

Scalable authenticated tree based group key exchange for ad-
hoc groups
Citation for published version (APA):
Desmedt, Y., Lange, T., & Burmester, M. (2007). Scalable authenticated tree based group key exchange for ad-
hoc groups. In S. Dietrich, & R. Dhamija (Eds.), Revised selected papers of the 11th International Conference on
Financial Cryptography and Data Security & First International Workshop on Usable Security (FC 2007 & USEC
2007) 12-16 February 2007, Scarborough, Trinidad and Tobago (pp. 104-118). (Lecture Notes in Computer
Science; Vol. 4886). Springer. https://doi.org/10.1007/978-3-540-77366-5_12

DOI:
10.1007/978-3-540-77366-5_12

Document status and date:
Published: 01/01/2007

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1007/978-3-540-77366-5_12
https://doi.org/10.1007/978-3-540-77366-5_12
https://research.tue.nl/en/publications/6c6d1335-db42-4269-bed0-9d29133656d8

Scalable Authenticated Tree Based Group Key
Exchange for Ad-Hoc Groups

Yvo Desmedt1,�, Tanja Lange2,��, and Mike Burmester3,���

1 Information Security, Department of Computer Science,
University College London, UK

y.desmedt@cs.ucl.ac.uk
2 Department of Mathematics and Computer Science

Technische Universiteit Eindhoven, Netherlands
tanja@hyperelliptic.org

3 Department of Computer Science
Florida State University, USA

burmester@cs.fsu.edu

Abstract. Task-specific groups are often formed in an ad-hoc manner
within large corporate structures, such as companies. Take the following
typical scenario: A director decides to set up a task force group for some
specific project. An order is passed down the hierarchy where it finally
reaches a manager who selects some employees to form the group. The
members should communicate in a secure way and for efficiency, a sym-
metric encryption system is chosen. To establish a joint secret key for the
group, a group key exchange (GKE) protocol is used. We show how to
use an existing Public Key Infrastructure (PKI) to achieve authenticated
GKE by modifying the protocol and particularly by including signatures.

In this paper we recall a GKE due to Burmester and Desmedt which
needs only O(log n) communication and computation complexity per
user, rather than O(n) as in the more well-known Burmester-Desmedt
protocol, and runs in a constant number of rounds. To achieve authen-
ticated GKE one can apply compilers, however, the existing ones would
need O(n) computation and communication thereby mitigating the ad-
vantages of the faster protocol. Our contribution is to extend an existing
compiler so that it preserves the computation and communication com-
plexity of the non-authenticated protocol. This is particularly important
for tree based protocols.

Keywords: Key Distribution, Group Key Exchange, Tree based GKE,
Ad-Hoc Groups, Forward Security, Authentication, Anonymity.

1 Introduction

Today several banks have branches worldwide. Moreover, stockowners of these
banks often are in different countries. In general, globalization implies that

� Part of this research was done while visiting the ITSC Bochum 2004.
�� The work has been supported in part by the European Commission through the

IST Programme under Contract IST-2002-507932 ECRYPT.
��� The third author was supported by NSF under grants NSF 00209092 and NSF

0087641.

S. Dietrich and R. Dhamija (Eds.): FC 2007 and USEC 2007, LNCS 4886, pp. 104–118, 2007.
c© IFCA/Springer-Verlag Berlin Heidelberg 2007

Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups 105

decision makers are in different locations. So efficient and secure communication
within a group is very important. Clearly symmetric systems offer the higher
throughput and so all group members must hold a common secret key. Equip-
ping each user with a new key is called group key exchange. Given the distributed
nature of the group, new keys can only be established through an insecure chan-
nel. Furthermore, the parties need to be assured that this key is shared with the
correct group members, so the users must be authenticated. This shows that in
financial cryptography group key exchange is an important primitive.

Another scenario is the need to set up ad-hoc groups. Organizations, such as
financial ones, are usually organized in a hierarchical way. Often outside consul-
tants are needed in virtual group meetings. The president of the organization
does not know who these experts are. We find ourselves in a situation where
members lower in the hierarchy decide who the outside-consultants are that
should join the group. Again secure group communication is needed.

Once this symmetric key is established it can be used for basically all com-
munication needs within the group. It not only works as the key in a symmetric
system to ensure that data cannot be decrypted but also allows members within
the group to communicate anonymously and the key can also be used in MACs
to authenticate messages.

A simple solution for authenticated group key exchange is to have one user
(the chair) choose the key and exchange it with the next user, who will exchange
it with the next, etc., each by using the Diffie-Hellman KE protocol. The cost
of this solution is that it requires O(n) rounds and each user has constant com-
munication and computation. We refer to this scenario as the naive approach.

So far, several group KE protocols have been proposed, most of which are ex-
tensions of the two-party Diffie-Hellman protocol [3,4,9,10,5]. Katz and Yung [12]
designed a compiler that transforms any secure group KE protocol into an au-
thenticated KE protocol. The model used is a refinement of models proposed by
Bresson et al. in [2]. The additional requirements are: a PKI for digital signa-
tures, and each message issued should be signed and checked by all participants.1

To avoid replay attacks and loss of intermediate messages without noticing, each
group member needs to maintain a counter for messages send during one KE
and a signed string must include all group participants as well as a random
nonce for each participant. As an example they consider the Burmester-Desmedt
scheme [3,5] which requires a constant number of rounds but has communication
complexity2 O(n) and computational complexity O(n). Since there is another
Burmester-Desmedt group key exchange protocol [4], we refer to the one in [3,5]
as Burmester-Desmedt I (BD-I).

