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Abstract

Motivation: Recent technological innovations in flow cytometry now allow oceanographers to col-

lect high-frequency flow cytometry data from particles in aquatic environments on a scale far sur-

passing conventional flow cytometers. The SeaFlow cytometer continuously profiles microbial

phytoplankton populations across thousands of kilometers of the surface ocean. The data streams

produced by instruments such as SeaFlow challenge the traditional sample-by-sample approach in

cytometric analysis and highlight the need for scalable clustering algorithms to extract population

information from these large-scale, high-frequency flow cytometers.

Results: We explore how available algorithms commonly used for medical applications perform at

classification of such a large-scale, environmental flow cytometry data. We apply large-scale

Gaussian mixture models to massive datasets using Hadoop. This approach outperforms current

state-of-the-art cytometry classification algorithms in accuracy and can be coupled with manual or

automatic partitioning of data into homogeneous sections for further classification gains. We pro-

pose the Gaussian mixture model with partitioning approach for classification of large-scale, high-

frequency flow cytometry data.

Availability and Implementation: Source code available for download at https://github.com/jhyr-

kas/seaflow_cluster, implemented in Java for use with Hadoop.

Contact: hyrkas@cs.washington.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

We present an exploration of scalable machine learning solutions to

a problem motivated by an emerging class of high-frequency, con-

tinuous-operation flow cytometers (Dubelaar et al., 1999; Olson

and Sosik, 2007; Swalwell et al., 2011). Existing analysis tools as-

sume individual samples are processed independently; these tools as-

sume a small number of discrete, independent samples and are

therefore not appropriate for newer devices. We therefore adapt and

extend existing methods to propose the first scalable, accurate classi-

fication solution for large-scale continuous environmental flow

cytometry. While this method has its roots in biological

oceanography, we show that the solutions identified for analyzing

these datasets are applicable in other domains as well.

1.1 Flow cytometry
Flow cytometry advances individual cells through a thin capillary

and then measures each cell’s optical properties using laser light.

The scattering patterns of the laser can be used to infer cell size, and

the wavelengths of the fluorescence signal are used to infer the con-

centration of various pigments. Flow cytometry can therefore dis-

criminate between cells and detritus or suspended sediments, and

between photosynthetic and non-photosynthetic organisms.
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Researchers in the environmental sciences use flow cytometry to

analyze the microbial populations in water or soil samples, or to

measure pollutants in the air (Tarnok et al., 2001). Marine micro-

bial ecologists are in particular interested in the dynamics of phyto-

plankton, which produce about half of the oxygen on earth and are

foundational to the oceanic food web (Field et al., 1998). With con-

ventional flow cytometry, discrete samples are collected for cytomet-

ric analysis; e.g. to classify particles by species of phytoplankton.

The most common classification method is manual gating, where

the physical boundaries for clusters of cells are manually identified.

While this process incorporates expert knowledge, it can lead to

somewhat subjective cluster boundaries (Aghaeepour et al., 2011).

Furthermore, as cytometry samples became more numerous, manual

classification by direct inspection of scatter plots became infeasible

and has been replaced by automated learning algorithms

(Aghaeepour et al., 2013).

1.2 The SeaFlow project
The SeaFlow instrument is a state-of-the-art environmental flow

cytometer, designed to be deployed on oceanographic research ves-

sels and operated continuously over several weeks (Swalwell et al.,

2011). Different populations of phytoplankton associated with dif-

ferent environments are commonly observed during a research cruise

as the vessel moves through different water masses. SeaFlow con-

tinuously samples surface seawater, generating a time series of

cytometry samples (one every 3 min) containing measurements

of the optical properties of small phytoplankton cells (less than

10 microns in diameter). After several weeks, there are thousands

of 3-min samples to be classified from highly variable environmental

conditions, representing hundreds of gigabytes of data (we refer to a

dataset containing these samples as a cruise-scale cytometry

dataset).

Each phytoplankton cell observed is defined by its forward light

scattering collected in orthogonal and perpendicular polarization

states (a proxy for cell size and cell calcification state, respectively)

and two different wavebands of fluorescence: one associated with

chlorophyll a pigment (centered on 690 nm for red fluorescence) and

one associated with phycoerythrin pigment (centered on 570 nm for

orange fluorescence). The same phytoplankton species may exhibit

different optical properties as environmental conditions change over

time and space. For instance, cell size increases during daylight as

cells fix carbon by photosynthesis but decreases when cells undergo

cell division; changes in nutrient availability can also influence cell

size (Sosik et al., 2010). As a result, the location and shape of clus-

ters of cells in this four-dimensional space will vary as samples are

collected at different times and locations.

