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Abstract

Approximate linear programming (ALP) rep-

resents one of the major algorithmic families

to solve large-scale Markov decision processes

(MDP). In this work, we study a primal-dual

formulation of the ALP, and develop a scalable,

model-free algorithm called bilinear π learning

for reinforcement learning when a sampling or-

acle is provided. This algorithm enjoys a num-

ber of advantages. First, it adopts linear and bi-

linear models to represent the high-dimensional

value function and state-action distributions, re-

spectively, using given state and action features.

Its run-time complexity depends on the number

of features, not the size of the underlying MDPs.

Second, it operates in a fully online fashion with-

out having to store any sample, thus having mini-

mal memory footprint. Third, we prove that it is

sample-efficient, solving for the optimal policy to

high precision with a sample complexity linear in

the dimension of the parameter space.

1. Introduction

Reinforcement learning lies at the intersection between con-

trol, machine learning, and stochastic processes (Bertsekas

& Tsitsiklis, 1996; Sutton & Barto, 1998). The objective

is to learn an optimal policy of a controlled system from

interaction data. The most studied model for a controlled

stochastic system is the Markov decision process (MDP),

i.e., a controlled random walk over a state space S, where

in each state s ∈ S one can choose an action a from an

action space A so that the random walk transitions to an-

other state s′ ∈ S with probability Pa(s, s
′). In this paper,

we do not assume the MDP model is explicitly known, but

consider the setting where a generative model is given (see,

1Department of Computer Science, Princeton University,
Princeton, NJ, USA 2Google Inc., Kirkland, WA, USA
3Department of Operations Research and Financial Engineering,
Princeton University, Princeton, NJ, USA. Correspondence to:
Mengdi Wang <mengdiw@princeton.edu>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

e.g., Azar et al. (2013)). In other words, there is an oracle

that takes (s, a) as input and outputs a random s′ with prob-

ability Pa(s, s
′) and an immediate reward ra(s) ∈ [0, 1].

This is also known as the simulator-defined MDP in some

literatures (Dietterich et al., 2013; Taleghan et al., 2015).

Our goal is to find an optimal policy which, when running

on the MDP to generate an infinitely long trajectory, yields

the highest average per-step reward in the limit.

Here, we focus on problems where the state and action

spaces S and A are too large to be enumerated. In practice,

it might be computationally challenging to even store a

single state of the process (e.g., states could correspond

to high-resolution images). Suppose that we are given a

collection of state features φ : S 7→ R
D and action features

ψ : A 7→ R
U . They map each state s ∈ S and action

a ∈ A to column vectors φ(s) = (φ1(s), . . . , φD(s))
T and

ψ(a) = (ψ1(a), . . . , ψU (a))
T , respectively, where D ≪

S := |S| and U ≪ A := |A|.
Our primary interest is to develop a sample-efficient and

computationally scalable algorithm, which takes advantage

of the given features to solve an MDP with very large state

and action spaces. Given the feature maps, φ and ψ, we

adopt linear and bilinear models for approximating both the

value function and the stationary state-action distribution of

the MDP. By doing so, we can represent the value functions

and state-action distributions, which are high-dimensional

quantities, using a much smaller number of parameters.

Contributions. Our main contribution is a tractable,

model-free primal-dual π-learning algorithm for such com-

pact parametric representations. It incrementally updates

parameters as new transitions are observed. With given

state and action features, its per-iteration complexity is low,

depending on U and D, not on |S| or |A|:
• The new algorithm is inspired by a saddle point for-

mulation of policy optimization in MDPs, which we

refer to as the Bellman saddle point problem. We show

a strong relation between the parametric saddle point

problem and the original Bellman equation. In par-

ticular, the difference between solutions to these two

problems can be quantified using the ℓ∞- and ℓ1-errors

of the parametric function classes that are used to ap-

proximate the optimal value function and state-action
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distribution, respectively. In the special case where

the approximation error is zero (also known as the “re-

alizable” scenario), solving the Bellman saddle point

problem is equivalent to solving the original Bellman

equation.

• Each iteration of the algorithm can be viewed as a

stochastic primal-dual iteration for solving the Bell-

man saddle point problem, where the value and policy

updates are coupled in light of strong duality. We study

the sample complexity of the π learning algorithm by

analyzing the coupled primal-dual convergence pro-

cess. We show that finding an ǫ-optimal policy (com-

paring to the best approximate policy) requires a sam-

ple size that is linear in DU
ǫ2

, ignoring logarithmic terms.

The sample complexity depends only on the numbers

of state and action features. It is invariant with respect

to the actual sizes of the state and action spaces.

