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Scalable coding of plenoptic images by using a

sparse set and disparities
Yun Li, Mårten Sjöström, Member, IEEE, Roger Olsson, Member, IEEE, and Ulf Jennehag

Abstract—One of the light field capturing techniques is the
focused plenoptic capturing. By placing a microlens array in
front of the photosensor, the focused plenoptic cameras capture
both spatial and angular information of a scene in each microlens
image and across microlens images. The capturing results in
significant amount of redundant information, and the captured
image is usually of a large resolution. A coding scheme that
removes the redundancy before coding can be of advantage for ef-
ficient compression, transmission and rendering. In this paper, we
propose a lossy coding scheme to efficiently represent plenoptic
images. The format contains a sparse image set and its associated
disparities. The reconstruction is performed by disparity-based
interpolation and inpainting, and the reconstructed image is
later employed as a prediction reference for the coding of the
full plenoptic image. As an outcome of the representation, the
proposed scheme inherits a scalable structure with three layers.
The results show that plenoptic images are compressed efficiently
with over 60 percent bit rate reduction compared to HEVC intra,
and with over 20 percent compared to HEVC block copying
mode.

Index Terms—Plenoptic, light field, HEVC, compression,

I. INTRODUCTION

A sampling of the light field with the directions and the

intensities of outgoing radiances from a scene is captured

by plenoptic cameras. The capability of image refocusing

and multi-view imaging during post-production is enabled by

the capturing process. However, a densely sampled plenoptic

image contains repetitive patterns with a large resolution.

The image can possibly be represented by a subset of its

microlens images plus disparity information. The question is

if a plenoptic image can be encoded efficiently by using such a

representation with a proper sampling factor, and if scalability

with respect to transmission and rendering is attainable.

The plenoptic function I = P (x, y, z, θ, φ, ω, t) [1] has

seven dimensions and captures the intensities I of light rays

at any viewing positions x, y, z, any directions θ, φ, any

wavelengths ω, and any time t. Representing the color by

RGB channels and for a static scene, the plenoptic function

is reduced to five dimensions without ω and t. If we further

assume regions are free of occluders, the plenoptic function

can be simplified into four dimensions as a light field [2] [3],

which is represented by a two-plane representation. The four

dimensions (x, y), and (r, t) locate the coordinates of radi-

ance passing through the two planes, respectively. There are

currently four techniques for capturing a light field image, i.e.,

by using multi-camera arrays [4], moving cameras [5], coded

apertures [6], and microlens arrays [7]. In the capturing with

microlens arrays, two capturing techniques are further derived,

which are standard plenoptic capturing [7] and plenoptic 2.0

[8]. Cameras with plenoptic 2.0 techniques [8] are also referred

to as focused plenoptic cameras.

The concept of plenoptic capturing was first introduced

by Gabriel Lippmann in 1908 [9]. A commercially available

product is the Lytro camera from Lytro, Inc. founded by Ng

et al. [7] in 2001. The first generation of Lytro cameras are

standard plenoptic systems [10], and by our visual inspection

of the captured images, so are the new generation of Lytro

cameras, Illum. Because the focal plane of the microlens is

on the camera image sensor plane for the standard plenoptic

capturing, the camera only captures angular information in

each microlens image, also called Elemental Image (EI), for a

single point in the 3D space. This results in a low spatial reso-

lution of rendered views in theory. Focused plenoptic cameras

capture, however, both angular and spatial information in each

EI and across EIs by putting the focal plane of microlenses

away from the image sensor plane. Thus, it provides a trade-off

between spatial and angular information for the capturing. The

details of focused plenoptic cameras are discussed in Section

II.

Plenoptic cameras have gradually gained popularity in the

consumer market due to its portability and usability. By a

fairly simple re-sampling of the captured plenoptic datasets,

refocusing and multi-view imaging can be acquired. We refer

to plenoptic images as the image captured by focused plenoptic

cameras in the context of this paper. In addition, a densely

sampled plenoptic image implies that adjacent EIs are highly

correlated.

Fig. 1: Focused plenoptic image Laura [11].

A. Motivation

The plenoptic images retain both angular information and

spatial information of a scene. The image consists of a grid

of EIs whose contents are similar to their neighbours, see
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Fig. 1. Therefore, one problem with respect to coding is that

the image exhibits repetitive patterns, and a large amount of

redundancy exists. In a densely sampled plenoptic image, the

disparities between adjacent EIs are small, and one EI can be

approximated by a shift followed by an interpolation from its

neighbors. This implies that a full plenoptic image is possible

to be reconstructed from a sparse sample set of its EIs. Thus, a

coding approach that removes the redundancy before encoding

might be advantageous.

Another problem associated with the coding of plenoptic

image lies in that not all EIs are always needed for rendering.