1.3 Algorithmic challenges of automated analysis
Most samples from conventional flow cytometers are treated as in-

dependent datasets to be processed individually. However, SeaFlow

samples are collected by the same instrument with the same config-

uration and show snapshots of populations across a continuous en-

vironment. The 3-min mark used to produce samples is somewhat

arbitrary, and population change may occur at a much slower pace.

As a result, SeaFlow samples are more natural to aggregate than,

e.g. cytometry data collected in the same environment but in separ-

ate experiments (possibly with different cytometers or under differ-

ent experimental conditions). We expect that aggregating and

classifying large segments of the dataset, as opposed to individual

samples, will improve a classifier’s ability to estimate population

densities and boundaries. Specifically, sparse samples can be more

accurately classified using global knowledge, and particles that ap-

pear as outliers in a sample may ultimately be identified as a rare

population when viewed in context. However, most state-of-the-art

cytometry classification algorithms operate in main memory

(Kvistborg et al., 2015) and have not been shown to tolerate this

kind of global analysis, especially not at the scale of SeaFlow.

Recently, Finak et al. (2014) explored single-node parallel and

out-of-core methods for analyzing cytometry data, including classifi-

cation. However, at the scales suggested by continuous flow cytome-

ters, distributed computing platforms that have been shown to scale

to hundreds or thousands of computers such as Hadoop (Shvachko

et al., 2010) and Spark (Zaharia et al., 2010) become important to

study.

In this article, we explore methods for classifying SeaFlow sam-

ples individually and propose new methods for classifying all sam-

ples as one dataset and for choosing contiguous samples that

represent distinct population signatures to classify together. The

contributions of this article are as follows:

• We evaluate existing algorithms on three large SeaFlow datasets,

ignoring continuity and processing each sample independently to

establish a baseline.
• To incorporate continuity, we implement a parallel Gaussian

mixture models (GMMs) algorithm in Hadoop, a widely-used,

open source distributed system that implements a MapReduce-

style computational model (Dean and Ghemawat, 2008). We

apply this method to full SeaFlow datasets consisting of millions

of particles and compare classification quality against sample-

based methods, finding that classification performance is im-

proved and is typically comparable to human judgment.
• We show that automatically partitioning data into large but rela-

tively homogeneous segments and classifying each segment inde-

pendently can improve classification in scenarios where the

underlying population distribution has changed. We find that in

the absence of expert knowledge to perform this partitioning,

change-point detection can provide reasonable partitions.

2 Limitations of conventional methods

Existing automated algorithms for classifying cytometry data have

not been shown to scale to the size of a full SeaFlow dataset, which

consists of samples taken every 3 min (roughly, one sample per kilo-

meter traveled). It is possible to classify each sample (which we will

sometimes refer to as a 3-min window) as separate cytometry meas-

urements. We expect that the performance of this approach will be

worse than training the model over the entire dataset and using all

available information. Furthermore, we expect nearby samples to

look very similar, since they are drawn from nearly the same under-

lying environment. Classifying samples independently does not

allow for sharing information between classifiers, another lost op-

portunity to improve classification quality. To test this hypothesis,

we examined conventional sample-based methods and applied them

to SeaFlow data, classifying each 3-min window separately. We use

these methods as baselines to compare against our proposed meth-

ods that can handle the full volume and complexity of the SeaFlow

data.

2.1 Methods
GMMs have previously been used as the basis for cytometry classifi-

cation methods (Finak et al., 2009; Lo et al., 2008), notably by the

method flowClust (Lo et al., 2009). But in oceanography, GMMs

have only previously been used to analyze relatively small datasets
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(Demers et al., 1992) consisting of a few dozen cytometry samples

taken from a single site in the ocean. To our knowledge, this method

has never been applied to thousands of continuous flow cytometry

samples collected across varying aquatic environments such as in the

SeaFlow datasets.

We applied GMM on a sample-by-sample basis as a baseline.

Applying GMM to cytometry data requires setting a parameter k,

the number of clusters to find, for each sample. In general, this is a

difficult problem and is a major drawback of GMM.