Although BD-I is very nice in its perfect symmetry, it is rarely used in real
life application. As has been pointed out by many authors, e.g. [14, p.86] “One
shortcoming of BD is the high communication overhead.” It is for this reason that

1 We like to remark that the PKI can also be replaced by an Identity-based Key
Infrastructure [6].

2 Although each sender only sends a constant number of strings (two), the number
of received strings is O(n). See Section 2.3 for more details.

106 Y. Desmedt, T. Lange, and M. Burmester

tree based group key exchange protocols are considered superior, as we describe
further. Tree based group key exchange protocols have become quite popular due
to the work of Wong-Gouda-Lam [16]. They actually considered a generalization
of trees, i.e., directed acyclic graphs. One should observe that many schemes
can be described as trees. Indeed the Boyd and Nieto [1] scheme corresponds to
a star which is a special tree. Certain trees provided better efficiency. We now
discuss such a scheme.

The Burmester-Desmedt scheme II (BD-II) [4] is one of the schemes which
uses a (binary) tree for group KE. Using the properties of trees, it can achieve
logarithmic complexity while keeping the same constant number of rounds. (Note
that the work in BD-II predates the one by Wong-Gouda-Lam.) Now if one were
to use the Katz-Yung compiler [12] it would mitigate the advantage of BD-II
as checking of O(n) signatures would be required. In this contribution we give
an authenticated version of the BD-II group key exchange protocol with an over-
all communication and computation complexity of O(log n) while running in a
constant number of rounds. These ideas extend to other group key exchange pro-
tocols, in particular tree based ones with logarithmic complexity. For this reason
we modify the Katz-Yung compiler.

After introducing the BD-II schemes and stating the security model we give
a security proof for a passive adversary of one of the Burmester-Desmedt II
schemes (although the paper contains several security claims, no proofs are given
in [4]). We then extend the scheme to an authenticated KE by modifying the
Katz-Yung compiler. The main problem with a direct application of the Katz-
Yung compiler is that each party needs to verify O(n) signatures which turns
the overall complexity to O(n) even though the underlying protocol allows for
O(log n). However, the joint key is computed by any user U entirely from in-
formation provided by its at most log n ancestors along the tree and only those
logarithmically many signatures need to be verified. We present the compiler in
the most general setting applicable to any group KE protocol.

The BD-II group KE protocol is non-contributory in the sense that the key
does not depend on the contribution of all members. In fact, no protocol with
a computation or communication complexity lower than O(n) can be fully con-
tributory if it runs in a constant number of rounds and without delay. However,
the Katz-Yung model allows for this since it does not deal with active insiders.
We show that for a passive adversary the security of the protocols has a tight
reduction to the DDH problem. Active external adversaries cannot insert mes-
sages in the name of a group member as the protocol is authenticated. There is
no attack advantage of being a member of the system, i.e. being registered to
the system’s PKI, if one is not part of the group which is performing the group
key exchange. When we speak of insiders we mean actual members of the group
which are agreeing on a key.

For the BD-I protocol it has been shown in [10,15,7] that as few as 2 malicious
insiders are enough to force the resulting group key to be any element they want,
e.g. one known to an outsider, without needing any extra communication during
the execution of the GKE. Our presented scheme is no more secure against

Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups 107

active insiders. More specifically, we shall use the same model as Katz-Yung [12]
which does not deal with active malicious insiders that attempt to prevent an
honest party from obtaining the common group key. The advantage of an active
adversary is defined to be the advantage of obtaining the common group key
and like Katz and Yung we assume the “best-case” scenario of an adversary
who delivers all messages intact to the appropriate recipient(s) as soon as they
are sent. ([12, Section 1.3]). Recent work by Katz and Sun Shin [11] formalizes
insider attacks and defines the security of authenticated GKE protocols against
malicious insiders in the framework of universal composablility. However, [7]
demonstrates that dealing with active insiders is far from trivial. They criticize
the model in [11] and present a different one which they consider to be more
realistic. We do not want to enter into this controversy and exclude malicious
insiders.

We recently noticed an independent result on authenticated tree based
GKEs [13]. That paper is also based on the Burmester-Desmedt II GKE even
though this is not stated in the paper. One shortcoming of that paper is that
they require each party to check all signatures on all messages; this implies that
they have O(n) computation costs rather than the desired O(log n). It is be-
cause of that difference that the Katz-Yung compiler [12] needs to be adjusted.
Furthermore, their group identifiers have length O(n).

The remainder of this paper is organized as follows. We start by stating the
security model and surveying one of the BD-II schemes. We then prove its secu-
rity against passive adversaries and provide an authenticated variant based on
the DDH assumption. A comparison with other schemes shows the advantages
of our proposal.