Transmitting such a big image frame in the network will likely

introduce transmission latency at receiver sides and waste

network resources. Furthermore, in the decoder, an increasing

of decoding computational complexity will follow. Therefore,

a scalable representation of the plenoptic image is desired,

so that a quick transmission, decoding and rendering can be

performed from a base layer.

As mentioned above, we are motivated by the two problems

to devise an approach that can 1) remove the redundancy

before coding, 2) encode plenoptic contents efficiently, and 3)

provide coding scalability, which is defined in Section IV-C.

B. Previous work

There are other techniques to capture a light field image

as mentioned. Coding approaches with respect to light field

images in general can be applied to plenoptic images. Previous

coding works on light field image compression can be mainly

classified into three categories: vector quantization, predictive

coding and progressive coding [12]. For the Vector Quanti-

zation (VQ) [2] approach, light field images are partitioned

into small blocks, which are represented as vectors. A small

subset of the vectors is trained to approximate the entire vector

space. In predictive coding, an early work [13] arranges light

field images into a grid, images within the grid are recursively

predicted from a few intra coded images. The prediction

efficiency is further improved by using homography [14]. As

to the progressive coding, Discrete Wavelet Transform (DWT)

is usually applied to achieve a finer granularity of scalability

[12] [15] [16]. Shape Adaptive Discrete Wavelet Transform

(SA-DWT) was employed in a wavelet scheme with disparity-

compensated lifting and shape adaptation [16] to preserve

the boundaries of objects in light field images. As light field

images can be considered as 4-D contents, 4-D wavelets were

used in [17] for the compression.

In addition, there are approaches that do not distinctively lie

in any of the categories mentioned above. For example, the

performance of light field compression by using distributed

coding is evaluated in [18] [19]. The paper in [20] presents a

layer approach that segments objects in ray space and applies

wavelets for the compression of each segment. Furthermore,

Principle Component Analysis (PCA) was also utilized in [21]

[22] for de-correlating light field data. In [17], a model-based

coding approach was proposed, which represents objects by

voxels and exploits geometry information for prediction. In

general, hybrid multi-view encoders such as MVC [23] and

MV-HEVC [24] can also be applied to efficiently compress

light field images.

In order to apply the above mentioned approaches for

plenoptic coding, EIs must first be separated out from the

original captured image. However, the geometry information

for locating the position of each EI is not always available.

Therefore, to avoid the separation process, the Self-Similarity

(SS) modes [25] were introduced into HEVC and H.264 for

plenoptic images [26] [25] and videos [27]. SS modes predict

an image block from its neighboring reconstructed blocks. The

process is essentially a single hypothesis prediction. Further-

more, HEVC range extension has recently incorporated the

Block Copying (BC) mode [28] for coding of screen contents.

The BC mode is similar to SS mode with a single hypothesis

prediction. However, it has a limitation on the search areas

for prediction references. We have also proposed an efficient

displacement intra prediction scheme [29] for plenoptic images

by using more than one hypothesis, which is effective in

reducing the prediction error.

If camera geometry is known, multi-view encoders with

hierarchical coding structures in general can be used for coding

of plenoptic images. Nevertheless, an obvious drawback of

using multi-view encoders directly is that each EI must be

padded to the size of a power of two [30] for feeding into the

encoder. Because an EI is very small, the padding will result

in an unnegligible amount of extra data to be encoded. In

addition, the coding performance depends on the coding struc-

ture. Our previously proposed displacement intra prediction

scheme [29] can efficiently exploit the inter-EIs correlation

without considering the coding structure. But, the displace-

ment intra does not provide any scalability for transmission

and rendering. In [31], a layered-based approach for light field

images typically captured by camera arrays has been proposed.

It explores the plenoptic sampling function, performs a non-

uniformly spaced layer extraction, and conducts the rendering

with a probabilistic interpolation approach. However, this

approach is mostly suitable for camera captured light fields.

In [32], a scalable approach has been proposed for focused

plenoptic images by using the rendered views as prediction

references. However, different image processing techniques

can be applied on rendered views. As a consequence, the

rendered views may not be a good reference. In addition, in

this scheme, the coding bit rate for the rendered views (the

reference) is not included in the final bit stream. We, therefore,

further proposed a coding system that utilizes a sparse set

and disparities to address the problem [33] of scalability.

Nevertheless, in this coding scheme, disparities are encoded

losslessly. As a result, the bit rate allocated to the disparities

may be costly when coding plenoptic images at low bit rates,

and it is unlikely to reduce the depth bit rate significantly if

temporal prediction is considered for videos. Additionally, it

is of interest to evaluate the parameter space of the scheme

and the scalability with respect to rendering.

