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ABSTRACT
Every piece of textual data is generated as a method to con-
vey its authors’ opinion regarding specific topics. Authors
deliberately organize their writings and create links, i.e.,
references, acknowledgments, for better expression. There-
after, it is of interest to study texts as well as their relations
to understand the underlying topics and communities. Al-
though many efforts exist in the literature in data clustering
and topic mining, they are not applicable to community dis-
covery on large document corpus for several reasons. First,
few of them consider both textual attributes as well as re-
lations. Second, scalability remains a significant issue for
large-scale datasets. Additionally, most algorithms rely on
a set of initial parameters that are hard to be captured and
tuned. Motivated by the aforementioned observations, a hi-
erarchical community model is proposed in the paper which
distinguishes community cores from affiliated members. We
present our efforts to develop a scalable community discov-
ery solution for large-scale document corpus. Our proposal
tries to quickly identify potential cores as seeds of communi-
ties through relation analysis. To eliminate the influence of
initial parameters, an innovative attribute-based core merge
process is introduced so that the algorithm promises to re-
turn consistent communities regardless initial parameters.
Experimental results suggest that the proposed method has
high scalability to corpus size and feature dimensionality,
with more than 15% topical precision improvement com-
pared with popular clustering techniques.
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1. INTRODUCTION
Texts are generated by their authors as a media to express

and interchange information, opinions, ideas and comments
regarding specific topics. In authors’ writings, relations1

to external resources, such as references, acknowledgements,
are deliberately created for better understanding of the men-
tioned topics. In social sciences, communities constructed
on topics and interests have been extensively studied to un-
derstand the causality of events and roles of actors. Corre-
spondingly, it is of interest to find communities organized
based on latent topics from documents, which can be taken
as an accurate reflection of the social communities behind
the scene. Imagine that a researcher wants to make a com-
prehensive survey of a research domain (e.g., data mining),
she might issue the following queries:

• Give me a list of classical papers in the research do-
main of data mining.

• Give me some idea of the names of active researchers
in the domain of data mining and their recent publica-
tions.

A traditional information retrieval system may find it dif-
ficult to support such queries. However, experts in a specific
domain are aware of such information. They will leave an-
swers to these topic-based questions in their writings. There-
fore, communities constructed on top of document collec-
tions can be used as an effective utility to assist the query
processing in intelligent information retrieval systems.

Community discovery can be taken as a special clustering
problem. However, text datasets have their unique charac-
teristics which prevent many state-of-the-art clustering tech-
niques from being feasible. First, the size as well as the
feature dimensionality are usually very large for text collec-
tions. The corpus can grow into a size of millions or billions.
Meanwhile, either we follow the ”bag of words” principle by

1In this paper, relation denotes an association between ob-
jects and we use it interchangeably with relationship.
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taking unigrams as features or use k-gram approach, a huge
vocabulary size is always expected. Second, inter-document
relations are generated and maintained intentionally by doc-
ument creators, making relations a useful clue in locating
and relating topics. These characteristics make community
discovery on large data collections an open and challenging
problem.

Current clustering methods can be classified into three
categories. (1) Textual attribute clustering, e.g., LDA [3]
and pLSI [14]. This category of clustering methods utilizes
texts to find implicit topics. Although proved effective in
discovering latent topics, text-based clustering methods suf-
fer from severe scalability issues. For online archives such as
Libra2 and CiteSeer3, the document corpus contains more
than 1, 000, 000 records, which requires highly scalable meth-
ods for topic mining. Additionally, such methods usually
require solid prior knowledge regarding the parameter set-
tings, which is difficult to be captured. Even worse, these
algorithms are sensitive to these parameters. Any update
on the document collection may put previously tuned para-
meters out-of-date and a severe degradation of performance.
(2) Relation-based clustering. This category of methods re-
lies purely on relations between documents to discover com-
munities. However, without considering attributes, it is dif-
ficult to interpret the meaning of relations. Probing only
based on relations can include too many topics into a com-
munity and thus cannot yield good results. (3) Hybrid clus-
tering. Some works in the literature propose to consider
both attributes and relations. However, these approaches
either inherit the scalability issue from the aforementioned
attribute-based clustering techniques or fail to recognize the
important role of relations in conveying topics. These lim-
itations create a critical obstacle for these methods to be
effective.