Notations. The following notations are used through-

out the paper. For any integer n, we use [n] to denote

the set of integers {1, 2, . . . , n}. For a matrix Φ of size

m × n and 1 ≤ p ≤ ∞, the matrix p-norm is defined

as ‖Φ‖p = max{‖Φv‖p : v ∈ R
n with ‖v‖p = 1}. The

(a, b)-norm of Φ, denoted by ‖Φ‖a,b, is defined as the ℓb-

norm of the column vector that consists of ℓa-norm of the

rows of Φ. We use Φi∗ and Φ∗j to denote the i-th row

and the j-th column of Φ, respectively. For a vector v, we

denote by diag(v) the diagonal matrix with v on its diag-

onal. We denote by 1 the all-one column vector. For two

probability distributions, u and w, over a finite set X , we

denote by DKL(u‖w) their Kullback-Leibler divergence,

i.e., DKL(u‖w) =
∑

x∈X u(x) log
u(x)
w(x) . For two func-

tions f(x) and g(x), we say that f(x) = O(g(x)) if there

exists a constant C such that |f(x)| ≤ Cg(x) for all x.

2. Preliminaries

We review the basics of infinite-horizon MDP with the

average-reward criterion.

2.1. Infinite-Horizon Average-Reward MDP

Most of the paper focuses on the infinite-horizon average-

reward Markov Decisions Problem (MDP), in which one

aims to make an infinite sequence of decisions and optimize

the average per-time-step reward. An instance of the MDP

can be described by a tuple M = (S,A,P, r), where S
is a state space, A is an action space, P is the collection

of state-to-state transition probabilities P = {Pa(s, s′) |
s, s′ ∈ S, a ∈ A}, r is the collection of immediate reward

functions r = {ra(s) | s ∈ S, a ∈ A} with ra(s) ∈ [0, 1].
In every step of the decision process, the system is in some

state s, and an action a is chosen by a control policy. The

system then transitions to a next-state s′ with probability

Pa(s, s
′) with an immediate reward ra(s).

2.2. Policy Optimization

A randomized stationary policy can be represented by a

matrix π ∈ Π ⊂ R
S×A, where Π consists of non-negative

matrices whose s-th row, denoted by πs∗, corresponds to

a probability distribution over A for state s. The policy

optimization problem is to maximize the infinite-horizon

average reward over stationary policies:

max
π∈Π

{

v̄π = lim
T→∞

E
π

[

1

T

T
∑

t=1

rat(st)

]}

, (1)

where (s1, a1, s2, a2, . . . , st, at, . . .) are state-action transi-

tions generated by the Markov decision process under π

from an arbitrary initial distribution, and the expectation

E
π[·] is taken over the entire trajectory. The limit in (1)

exists and is invariant with respect to the initial state if the

Markov decision process is irreducible under any π.

We denote by Pπ the transition probability matrix of the

MDP under a fixed policy π, i.e.,

Pπ(s, s′) =
∑

a∈A
πs,aPa(s, s

′)

for all s, s′ ∈ S . Note that the policy optimization problem

(1) is equivalent to the following optimization problem (Put-

erman, 2014):

max
π∈Π,ξ∈R|S|

∑

s∈S,a∈A
ξsπs,ara(s)

s.t. ξ⊤Pπ = ξ⊤, ξ ≥ 0, ξ⊤1 = 1 ,

where the constraint ensures that ξ is the stationary dis-

tribution of states under Pπ, and the objective is an ex-

plicit expression of the average reward v̄π. By defining

µs,a = ξsπs,a, the policy optimization becomes a linear

program

max
µ∈R|S|×|A|

∑

s∈S,a∈A
µs,ara(s)

s.t.
∑

a∈A
µ⊤
∗aPa =

∑

a∈A
µ⊤
∗a, µ ≥ 0, ‖µ‖1,1 = 1 ,

(2)

where the constraint ensures that µ is a stationary state-

action distribution of the MDP under some policy. We

denote by µ∗ the optimal solution to (2). The optimal policy

can be obtained by π∗
s,a =

µ∗
s,a

‖µ∗
s∗‖1

. It is known that there

exists an optimal basic solution, which corresponds to a

deterministic policy (Puterman, 2014).

2.3. Bellman Equation

It is known from the theory of dynamic programming (Puter-

man, 2014; Bertsekas, 1995) that v̄∗ is the optimal average
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reward to the MDP M if and only if it satisfies the following

Bellman equation:

v̄
∗ + v

∗(s) = max
a∈A

{

∑

s′∈S

Pa(s, s
′)v∗(s′) + ra(s)

}

, ∀ s ∈ S,

(3)

for some vector v∗ ∈ R
|S|. Here, v∗ is known as the

difference-of-value vector, which we also refer to as the

value vector or value function for short. Note that there

exist infinitely many solutions of v∗ to (3) (by adding any

constant shift), which does not affect our analysis. The

results of the paper hold for any such v∗ unless stated other-

wise. A stationary policy π∗ is an optimal policy of the MDP

if it attains the elementwise maximization in the Bellman

equation (Puterman, 2014, Theorem 8.4.5). The Bellman

equation also admits an equivalent linear program:

minv̄∈R,v∈R|S| v̄

subject to v̄ · 1+ (I − Pa) v − ra ≥ 0, ∀ a ∈ A.
(4)

It is well known that the linear program (4) is the dual

of the policy optimization problem (2) (Puterman, 2014).