2 Models

Unless explicitly mentioned we follow the same lines as Katz and Yung [12]
who used the security model for group KE due to Bresson et al. [2]. We first
introduce the notations and then briefly mention the oracles the adversary can
query depending on the protocol. For full details we refer to [12].

2.1 Participants and Initialization

There is a polynomial-size set P of potential participants in the group key ex-
change, any subset of P may decide to establish a session key. We assume that
during an initialization phase each participant in P runs an algorithm G(1k) to
generate a pair of public and private keys (PK, SK). The secret key is stored
by the user and (certified) public keys are accessible to all participants.

2.2 Adversarial Model

We denote the instance i of user U as Πi
U , each instance may be used only once.

Each instance has associated with it the variables statei
U , termi

U , acci
U , usedi

U ,

108 Y. Desmedt, T. Lange, and M. Burmester

pidi
U , the session ID sidi

U , and the session key ski
U which we now explain. In our

model, the partner ID pidi
U contains a group identifier gid which identifies all

partners involved in the current execution of the GKE. The other definitions are
as in [2], so statei

U represents the current (internal) state of instance Πi
U , termi

U

acci
U and usedi

U take boolean values indicating whether the instance has been
terminated or accepted or used, respectively. Most of these variables appear only
implicitly except for pidi

U , sidi
U , and ski

U .
The adversary is assumed to have full control over all communication in the

network. His interaction is modeled by the following oracles:

– Send(U, i, M) – to send the message M to instance Πi
U and output the reply

generated by this instance. This oracle may also be used to initiate a key
exchange among a group {U1, . . . , Un} of users identified by some group
identifier gid. The length of gid must correspond to the security parameter.
This means that the first round of the KE protocol is executed upon receipt
of this message.

– Execute(gid) – to execute the protocol between unused instances of players
U1, . . . , Un ∈ P determined by the group identifier gid and to output the
transaction of the execution. The adversary has control over the number of
players and their identities.

– Reveal(U, i) – to reveal the session key ski
U of player U belonging to instance i.

– Corrupt(U) – to output the long-term secret key SKU of player U .
– Test(U, i) – to be issued the final test. Once the adversary decides that he

has enough data he queries the Test oracle for a challenge. A random bit b
is generated; if b = 1 then the adversary is given ski

U , otherwise he receives
a random session key.

A passive adversary is given access to the Execute, Reveal, Corrupt and Test
oracles, while an active adversary is additionally given access to the Send oracle.
Both types of adversaries are allowed to make adaptive queries before and after
the Test oracle is queried.

Partnering. The session ID sidi
U equals the concatenation of all messages sent

and received by Πi
U during the course of its execution. For the partner ID we

deviate from the suggestion in [12] and generalize their setting to the situation
that not each party communicates with each of the others during an execution of
the protocol. Although this may seem as a slight adaptation of [12] (see also [2]),
it allows us to dramatically improve on the efficiency of the schemes.

We assume that the group of users can be identified uniquely by a group
identifier gid. This assumption holds true in all network protocols and fits well
for hierarchical situations we encounter in the financial world. Then pidi

U consists
of the group identifier and the identities of the players in the group with which
Πi

U interacts during the KE protocol, i.e., to which he sends messages or from
which he receives messages. Since the underlying unauthenticated protocol is
assumed work, i.e., to provide each user with the same key, this implies that the
union of all pidi

U covers each user involved in the key exchange. Furthermore,

Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups 109

the graph displaying the communication must be connected. This is due to the
fact that all users obtain the same key. In our compiler this ensures that each
signature is checked by a group member which is connected to all others via
checked paths.

Correctness. We require that for all U , U ′ and i, i′ involved in the same key
exchange and such that acci

U = acci′

U ′ = TRUE, the same valid session key is
established ski

U = ski′

U ′ �= NULL.

Security and Freshness. An instance Πi
U is fresh unless one of the following

is true: (1) at some point, the adversary queried Reveal(U, i) or Reveal(U ′, i′) for
any Πi′

U ′ in the same group (denoted by gid) as Πi
U or (2) a query Corrupt(V)

was asked before a query of the form Send(U ′, i′, ∗) by V , where V and U ′ are
in pidi

U . (Note that our definition of pidi
U only includes those users that U is

directly interacting with, i.e., those providing input to the key computation of
U).

The event Succ occurs if the attacker is successful, i.e., if he queries the
Test oracle on a fresh instance Πi

U for which acci
U = TRUE and guesses the

bit b correctly. The advantage of attacker A against protocol P is defined as
AdvA,P (k)

def= |2 · Pr[Succ] − 1|.
Protocol P is a secure group KE protocol if it is secure against a passive

adversary, i.e., for any PPT passive adversary A the advantage AdvA,P (k) is
negligible. Protocol P is a secure authenticated group KE (AKE) if it is secure
against an active adversary.

