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Abstract

Bayesian optimization is an effective methodol-

ogy for the global optimization of functions with

expensive evaluations. It relies on querying a dis-

tribution over functions defined by a relatively

cheap surrogate model. An accurate model for

this distribution over functions is critical to the

effectiveness of the approach, and is typically fit

using Gaussian processes (GPs). However, since

GPs scale cubically with the number of obser-

vations, it has been challenging to handle objec-

tives whose optimization requires many evalua-

tions, and as such, massively parallelizing the op-

timization.

In this work, we explore the use of neural net-

works as an alternative to GPs to model dis-

tributions over functions. We show that per-

forming adaptive basis function regression with a

neural network as the parametric form performs

competitively with state-of-the-art GP-based ap-

proaches, but scales linearly with the number

of data rather than cubically. This allows us to

achieve a previously intractable degree of paral-

lelism, which we apply to large scale hyperpa-

rameter optimization, rapidly finding competitive

models on benchmark object recognition tasks

using convolutional networks, and image caption

generation using neural language models.

Proceedings of the 32
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1. Introduction

Recently, the field of machine learning has seen unprece-

dented growth due to a new wealth of data, increases in

computational power, new algorithms, and a plethora of

exciting new applications. As researchers tackle more am-

bitious problems, the models they use are also becoming

more sophisticated. However, the growing complexity of

machine learning models inevitably comes with the intro-

duction of additional hyperparameters. These range from

design decisions such as the shape of a neural network

architecture, to optimization parameters such as learning

rates, to regularization hyperparameters such as weight de-

cay. Proper setting of these hyperparameters is critical for

performance on difficult problems.

There are many methods for optimizing over hyperparame-

ter settings, ranging from simplistic procedures like grid or

random search (Bergstra & Bengio, 2012), to more sophis-

ticated model-based approaches using random forests (Hut-

ter et al., 2011) or Gaussian processes (Snoek et al., 2012).

Bayesian optimization is a natural framework for model-

based global optimization of noisy, expensive black-box

functions. It offers a principled approach to modeling un-

certainty, which allows exploration and exploitation to be

naturally balanced during the search. Perhaps the most

commonly used model for Bayesian optimization is the

Gaussian process (GP) due to its simplicity and flexibility

in terms of conditioning and inference.

However, a major drawback of GP-based Bayesian opti-

mization is that inference time grows cubically in the num-

ber of observations, as it necessitates the inversion of a

dense covariance matrix. For problems with a very small
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number of hyperparameters, this has not been an issue, as

the minimum is often discovered before the cubic scaling

renders further evaluations prohibitive. As the complex-

ity of machine learning models grows, however, the size

of the search space grows as well, along with the number

of hyperparameter configurations that need to be evaluated

before a solution of sufficient quality is found. Fortunately,

as models have grown in complexity, computation has be-

come significantly more accessible and it is now possible

to train many models in parallel. A natural solution to

the hyperparameter search problem is to therefore combine

large-scale parallelism with a scalable Bayesian optimiza-

tion method. The cubic scaling of the GP, however, has

made it infeasible to pursue this approach.

The goal of this work is to develop a method for scaling

Bayesian optimization, while still maintaining its desirable

flexibility and characterization of uncertainty. To that end,

we propose the use of neural networks to learn an adaptive

set of basis functions for Bayesian linear regression. We re-

fer to this approach as Deep Networks for Global Optimiza-

tion (DNGO). Unlike a standard Gaussian process, DNGO

scales linearly with the number of function evaluations—

which, in the case of hyperparameter optimization, corre-

sponds to the number of models trained—and is amenable

to stochastic gradient training. Although it may seem that

we are merely moving the problem of setting the hyper-

parameters of the model being tuned to setting them for

the tuner itself, we show that for a suitable set of design

choices it is possible to create a robust, scalable, and effec-

tive Bayesian optimization system that generalizes across

many global optimization problems.