C. Proposed method

In this paper, we introduce a scalable coding approach for

plenoptic images by using a sparse set of EIs and disparities,

and the disparities are lossy encoded. Approximated camera

geometry is assumed to be known, and EIs can be separated
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from the plenopitc image. We start by estimating disparities

for EIs, and then uniformly retain a sparse set of EIs. Based

on the sparse set and disparities, a full plenoptic image is

reconstructed by using prediction with interpolation and, for

those unpredictable areas, with inpainting. The reconstructed

plenoptic image is utilized to predict the original full image by

using a modified HEVC encoder. The proposed scheme has a

three-layer structure. From the first to the second layer, spatial

resolution scalability is provided, and from the second to the

third, quality scalability is enabled.

The novelties of this paper are as follows: 1) We encode

plenoptic images by using a sparse set of EIs and their

associated disparities. The proposed scheme is implemented

into HEVC. Compared to our previous work [33], the proposed

coding scheme utilizes lossy encoded disparities for plenoptic

image reconstruction. The lossy coding can reduce the bit rate

allocated to the disparities while possibly retaining the visual

quality as compared to the lossless coding; 2) The scalability

of the proposed coding scheme is theoretically described and

empirically analyzed; 3) The quality of reconstructed parts

of full plenoptic images is visually inspected and analyzed;

4) The parameter space for the sparse sampling factor is

explored to determine the best sampling factor; 5) We evaluate

the proposed system with a high quality lossy coding of

disparities, i.e. quality of 60 to 70 dB in PSNR.

The overall aim of the work is to improve the compression

efficiency for plenoptic contents. The work is limited to the

compression for densely sampled focused plenoptic images.

The goal is to investigate the rate-distortion performance for

the decoded plenoptic images at the third layer and the quality

of the plenoptic image reconstruction at the second layer of

the scalable structure.

D. Outline

The paper is organized as follows. The focused plenoptic

camera is presented in Section 2. We illustrate our previously

proposed displacement intra prediction scheme in Section 3

and the proposed scheme in Section 4. Experimental setup and

evaluation criteria are presented in Section 5, and Section 6

shows the results and analysis. Section 7 concludes this paper.

II. FOCUSED PLENOPTIC SYSTEM

As presented in [8], a focused plenoptic camera is typically

in the form shown in Fig. 2. The microlens array is placed

such that the microlens is focusing on a plane in front of the

photosensor. The main lens system brings a 3D scene into

focus at the main lens image plane.

1) Capturing: Plenoptic capturing is a sampling of the light

field in its four dimensions. The sampling density is related

to the camera parameters a and b, and the distance of the

objects to the camera in a 3D scene. A more densely sampled

plenoptic image is referred to as more adjacent EIs capture

the angular information for a spatially located point in the

scene. As a result, adjacent EIs have a higher correlation. In

Fig. 2, putting the main lens image plane farther away from

the microlens array, i.e., a larger a, increases the sampling

density. This can be shown by using a simple ray tracing, as

Fig. 2: Focused plenoptic camera [8].

more lenses capture the same 3D point when a is increased.

In addition, given a fixed a and b, it can also be shown with

the ray tracing that moving the object of the scene farther

away from the camera increases the sampling density. As an

example, parts of plenoptic images from Plane and Toy [34]

with different sampling density are shown in Fig. 3.

Fig. 3: Focused plenoptic image: sparsely sampled (left) and

densely sampled (right) [34].

2) Rendering: Views with different perspectives can be

rendered from a plenoptic image. A view is rendered by

combining patches from EIs [8]. Fig. 4 describes such a

rendering process, where a view is rendered by combining

patches from each EI IE(x,y)(r, t) in the captured image

C(x, y, r, t). x ∈ [1, N ], y ∈ [1,M ], r ∈ [1, Nt], and

t ∈ [1,Mt], where N , M , Nt, and Mt are the size of each

dimension, e.g., in Fig. 4, N = M = 4, and Nt and Mt

are the resolution of an EI in each dimension. However, by

using a fixed patch size, artifacts will likely appear on parts

of a rendered view, because the patch size is dependent on

the depth of the scene [8]. Since the depth can be translated

into disparities between EIs, it is feasible to perform a depth

dependent rendering by using estimated disparities from EIs.

With the disparity information, all patches of various sizes are

magnified and combined to form a rendered view.

Image refocusing is to integrate and average the angular

information of a spatial point in the 3D scene. In the operation

with respect to EIs, they are overlapped with each other by

using an assigned disparity as shown in Fig. 5, and the color

intensity for the overlapped pixels is averaged with the number

of overlapping. This operation will bring into focus the objects

in a depth plane that corresponds to the assigned disparity.