We use AdvKE
P (t, qex) to denote the maximum advantage of any passive ad-

versary attacking P , running in time t and making qex calls to the Execute
oracle. For the authenticated group KE we use AdvAKE

P (t, qex, qs), where qs refers
to the number of Send queries. If the scheme achieves forward secrecy we use
AdvAKE−fs

P (t, qex, qs).
The security of the example protocols will be based on the decisional Diffie-

Hellman problem (DDHP), let Advddh
G (t) be the advantage of a PPT adversary

against the DDHP in a group G = 〈g〉 of order �. The DDHP is the prob-
lem of distinguishing the distributions of {(ga, gb, gab) : a, b ∈R ZZ/�ZZ} from
{(ga, gb, gc) : a, b, c ∈R ZZ/�ZZ} given g. For a single triple this amounts to de-
ciding whether the triple (g1, g2, g3) ∈ G3 is a valid Diffie-Hellman triple, i.e., if
g3 = g

logg g1

2 .

2.3 Complexity

Group KE protocols are often carried out in dynamic sets of players. One im-
portant feature of good protocols is their scalability. To take this into account
we always state the maximal complexity occurring for any user in the system.
Furthermore, we consider the number of users n as the important parameter
and ignore costs depending on the cryptographic primitive like the size of the
underlying group 〈g〉.

110 Y. Desmedt, T. Lange, and M. Burmester

The communication complexity is the maximal amount of information sent
and received per user. We assume that broadcasting a message does not depend
on the number of receivers, however, receiving l different messages means cost
of l, even if this occurs in one round. Katz and Yung [12] mention only sent
messages but use the term in the same way. We mention the received messages
explicitly to take into account the costs for being online, and for receiving and
storing messages. At the same time we also allow users to ignore communication
not intended for them. The computation complexity is the maximal amount of
computation during one execution of the protocol. In both cases we are interested
in the dependence on n, all other variables like group size or security parameter
are considered as constant in the big-O estimates.

3 The Burmester-Desmedt Scheme II

We now describe in detail one scheme with logarithmic complexity. This example
serves two purposes: on the one hand it gives a good example of the advantage
of our compiler over that of Katz and Yung and on the other hand it closes the
gap that [4] was published without security proofs.

The BD-II scheme [4] is a compiler that transforms a two-party KE protocol
into a multiparty key exchange protocol. There are two variants. The first is
sequential with delays. The second is a multicast version with minimal delay.

To ease exposition we focus on the Diffie-Hellman version of the BD-II
scheme [4, p. 127] (one can use other two party KE protocols as primitives)
and use a cyclic group G = 〈g〉 of prime order (although the proof remains simi-
lar if the last condition is not satisfied). The advantage of BD-II over other group
KE protocols is that the communication complexity, the computation complexity
and memory reduce from O(n) per party to O(log n) per party in the multicast
version, and to constant in the sequential version which has O(log n) delay. The
number of rounds each party is actively involved in is constant and equal to
three for both variants.

In this section we briefly recall the BD-II protocol [4] in the multicast version
and give a proof of security of the unauthenticated scheme; a sequential version
is given in the Appendix.

Let U1, . . . , Un be the users who want to make a group KE. We now show how
their index automatically determines their place in the (almost) binary tree as in
Figure 1. This ordered tree has the property that user Ui is at level �log2(i+1)�
(a rooted tree version would need one more multiplication round and is therefore
avoided). The set-up can be easily done as the position of user Ui corresponds
to the binary expansion of i + 1, i.e., if i + 1 = (0 . . . 0ijij−1 . . . i1i0)2 is the
binary expansion with ij the leftmost non-zero bit then Ui is on level j and his
parent has expansion parent(i) + 1 = (0 . . . 0ijij−1i1)2 (one more leading zero).
Likewise the children can easily be determined as their expressions are shifted
to the left and they have the same initial binary representation with different
concatenated tails.

Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups 111

1

��������

�������� 2

��������

�������� Level 1

3

��
��

��
��

4
��

��

��
��

5
��

��
��
��

6
��

��
��
��

Level 2

7
...

8
...

9
...

10
...

11
...

12
...

13
...

14
...

Level 3

Fig. 1. The binary BD-tree in the BD-II scheme

The vertices 1 and 2 consider their respective opposite as parent. So all but
the leaves of the tree each have one parent and two children. To ease notation
let ancestors(i) be the set of indices of all ancestors of Ui, including i but having
removed 1 and 2. Let parent(i), left child(i) and right child(i) be the indices of
the parent of Ui and its left child or right child respectively.

Remark 1. One advantage of this scheme is that users only need to know users
higher up in the hierarchy. This fits well to common applications of GKE in
groups invoked by some manager higher up in the hierarchy who decides the
members of the group and their respective function. Once the GKE protocol
is started the users have already received some information publicly and their
public keys are available in a public database.

While the BD-I scheme requires that each user needs to know the position of
every other user relative to him, our scheme limits this to the knowledge of the
positions of at most O(log n) users.

Note that all this is usually not a problem. The user name in the protocol
should contain information about the user’s position (the numbers 1, 2, . . . , n can
be encoded with log n bits) and this number is enough to determine the relative
positions for both BD-I and BD-II. We only stress this observation since it is
often claimed as a disadvantage of BD-II that the position needs to be known
even though this is true even more for BD-I.

Protocol 1 (BD-II group KE)
Let U1, . . . , Un be the set of all users who want to generate a common conference
key. Assume that they are arranged in the binary tree as in Figure 1. The key
exchange is performed in a group 〈g〉 of order � with generator g.

