

(4)

b) Cj (ω, t)← ŝj (f, t) ŝj (f, t)
⋆

c) R̂j (f)←
I
T

∑

t

Cj(f,t)

tr(Cj(f,t))
d) zj (f, t)←

1
I

tr
(

R̂j (f)
−1 Cj (f, t)

)

e) p̂j (f, t)← median_filter {zj | wj}
f)

[

Uj , diagλj , V
⋆
j

]

= randomSVD
(

p̂γj
)

4) If l < L then set l← l + 1 and go to step 3a
5) Output:

sources estimates STFT estimates ŝj

Given the randomSVD algorithm 1, the full KAML procedure
is summarized as algorithm 2, where median_filter {zj | wj} cor-
responds to applying a 2D median filter on the Nω×Nt matrix zj
with the binary kernel wj . Except for the critical compression parts,
we see that KAML is very close in spirit to the algorithms presented
in [17], [20]. We refer the interested reader to [6] for more details on
the re-estimation of R̂j and zj in the fitting step. A fully working
Matlab implementation of KAML is available on the companion
webpage of this paper1.

IV. EVALUATION

We evaluated KAML for the separation of background music and
singing voice in full-track songs, using the same 50 song dataset as
in [17]. First, we analyzed the performance of KAML by varying
the number of periodic kernels M from 1 to 15 (corresponding
to more repetitive sources) with the number of components for
compression K fixed to 150, while also utilising a stable harmonic
kernel and a cross kernel for vocals as used in [17] giving J = M+
2. Secondly, we varied the number of components for compression
from 10 to 1000, using the component numbers listed in Fig. 3 with
M = 5 and J = 7. In all cases, the harmonic stability parameter
(length of kernel (b) in figure 1) was fixed to 1.3 second and 0.8
second for the low and high frequencies, respectively, and we used
a number of 4 iterations for the backfitting algorithm.

For the performance measures, we used the BSS Eval toolbox2,
featuring the Source-to-Distortion Ratio (SDR) and the Source

1 www.loria.fr/~aliutkus/kaml/
2http://bass-db.gforge.inria.fr/bss_eval/

www.loria.fr/~aliutkus/kaml/
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Fig. 2. (a) NSDR and (b) NSIR vs Number M of periodic kernels
used, with K = 150.

to Interference Ratio (SIR), both in dB. While SDR gives an
overall score for separation, SIR is related to the amount of
interferences between the estimates. We derived the normalized
SDR (NSDR) and SIR (NSIR) which correspond to the difference
between the actual SDR/SIR and the SDR/SIR computed using the
original mixtures as an estimate for the sources. They quantify the
improvement in separation induced by the algorithm, and allow
better studying of performance over different excerpts. Higher
values mean better separation. In practice, we split the estimates
into 30s segments, leading to a total of 350 segments on which the
metrics were computed.

Fig. 2 shows boxplots of (a) NSDR and (b) NSIR against the
number of periodic kernels. As can be seen, NSDR increases
for both background music and voice with increased numbers of
periodic kernels, though the rate of improvement begins to slow
with greater numbers of kernels. Concerning NSIR, we see that
the more periodic kernels, the more isolated the vocals are, while
bringing more interference for the music. Having M = 5 thus
appears as a good trade-off. More importantly, these results show
that KAML is scalable, as the original version of KAM would
have required approximately 54GB of RAM at M = 15 and
J = 17. In contrast, KAML ran comfortably with these number
of kernels on a laptop with 8 GB of RAM. Fig. 3 demonstrates
the effects of varying K with J fixed at 7. Also shown is the
baseline performance of the uncompressed KAM, using the same
parameters otherwise as KAML. Surprisingly, the best performance
is obtained at K = 20, a relatively small number of components,
at which the finer details of the source spectrograms will not be
modelled in the compressed version of the spectrogram. There is
an average increase in performance of 0.2 dB in NSDR over the
original uncompressed KAM algorithm. This suggests that learning
too much detail in the source spectrograms can be detrimental to
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Fig. 3. NSDR vs Number of compression components K, with
M = 5, J = 7. Base stands for the original KAM without
parameters compression.

separation performance. Further evidence for this hypothesis can
be found in [10], where the effect of the number of iterations
performed was tested against separation performance in the context
of NMF-based algorithms. There, the best results were obtained at
lower numbers of iterations before the algorithms had fully captured
the finer details in the source spectrograms. This highlights another
advantage of KAML; not only does it drastically reduce memory
usage, but it also results in slightly improved performance, though
at the cost of a small increase in computational complexity, due to
applying algorithm 1 for parameters compression.

V. CONCLUSION

In this paper, we note that Kernel Additive Modelling (KAM)
is an effective framework for performing audio source separation.
In a nutshell, it permits separation of audio sources using only
prior knowledge on what their spectrograms should look like
locally. KAM demonstrated good performance for voice/music or
harmonic/percussive audio separation and generalizes many popular
state of the art techniques.

However, KAM comes with an important problem, which is
memory usage. In its original form, it required storing a huge
amount of parameters, i.e. the complete estimated spectrograms
for each source. This prevents its use in low-end devices.

In this paper, we have shown how this scalability problem
could be avoided by applying dimension reduction techniques to
the estimated spectrograms. To this purpose, we have discussed
several compression models, including Nonnegative Matrix Fac-
torization (NMF) and Singular Values Decomposition (SVD). In
this spectrogram compression application, we have shown that the
recently proposed randomized truncated SVD algorithms were good
candidates for drastically reducing the memory of KAM while
maintaining its computational efficiency.

The “light” resulting algorithm, called KAML was shown to
perform very well on a complete music/voice separation task, while
having a memory usage close to that of classical NMF methods.
We have also shown that the ability to use increased numbers
of periodic kernels improves music/voice separation performance.
Further we also demonstrate that the compression stage in KAML
also is also beneficial for music/voice separation, with a low number
of compression components yielding improved separation perfor-
mance over the uncompressed KAM algorithm. This demonstrates
the utility of KAML over the original KAM method, offering drasti-
cally reduced memory usage and improved separation performance
at the cost of a small increase in computational complexity.
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