Informally speaking, the Bellman equation and the policy

optimization problem are dual to each other.

3. Bilinear Model Reduction of MDP using

State and Action Features

In this section, we study how to utilize given state and ac-

tion features for dimension reduction of the Bellman saddle

point problem. We propose to use a linear model for ap-

proximating the optimal value vector and a bilinear additive

model for approximating the state-action distribution. Then

we formulate a reduced-order primal-dual policy optimiza-

tion problem, which we refer to as the parametric Bellman

saddle point problem.

3.1. Using State and Action Features As Bilinear Bases

Suppose that we are given feature functions φ : S 7→ R
D

and ψ : A 7→ R
U , which map the state and action spaces

into low-dimensional spaces, respectively. For simplicity of

analysis, we assume the following:

Assumption 1 (State and Action Features). The state fea-

tures φ1(·), . . . , φD(·) and action features ψ1(·), . . . , ψU (·)
are probability density functions over the state space S and

the action space A, respectively. Besides, the state density

functions and the action density functions are both linearly

independent.

Note that this assumption is not very strong: for finite state

and action spaces, any nonnegative nonzero feature vector

can be normalized to be a nonnegative vector whose entries

sum to 1. Similarly, for general state and action spaces, any

nonnegative and nonzero integrable feature functions can be

normalized to become a probability density function. Such

normalization is needed for the convenience of analysis

and sampling, which does not affect the scaling of relevant

quantities in our complexity bounds.

Let (v∗, π∗) be a pair of optimal difference-of-value vec-

tor and optimal policy of the MDP. We adopt a (bi)linear

model to approximate the value function and state-action

distribution:

• The value function is approximated by a linear model,

where we hope to find ṽ ∈ R
D such that

v∗(·) ≈
D
∑

i=1

ṽiφi(·).

• Representing the randomized policy π is trickier, as

it is a collection of conditional distributions. We will

use an implicit representation. Specifically, we use

a bilinear additive model to represent µ∗, the station-

ary distribution of state-action pairs under the optimal

policy, specified as follows.

µ∗
s,a ≈

D
∑

i=1

U
∑

u=1

µ̃i,uφi(s)ψu(a),

where µ̃ ∈ R
D×U is a matrix of parameters. The

optimal policy is then approximated by

π∗
s,a ∝

D
∑

i=1

U
∑

u=1

µ̃i,uφi(s)ψu(a) ,

such that
∑

a π
∗
s,a = 1 for all s ∈ S. Since φi’s

and ψu’s are probability density functions, the bilinear

model for µ∗ is essentially an additive mixture model

over the product space spanned by outer products be-

tween two classes of density functions.

Remark. Consider the case where S,A are both large but

finite sets. Let Φ ∈ R
|S|×D,Ψ ∈ R

|A|×U be the matrices

consisting of column state features and column action fea-

tures, respectively. We can write our models in the following

matrix forms

v∗ ≈ Φṽ ,

µ∗ ≈ Φµ̃Ψ⊤ .

In this case, Assumption 1 requires that the columns of Φ
and Ψ be nonnegative vectors whose entries sum to 1, and

that Φ, Ψ be full-rank matrices.
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3.2. Reduced-Order Bellman Saddle Point Problem

The policy optimization problem (1) and the Bellman equa-

tion (3) admit linear programs (2) and (4), which are dual

to each other. As suggested by Wang (2017a), they can be

equivalently formulated as a minimax problem:

min
v

max
µ≥0,‖µ‖1,1=1

∑

a∈A
µ⊤
∗a
(

(Pa − I)v + ra
)

. (5)

Its saddle point(s) coincide with the pair(s) of optimal value

function and the corresponding state-action distribution.

The optimal minimax value is equal to the optimal aver-

age reward v̄∗ =
∑

a∈A(µ
∗
∗a)

⊤ra.

With the linear and bilinear models described in the previous

subsection, we approximate the high-dimensional saddle

point problem (5) with the following optimization problem

that involves lower-dimensional variables:

min
ṽ∈V

max
µ̃∈U

∑

a∈A
Ψa∗µ̃

⊤Φ⊤((Pa − I)Φṽ + ra), (6)

where V and U are certain primal and dual constraints to

be specified later. Here, µ̃ is of dimension D × U . The pri-

mal and dual variables (ṽ, µ̃) are parameters of the bilinear

models for the value function and state-action distribution.

Equivalently, one can rewrite (6) into a sampling-friendly

form:

min
ṽ∈V

max
µ̃∈U

D
∑

i=1

U
∑

u=1

µ̃i,uEφi,ψu

[

φTs′ ṽ − φTs ṽ + ra(s)
]

,

(7)

where the expectation is taken over the random variables

(s, a, s′) where s ∼ φi, a ∼ ψu, s′ ∼ Pa(s, ·).