In this paper, we address the aforementioned issues of
community discovery on relational data and propose a solu-
tion that utilizes both textual attributes and relations. Our
approach is unsupervised, scalable to dataset size and fea-
ture dimensionality, and consistent with input parameters.
To improve scalability, a filtering process based on relation
analysis is first used to find representative community cores.
Afterwards, an innovative core merge process is adopted so
that consistent communities are returned regardless the ini-
tial parameters. The merge step maps cores into virtual
bounding boxes in a low-dimension feature space to ana-
lyze similarity between cores. Textually-relevant commu-
nity cores are then merged to form topically coherent ones.
Finally, community cores are propagated via relations to
form communities and a text-based classification procedure
is used to improve the topical precision within communities.

In summary, our contributions are four-fold:

• By analyzing the performance of textual clustering meth-
ods, we exploit their scalability and parameter sen-
sitivity issues in community discovery for large-scale
textual datasets.

• Based on collected requirements, we define a hierarchi-
cal community model. A scalable community discovery
solution utilizing both textual attributes and relations
is developed.

2http://libra.msra.cn
3http://citeseer.ist.psu.edu

• To remove the influences of initial parameters, an in-
novative community merge step is introduced into our
solution to generate consistent communities.

• We perform an extensive evaluation and compare the
proposed solution using different parameter settings.
It is shown our proposal outperforms popular topic
clustering methods by at least 15% in topic precision.

The rest of the paper is organized as follows. We give a
review on related works in Section 2. An extensive analysis
to the performance of LDA, a popular textual topic mining
algorithm, is given in Section 3. Steps of the proposed so-
lution for community discovery is given in Section 4. The
experimental results are presented in Section 5. Finally, the
concluding remarks are given in Section 6.

2. RELATED WORK
In this section some state-of-the-art clustering methods

on data attributes and relations are reviewed. We focus the
discussion on textual data clustering techniques.

2.1 Textual Attribute Clustering
The first category of data clustering techniques is Textual

Attribute Clustering, which utilizes texts to discover topics
and then uses topics to cluster data objects. This category
of approaches (e.g., LSI [7], pLSI [14]) does not consider re-
lations and only relies on attributes. As one of the popular
methods applied to textual data collections, Latent Dirichlet
Allocation (LDA) [3] is a generative probabilistic model for
generating large text corpus. LDA is a three-level model, in
which for each document a distribution of topics θ is sam-
pled and for each word in the document a topic z is sampled
from θ and the word is sampled according to p(wn|z, β), a
multinomial probability conditioned on z. In order to use
LDA, a group number K needs to be provided and each
document will be transformed into a K-dimension vector to
represent its location in the topic space. However, shown by
literature studies [12], the level of topic coherence of clusters
returned by LDA is sensitive to K. In addition, its scalabil-
ity remains an issue when the document corpus is very large.
The performance analysis to LDA is detailed in Section 3.

2.2 Relational Clustering
This category of data clustering methods does not rely

on data attributes. They explore object adjacency rela-
tions and graph topology to cluster objects. For example,
the HITS algorithm finds web object communities [11, 16],
which are characterized by a set of authoritative pages linked
by hub pages. Academic community discovery has been per-
formed [20] by expanding from some key papers as centroids
of clusters and including affiliated papers. Traditionally, re-
lational clustering methods often use both link analysis and
graph partition to locate communities [5, 8, 9, 10]. Random
walks [13], for instance, are utilized on a weighted directed
graph to update the weights of inter-cluster edges and intra-
cluster edges in order to distinguish clusters. Relation-based
clustering methods can effectively generate topologically-
coherent clusters. However, simply studying links cannot
guarantee to find topically-coherent communities because
multiple topics can exist within a group of tightly-linked
documents.
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2.3 Hybrid Clustering
In the literature, there have been some discussions regard-