III. DISPLACEMENT INTRA PREDICTION

For the paper to be self-contained and for a better clarity of

the proposed scheme, our previously proposed displacement
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Fig. 4: Captured plenoptic image and all-in-focus rendered

image by using a constant patch size.

Fig. 5: Captured plenoptic image and refocused image [8]

(the EI overlapping is shown in a rotated 3D manner). The

overlapped pixels of EIs are averaged for the rendered image.

intra prediction [29] is briefly illustrated here. The displace-

ment intra prediction scheme can perform a bi-directional

prediction in spatial domain for coding of plenoptic images

and is referred to as B-coder.

As shown in Fig. 6(a), two parts of the image are assumed

as two reference pictures available in the reference picture list

L0 and L1. A current coding block is predicted from the best

matching reference block, which can be the best matching

block in list L0, the best in list L1, or
(P0+P1)

2 . P0 and P1 are

two blocks obtained from L0 and L1, respectively. The best is

measured in terms of minimum rate-distortion. In addition, the

original HEVC directional intra prediction is also evaluated in

the Rate-Distortion Optimization (RDO) process. As a result,

the best prediction mode is selected for coding the current

block.

The displacement intra B-coder has been integrated into

HEVC framework with a maximum of two hypotheses. The

scheme efficiently reduces inter-EIs redundancy without know-

ing lens geometry. A detailed description of the original HEVC

intra and the displacement intra can be referred to [30] and

[29], respectively.

IV. PROPOSED METHOD

The proposed scheme is to provide the coding with three-

layer scalability and enable an efficient coding. At the first

layer, a sparse sampled set of EIs is retained along with

(a) (b)

Fig. 6: Bi-prediction within an image. (a) Two parts in color

light gray and dark gray are assumed as two reference pictures

and available in the reference list L0 and L1; (b) an illustration

of the prediction on a light field image.

the estimated disparities. A full plenoptic image can then

be reconstructed at the second layer. The original image is

encoded by using the reconstructed image as a prediction

reference at the third layer.

Fig. 7 and Fig. 8 present the overview diagrams of the

proposed coding scheme, the details of each block in the

diagram are explained in the following subsections.

Fig. 7: The proposed plenoptic image encoding system.

Fig. 8: The proposed plenoptic image decoding system.

A. Encoding

Sparse sample set selection: A plenoptic image is sampled

into a sparse plenoptic image set as illustrated in Fig. 9.

Assume (x, y) are the coordinates of an EI IE(x,y)(r, t) within

the plenoptic image C(x, y, r, t) in Fig. 9. A sparsely sampled

image Cs(xs, ys, r, t) is obtained with a sampling factor s such

that xs ∈ [1, N/s], ys ∈ [1,M/s], and Cs(xs, ys, r, t) =
C(xs · s, ys · s, r, t). The sampling process on a captured

plenoptic image is illustrated in Fig. 10.
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Fig. 9: A 8 by 8 plenoptic image sparsely sampled by a factor

of s = 3.

Fig. 10: An example of the sampling.

Displacement intra encoding: The sparsely sampled image

can be encoded by state-of-the-art image encoders. In this

work, we employ the displacement intra B-coder [29], men-

tioned in the previous section, for the encoding.

Decoding of sparse sample set: The coded image is de-

coded. This decoded sparse sample set of images are used for

a later reconstruction.

Block-wise disparity estimation: The disparity estimation is

performed on the original plenoptic images. As an entire EI

is considered as a block, the disparity between the current

EI and the EI at its right side is estimated as the horizontal

disparity, and the current EI and the EI at its bottom side as the

vertical disparity. The estimation is performed by minimizing

the Mean Square Error (MSE) between the two neighboring

EIs, e.g., for estimating the horizontal block-wise disparity

Dh(x, y), the disparity map Dh is obtained by

argmin
Dh(x,y)

( MSE
r∈[1,Nt],t∈[1,Mt]

(IE(x,y)(r +Dh(x, y), t),

IE(x+1,y)(r, t)),
(1)

where x ∈ [1, N − 1] and y ∈ [1,M ]. For measuring the

vertical block-wise disparity map Dv , it is by

argmin
Dv(x,y)

( MSE
r∈[1,Nt],t∈[1,Mt]

(IE(x,y)(r, t+Dv(x, y)),

IE(x,y+1)(r, t)),
(2)

where x ∈ [1, N ] and y ∈ [1,M−1]. The pixels shifted outside

of the EI are discarded without taking into calculation.

The results from the estimation are two disparity maps

for the horizontal and the vertical directions. Therefore, two

disparity maps, Dh of resolution 7 by 8 and Dv of 8 by 7,

are produced for the plenoptic image illustrated in Fig. 9.