3.3. Realizability of The Reduced Model

We introduce the following notion of realizability regarding

the state and action features.

Definition 1 (Realizability). An MDP M is realizable using

state and action features φ and ψ, if there exist ṽ ∈ R
D and

µ̃ ∈ R
D×U
+ so that v∗ = Φṽ and µ∗ = Φµ̃Ψ⊤.

We have the following result:

Theorem 1. Let M be an MDP that is realizable using φ

and ψ. Then, the optimal saddle point (ṽ∗, µ̃∗) to problem

(7) satisfies

v∗ = Φṽ∗, µ∗ = Φµ̃∗Ψ⊤.

The proof is straightforward by noting that (7) is a more

restricted version of (5).

A natural question one may ask is what happens when the

realizability condition does not hold. We wonder how well

one can solve the high-dimensional MDP by solving the

reduced-order saddle point problem (6) instead. We leave

this question to Section 5.4, where we provide approxima-

tion guarantees for solving the misspecified saddle point

problem, when realizability does not hold.

4. Bilinear π Learning

This section develops the Bilinear π-Learning algorithm

based on given state and action features. We discuss its im-

plementation and run-time efficiency. Its sample efficiency

is the subject of the next section.

4.1. The Algorithm

We propose to use a primal-dual algorithm to solve problem

(6), which is given as in Algorithm 1. The algorithm makes

updates to ṽ and µ̃ while sampling random coordinates and

state transitions. Let us denote by (it, ut, st, at, rt, s
′
t) the

sample at iteration t. Let U ,V,M, α, β be input parameters

to be specified later. At the t-th iteration, the algorithm

updates according to

µ̃t+1 = ΠU,KL

(

µ̃t exp (β∆t+1
µ )

‖µ̃t exp (β∆t+1
µ )‖1,1

)

,

ṽt+1 = ΠV
(

ṽt − α∆t+1
v

)

,

where ΠU,KL(µ) = argminµ′∈UDKL(µ
′‖µ) denotes the

information projection onto U with regard to the Kullback-

Leibler divergence, ΠV(v) = argminv′∈V‖v−v′‖2 denotes

the Euclidean projection onto V , ∆t+1
µ ∈ R

D×U denotes

the noisy gradient with respect to the dual variable, given by

∆t+1
µ (i, u)

=







(φ(s′t)−φ(st))
⊤
ṽt+rt−M

µ̃t
it,ut

, if (i, u) = (it, ut)

0, otherwise,

and ∆t+1
v ∈ R

D denotes the noisy partial gradient with

respect to the primal variable:

∆t+1
v = φ(s′t)

⊤ − φ(st)
⊤.

Essentially, each iteration is a stochastic primal-dual itera-

tion (using ‖ · ‖2 and KL divergence as the primal and dual

Bregman divergence functions, respectively) for solving the

saddle point problem. The algorithm has several interesting

features that are worth noting:

• Upon obtaining a new sample, the π-learning algorithm

makes multiplicative updates on dual variables, which

resembles the exponentiated gradient methods used

in bandit problems (Kivinen & Warmuth, 1997; Auer

et al., 2002).
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• The updates on dual variables involve projection with

respect to the KL divergence. Similar Bregman diver-

gence functions have been used for regularization for

policy optimization (Schulman et al., 2015; Fox et al.,

2016).

• The algorithm does not need to take the sample transi-

tions as input, which can be high-dimensional quanti-

ties. Instead, it is sufficient to take as input the feature

values φ(s), ψ(a) of the state and action, so that all the

computation can be carried out in the low-dimensional

parameter space.

Algorithm 1 Bilinear π Learning (Average Reward)

1: Input: The number of iterations T > 0, φ, ψ

2: Input: Stepsizes α, β and offset parameter M

3: Set ṽ1i = 0, µ̃1
i,u = 1

DU
, i ∈ [D], u ∈ [U ]

4: Let µ̃ = µ̃1

5: for t = 1, 2, 3, . . . , T do

6: Sample (i, u) according to distribution µ̃

7: Sample s according to distribution φi
8: Sample a according to distribution ψu
9: Sample s′ and get ra(s) using (s, a) and the gener-

ative model

10: ṽt+1 = ΠV
(

ṽt − α (φ(s′)− φ(s))
⊤
)

11: µ̃i,u = µ̃i,u · exp
{

β · (φ(s
′)−φ(s))⊤ṽt+ra(s)−M

µ̃i,u

}

12: µ̃ = ΠU,KL
(

µ̃
‖µ̃‖1,1

)

13: µ̃t+1 = µ̃

14: end for

15: µ̂ = 1
T

∑T
t=1 µ̃

t

16: Let π̂s,a =
Φs∗µ̂Ψ

⊤
a∗∑

b∈A Φs∗µ̂Ψ⊤
b∗

17: Ouput: π̂

4.2. Computational Efficiency

Algorithm 1 is model-free in the sense that it never attempts

to estimate the transition probability model of the MDP.