Step 1 Each Ui, i = 1, . . . , n, selects ki ∈R ZZ/�ZZ, computes and sends zi = gki

to his parent and children.
Step 2 Each Ui, i = 1, . . . , n, computes and multicasts to its descendants:

Xleft child(i) = (zparent(i)/zleft child(i))ki , Xright child(i) = (zparent(i)/zright child(i))ki .

Step 3 Each Ui, i = 1, . . . , n, computes the conference key,

Ki = zki

parent(i)

∏

j∈ancestors(i)

Xj .

112 Y. Desmedt, T. Lange, and M. Burmester

Remark 2. Honest users compute the same key, namely K = gk1k2 .

We prove this claim by induction. First observe that K1 = K2 = gk1k2 . Next let
Kparent(i) = K. Then since Kparent(i) = z

kparent(i)

parent(parent(i))

∏
j∈ancestors(parent(i)) Xj

it is obvious that we have:

Ki = zki

parent(i) ∗ (zkparent(i)

parent(parent(i)))
−1 ∗ Xi ∗ Kparent(i).

With Xi = (zparent(parent(i))/zi)kparent(i) and zki

parent(i) = z
kparent(i)
i we get Ki = K.

4 Proof of Security Against Passive Attacker for BD-II

We first show that an attacker against Protocol 1 can be used to solve the deci-
sional Diffie-Hellman problem The proof is an adaption of Burmester-Desmedt’s
proof for BD-I in [5].

Theorem 1. Assuming the Decisional Diffie-Hellman problem is hard, protocol
P is a secure group KE protocol. Namely

AdvKE
P (t, qex) ≤ Advddh

G (t′),

where t′ = t + O(|P|qextexp), qex is the number of Execute queries, and texp is
the time required to perform exponentiations in G.

Note that the time for the execution of P is made explicit by the use of texp.

Proof. Given an algorithm A against P running in time t we show how to build
a distinguisher D against the DDHP. First consider the case that A makes a
single Execute query.

Let D be given a triple (g1, g2, g3) ∈ 〈g〉3. Now D can generate a valid tran-
script for A as shown below. Then D runs A on this transcript and outputs 1,
i.e., the claim that (g1, g2, g3) is a valid Diffie-Hellman triple, if A outputs 1 and
outputs 0 otherwise.

Put z′1 = g1 and z′2 = g2. Randomly choose c3, . . . , cn ∈R ZZ/�ZZ and put
z′i := z′parent(parent(i))g

−ci for i ≥ 3. So, z′3 := g2 · g−c3, z′5 := g1 · g−c5, etc.
Consistent X ′

i’s are obtained by putting X ′
i := (z′parent(i))

ci for i ≥ 3 as is easy
to verify. As the ci (i ≥ 3) are distributed uniformly at random, the distribution
of z′i and X ′

i is identical to that in P .
The transcript consists of T = (z′1, . . . , z′n, X ′

3, . . . , X
′
n). Upon the Test re-

quest, D issues sk′ = g3. Indeed, if sk′ is the valid group key then g3 = sk′ =
z
′ logg z′

2
1 = g

logg g2

1 , i.e., (g1, g2, g3) is a valid Diffie-Hellman triple. So D succeeds
with the same advantage as A and needs (2n − 4)texp additional time for the
exponentiations to generate the transcript.

If more than one execution of the protocol should be allowed, one can easily
generate further triples (gr1

1 , gr2
2 , gr1r2

3) of the same type as (g1, g2, g3) for random
exponents r1, r2 ∈R ZZ/�ZZ.

Bounding the number n by the total number of participants |P| the claim
follows. ��

Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups 113

Note that the computational complexity of computing the group key under a
passive attack for an outsider corresponds to the Computational Diffie-Hellman
problem, as is easy to verify (similar as in [5]).

This protocol does not involve any longterm secrets, so Corrupt queries need
not be taken into account and the protocol automatically achieves forward
security.

5 Authenticated Group Key Exchange

A direct application of the compiler of Katz and Yung [12] would transform
Protocol 1 into an authenticated KE protocol with running time and communi-
cation complexity O(n). We now provide our adjusted compiler which allows us
to stay in O(log n). To simplify the presentation we assume that the reader is
familiar with [12] and will only mention the differences.

To avoid replay attacks, Katz-Yung [12] introduce fresh randomness ri per
user Ui for each execution of the protocol, add a message number for each user,
and make the signature contain information on the group of players in the AKE.
We follow the same road and so we modify the protocol to always send U |j|m
(the user name, the message number and the message) and not only m or U |m.
Let SignSK(m) output the signature on message m under secret key SK and let
VrfyPK(m, σ) = 1 if σ is the correct signature on message m under public key
PK and 0 otherwise.