GMM provides a probability for each classification label, which

can be used to measure uncertainty: if every label has a low prob-

ability for a given particle, the model is uncertain about how to clas-

sify it. In practice, we find that particle labels with relatively low

probability tend to be associated with the same particles where our

labels differ from the human labels. Visually, these particles tend to

appear in boundary regions between obvious clusters (Fig. 1).

Anecdotally, we confirmed that experts find these particles ambigu-

ous to classify and that they are less concerned with classification ac-

curacy in these regions. Therefore, GMM provides a natural

probabilistic method for ignoring ambiguous particles and improv-

ing measure performance.

A recent literature review (Aghaeepour et al., 2013) conducted as

part of the FlowCAP project examined 77 algorithms for automated

clustering of cytometry data and identified a number of automated

methods that perform reasonably well on various datasets from the

medical field when compared with manual gating. The study is not dir-

ectly relevant to our goals, however: The FlowCAP project considers

only individual, small-scale samples from the medical domain as

opposed to large-scale, continuously observed environmental data.

However, the study offers a useful point of reference for comparison to

prior work. We applied GMM to the FlowCAP datasets to ensure that

the performance was similar to other FlowCAP methods involving mix-

ture models. None of the mixture model-based algorithm is competitive

with state-of-the-art classification methods. We found the performance

of pure GMM to be generally better than the algorithms based around

mixture models, with the exception of flowClust. We present the details

of these experiments in the Supplementary Materials.

flowMeans (Aghaeepour et al., 2011) and flowPeaks (Ge and

Sealfon, 2012) were among the top-performing algorithms in the

FlowCAP project. These algorithms are modeled on ideas from

flowClust (Lo et al., 2009). Both methods are implemented as R

packages, and both extend the k-means algorithm (Arthur and

Vassilvitskii, 2007) by choosing the k parameter, so that the number

of actual clusters is overestimated and then merging clusters until

convergence (which differs between algorithms).

We explored the performance of GMM, flowMeans and

flowPeaks on SeaFlow data, applying each method sample-by-

sample. We present the results and analysis in Section 4.

3 Cruise-scale clustering

To contrast with baseline sample-based methods, we explored meth-

ods for classifying SeaFlow data using different schemes for binning

windows, from small sections of contiguous windows (a few hun-

dred samples) to an entire cruise (thousands of samples).

To study this approach on an unrelated dataset, we trained a

GMM over all samples from FlowCAP datasets simultaneously.

Even though the samples are drawn from independent populations,

we do observe an increase in classification accuracy when using all

data at once in four of the five datasets. As expected, the classifica-

tion performance is still below state-of-the-art for these datasets,

since GMM is a very broad algorithm unlike the specialized meth-

ods evaluated in the FlowCAP study. However, aggregating the sam-

ples into one dataset does push GMM closer to state-of-the-art.

Because of the increase in performance, we conjecture that our ap-

proach of classifying samples as one data will generalize to other do-

mains, even those where samples are drawn independently.

However, we leave a more thorough evaluation of this claim for fu-

ture work. Details of this experiment are provided in the

Supplementary Material.

3.1 Scaling up GMMs
GMM optimized using expectation-maximization can be parallel-

ized via MapReduce (Dean and Ghemawat, 2008).

The algorithm begins with the choice of k, the number of

Gaussians and initial Gaussian parameters. Each iteration re-

estimates Gaussian parameters based on the input data. The algorithm

Fig. 1. A two-dimensional view of a sample of a SeaFlow dataset collected over 3 mins. GMM has been applied to find cluster labels. On the left, points are col-

ored by the probability of their most likely label, with darker denoting a lower probability (i.e. higher uncertainty). On the right, darker points indicate points where

the label from GMM did not match the manual labels. We observe a strong correlation between mismatched labels and labels that GMM deems uncertain, offer-

ing a mechanism to ignore ambiguous particles and improve the model
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is repeated for several iterations (20 in our experiments) to fit the

Gaussian parameters, and then each particle is assigned a label based

on the Gaussian with the highest probability of producing the particle.

We initialize the Gaussian means similarly to the k-meansþþ algo-

rithm (Arthur and Vassilvitskii, 2007), choose the initial variances to

be identity matrices and the initial Gaussian likelihoods to be 1
k.

To optimize the GMM objective function, we implement expect-

ation-maximization on Hadoop following Chu et al. (2007) but ex-

tended with a combiner to compute partial aggregates. For each

observation o and each Gaussian k, the map phase computes the

probability that k produced o, partially aggregates these results in

the combiner phase, then computes the new mean and variance for

each Gaussian in the reduce phase. A complete description of the al-

gorithm implementation and the workflow of our analysis is pro-

vided in the Supplementary Material, and all code is available online

(https://github.com/jhyrkas/seaflow_cluster).