We demonstrate the effectiveness of DNGO on a number

of difficult problems, including benchmark problems for

Bayesian optimization, convolutional neural networks for

object recognition, and multi-modal neural language mod-

els for image caption generation. We find hyperparameter

settings that achieve competitive with state-of-the-art re-

sults of 6.37% and 27.4% on CIFAR-10 and CIFAR-100

respectively, and BLEU scores of 25.1 and 26.7 on the Mi-

crosoft COCO 2014 dataset using a single model and a 3-

model ensemble.

2. Background and Related Work

2.1. Bayesian Optimization

Bayesian optimization is a well-established strategy for the

global optimization of noisy, expensive black-box func-

tions (Mockus et al., 1978). For an in-depth review, see

Lizotte (2008), Brochu et al. (2010) and Osborne et al.

(2009). Bayesian optimization relies on the construction

of a probabilistic model that defines a distribution over

objective functions from the input space to the objective

of interest. Conditioned on a prior over the functional

form and a set of N observations of input-target pairs

D = {(xn, yn)}
N
n=1, the relatively cheap posterior over

functions is then queried to reason about where to seek the

optimum of the expensive function of interest. The promise

of a new experiment is quantified using an acquisition func-

tion, which, applied to the posterior mean and variance,

expresses a trade-off between exploration and exploitation.

Bayesian optimization proceeds by performing a proxy op-

timization over this acquisition function in order to deter-

mine the next input to evaluate.

Recent innovation has resulted in significant progress in

Bayesian optimization, including elegant theoretical re-

sults (Srinivas et al., 2010; Bull, 2011; de Freitas et al.,

2012), multitask and transfer optimization (Krause & Ong,

2011; Swersky et al., 2013; Bardenet et al., 2013) and

the application to diverse tasks such as sensor set selec-

tion (Garnett et al., 2010), the tuning of adaptive Monte

Carlo (Mahendran et al., 2012) and robotic gait control (Ca-

landra et al., 2014b).

Typically, GPs have been used to construct the distribu-

tion over functions used in Bayesian optimization, due to

their flexibility, well-calibrated uncertainty, and analytic

properties (Jones, 2001; Osborne et al., 2009). Recent

work has sought to improve the performance of the GP ap-

proach through accommodating higher dimensional prob-

lems (Wang et al., 2013; Djolonga et al., 2013), input non-

stationarities (Snoek et al., 2014) and initialization through

meta-learning (Feurer et al., 2015). Random forests, which

scale linearly with the data, have also been used success-

fully for algorithm configuration by Hutter et al. (2011)

with empirical estimates of model uncertainty.

More specifically, Bayesian optimization seeks to solve the

minimization problem

x⋆ = argmin
x∈X

f(x) , (1)

where we take X to be a compact subset of R
K . In

our work, we build upon the standard GP-based approach

of Jones (2001) which uses a GP surrogate and the ex-

pected improvement acquisition function (Mockus et al.,

1978). For the surrogate model hyperparameters Θ,

let σ2(x;Θ) = Σ(x,x;Θ) be the marginal predictive vari-

ance of the probabilistic model, µ(x;D,Θ) be the predic-

tive mean, and define

γ(x) =
f(xbest)− µ(x;D,Θ)

σ(x;D,Θ)
, (2)

where f(xbest) is the lowest observed value. The expected

improvement criterion is defined as

aEI(x;D,Θ) = (3)

σ(x;D,Θ) [γ(x)Φ(γ(x)) +N (γ(x); 0, 1)] .
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Here Φ(·) is the cumulative distribution function of a stan-

dard normal, and N (·; 0, 1) is the density of a standard nor-

mal. Note that numerous alternate acquisition functions

and combinations thereof have been proposed (Kushner,

1964; Srinivas et al., 2010; Hoffman et al., 2011), which

could be used without affecting the analytic properties of

our approach.