Instead, it makes direct updates to the parameters of the

value function and state-action distribution. It is worth

emphasizing that it outputs a policy, not a value function.

Scalability is a significant advantage of Algorithm 1. The

algorithm uses low-dimensional memory. It maintains two

variables, the value parameters ṽ and the policy parameters

µ̃. The memory size is O(DU), which is the dimension of

the policy parameters and does not depend on the actual

dimension of the MDP. Furthermore, the algorithm operates

in a purely streaming mode: for example, in the case where

the decision process is a sequence of images, the proposed

algorithm does not need to store any past image. Each

iteration of the algorithm makes sparse updates. When

the sets V,U are of simple forms (see the next section for

examples), each iteration can be implemented in runtime

that is polynomial with respect to D,U .

5. Sample Complexity

We now turn to the sample-complexity analysis of Algo-

rithm 1. We first analyze the convergence of of an inexact

duality gap associated with the primal and dual iterates.

Then we use the duality gap bound to derive the number of

samples needed to find an ǫ-optimal policy, provided that

the realizability condition holds. Finally, we extend the

analysis to the unrealizable case where the approximation

error may be nonzero.

For simplicity of exposition, we focus on the case where the

state and action spaces, S and A, are finite. We will show

that our sample complexity bounds do not scale with the

sizes of the state and action spaces.

5.1. Assumptions

We make the following assumptions in the rest of the paper.

They require that the state-action distributions of the MDP

are within certain ranges and that the process is rapidly

mixing. For convenience, we define S = |S| and A = |A|.
Assumption 2 (Uniformly Bounded Ergodicity). The

Markov decision process is ergodic under any stationary

policy π, and there exists τ > 1 such that

1√
τS

· 1 ≤ νπ ≤
√
τ

S
· 1,

where νπ is the stationary distribution over the state space

of the MDP under the policy π.

This assumption is also used by Wang (2017a). It implies

that the MDP is unichain (Puterman, 2014).

Assumption 3 (Fast Mixing Time). There exists a constant

tmix > 0 such that for any stationary policy π

tmix ≥ min
t

{

t
∣

∣

∣
‖(Pπ)t(s, ·)− νπ‖TV ≤ 1

4
, ∀s ∈ S

}

,

where ‖ · ‖TV stands for the total variation.

Under this assumption, there exists an optimal difference-

of-value vector satisfying ‖v∗‖∞ ≤ 2tmix, according to

Lemma 1 in (Wang, 2017a). In the rest of the analysis, we

focus on such v∗.

In what follows, we choose the primal constraint V as

V = {ṽ ∈ R
D
∣

∣‖Φṽ‖∞ ≤ 2tmix},

and the dual constraint U as

U =

{

µ̃
∣

∣

∣
µ̃ ≥ 0, ‖µ̃‖1,1 = 1,

∑

a∈A
Φµ̃Ψ⊤ ≥ 1√

τS

}

.
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Note that U is guaranteed to be nonempty as long as a

constant-valued state feature function is included.

In the algorithm, we choose the parameters as follows:

M = 4tmix + 1 ,

β =
1

5tmix

√

log(DU)

TDU
,

α =
tmix

λmin(Φ⊤Φ)‖Φ‖2,∞

√

D

T
.

(8)

5.2. Primal-Dual Convergence

In this section, we analyze the convergence of Algorithm 1.

It can be viewed as a stochastic approximation algorithm,

in which we use only a single sample per iteration.

Let (v̌, µ̌) be the best approximation to (v∗, µ∗) using the

linear models and given features φ, ψ:

µ̌ = argminµ̃∈U‖Φµ̃Ψ⊤ − µ∗‖1,1,
v̌ = argminṽ∈V‖Φṽ − v∗‖∞.

Note that ‖ · ‖1,1 is equivalent to the total variation distance

between Φµ̃Ψ⊤ and µ∗, if viewed as distributions.

Our first result concerns the convergence of an inexact dual-

ity gap that is associated with the primal-dual iterates.

Theorem 2 (Inexact Duality Gap). Let Φ ∈ R
S×D and

Ψ ∈ R
A×U satisfy Assumption 1. Let M = (S,A,P, r) be

an arbitrary MDP satisfying Assumptions 2 and 3. Then the

sequence of iterates {µ̃t, ṽt}Tt=1 generated by Algorithm 1
satisfies the following:

∑

a∈A

r
⊤
a Φµ̌Ψ⊤

a∗ +
1

T

T
∑

t=1

E

[

∑

a∈A

((I − Pa)Φv̌ − ra)
⊤Φµ̃tΨ⊤

a∗

−
∑

a∈A

(Φµ̌Ψ⊤
a∗)

⊤(I − Pa)Φṽ
t
]

= O

(

tmix

(

cΦ +
√

U log(DU)
)

√

D

T

)

,

(9)

where cΦ =
‖Φ‖2,∞

λmin(Φ⊤Φ)
is a constant, and λmin(Φ

⊤Φ) is

the smallest nonnegative eigenvalue of Φ⊤Φ.