Coding of disparity maps: The two block-wise disparity

maps are encoded by using HEVC inter-frame prediction, i.e.,

one disparity map is encoded as intra-coded frame, from which

another is predicted by using HEVC inter-frame prediction.

These maps are encoded in high quality to ensure an accurate

plenoptic reconstruction.

Decoding of disparity maps: The coded block-wise disparity

maps are decoded.

Disparity calculation: For a later reconstruction, the dis-

parities between all EIs outside the sparse set to each EI in

the sparse set with a range of r must be estimated. We refer

these disparities to as sparse-set-centered disparities. An EI in

the sparse set is located at each (xs, ys) within the plenoptic

image illustrated in Fig. 11.

Fig. 11: Disparity calculation from all EIs outside the sparse

set in the blue box to an EI centered at (3, 3) in the sparse set

with a range r = 2.

Because the block-wise disparities have already been ac-

quired, the sparse-set-centered disparities can simply be cal-

culated by an addition horizontally and vertically from the

block-wise disparities. It is shown that Dh(x, y) is the block-

wise horizontal disparity for the EI at the coordinate (x, y)

to its neighbor at the right side, and Dv(x, y) is the block-

wise vertical disparity to its neighbor at the bottom side. The

horizontal and the vertical sparse-set-centered disparities for

the EI at (x, y) to the EI at (xs, ys) are calculated by:

Dhs((x, y), (xs, ys)) =
{

∑xs−1
i=x Dh(i, y), xs > x

∑x−1
i=xs

−Dh(i, y), x > xs,

Dvs((x, y), (xs, ys)) =
{

∑ys−1
i=y Dv(x, i), ys > y

∑y−1
i=ys

−Dv(x, i), y > ys.

(3)

The sparse-set-centered disparities, Dhs and Dvs, provide the

disparity vector to reconstruct the unknown EIs from the

known EIs in the sparse set.

Reconstruction: A full plenoptic image is reconstructed

from the decoded sparse plenoptic image set. As Fig. 12

shows, the EIs from the decoded sparse image set are placed

into their original coordinates within the full plenoptic image.

Based on the decoded and calculated sparse-set-centered dis-

parities, the unknown EIs are obtained from the known EIs

by a disparity shift. If multiple known EIs are available for

an unknown EI within the range r, they are averaged. As an

example, in Fig. 12, the EI at coordinate (1, 1) is extrapolated

from EI at (3, 3), and EI at (5, 4) is interpolated from four

known EIs.
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After the interpolation or extrapolation process, there are

still areas missing in each of the reconstructed EIs. Inpainting

approaches in general can be used to fill the missing areas.

In our work, a fluid dynamic inpainting approach [35] is

employed to inpaint the missing areas. This inpainting method

assumes the isophotes in the image as flows. The missing data

is filled by solving the Navier-stokes equation. An example of

the reconstruction of an image is illustrated in Fig. 13.

Fig. 12: Reconstruction of plenoptic images with r = 2. EI at

(1,1) is extrapolated, and EI at (5, 4) is interpolated.

Fig. 13: An example of the reconstruction.

Displacement intra & inter frame encoding: The HEVC

encoder is modified for the prediction of plenoptic images

in coding. During the initialization of the modified encoder,

the reconstructed plenoptic image from the Reconstruction

process is loaded into the reference picture list in HEVC and

available for inter frame prediction. During encoding, both

intra prediction and inter prediction are performed, the best

coding mode with the RDO for each coding block is chosen for

the prediction. Prediction residues are quantized, transformed

and entropy encoded as in HEVC. The intra prediction used

here is the displacement intra B-coder. Fig. 14 illustrates the

prediction for the modified encoder.

The final coded bit streams consist of three components: 1)

coding of sparse image sets from Displacement intra encoding,

2) coding of disparities from coding of disparity maps, and 3)

coding of full plenoptic data from Displacement intra & inter

frame encoding.

B. Decoding

Decoding of sparse sample set: The sparse plenoptic image

set is decoded.

Decoding of disparity maps: The coded block-wise disparity

maps are decoded.

Disparity calculation and Reconstruction: These procedures

are identical to the ones in the encoding. The two sparse-set-

centered disparity maps are calculated from the decoded block-

wise disparity maps as described in the Encoding system. With

Fig. 14: The prediction process for the modified HEVC

encoder.

the sparse image set and the disparity maps, a full plenoptic

image is reconstructed.

Decoding of plenoptic data: As an inverse process of

Displacement intra & inter frame encoding, a plenoptic image

is decoded by using the reconstructed plenoptic image as a

prediction reference.