2.2. Bayesian Neural Networks

The application of Bayesian methods to neural networks

has a rich history in machine learning (MacKay, 1992; Hin-

ton & van Camp, 1993; Buntine & Weigend, 1991; Neal,

1995; De Freitas, 2003). The goal of Bayesian neural net-

works is to uncover the full posterior distribution over the

network weights in order to capture uncertainty, to act as

a regularizer, and to provide a framework for model com-

parison. The full posterior is, however, intractable for most

forms of neural networks, necessitating expensive approx-

imate inference or Markov chain Monte Carlo simulation.

More recently, full or approximate Bayesian inference has

been considered for small pieces of the overall architecture.

For example, in similar spirit to this work, Lázaro-Gredilla

& Figueiras-Vidal (2010); Hinton & Salakhutdinov (2008)

and Calandra et al. (2014a) considered inference over just

the last layer of a neural network. Alternatively, variational

approaches are developed in Kingma & Welling (2014);

Rezende et al. (2014) and Mnih & Gregor (2014), where

a neural network is used in a variational approximation to

the posterior distribution over the latent variables of a di-

rected generative neural network.

3. Adaptive Basis Regression with Deep

Neural Networks

A key limitation of GP-based Bayesian optimization is that

the computational cost of the technique scales cubically in

the number of observations, limiting the applicability of the

approach to objectives that require a relatively small num-

ber of observations to optimize. In this work, we aim to

replace the GP traditionally used in Bayesian optimization

with a model that scales in a less dramatic fashion, but re-

tains most of the GP’s desirable properties such as flexi-

bility and well-calibrated uncertainty. Bayesian neural net-

works are a natural consideration, not least because of the

theoretical relationship between Gaussian processes and

infinite Bayesian neural networks (Neal, 1995; Williams,

1996). However, deploying these at a large scale is very

computationally expensive.

As such, we take a pragmatic approach and add a Bayesian

linear regressor to the last hidden layer of a deep neural

network, marginalizing only the output weights of the net

while using a point estimate for the remaining parameters.

This results in adaptive basis regression, a well-established

statistical technique which scales linearly in the number

of observations, and cubically in the basis function dimen-

sionality. This allows us to explicitly trade off evaluation

time and model capacity. As such, we form the basis using

the very flexible and powerful non-linear functions defined

by the neural network.

First of all, without loss of generality and assuming com-

pact support for each input dimension, we scale the in-

put space to the unit hypercube. We denote by φ(·) =
[φ1(·), . . . , φD(·)]T the vector of outputs from the last

hidden layer of the network, trained on inputs and tar-

gets D := {(xn, yn)}
N

n=1
⊂ R

K × R. We take these to

be our set of basis functions. In addition, define Φ to

be the design matrix arising from the data and this basis,

where Φnd = φd(xn) is the output design matrix, and y

the stacked target vector.

These basis functions are parameterized via the weights

and biases of the deep neural network, and these param-

eters are trained via backpropagation and stochastic gradi-

ent descent with momentum. In this training phase, a linear

output layer is also fit. This procedure can be viewed as a

maximum a posteriori (MAP) estimate of all parameters

in the network. Once this “basis function neural network”

has been trained, we replace the MAP-parameterized out-

put layer with a Bayesian linear regressor that captures un-

certainty in the weights. See Section 3.1.2 for a more elab-

orate explanation of this choice.

The predictive mean µ(x;Θ) and variance σ2(x;Θ) of the

model are then given by (see Bishop, 2006)

µ(x;D,Θ) = mTφ(x) + η(x) , (4)

σ2(x;D,Θ) = φ(x)TK−1φ(x) +
1

β
(5)

where

m = βK−1ΦT ỹ ∈ R
D (6)

K = βΦTΦ+ Iα ∈ R
D×D. (7)

Here, η(x) is a prior mean function which is described in

Section 3.1.3, and ỹ = y − η(x). In addition, α, β ∈ Θ

are regression model hyperparameters. We integrate out α

and β using slice sampling (Neal, 2000) according to the

methodology of Snoek et al. (2012) over the marginal like-

lihood, which is given by

log p(y |X, α, β) =
D

2
logα+

N

2
log β −

N

2
log(2π)

−
β

2
||ỹ −Φm||2 −

α

2
mTm−

1

2
log |K| . (8)

It is clear that the computational bottleneck of this proce-

dure is the inversion of K. However, note that the size of
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Figure 1. The time per suggested experiment for our method com-

pared to the state-of-the-art GP based approach from Snoek et al.