The constant cΦ =
‖Φ‖2,∞

λmin(Φ⊤Φ)
is feature-dependent, but

it does not scale with S. Recall that each column of Φ
is a nonnegative vector that sums to 1, therefore the ratio

between ‖Φ‖2,∞ and λmin(Φ
⊤Φ) does not scale with S.

The constant cΦ would be finite and dimension-free as long

as λmin(Φ
⊤Φ) is bounded from below - a form of “restricted

eigenvalue condition” that is commonly used for analysis of

linear models.

To prove Theorem 2, we first establish recursions on the KL

divergence DKL(µ̌‖µ̃t) =
∑U
u=1

∑D
i=1 µ̌i,u log

µ̌i,u

µ̃t
i,u

and

on the squared distance ‖ṽt − v̌‖22 via the following two

lemmas. We denote by Ft the collection of all the random

variables revealed up to the t-th iteration of Algorithm 1.

Lemma 1. Given Ft, the KL divergence DKL(µ̌‖µ̃t+1)
satisfies for t ≥ 1 that

E[DKL(µ̌‖µ̃
t+1) | Ft]−DKL(µ̌‖µ̃

t) ≤ 50β2
DUt

2
mix

+β
∑

a∈A

Ψa∗(µ̃
t − µ̌)⊤Φ⊤((Pa − I)Φṽt + ra) .

(10)

Moreover, since µ̃1
i,u = 1

DU
for all u ∈ [U ], i ∈ [D] as in

Algorithm 1, we have DKL(µ̌‖µ̃1) ≤ log(DU).

Lemma 2. Given Ft, the squared error ‖ṽt− v̌‖22 satisfies

E[‖ṽt+1 − v̌‖22 | Ft]− ‖ṽt − v̌‖22

≤ 2α
∑

a∈A

Ψa∗(µ̃
t)⊤Φ⊤(I − Pa)Φ(ṽ

t − v̌) + 4α2‖Φ‖22,∞,

(11)

and ‖ṽ1 − v̌‖22 ≤ 4Dt2mix

λ2

min
(Φ⊤Φ)

.

The proofs of Lemmas 1 and 2 are deferred to the appendix.

Using these two lemmas, we prove Theorem 2 as follows.

Proof of Theorem 2. We first define Gt =
∑

a∈A(Φµ̃
tΨ⊤

a∗)
⊤((I−Pa)Φv̌−ra)+

∑

a∈A r
⊤
a Φµ̌Ψ

⊤
a∗−

∑

a∈A(Φµ̌Ψ
⊤
a∗)

⊤(I − Pa)Φṽ
t. If we take a weighted sum

between (10) and (11), we obtain

Gt ≤
DKL(µ̌‖µ̃

t)−E[DKL(µ̌‖µ̃
t+1) | Ft]

β
+ 50βDUt

2
mix

+
‖ṽt − v̌‖22 −E[‖ṽt+1 − v̌‖22 | Ft]

2α
+ 2α‖Φ‖22,∞ .

Applying the stepsizes in (8), taking the average over t, and
using iterated expectations, we have

1

T

T
∑

t=1

E[Gt] ≤
DKL(µ̌‖µ̃

1)

Tβ
+ 50βDUt

2
mix

+
‖ṽ1 − v̌‖22

2Tα
+ 2α‖Φ‖22,∞

≤15tmix

√

DU log(DU)

T
+

4tmix‖Φ‖2,∞
λmin(Φ⊤Φ)

√

D

T
,

where the second inequality is due to Lemmas 1 and 2.

Recall that 1
T

∑T
t=1 E[Gt] is exactly the LHS of equation

(9). The proof is thus completed.

5.3. Convergence To Optimal Policy: The Realizable

Case

We now study the sample complexity of Algorithm 1 for

obtaining a near-optimal policy in the realizable case. Recall

that we are interested in finding an approximately-optimal

policy which performs comparably to the optimal policy

in the Markov decision process. Therefore, we wish to

quantify the policy error.
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Theorem 3 (Convergence with Realizability). Let Φ ∈
R
S×D and Ψ ∈ R

A×U satisfy Assumption 1. Let M =
(S,A,P, r) be an arbitrary MDP satisfying Assumptions 2

and 3. Suppose that the MDP M is realizable using state

and action features Φ,Ψ. Then, the policy π̂ generated by

Algorithm 1 after running T time steps satisfies

v̄∗ −E[v̄π̂] = O
(

τtmix

(

cΦ +
√

U log(DU)
)

√

D

T

)

,

where v̄π̂ is the average reward of the policy π̂.