C. Scalability

The proposed scheme is scalable and can be considered

as having three layers. The first layer is the sparse image set,

which is in fact a sparsely sampled plenoptic image. Rendered

views can be obtained directly from this image. The amount

of angular and spatial information in the image depends on the

sampling factor s. A smaller s implies more angular and spatial

intensities can be achieved for the rendering. The second layer

is the reconstructed full plenoptic image if the disparity maps

are available. The reconstruction quality depends on the factor

s and how well the disparity estimation, interpolation, and

inpainting are performed. The third layer is the residues from

the prediction by using the reconstructed plenoptic image.

When these residues and their associated information are

present, the original plenoptic image can be decoded with a

given coded quality in terms of PSNR. It must be clarified here

that the scalability from the first layer to the second layer is the

resolution/spatial scalability, and that from the second layer to

the third layer is the quality/SNR scalability.

This scalability property is beneficial if the network resource

is limited, because the image in the first layer is much smaller

than the original full image and is sufficient for producing a

2D view if the sampling factor s is appropriate. In addition,

in a differentiated network, the disparity maps and the sparse

image set can be set to a high priority for transmission. If

the data for the third layer are lost during transmission, a full

plenpotic image is still possible to be reconstructed in the

second layer for rendering.

D. Computational complexity

The computational complexity of HEVC coding has been

analyzed empirically in [36]. The complexity of the Displace-

ment intra encoding is equivalent to HEVC B frame coding
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with one reference picture in each of the reference picture lists.

For the Reconstruction process, it involves interpolation and

inpainting, the computational complexity depends on how fast

they can perform. An interpolation is an operation of averaging

multiple pixels (with a maximum of four in our experiment).

For the Navier-stokes inpainting, it is shown that large missing

areas in an image were inpainted in a magnitude of seconds by

using a standard PC [35]. The inpainting is a parameter that

can be changed in the scheme, and a detailed analysis of the

complexity can be found in [35]. As to the Displacement intra

& inter frame encoding, it is equivalent to HEVC B frame

coding with two reference pictures in each of the reference

picture lists. Consequently, it can be seen that the overall

computational complexity of both encoding and decoding of

the proposed scheme is higher than using the displacement

intra B-coder or the HEVC intra only. However, if only the

first layer is needed for transmission and rendering, the coding

complexity is lower, which depends on the sampling factor s.

V. EXPERIMENTAL SETUP AND EVALUATION CRITERIA

Light field images Seagull, Fredo, and Laura [11] were used

in the test. These plenoptic images are densely sampled with

a different depth distribution and scene. The original images

have a resolution of 7240 by 5236, and the EI is of 75 by 75

with a rectangular shape. Because vignetting appears on the

EIs at the corner of the plenopitc images, we cut the EIs into

size of 64 by 64 from approximately the center position of each

EI and attached them together to form a processed plenoptic

image. Note that, in general, the size is chosen according to

camera settings, and may not be a power of two. The processed

version of the image can be seen in Fig. 15 for Seagull. It has

a resolution of 6080 by 4544. All images were transformed

into Y UV 4:2:0 format.

Fig. 15: Processed plenoptic image: Seagull.

HEVC Test Model (HM) reference software version 11

was used for the coding of the plenoptic image and the

block-wise disparity maps. The sparse plenoptic image set

was encoded by using the displacement intra B-coder. The

Quantization Parameters (QP) were 22, 27, 32, and 37. The

coding configurations were set as the ”All Intra-Main” and

the ”Low-delay B-Main” setting in JCTVC-L1100 [37] for the

HEVC original intra and the displacement intra, respectively.

The block-wise disparity maps were encoded by using HEVC

inter frame prediction with the Coding Tree Unit (CTU) of

size 16, QP 20 and ”Low-delay B-Main”. We also modified

the HEVC encoder and integrated the displacement intra into

the proposed scheme for the process Displacement intra &

inter frame encoding. The current QP used for this process

was the same as for the coding of the sparse plenoptic image

set, and the coding setting was the ”Low-delay B-Main”.

The objective quality was assessed on the Y component

with PSNR, and the bit rate, bits per pixel (bpp), was cal-

culated from the coded bit stream for all Y UV components.

The rate distortion curve is plotted for PSNR vs. bpp, and the

BD-PSNR [38] was also computed. The results are compared

to original HEVC intra, the displacement intra B-coder, and

the Block Copying (BC) mode of HEVC range extension

version 13. The configurations of the B-coder were defined

as ”Low-delay B-Main” [37] with a search range of 192 for

the displacement vector, and the BC mode as ”ALL Intra”

[39].