We observe that in BD-II user Ui computes the Xchild(i) depending only on in-
formation from its parent and two children. To compute the group key skUi = Ki,
user Ui (i �= 1, 2) uses information coming only from the same branch of the bi-
nary tree from nodes on levels above Ui while U1 and U2 use information by their
respective parents. In general, in each group KE protocol there is a clearly de-
fined ordered set of messages used by a specific user Ui and our compiler requires
to check only signatures on these messages. In most tree based systems the set of
users any specific user communicates with is much smaller than the total set of
users; even to the extent that the number of used messages is logarithmic in the
total number of users. In BD-I, however, each user processes input from every
user.

We formulate the compiler in a more general setting which contains Katz-
Yung’s as a special case, we use the term “multicast” to stress that not all users
need to receive the message. To link the messages to the structure in which the
users are arranged we let the set relU = {V1, V2, . . . , VtU } be the set of users
whose input is processed by user U at some point in the protocol and U itself.
E.g. in the BD-I protocol relU is the whole group for any user U while in BD-
II relU is the set of all ancestors and both children of U ; it contains at most
O(log n).

1. During the initialization phase, each party U ∈ P generates the verifica-
tion/signing keys (PK ′

U , SK ′
U) by running G(1k). This is in addition to any

keys (PKU , SKU) needed as part of the initialization phase of P .

114 Y. Desmedt, T. Lange, and M. Burmester

2. Let U1, . . . , Un be the identities of users wishing to establish a joint group
key and let gid be their group identifier3. Each user Ui chooses some ran-
dom nonce ri ∈ {0, 1}k and broadcasts Ui|0|ri. So for each execution of the
protocol fresh randomness is used and so replay is not possible.

Let relU = {V1, V2, . . . , VtU } be as above. Each instance Πj
U stores the

identities and their per-round randomness together with the group ID in
directjU = (gid|V1|r1| . . . |VtU |rtU) and stores this as part of the state infor-
mation.

3. The members of the group now execute the protocol P with the following
changes:
– Whenever instance Πi

U is supposed to multicast U |j|m as part of pro-
tocol P , the instance first computes σ = SignSK′

U
(j|m|directiU) and then

multicasts U |j|m|σ.
– Before using message V |j|m|σ the instance Πi

U checks that (1) V ∈
pidi

U
4, (2) j is the next expected sequence number for messages from V ,

and, finally, (3) that VrfyPK′
V
(j|m|directiV , σ) = 1. If any of these fail,

Πi
U aborts the protocols and sets acci

U = FALSE and ski
U = NULL.

Otherwise, Πi
U continues as it would in P and uses the message m.

Remark 3. We like to stress that the authentication does not prevent attacks by
malicious insiders. Like Katz and Yung state in [12, Section 2.1] these definitions
cannot achieve “agreement” in the sense of [8], e. g. since the attacker could stop
all communications by denial of service attacks.

Remark 4. The overhead introduced by the compiler does not change the com-
plexity classes for communication and computation. The number of signatures
a user makes is equal to the number of messages he sends, the length of the
message is extended by adding the message number and directiU . The latter has
length equal to the number of partners U directly communicates with and thus
is reflected by the computation costs. Reading through the list as part of the
signing process does not change the complexity. The number of signature veri-
fications equals the number of processed messages. If user U has to verify that
VrfyPK′

V
(j|m|directiV , σ) = 1 then V must be in relU and thus U knows V ’s

position and thus also directV .

By sticking to the very same security definition as [12] we show that our compiler
works just as well, and in particular allows having a better complexity if the
underlying protocol does.

3 Katz and Yung suggest to use gid = U1| . . . |Un which automatically forces them to
deal with inputs of length O(n). This does not pose a problem for them because
BD-I has complexity O(n) anyway. In practical situations, however, the group is
formed by e. g. a manager in a bank or a network administrator at the same time as
deciding membership and the number of actually used groups is on a much smaller
scale than the total number of all possible groups. Quite commonly there exists a
compact description, e.g. the name of the task force.

4 Our definitions of pid and direct ensure that all players V sending necessary input
are actually present together with their initial randomness.

Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups 115

Theorem 2. If P is a secure group KE protocol achieving forward secrecy, then
P ′ given by the above compiler is a secure group AKE protocol achieving forward
secrecy. Namely, for qs the number of Send queries and qex the number of Execute
queries we obtain

AdvAKE−fs
P ′ (t, qex, qs) ≤ qs

2
·AdvKE

P (t′, 1)+AdvKE
P (t′, qex)+|P|·SuccΣ(t′)+

q2
s + qexqs

2k
,

where t′ = t + (|P|qex + qs) · tP ′ and tP ′ is the time required for an execution of
P ′ by any party and SuccΣ is the success probability against the used signature
scheme Σ.

The compiler maintains the number of rounds and the complexity class of the
protocol P .

Proof. The proof follows the same lines at the corresponding one in [12]. We use
an active adversary A′ against P ′ to construct an adversary against P . There
are three ways in which A′ can succeed, namely by forging a signature if he has
not queried the Corrupt oracle before, by repeating the information direct and
thus reusing a signature obtained in a previous execution, or by distinguishing
the key from random. It is only the latter that leads to an attack against P .

The contribution of the event Forge is as in [12], namely Pr[Forge] ≤ |P| ·
SuccΣ(t′).