Proof. In the realizable case, we can write µ∗ = Φµ̌Ψ⊤

and v∗ = Φv̌. Note that µ∗ is the stationary distri-

bution under the optimal policy, which gives us that
∑

a∈A(Φµ̌Ψ
⊤
a∗)

⊤(I − Pa) =
∑

a∈A(µ
∗
∗a)

⊤(I − Pa) = 0,
where µ∗

∗a is the a-th column of µ∗. It is also known that
∑

a∈A(µ
∗
∗a)

⊤ra = v̄∗. We can simplify the result of Theo-

rem 2 to

v̄∗ +
1

T

T
∑

t=1

E

[

∑

a∈A
((I − Pa)v

∗ − ra)
⊤Φµ̃tΨ⊤

a∗

]

= O
(

tmix

(

cΦ +
√

U log(DU)
)

√

D

T

)

,

(12)

where µ̃t is the sequence of dual variables computed in

Algorithm 1.

Recall that the probability of choosing action a at state s,

for the policy output by Algorithm 1, is

π̂s,a =
Φs∗µ̂Ψ⊤

a∗
∑

a′∈A Φs∗µ̂Ψ⊤
a′∗
,

where µ̂ = 1
T

∑T
t=1 µ̃

t. We let ξ = (ξ1, . . . , ξS) be such

that ξs =
∑

a′∈A Φs∗µ̂Ψ⊤
a′∗ for s ∈ S. Denote by νπ̂ the

stationary distribution of the MDP under the policy π̂. Using

the definition of the average reward, we have

v̄∗ − v̄π̂ =
∑

s∈S

∑

a∈A
νπ̂s π̂s,a(v̄

∗ − ra(s))

=
∑

a∈A
(νπ̂)⊤diag(π̂∗a)((I − Pa)v

∗ + v̄∗ · 1− ra) ,

where the last equality is because νπ̂ is the stationary dis-

tribution and hence
∑

a∈A(ν
π̂)⊤diag(π̂∗a)(I − Pa) = 0.

From Assumption 2 and the definition of the dual con-

straint U , we have νπ̂s ≤
√
τ

S
= τ · 1√

τS
≤ τξs for any

state s, where the second inequality uses the fact that the

dual iterates are always projected onto U . Also, we have

(I−Pa)v∗+ v̄∗ ·1− ra ≥ 0 by the Bellman equation. This

gives us

v̄∗ − v̄π̂ ≤ τ
∑

a∈A
ξ⊤diag(π̂∗a)((I − Pa)v

∗ + v̄∗ · 1− ra).

By the definition of ξ, we have ξsπ̂s,a =
1
T

∑T
t=1 Φs∗µ̃

tΨ⊤
a∗. Also note that

∑

a∈A ξ
⊤diag(π̂∗a) ·

1 = 1. It then follows from the last expression and equation
(12) that

v̄
∗ −E[v̄π̂]

≤ τ

(

v̄
∗ +

1

T

T
∑

t=1

E

[

∑

a∈A

((I − Pa)v
∗ − ra)

⊤Φµ̃tΨ⊤
a∗

])

= O

(

τtmix

(

cΦ +
√

U log(DU)
)

√

D

T

)

,

(13)

which completes the proof.

Theorem 3 suggests that, the bilinear π learning algorithm

achieves an ǫ-optimal policy by using the sample size

O
(

DU log(DU)

ǫ2

)

,

with other parameters fixed. This sample complexity bound

depends linearly on the dimension of policy parameters. It

is scale-free with respect to the sizes of the underlying MDP.

5.4. Convergence To Approximately Optimal Policy:

The Unrealizable Case

We finally turn to the case where the realizability may not

hold. The following theorem generalizes the results of The-

orem 3 to the unrealizable case.

Theorem 4 (Convergence without Realizability). Let
M = (S,A,P, r) be an arbitrary MDP satisfying Assump-

tions 2 and 3. Let Φ ∈ R
S×D and Ψ ∈ R

A×U satisfy
Assumption 1. Then the policy computed by Algorithm 1
after running T time steps satisfies

v̄
∗ −E[v̄π̂] = O

(

τtmix

(

cΦ +
√

U log(DU)
)

√

D

T

+ τ ·min
ṽ∈V

‖Φṽ − v
∗‖∞ + τtmix ·min

µ̃∈U
‖Φµ̃Ψ⊤ − µ

∗‖1,1

)

,

where v̄π̂ is the average reward of the policy π̂.