(2014) on the six dimensional Hartmann function. We ran each

algorithm on the same 32 core system with 80GB of RAM five

times and plot the mean and standard deviation.

this matrix grows with the output dimensionality D, rather

than the number of observations N as in the GP case. This

allows us to scale to significantly more observations than

with the GP as demonstrated in Figure 1.

3.1. Model details

3.1.1. NETWORK ARCHITECTURE

A natural concern with the use of deep networks is that

they often require significant effort to tune and tailor to spe-

cific problems. One can consider adjusting the architecture

and tuning the hyperparameters of the neural network as

itself a difficult hyperparameter optimization problem. An

additional challenge is that we aim to create an approach

that generalizes across optimization problems. We found

that design decisions such as the type of activation function

used significantly altered the performance of the Bayesian

optimization routine. For example, in Figure 2 we see that

the commonly used rectified linear (ReLU) function can

lead to very poor estimates of uncertainty, which causes

the Bayesian optimization routine to explore excessively.

Since the bounded tanh function results in smooth func-

tions with realistic variance, we use this nonlinearity in this

work; however, if the smoothness assumption needs to be

relaxed, a combination of rectified linear functions with a

tanh function only on the last layer can also be used in order

to bound the basis.

In order to tune any remaining hyperparameters, such as the

width of the hidden layers and the amount of regulariza-

tion, we used GP-based Bayesian optimization. For each

of one to four layers we ran Bayesian optimization using

the Spearmint (Snoek et al., 2014) package to minimize the

average relative loss on a series of benchmark global op-

timization problems. We tuned a global learning rate, mo-

mentum, layer sizes, ℓ2 normalization penalties for each set

of weights and dropout rates (Hinton et al., 2012) for each

layer. Interestingly, the optimal configuration featured no

dropout and very modest ℓ2 normalization. We suspect that

dropout, despite having an approximate correction term,

causes noise in the predicted mean resulting in a loss of pre-

cision. The optimizer instead preferred to restrict capacity

via a small number of hidden units. Namely, the optimal

architecture is a deep and narrow network with 3 hidden

layers and approximately 50 hidden units per layer. We use

the same architecture throughout our empirical evaluation,

and this architecture is illustrated in Figure 2(d).

3.1.2. MARGINAL LIKELIHOOD VS MAP ESTIMATE

The standard empirical Bayesian approach to adaptive ba-

sis regression is to maximize the marginal likelihood with

respect to the parameters of the basis (see Equation 8), thus

taking the model uncertainty into account. However, in

the context of our method, this requires evaluating the gra-

dient of the marginal likelihood, which requires inverting

a D ×D matrix on each update of stochastic gradient de-

scent. As this makes the optimization of the net signifi-

cantly slower, we take a pragmatic approach and optimize

the basis using a point estimate and apply the Bayesian

linear regression layer post-hoc. We found that both ap-

proaches gave qualitatively and empirically similar results,

and as such we in practice employ the more efficient one.