3.2 Change-point detection
Each SeaFlow cruise covers a large spatial scale, spanning different

environments that support different phytoplankton populations. If

we analyze each window independently, we adapt to this variation

but risk overfitting and overlooking global patterns. In contrast,

training a single model over the entire dataset ignores the high-

frequency biological variation in the ocean.

To balance the trade-off of sample-at-a-time versus all samples

at once on the Seaflow dataset, we used change-point detection

(James and Matteson, 2013) to identify statistically similar regimes

in the data before training the GMM. Change-point detection algo-

rithms are used for discovering points in time series data when the

underlying probability distribution of the data changes. In this ex-

ample, a change-point might correspond to a different population

distribution. An alternative to change-point detection is to use do-

main expertise and human labeling of different water masses with

known boundaries, but our goal was to produce a fully automated

solution.

Change-point detection algorithms assume the data consists en-

tirely of observations from a single distribution, but cytometry data

contain many microbial populations sampled simultaneously and no

way to know from which population a single observation is drawn.

Our initial application of change-point detection tried to find change

points from the measurements of individual particles instead of

change points in the overall distribution of populations, but the nat-

ural variability in the data led to many spurious change points that

did not reflect the physical environment. To overcome this problem,

we computed the mean of all variables in each 3-min window,

reducing each window to a single mean observation. While this ag-

gregation obscures information about each sample, we found that

using sample means revealed two change-points in one dataset

(Cruise 2, described in Section 4.1) that correspond with well-

known changes in populations calculated from the ground truth

labels (Fig. 2).

Guided by this success, we run change-point detection on the

sample means across the entire cruise to separate the cruise into

meaningful segments, then independently cluster these segments

using our MapReduce GMM method. Figure 3 illustrates the overall

workflow. After the observations are ingested in CSV format, we

compute the sample means for each 3-min window and these sample

means are used to detect change points. The change points are then

used to divide the CSV data into independent segments. Finally, a

separate GMM is trained on each segment.

4 Evaluation

We compare the baseline sample-by-sample methods against our

large-scale GMM method and evaluate classification accuracy. We

find that classifying all data collectively using GMM often outper-

forms the sample-based methods and that adding change-point de-

tection to segment the datasets into homogeneous regions

(corresponding to distinct physical regimes in ocean dynamics) im-

proves results further.

Segments found using change-point detection may still be arbitrarily

large and cannot, therefore, be classified using existing libraries such as

flowMeans and flowPeaks that rely on loading all data into main mem-

ory. As an alternative to change-point detection, we evaluated the per-

formance of flowMeans on fixed 10% subsets of one cruise at a time

but found that the predictive performance was worse than using the ori-

ginal 3-min samples. This result illustrates that the performance im-

provement associated with change-point detection is not simply a result

of considering larger subsets of data at a time. The details of these ex-

periments are included in the Supplementary Materials.

4.1 Datasets
We examine three SeaFlow datasets:

• Cruise 1: This dataset consists of 867 samples (�23.6 million

particles) and was continuously collected over approximately 2

days from a single location off the Washington coast.
• Cruise 2: This dataset consists of 1599 samples (�12.6 million

particles) and was collected while a vessel traveled between

coastal and oceanic waters in the Gulf of Alaska for approxi-

mately 3.5 days.
• Cruise 3: This dataset consists of 2802 samples (�22.6 million

particles) and was collected while a vessel traveled along the

Washington coast for approximately 6 days.

Fig. 2. The colored lines show the relative abundance of three populations for

Cruise 2 going forward in time. These labels were determined by manual gat-

ing and were not available to the change-point algorithm. The vertical bars

show change-points chosen by the algorithm, which seem to correspond to

real biological change, although there are noticeable shifts (e.g. around the

300th and 1400th sample) that are not detected

Fig. 3. General workflow for processing cytometry data after applying

change-point detection. Samples means are collected and the data is seg-

mented based on the discovered change-points. Each segment is initialized,

loaded into Hadoop for clustering
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These datasets are made up of measurements of phytoplankton

particles that SeaFlow detects in the water. The challenge is to cor-

rectly label these particles to identify populations present in the

dataset. The training labels in these datasets were assigned using

manual gating. For evaluation purposes, we assume these labels rep-

resent ground truth, but anecdotally we have found that our model

can at times outperform the human. More information on these

datasets, including information for accessing the data, can be found

in the Supplementary Materials.