The proof requires a careful characterization of the approxi-

mation error, and is deferred to the appendix. The approx-

imation error has two parts. The first part minṽ∈V ‖Φṽ −
v∗‖∞ is the ℓ∞ distance from the optimal value func-

tion v∗ to the span of state features. The second part

minµ̃∈U ‖Φµ̃Ψ⊤ − µ∗‖1,1 is the total variation distance

between the optimal state-action distribution and the best

approximate distribution in the product space generated by

state and action features.
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6. Related Literatures

The primal-dual approach we developed in this paper is

based on the well-known linear program (LP) formula-

tion of the Bellman equation (d’Epenoux, 1963; Puterman,

2014). The exact LP has been extended to approximate

linear programs (ALP) to tackle large-scale problems, by

using compact representations of the value function. For

example, Schweitzer & Seidmann (1985) and de Farias &

Van Roy (2003) propose to represent the value function as a

linear combination of basis functions, but the number of con-

straints depends on the number of state-action pairs, which

motivated a lot of research on how to select a small subset

of constraints without introducing much suboptimality in

the reduced ALP (e.g., de Farias & Van Roy (2004)). Oth-

ers have studied various approaches to compress the large

constraint set into a smaller one (Taylor & Parr, 2012; Lak-

shminarayanan et al., 2017). These prior works focus on the

quality of the ALP solution—the distance it is from the opti-

mal value function, but not so much on developing efficient

algorithms to solve it. An exception is Abbasi-Yadkori et al.

(2014), who reduces the ALP to stochastic convex optimiza-

tion. However, their algorithm requires certain knowledge

of the transition probabilities that is not easily available for

all problems. In contrast, our work provides a concrete al-

gorithm to solve the ALP when a bilinear representation is

used, with strong guarantees on its computation and sample

complexity; the algorithm only requires a sampling oracle.

A similar saddle point approach has been studied by other au-

thors. Wang & Chen (2016); Wang (2017b;a) propose prov-

ably fast solvers for finite MDPs, but those algorithms are

not expected to scale well when the number of states/actions

becomes large. Our algorithm’s complexity depends on the

number of basis functions, which has a much lower dimen-

sion than the number of states and actions. Dai et al. (2018)

considers a related yet different primal-dual formulation that

also allows compact representations, but no rate of conver-

gence is provided. It should be noted that there is another

line of research that studies saddle point formulations that

result from the fixed-point (as opposed to LP) view of the

Bellman equation for fixed policy evaluation (Mahadevan

et al., 2014; Macua et al., 2015; Du et al., 2017; Dai et al.,

2017). In contrast, we consider policy optimization, which

is substantially more challenging. It is an interesting future

direction to study the connections between these two saddle

point formulations.

While our work is mostly related to the ALP family, another

important class of methods to solve large-scale MDPs is

approximate dynamic programming, or ADP (Bertsekas &

Tsitsiklis, 1996). Linear basis functions have been used for

both policy evaluation and optimization (Tsitsiklis & Van

Roy, 1997; Nedić & Bertsekas, 2003; Lagoudakis & Parr,

2003; Melo et al., 2008; Sutton et al., 2009). However, ex-

cept in certain special cases, ADP with linear approximation

can be inherently unstable, leading to undesired situations

including oscillation and even divergence. The Greedy-GQ

is an interesting control algorithm with linear approxima-

tion that has convergence guarantees under a relatively mild

assumption (Maei et al., 2010). But no finite-sample conver-

gence is provided, and the algorithm requires two time-scale

updates that can cause difficulties in practice. Our primal-

dual algorithm not only is provably stable, but also enjoys

strong finite-sample convergence rate.

Finally, our use of bilinear representations to compactly

represent distributions over state-action pairs also appears

new to the best of our knowledge. The most relevant model

that has been studied is proposed by Elkan (2011), which

used a bilinear state-action representation for Q-functions.

Previous work also uses linear approximation of value func-

tions (Bertsekas & Tsitsiklis, 1996; Elkan, 2011), or state

transition probabilities (Wang et al., 2007; Yang et al., 2009).

In contrast, our representation allows one to work with large

state and/or action spaces: the state and action are first

mapped to their respective low-dimensional spaces, and a

weight matrix is used to compute the distribution of that

state-action pair. Such a technique may find use in other

context when a distribution over state-action needs to be

represented explicitly.

7. Summary

We provide a scalable model-free method, bilinear π learn-

ing, for reinforcement learning, when a sampling oracle

is provided. The method has its origin in a primal-dual

formulation of the policy optimization problem. It adopts

(bi)linear models to approximate the high-dimensional value

functions and state-action distributions, using given state

and action features. The approach enjoys a number of ad-

vantages. First, it is a compact method that has very small

memory footprint and makes updates to low-dimensional

variables. Its run-time and space complexities do not depend

on the size of the MDP, so is scalable to large-scale rein-

forcement learning problems. Furthermore, the π-learning

method is sample-efficient, which solves the approximate

Bellman saddle point problem to high precision using a

small number of observations. The sample complexity of

the compact π-learning method is linear in the dimension

of the reduced parameter space, and again does not depend

on the size of the underlying MDP.

We mention a few exciting directions for future research.

First, how to generalize our approach to nonlinear approxi-

mations such as neural networks? Second, how to adapt the

algorithm to online reinforcement learning, with the learner

following a single trajectory, with PAC (Strehl et al., 2009)

or regret (Jaksch et al., 2010) guarantees? This will require

explicitly addressing the exploration problem.
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