The following aspects of the proposed coding scheme are of

our interest: 1) We investigate the performance of the scheme

by changing s from 2 to 5 and setting r = s − 1 in order

to determine the best sampling factor s. 2) With respect to

the best sampling factor, the scalability of the scheme is

analyzed: 2.a) For the first layer, the sparse image set is

a plenoptic image of lower resolution and encoded by the

displacement intra image B-coder, whose coding efficiency

has been investigated in [29]. For the second layer, we also

compute the PSNR of the reconstructed image vs. the bit

rate of the sparse sample set plus the disparity maps. This is

to evaluate the objective reconstruction quality. However, the

second layer involves pixels displacement, interpolation, and

inpainting processes. Therefore, the reconstructed plenoptic

image and its corresponding rendered image are partly shown

for a visual inspection. The rendered image is obtained by

using the all-in-focus rendering approach discussed in Section

II. The patches are taken from the center of each EI with a

fixed size of 8, which allows an artifact free rendering for the

presented parts.

VI. RESULTS AND ANALYSIS

The results of the parameter space of sampling factors and

the scalability of the scheme are discussed in the following

subsections.

A. Sampling factors

The BD-PSNR/rate in Table I shows the largest bit rate

reduction compared to HEVC intra was achieved with the

sampling parameter s = 2 for the proposed scheme. The bit

rate reductions compared to HEVC intra are 64.82, 60.90, and

48.87 percent for Seagull, Fredo and Laura, respectively. The

performance of the proposed scheme declines with the increase

of s. This indicates that an accurate reconstruction of plenoptic

images and a precise prediction of the coding of full plenoptic

data are essential to improve the coding performance. In

addition, Table I illustrates that bit rate reductions of 2.89,

3.05, and 2.29 percent were achieved for Seagull, Fredo and

Laura, respectively, compared to the displacement intra. This

shows that the majority of the bit rate reduction is achieved

by using the displacement intra prediction, which utilizes the

reference blocks from the spatial domain. It is further shown
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that the proposed scheme surpasses HEVC BC mode with over

20 percent bit rate reduction for all the tested images. Although

the proposed scheme only achieved an improvement of around

3 percent in bit rate saving compared to the displacement

intra, it provides a scalable coding structure for the coding,

transmission and rendering, and the results from each layer of

the structure will be discussed in Section VI-B.

TABLE I: BD-PSNR/rate: compared to HEVC intra

Image
Coding
methods

BD-PSNR
(dB)

BD-rate
(%)

Seagull
Proposed (s=2) +4.68 -64.82
Proposed (s=3) +4.69 -62.86
Proposed (s=4) +4.47 -62.62
Proposed (s=5) +4.42 -62.14
Displacement intra +4.41 -61.93
HEVC BC mode +2.30 -36.36

Fredo
Proposed (s=2) +5.39 -60.90
Proposed (s=3) +5.31 -60.56
Proposed (s=4) +5.29 -60.43
Proposed (s=5) +5.18 -59.61
Displacement intra +4.90 -57.85
HEVC BC mode +2.71 -36.17

Laura
Proposed (s=2) +4.19 -48.87
Proposed (s=3) +4.02 -47.21
Proposed (s=4) +3.98 -46.90
Proposed (s=5) +3.94 -46.54
Displacement intra +3.94 -46.58
HEVC BC mode +1.87 -24.25

The results in Fig. 16, Fig. 17, and 18 further confirm that

the proposed scheme with s = 2 reduces coding bit rate

significantly more than HEVC intra and HEVC BC mode.

It also performs better than the displacement intra B-coder for

all tested QPs. The results are consistent for the tested images.

Fig. 16: Rate-distortion curves for Seagull.

Table II, Table III, and Table IV show the coding bit rates for

each coding component of the proposed scheme with s = 2. It

is illustrated that the coding of full plenoptic data contributes

to most of the coded bit stream, especially at the higher bit

rates, while the disparity maps add least overhead to the bit

stream. This also suggests that for an overall improvement of

the coding scheme, it is important to reduce the bit rate for

the coding of full plenoptic data.

Fig. 17: Rate-distortion curves for Fredo.

Fig. 18: Rate-distortion curves for Laura.

B. Scalability

The first layer:

Because the sparse image set in the case of s = 2 has only

half of the resolution of the original image in each dimension,

a direct comparison between the first layer to the second and

the third layers is impossible. The sampling process results in

a loss of angular and spatial information in the sparse image

set in general.

The second layer: Fig. 19, Fig. 20, and Fig. 21 additionally

illustrate the objective quality of the reconstructed image

obtained from the process Reconstruction for s = 2. The

reconstruction quality is above 30 dB for Seagull and Fredo,

and around 29 dB for Laura. The variations in PSNR values are

small, in the range of 3 dB, with the QP changed from 22 to

37. As mentioned, because the reconstruction process involves

pixel displacements, interpolation, etc., a visual inspection

is performed to examine the actual visual quality of the

reconstruction.

Fig. 23 and Fig. 24 depict parts of the reconstructed images
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Fig. 19: Rate-distortion curves for Seagull.