3.1.3. QUADRATIC PRIOR

One of the advantages of Bayesian optimization is that it

provides natural avenues for incorporating prior informa-

tion about the objective function and search space. For ex-

ample, when choosing the boundaries of the search space,

a typical assumption has been that the optimal solution lies

somewhere in the interior of the input space. However, by

the curse of dimensionality, most of the volume of the space

lies very close to its boundaries. Therefore, we select a

mean function η(x) (see Equation 4) to reflect our subjec-

tive prior beliefs that the function is coarsely approximated

by a convex quadratic function centered in the bounded

search region, i.e.,

η(x) = λ+ (x− c)TΛ(x− c) (9)

where c is the center of the quadratic, λ is an offset and Λ

a diagonal scaling matrix. We place a Gaussian prior with

mean 0.5 (the center of the unit hypercube) on c, horse-

shoe (Carvalho et al., 2009) priors on the diagonal elements

Λkk ∀k ∈ {1, . . . ,K} and integrate out b, λ and c using

slice sampling over the marginal likelihood.
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Figure 2. A comparison of the predictive mean and uncertainty learned by the model when using 2(a) only tanh, 2(c) only rectified linear

(ReLU) activation functions or 2(b) ReLU’s but a tanh on the last hidden layer. The shaded regions correspond to standard deviation

envelopes around the mean. The choice of activation function significantly modifies the basis functions learned by the model. Although

the ReLU, which is the standard for deep neural networks, is highly flexible, we found that its unbounded activation can lead to extremely

large uncertainty estimates. Subfigure 2(d) illustrates the overall architecture of the DNGO model. Dashed lines correspond to weights

that are marginalized.

The horseshoe is a so-called one-group prior for inducing

sparsity and is a somewhat unusual choice for the weights

of a regression model. Here we choose it because it 1) has

support only on the positive reals, leading to convex func-

tions, and 2) it has a large spike at zero with a heavy tail, re-

sulting in strong shrinkage for small values while preserv-

ing large ones. This last effect is important for handling

model misspecification as it allows the quadratic effect to

disappear and become a simple offset if necessary.

3.2. Incorporating input space constraints

Many problems of interest have complex, possibly un-

known bounds, or exhibit undefined behavior in some re-

gions of the input space. These regions can be character-

ized as constraints on the search space. Recent work (Gel-

bart et al., 2014; Snoek, 2013; Gramacy & Lee, 2010) has

developed approaches for modeling unknown constraints in

GP-based Bayesian optimization by learning a constraint

classifier and then discounting expected improvement by

the probability of constraint violation.

More specifically, define cn ∈ {0, 1} to be a binary in-

dicator of the validity of input xn. Also, denote the

sets of valid and invalid inputs as V = {(xn, yn) | cn = 1}
and I = {(xn, yn) | cn = 0}, respectively. Note that

D := V ∪ I. Lastly, let Ψ be the collection of constraint

hyperparameters. The modified expected improvement

function can be written as

aCEI(x;D,Θ,Ψ) = aEI(x;V,Θ)P [c = 1 |x,D,Ψ] .

In this work, to model the constraint surface, we similarly

replace the Gaussian process with the adaptive basis model,

integrating out the output layer weights:

P[c = 1 |x,D,Ψ] =
∫

w

P [c = 1 |x,D,w,Ψ] P(w;Ψ)dw .
(10)

In this case, we use a Laplace approximation to the pos-

terior. For noisy constraints we perform Bayesian lo-

gistic regression, using a logistic likelihood function for

P [c = 1 |x,D,w,Ψ]. For noiseless constraints, we re-

place the logistic function with a step function.

3.3. Parallel Bayesian Optimization

Obtaining a closed form expression for the joint acquisi-

tion function across multiple inputs is intractable in gen-

eral (Ginsbourger & Riche, 2010). However, a successful

Monte Carlo strategy for parallelizing Bayesian optimiza-

tion was developed in Snoek et al. (2012). The idea is to

marginalize over the possible outcomes of currently run-

ning experiments when making a decision about a new ex-

periment to run. Following this strategy, we use the pos-

terior predictive distribution given by Equations 4 and 5 to

generate a set of fantasy outcomes for each running experi-

ment which we then use to augment the existing dataset. By

averaging over sets of fantasies, we can perform approxi-

mate marginalization when computing EI for a candidate

point. We note that this same idea works with the constraint

network, where instead of computing marginalized EI, we

would compute the marginalized probability of violating a

constraint.