Due to the different definition of direct compared to nonces in [12] we need
to reconsider the probability of Repeat. The probability that the nonce used by
any user in response to an initial Send query was previously used by that user
(in either another execution of Send or in an Execute query) is still bounded by
Pr[Repeat] ≤ qs(qs+qex)

2k .
The remainder of the considerations works as in [12]. Let Ex be the event that

A′ queries the Test oracle to an instance Πi
U such that A′ never made a query

of the form Send(U, i, ∗), i.e., in the simulation A has the full transcript without
patches from its own execution of P . Defining Se = Ex and considering the
probabilities PrA′,P ′ [Succ∧Ex] and PrA′,P ′ [Succ∧Se] separately by constructing
appropriate adversaries A1 and A2 one obtains the stated result. ��

Corollary 1. The authenticated group key exchange protocol obtained from Pro-
tocol 1 by applying this compiler is secure against active attacks and has com-
munication and computation complexity O(log n).

Remark 5. The original paper [4] describes BD-II in more generality allowing
more than two children per vertex. For k children this means that each vertex
has to compute k values for Xi whereas the final computation of the key reduces
to logk n computations only. While the overall number of operations is smallest
for k = 2; larger k might be an interesting alternative if the storage is restricted
and only logk n elements can be stored from the multicast to compute K. In
the sequential version (see Appendix) a larger k reduces the delay while making
each step more expensive. The maximal overall efficiency is obtained for k = 2.

In an authenticated version, however, at most k+logk n signatures need to be
verified and k + 1 messages must be signed. Additionally k + 2 exponentiations

116 Y. Desmedt, T. Lange, and M. Burmester

are needed. In the ElGamal signature scheme, two exponentiations are needed
per signature generation and a multi-exponentiation is used for verification. Ac-
cordingly a larger k reduces the computational complexity.

6 Comparison

To show the advantages of our group AKE we give an overview of the costs for
the naive version, the BD-I version considered in [12] and the two authenticated
BD-II versions proposed in this paper, in Table 6. We also take into account
the scheme by Boyd and Nieto [1] and the scheme by Bresson et al. [2]. In the
Boyd-Nieto scheme one user U1 chooses the key and encrypts this key for all
n − 1 other group members. This long message is signed and broadcast to all
participants who then check the signature and decrypt their part to obtain the
joint key. If a public key system is used for the encryption this scheme runs in 1
round. Otherwise a further round is necessary in which each party Ui (including
U1) sends gki . Then the Diffie-Hellman key gk1ki is used to transmit the group
key. This scheme requires U1 to perform O(n) computations and the message has
length O(n). We denote the first version by BNPK and the second by BNDH.

In [2] the authors use gk1k2k3...kn as the joint secret key. To make this possible,
the users sequentially add their contribution ki to the key which accounts for
requiring n rounds and the last user needs to send g(k1k2k3...kn)/ki to user Ui for
each i, so he has communication and computation O(n).

Except for [1] and [2], GKE schemes are balanced in workload in that all users
have about the same amount of work. The table below states the maximal values
per user. Katz and Yung use the same measures because maximal effort per user
captures scalability. We use p to denote point-to-point communication and b
to denote broadcast. As the set of users is finite we do not distinguish between
multicast and broadcast, otherwise the BD-II protocols use only multicast while
BD-I needs broadcast. Furthermore, we list the maximal length of the messages.

For the computation S means signatures, V means verifying, E stands for
full exponentiation and M for multiplication. For Boyd-Nieto PK we assume
ElGamal encryption; the costs for retrieving the public keys are not mentioned.
We neglect the number of inversions as there are at most 2 of them. For the
number of rounds we consider the maximal delay of the protocol. Except for the
sequential version of BD-II and [2] this is the maximum number of rounds per
user. Accordingly, our authenticated BD-II version achieves an overall complex-
ity of O(log n) while Katz-Yung [12] based on BD I need O(n) in communication
and in computation. Additionally, the number of messages to be stored from the
broadcast is O(log n), as only the messages of the maximal log n ancestors are
needed. The sequential version has a delay of logn but reduces the requirements
considerably, e.g., no broadcast is assumed and far fewer operations. This might
be interesting in restricted networks which need to minimize the computational
and technical requirements trading it off for a longer overall execution of the
protocol.

Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups 117

Table 1. A comparison of the overhead costs of six AKE schemes

Rounds messages communication length computation
naive n − 1 1b, 2p 1b, 2p O(1) 2S, 3V, 3E, 2M

[2] n 2b (n − 1)p, 2b O(1) nS, nV, nE, nM

BN PK [1] 1 1b 1b O(n) 1S, nV, 2(n − 1)E, (n − 1)M
BN DH [1] 2 1p, 1b (n − 1)p, 1b O(n) 2S, nV, nE, (n − 1)M
BD-I 3 2p, 1b 4p, nb O(1) 2S, nV, 3E, (2n − 1)M
BD-II 3 3p, 1b 6p, (log2 n)b O(1) 2S, (log2 n)V, 4E, (log2 n)M
BD-II seq. (log2 n) 5p 6p O(1) 3S, 4V, 4E, 2M

7 Conclusions

We have presented a compiler that adds authenticity to any group KE protocols
while preserving computation and communication complexities of the original
group KE protocol. In particular we have detailed a secure group AKE protocol
based on the BD-II group KE which has a constant number of rounds and
requires only O(log n) computation and communication. This is, essentially, an
exponential saving compared to previously proposed AKE protocols.