For each sample, we cluster particles on their optical measure-

ments and compare the cluster labels from each algorithm with the

labels provided by manual gating. We use the F-measure for cluster

evaluation, a popular metric of cluster quality that was previously

used, e.g. as the main evaluation criterion in FlowCAP (Aghaeepour

et al., 2013).

We evaluate classifier quality by computing the F-measure over

every sample and averaging.

4.2 Choosing GMM parameters
When running GMM on each 3-min window (our GMM baseline),

we hold a fixed k value for the entire cruise. A fixed k is not justified

physically since different samples may contain different populations

drawn from different environments. However, attempts to use typ-

ical methods to choose k automatically (e.g. finding k that maxi-

mizes accuracy while using the Akaike or Bayesian information

criterion to penalize model complexity) (Posada and Buckley, 2004)

resulted in drastic overfitting and poor performance. Instead, we

choose a domain-informed estimate of k and reuse the value for the

entire cruise.

Since there are potentially millions of data points in a SeaFlow

dataset, broad patterns are more important than highly accurate

classification of each individual particle. Given that data points in

GMM with low maximum probability tend to correspond to points

of low confidence in manual gating (Fig. 1), we consider removing

these points to measure the effect on performance. We set a thresh-

old of 0.7 as the minimum responsibility for a particle: If a particle

has a maximum responsibility less than 0.7, it is labeled as noise and

not included in our F-measure calculations. In our experiments,

using this confidence threshold resulted in a slight boost in the aver-

age F-measure (on the order of 3%).

4.3 GMM over whole cruise
First, we explore clustering whole cruises using GMM, and how this

compares against other automated baselines that only examine one

sample at a time. Figures 4 and 5 show the cumulative density func-

tion of F-measures across all samples of Cruises 1 and 3, while

Table 1 lists the average F-measures.

For these cruises, clustering all data simultaneously using GMM

outperformed both the sample-by-sample method and the seg-

mented method. Both of these cruises operated within a relatively

homogenous water mass, so this result is not surprising.

flowMeans is the best baseline method, followed by flowPeaks.

The ability to cluster all data in the GMM scalable algorithm pro-

vides more predictive power than either flowMeans or flowPeaks,

both of which are memory constrained. GMM applied sample-by-

sample is the worst-performing baseline, suggesting that that the ac-

curacy of the Hadoop implementation is attributable to the ability

to train the model using all available data rather as opposed to a

fundamental improvement of the GMM method itself.

4.4 Clustering subsets of a cruise
For Cruise 2, clustering the whole cruise using GMM performs

worse than the sample-based baselines. This dataset was collected as

a vessel moved across highly variable environmental conditions.

Using change-point detection to identify homogeneous segments,

performance improves to be comparable to the best baseline (GMM

sample-by-sample, in this case). Figure 6 shows the cumulative dens-

ity plot for this analysis, and Table 1 lists the average F-measures.

Figure 7 breaks down the performance of the change-point

method. The two change-points found in Cruise 2 seem to corres-

pond to actual shifts in population ratios as determined by the

ground truth labels. This correspondence suggests that we see a drop

in performance when clustering all samples simultaneously because

the trained model ignores local variability in the environments from

which the data were drawn.

We note both methods perform poorly at the end of this cruise.

The difficulty comes from a short section of the third segment of the

cruise, where the population density shifted rapidly due to a passage

into a different oceanic environment (Palevsky et al., 2013), a shift

Fig. 4. Cumulative density function of F-measures across all samples of

Cruise 1. GMM.Sample is the sample-by-sample GMM clustering previously

explored. GMM.Full represents all samples classified by the Hadoop-GMM

implementation. The latter implementation outperforms all baselines

Fig. 5. Cumulative density function of F-measures across all samples for

cruise 3. The Hadoop-GMM implementation over all samples outperforms

the best baseline

Table 1. Average F-measures for each method for each cruise

Algorithm Cruise 1 Cruise 2 Cruise 3

GMM full 0.884 0.769 0.868

GMM sample 0.782 0.869 0.737

flowMeans 0.833 0.797 0.839

flowPeaks 0.79 0.764 0.804

GMM change-point — 0.864 —

Results in bold represent the best results on a given dataset. More statistics

are provided in the Supplementary Materials.
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which is detected by the change-point detection algorithm.