To that end, given currently running jobs with in-

puts {xj}
J
j=1

, the marginalized acquisition function
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Experiment # Evals SMAC TPE Spearmint DNGO

Branin (0.398) 200 0.655± 0.27 0.526± 0.13 0.398± 0.00 0.398± 0.00

Hartmann6 (-3.322) 200 −2.977± 0.11 −2.823± 0.18 −3.3166± 0.02 −3.319± 0.00
Logistic Regression 100 8.6± 0.9 8.2± 0.6 6.88± 0.0 6.89± 0.04

LDA (On grid) 50 1269.6± 2.9 1271.5± 3.5 1266.2± 0.1 1266.2± 0.0

SVM (On grid) 100 24.1± 0.1 24.2± 0.0 24.1± 0.1 24.1± 0.1

Table 1. Evaluation of DNGO on global optimization benchmark problems versus scalable (TPE, SMAC) and non-scalable (Spearmint)

Bayesian optimization methods. All problems are minimization problems. For each problem, each method was run 10 times to produce

error bars.

aMCEI(·;D,Θ,Ψ) is given by

aMCEI(x;D, {xj}
J
j=1,Θ,Ψ) =

∫

aCEI(x;D ∪ {(xj , yj)}
J
j=1,Θ,Ψ)

× P
[

{cj , yj}
J
j=1 | D, {x}Jj=1

]

dy1...dyndc1...dcn .

When this strategy is applied to a GP, the cost of comput-

ing EI for a candidate point becomes cubic in the size of the

augmented dataset. This restricts both the number of run-

ning experiments that can be tolerated, as well as the num-

ber of fantasy sets used for marginalization. With DNGO

it is possible to scale both of these up to accommodate a

much higher degree of parallelism.

Finally, following the approach of Snoek et al. (2012) we

integrate out the hyperparameters of the model to obtain

our final integrated acquisition function. For each iteration

of the optimization routine we pick the next input, x∗, to

evaluate according to

x∗ = argmax
x

aMCEI(x;D, {xj}
J
j=1) , (11)

where
aMCEI(x;D, {xj}

J
j=1) =

∫

aMCEI(x;D, {xj}
J
j=1,Θ,Ψ) dΘdΨ.

(12)

4. Experiments

4.1. HPOLib Benchmarks

In the literature, there exist several other methods for

model-based optimization. Among these, the most popular

variants in machine learning are the random forest-based

SMAC procedure (Hutter et al., 2011) and the tree Parzen

estimator (TPE) (Bergstra et al., 2011). These are faster to

fit than a Gaussian process and scale more gracefully with

large datasets, but this comes at the cost of a more heuristic

treatment of uncertainty. By contrast, DNGO provides a

balance between scalability and the Bayesian marginaliza-

tion of model parameters and hyperparameters.

Method Test BLEU

Human Expert LBL 24.3
Regularized LSTM 24.3
Soft-Attention LSTM 24.3
10 LSTM ensemble 24.4
Hard-Attention LSTM 25.0

Single LBL 25.1

2 LBL ensemble 25.9

3 LBL ensemble 26.7

Table 2. Image caption generation results using BLEU-4 on the

Microsoft COCO 2014 test set. Regularized and ensembled

LSTM results are reported in Zaremba et al. (2015). The baseline

LBL tuned by a human expert and the Soft and Hard Attention

models are reported in Xu et al. (2015). We see that ensembling

our top models resulting from the optimization further improves

results significantly. We noticed that there were distinct multiple

local optima in the hyperparameter space, which may explain the

dramatic improvement from ensembling a small subset of models.

To demonstrate the effectiveness of our approach, we com-

pare DNGO to these scalable model-based optimization

variants, as well as the input-warped Gaussian process

method of Snoek et al. (2014) on the benchmark set of con-

tinuous problems from the HPOLib package (Eggensperger

et al., 2013). As Table 1 shows, DNGO significantly out-

performs SMAC and TPE, and is competitive with the

Gaussian process approach. This shows that, despite vast

improvements in scalability, DNGO retains the statistical

efficiency of the Gaussian process method in terms of the

number of evaluations required to find the minimum.