An open problem [17] is to propose a proven secure contributory group key
distribution that is as efficient as BD-II. This is motivated by the pseudoran-
domness transitory problem. An attacker is allowed to have temporary control
over some users source of randomness; this can be full control or only enough
influence to deviate from uniformity.

References

1. Boyd, C., Nieto, J.M.G.: Round-optimal contributory conference key agreement.
In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 161–174. Springer, Hei-
delberg (2002)

2. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.-J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: Proc. 8th Annual ACM Conference
on Computer and Communications Security, pp. 255–264 (2001)

3. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 275–286.
Springer, Heidelberg (1995)

4. Burmester, M., Desmedt, Y.: Efficient and secure conference key distribution. In:
Lomas, M. (ed.) Security Protocols. LNCS, vol. 1189, pp. 119–130. Springer, Hei-
delberg (1997)

5. Burmester, M., Desmedt, Y.: A secure and scalable group key exchange system.
Information Processing Letters 94(3), 137–143 (2005)

6. Burmester, M., Desmedt, Y.: Identity-based Key Infrastructures (IKI). In: SEC
2004. Security and Protection in Information Processing Systems, pp. 167–176.
Kluwer, Dordrecht (2004)

7. Desmedt, Y., Pieprzyk, J., Steinfeld, R., Wang, H.: A Non-Malleable Group Key
Exchange Protocol Robust Against Active Insiders. In: Katsikas, S.K., Lopez, J.,
Backes, M., Gritzalis, S., Preneel, B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 459–475.
Springer, Heidelberg (2006)

118 Y. Desmedt, T. Lange, and M. Burmester

8. Fischer, M.J., Lynch, N.A., Patterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

9. Ingemarsson, I., Tang, D.T., Wong, C.W.: A conference key distribution system.
IEEE Trans. Inform. Theory 28, 714–720 (1982)

10. Just, M., Vaudenay, S.: Authenticated multi-party key agreement. In: Kim, K.,
Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 36–49. Springer,
Heidelberg (1996)

11. Katz, J., Shin, J.S.: Modeling Insider Attacks on Group Key-Exchange Protocols.
ePrint archive, 163/2005

12. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg
(2003), www.cs.umd.edu/∼jkatz/research.html

13. Nam, J., Lee, Y., Won, D.: Constant Round Group Key Exchange with Logarithmic
Computational Complexity. ePrint archive, 284/2006

14. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Trans. Inf.
Syst. Secur. 7(1), 60–96 (2004)

15. Pieprzyk, J., Wang, H.: Malleability attacks on multi-party key agreement proto-
cols. In: Coding, Cryptography and Combinatorics. Progress in Computer Science
and Applied Logic, vol. 23, pp. 277–288 (2004)

16. Wong, C.K., Gouda, M.G., Lam, S.S.: Secure group communications using key
graphs. In: SIGCOMM, pp. 68–79 (1998), IEEE/ACM Trans. Netw. 8(1), 16–30
(2000)

17. Yung, M.: Comment made during the Financial Cryptography 2007 presentation

Appendix – A Peer-to-peer Version of BD-II

The following gives a sequential version with only peer to peer communication
and constant memory requirements having a O(log n) delay by changing slightly
the protocol. Note that the number of rounds in which a party is actively involved
remains unchanged but a user at a leaf has log n delay. Notation is like before.

Protocol 2 (Peer-to-peer version of BD-II group KE)

Step 1 Each Ui, i = 1, . . . , n, selects ki ∈R ZZ/�ZZ, computes and sends zi = gki

to his parent and children.
Step 2 Each Ui, i = 1, . . . , n computes Xp,i = zki

parent(i), Xl,i = zki

left child(i) and

Xr,i = zki

right child(i).
Step 3 U1 and U2 now have the joint key Ki = Xp,i and send Yleft child(i) =

Ki · Xl,i and Yright child(i) = Ki · Xr,i to their respective children.
Step 4 For j = 2, . . . , m do:

each user Ui on level j computes the joint key as Ki = Yi/Xp,i and
sends Yleft child(i) = Ki · Xl,i and Yright child(i) = Ki · Xr,i to his children.

Remark 6. For this scheme it is even more obvious why honest users obtain the
same key K = gk1k2 .

First note that this holds for K1 and K2. Assume that the parent
of Ui obtained Kparent(i) = K. Then Ui computes Ki = Xp,iYi =
Xp,i(Xp,child(parent(i)))−1Kparent(i) = K, where child takes into account the cor-
rect value of left or right so that child(parent(i)) = i.

www.cs.umd.edu/~jkatz/research.html

	Scalable Authenticated Tree Based Group Key Exchange for Ad-Hoc Groups
	Introduction
	Models
	Participants and Initialization
	Adversarial Model
	Complexity

	The Burmester-Desmedt Scheme II
	Proof of Security Against Passive Attacker for BD-II
	Authenticated Group Key Exchange
	Comparison
	Conclusions