Fig. 20: Rate-distortion curves for Fredo.

Fig. 21: Rate-distortion curves for Laura.

TABLE II: Seagull: coding bytes per picture for each compo-

nent of the proposed scheme

QP Disparities Sparse image set
Coding of full
plenoptic data

Total

22 468 661 116 1 552 115 2 213 699

27 468 298 926 577 672 877 066

32 468 129 829 206 438 336 735

37 468 61 659 85 379 147 506

TABLE III: Fredo: coding bytes per picture for each compo-

nent of the proposed scheme

QP Disparities Sparse image set
Coding of full
plenoptic data

Total

22 564 516 795 1 106 050 1 623 409

27 564 260 161 451 398 712 123

32 564 136 140 197 055 333 759

37 564 75 240 94 430 170 234

with s = 2 and their corresponding rendered images for

Seagull. Fig. 23(a) and Fig. 24(a) are reconstructed from the

high quality and the low quality coded sparse image set, re-

spectively. Compared to the same part of the original plenoptic

image and rendered image illustrated in Fig. 22, distortions

other than the compression artifacts are insignificant, i.e., it is

indistinguishable which EI is reconstructed in Fig. 23(a) and

Fig. 24(a). However, the reconstruction quality depends on the

disparity estimation, the disparity compression, the sampling

factor s, the interpolation/extrapolation, and the inpainting.

The third layer: The objective quality of the third layer

has been discussed and presented in the beginning of this

section and is shown in Fig. 16, Fig. 17, Fig. 18, and Table

I. It was illustrated that the proposed scheme with bit rates

combined from all the compressed components outperforms

the state-of-the-art schemes. Parts of the decoded images and

its corresponding rendered views are illustrated in Fig. 25 and

Fig. 26 for the high and the low quality, respectively. They

are visually slightly better than the corresponding counterparts

reconstructed in the second layer shown in Fig. 23 and Fig.

24.

(a) (b)

Fig. 22: (a) Parts of the original plenoptic image; (b) corre-

sponding rendered image.
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TABLE IV: Laura: coding bytes per picture for each compo-

nent of the proposed scheme

QP Disparities Sparse image set
Coding of full
plenoptic data

Total

22 331 1 369 558 3 406 527 4 776 416

27 331 762 798 1 630 750 2 393 879

32 331 376 826 552 599 1 039 756

37 331 180 655 251 670 432 656

(a) (b)

Fig. 23: (a) Parts of the reconstructed plenoptic image at

the second layer from the coded sparse set with QP 22; (b)

corresponding rendered image.

VII. CONCLUSION

In this paper, we have proposed a scalable coding scheme

for densely sampled plenoptic images. The scheme sparsely

samples the image and represents a full plenoptic image by

its sparse image set and associated disparities, which are

encoded accordingly. A full plenoptic image is reconstructed

from the decoded sparse set and disparities by using interpola-

tion/extrapolation and inpainting. The reconstructed full image

is utilized for a prediction to encode the original plenoptic

(a) (b)

Fig. 24: (a) Parts of the reconstructed plenoptic image at

the second layer from the coded sparse set with QP 37; (b)

corresponding rendered image.

(a) (b)

Fig. 25: (a) Parts of the decoded image at the third layer with

QP 22; (b) corresponding rendered image.

(a) (b)

Fig. 26: (a) Parts of the decoded image at the third layer with

QP 37; (b) corresponding rendered image.

image with a required PSNR. The proposed scheme is scalable

with three layers such that the rendering can be performed with

the sparse image set, the reconstructed plenoptic image, and

the decoded plenoptic image.

The coding results demonstrated that plenoptic images

were compressed efficiently with the proposed scheme. It

outperformed HEVC BC mode with more than 2dB quality

improvement or by over 20 percent bit rate reduction when

measuring by using BD-PSNR/rate. It also surpassed our

previously proposed displacement intra B-code by as much

as 3 percent bit rate reduction. Visual inspection of the tested

image showed that distortions other than compression artifacts

were insignificant for the reconstructed image in the second

layer of the scalable structure. However, the reconstructed

quality depends on several factors, e.g., the sampling factor,

interpolation, and inpainting. An accurate reconstruction in the

second layer and a precise prediction in the third layer can fa-

cilitate an efficient coding of plenoptic images with a required

PSNR. Although the improvement over the displacement intra

B-coder is small, the scalable feature of the proposed scheme
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provides a flexible reconstruction of the plenoptic image from

its sparse set, which can enable the coding and transmission

to adapt to the limitation of network bandwidth capacity.

VIII. FUTURE WORK

To optimize the depth estimation, the interpolation and

the inpainting process are our future research. In addition, a

detailed analysis of the scalability with respect to network

transmission and error concealment is also of our future

consideration.
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