4.2. Image Caption Generation

In this experiment, we explore the effectiveness of DNGO

on a practical and expensive problem where highly paral-

lel evaluation is necessary to make progress in a reason-

able amount of time. We consider the task of image cap-

tion generation using multi-modal neural language models.

Specifically, we optimize the hyperparameters of the log-

bilinear model (LBL) from Kiros et al. (2014) to maximize
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(a) “A person riding a wave in the ocean.” (b) “A bird sitting on top of a field.” (c) “A horse is riding
a horse.”

Figure 3. Sample test images and generated captions from the best LBL model on the COCO 2014 dataset. The first two captions

sensibly describe the contents of their respective images, while the third is offensively inaccurate.

the BLEU score of a validation set from the recently re-

leased COCO dataset (Lin et al., 2014). In our experiments,

each evaluation of this model took an average of 26.6 hours.

We optimize learning parameters such as learning rate,

momentum and batch size; regularization parameters like

dropout and weight decay for word and image representa-

tions; and architectural parameters such as the context size,

whether to use the additive or multiplicative version, the

size of the word embeddings and the multi-modal represen-

tation size 1. The final parameter is the number of factors,

which is only relevant for the multiplicative model. This

adds an interesting challenge, since it is only relevant for

half of the hyperparameter space. This gives a total of 11

hyperparameters. Even though this number seems small,

this problem offers a number of challenges which render

its optimization quite difficult. For example, in order to

not lose any generality, we choose broad box constraints

for the hyperparameters; this, however, renders most of the

volume of the model space infeasible. In addition, quite

a few of the hyperparameters are categorical, which intro-

duces severe non-stationarities in the objective surface.

Nevertheless, one of the advantages of a scalable method is

the ability to highly parallelize hyperparameter optimiza-

tion. In this way, high quality settings can be found after

only a few sequential steps. To test DNGO in this scenario,

we optimize the log-bilinear model with up to 800 parallel

evaluations.

Running between 300 and 800 experiments in parallel (de-

termined by cluster availability), we proposed and evalu-

ated approximately 2500 experiments—the equivalent of

over 2700 CPU days—in less than one week. Using the

BLEU-4 metric, we optimized the validation set perfor-

mance and the best LBL model found by DNGO out-

performs recently proposed models using LSTM recurrent

neural networks (Zaremba et al., 2015; Xu et al., 2015) on

1Details are provided in the supplementary material.

Layer type # Filters Window Stride

Convolution 96 3× 3

Convolution 96 3× 3

Max pooling 3× 3 2

Convolution 192 3× 3

Convolution 192 3× 3

Convolution 192 3× 3

Max pooling 3× 3 2

Convolution 192 3× 3

Convolution 192 1× 1

Convolution 10/100 1× 1

Global averaging 6× 6

Softmax

Table 3. Our convolutional neural network architecture. This

choice was chosen to be maximally generic. Each convolution

layer is followed by a ReLU nonlinearity.

the test set. This is remarkable, as the LBL is a relatively

simple approach. Ensembling this top model with the sec-

ond and third best (under the validation metric) LBL mod-

els resulted in a test-set BLEU score 2 of 26.7, significantly

outperforming the LSTM-based approaches. We noticed

that there were distinct multiple local optima in the hyper-

parameter space, which may explain the dramatic improve-

ment from ensembling a small number of models. We show

qualitative examples of generated captions on test images

in Figure 3. Further figures showing the BLEU score as a

function of the iteration of Bayesian optimization are pro-

vided in the supplementary.