Unfortunately, this shift is accompanied by a massive drop in the

amount of data collected per 3-min window. When the populations

shift again, the amount of data collected sharply increases. The se-

cond shift was undetected by our method, and as a result, the model

overfits to the end of the segment. If we were able to detect this

change-point and further segment the cruise, the classification accur-

acy in this segment would increase further.

4.5 Runtime evaluation
Our evaluation emphasizes scalability and classification accuracy ra-

ther than wall-clock runtime, but in some scenarios, runtime may be

an important factor in selecting an algorithm. For the FlowCAP

NDD dataset (Aghaeepour et al., 2013) and Cruise 1 from the

SeaFlow dataset, we ran flowMeans over each sample serially and

used an eight-machine Hadoop environment to classify the full

cruise dataset. We ran the experiments on Amazon Web Services

using m3.large virtual machine instances. Overall, clustering indi-

vidual samples using flowMeans was roughly 3–4x faster than using

Hadoop to cluster the full concatenated dataset. This result is ex-

pected, as the runtime complexity of GMM can increase super-lin-

early in the size of the input data.

More importantly, there are various well-documented inefficien-

cies in the Hadoop architecture, such as the need to rescan the input

data on every iteration of GMM (Bu et al., 2010) and the need to

write replicated data to disk after every step of the algorithm for

fault tolerance that contribute to a slower runtime. However, the

advantage of using Hadoop over algorithms like flowMeans is the

ability to scale to datasets of arbitrary size (very long cruises, mul-

tiple cruise campaigns, etc.). Also there have been recent distributed

GMM implementations in systems such as Spark that are much

faster than the Hadoop implementation (Maas et al., 2015). If run-

time is absolutely crucial, we believe these systems could be readily

used instead. Our primary contribution is in the design of the dis-

tributed approach, which is more general than the current imple-

mentation in Hadoop.

5 Discussion and future work

Aghaeepour et al. (2013) showed that there are automated methods

capable of accurately classifying data collected by conventional flow

cytometers. However, the SeaFlow cytometer represents a new class

of cytometer, where data are continuously collected over a period of

days or weeks as the instrument passes though different environmen-

tal conditions. Previous cytometry classification methods are not

equipped to scale or variability of these datasets; they can only clas-

sify the data in small segments based on available main memory. We

have improved classification accuracy by using a scalable algorithm

that classifies the entire dataset or segments of the data collected

from homogeneous environmental regimes.

We believe scale is a problem that could be overcome by some

methods that performed well in the FlowCAP survey. k-means is a

scalable algorithm that on its own is insufficient for cytometry clas-

sification, as populations in cytograms rarely form spherical shapes.

However, both flowMeans and flowPeaks extend k-means by add-

ing sophisticated initialization and cluster-merging techniques. If

these extra steps could be parallelized and scaled to tens or hundreds

of gigabytes of data, they might perform well on large-scale cytome-

try data.

Some recent algorithms, such as Dundar et al. (2014), classify

cytometry samples individually and then look for more global pat-

terns between samples. It is worth exploring the application on

SeaFlow datasets to see how the algorithm performs on applications

with thousands of samples.

The variability of environments and the corresponding changes

in populations is likely the hardest problem to overcome in the

SeaFlow data. Breaking up a difficult dataset into homogeneous re-

gions using change-point detection resulted in a significant improve-

ment in classification in one dataset. We plan to explore this method

further to determine how widely it can be applied to cytometry data.

Future research directions include exploring variations of change-

point detection, alternative algorithms that achieve similar results

and iteratively subdividing regions to find groups within groups.

Change-point detection may not only provide good partitioning for

better classification but also provide insight into when the underly-

ing environments change as data are collected.

Fig. 6. Cumulative density function of F-measures across all samples of

Cruise 2. The Hadoop-GMM implementation, augmented with change-point

detection to partition the dataset, performs comparably to the best baseline

Fig. 7. The top plots show the F-measure of each algorithm moving forward

in time during Cruise 2, and the bottom plot shows the population diversity of

the three most prevalent populations. Vertical lines indicate change-points

found using change-point detection. The change-points seem to correspond

with changes in population diversity, and clustering these segments separ-

ately improves classification in each segment. We speculate that segmenting

the end of the cruise further would lead to better classification, as there is an

obvious change point near the 1400th window that goes undetected
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