2We have verified that our BLEU score evaluation is consistent
across reported results. We used a beam search decoding for our
test predictions with the LBL model.
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Method CIFAR-10 CIFAR-100

Maxout 9.38% 38.57%
DropConnect 9.32% N/A

Network in network 8.81% 35.68%
Deeply supervised 7.97% 34.57%
ALL-CNN 7.25% 33.71%

Tuned CNN 6.37% 27.4%

Table 4. We use our algorithm to optimize validation set error as

a function of various hyperparameters of a convolutional neural

network. We report the test errors of the models with the optimal

hyperparameter configurations, as compared to current state-of-

the-art results.

4.3. Deep Convolutional Neural Networks

Finally, we use DNGO on a pair of highly competitive

deep learning visual object recognition benchmark prob-

lems. We tune the hyperparameters of a deep convolutional

neural network on the CIFAR-10 and CIFAR-100 datasets.

Our approach is to establish a single, generic architecture,

and specialize it to various tasks via individualized hyper-

parameter tuning. As such, for both datasets, we employed

the same generic architecture inspired by the configuration

proposed in Springenberg et al. (2014), which was shown

to attain strong classification results. This architecture is

detailed in Table 3.

For this architecture, we tuned the momentum, learning

rate, ℓ2 weight decay coefficients, dropout rates, standard

deviations of the random i.i.d. Gaussian weight initializa-

tions, and corruption bounds for various data augmenta-

tions: global perturbations of hue, saturation and value,

random scalings, input pixel dropout and random horizon-

tal reflections. We optimized these over a validation set of

10,000 examples drawn from the training set, running each

network for 200 epochs. See Figure 4 for a visualization of

the hyperparameter tuning procedure.

We performed the optimization on a cluster of Intel R© Xeon

Phi
TM

coprocessors, with 40 jobs running in parallel using

a kernel library that has been highly optimized for efficient

computation on the Intel R© Xeon Phi
TM

coprocessor3. For

the optimal hyperparameter configuration found, we ran a

final experiment for 350 epochs on the entire training set,

and report its result.

Our optimal models for CIFAR-10 and CIFAR-100

achieved test errors of 6.37% and 27.4% respectively. A

comparison to published state-of-the-art results (Goodfel-

low et al., 2013; Wan et al., 2013; Lin et al., 2013; Lee et al.,

2014; Springenberg et al., 2014) is given in Table 4. We see

3Available at https://github.com/orippel/

micmat
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Figure 4. Validation errors on CIFAR-100 corresponding to dif-

ferent hyperparameter configurations as evaluated over time.

These are represented as a planar histogram, where the shade of

each bin indicates the total count within it. The current best vali-

dation error discovered is traced in black. This projection demon-

strates the exploration-versus-exploitation paradigm of Bayesian

optimization, in which the algorithm trades off visiting unex-

plored parts of the space, and focusing on parts which show

promise.

that the parallelized automated hyperparameter tuning pro-

cedure obtains models that are highly competitive with the

state-of-the-art in just a few sequential steps.

A comprehensive overview of the setup, the architecture,

the tuning and the optimum configuration can be found in

the supplementary material.

5. Conclusion

In this paper, we introduced deep networks for global op-

timization, or DNGO, which enables efficient optimization

of noisy, expensive black-box functions. While this model

maintains desirable properties of the GP such as tractabil-

ity and principled management of uncertainty, it greatly

improves its scalability from cubic to linear as a function

of the number of observations. We demonstrate that while

this model allows efficient computation, its performance is

nevertheless competitive with existing state-of-the-art ap-

proaches for Bayesian optimization. We demonstrate em-

pirically that it is especially well suited to massively paral-

lel hyperparameter optimization.

While adaptive basis regression with neural networks pro-

vides one approach to the enhancement of scalability, other

models may also present promise. One promising line

of work, for example by Nickson et al. (2014), is to in-

troduce a similar methodology by instead employing the

sparse Gaussian process as the underlying probabilistic

model (Snelson & Ghahramani, 2005; Titsias, 2009; Hens-

man et al., 2013).

https://github.com/orippel/micmat
https://github.com/orippel/micmat
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