ing hybrid approaches in text clustering, many of which are
extended from generative language models such as LDA. In
[2], the authors use a probabilistic generative model to train
soft clusters, in which each object is provided with a Dirich-
let random variable. When it comes to decide the relation-
ship between two objects, each object will sample a topic
distribution from its given Dirichlet random variable, which
are supplied to a Bernoulli distribution to determine the re-
lationship. LDA is also extended to include author, group
variables for cluster mining [18, 21, 22]. MMRC [17] gen-
erates a latent indicator vector to represent the class of a
single data object, based on which attributes, homogeneous
and heterogeneous relations are modeled. In another piece
of work, PLSA is combined with PHITS [6] to provide a
unified view of topics in generating texts and links between
documents under the assumption that an underlying doc-
ument generation process exists, which creates both words
and hypertext links. However, because these models are ex-
tended from generative language models, they also inherit
the issues we have discussed in Section 2.1.

In [19], the authors identify the problem of discovering
an unknown number of clusters on attribute and relational
data, trying to find clusters that are compact inside and dis-
tinctive from their neighborhoods in a connecting graph. A
two-phase solution is proposed. Although both aim at re-
moving the limitation of input parameters, unlike the prob-
lem definition of Connected X Clusters Problem [19], which
utilizes relations to define cluster boundaries, we use the re-
lations to provide topic clues regarding linked documents.
Also, scalability remains a critical issue for large datasets.

In summary, although many alternative methods are avail-
able for clustering relational data, as far as we know, none
of them can be used to effectively and efficiently solve the
problem of community discovery for large text collections.

3. ANALYSIS TO LDA ON LARGE-SCALE
TEXTUAL DATA

As introduced in Section 2, LDA is a popular language
model for topic mining. LDA relaxes the assumption by al-
lowing multiple topics for one document and thus has demon-
strated its effectiveness in machine learning tasks on docu-
ment sets. In terms of text-based topic mining, LDA yields
very good performance. Meanwhile, many state-of-the-art
hybrid topic mining approaches are extended from LDA.
Thereafter, in this section, we exploit the applicability and
performance of LDA in clustering large-scale text collections.
Two aspects of LDA performance are studied: 1) its scalabil-
ity to dataset size, and 2) its sensitivity to initial parameter
settings.

In this experiment, the computer science publication dataset
extracted from CiteSeer is used, which includes abstracts
of 575, 598 computer science papers published before 2006.
This dataset contains 238, 028 unique terms in the vocabu-
lary, as well as the 1, 438, 596 citation links between publi-
cations. We use the LDA implementation made available by
its authors4 to mine K topics and conduct all experiments
on a Linux server with dual AMD Opteron Processor 252
CPUs (1G Hz), 4GB main memory. The parameter settings
used in the experiments are summarized in Table 1:
4http://www.cs.princeton.edu/ blei/lda-c/

Parameter Value
Iterations of variational inference 20
Convergence criteria for variational inference 1 × 10−6

Iterations of variational EM 30
Convergence criteria for variational EM 1 × 10−4

Table 1: Default LDA parameter settings.

In the scalability experiment, each time a subset of docu-
ments, ranging from 20, 000 to 100, 000, is extracted and the
time it takes to generate 20 clusters is measured. During our
text parsing step, 2-grams are collected and put into the vo-
cabulary instead of unigrams to improve clustering precision.
The results are given in Figure 1(a), from which it is found
that the overhead basically grows up with the dataset size.
Furthermore, we note that with the increase of collection
size, the overhead growth rate also increases accordingly.
This can be explained by the fact that the vocabulary size
grows with the dataset size to make the feature dimension
higher. When LDA is applied to the complete dataset, due
to the huge size of the document collection, LDA failed to
return any results and ran out of memory in initialization.
This scalability limitation makes LDA unable to be applied
in real systems for topic mining.

0

5000

10000

15000

20000

25000

0 1 2 3 4 5 6

Ti
m

e 
(S

ec
on

d)

Corpus size (104 documents)

(a) LDA scalability to corpus
size.

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200

PC
S

Topic Number for LDA

2001 Dataset

2003 Dataset

(b) LDA sensitivity to topic
parameter K.

Figure 1: LDA performance study.

In the next step, the sensitivity of LDA to K, the topic
number parameter, is studied. In this study, two non-overlapping
datasets, computer science publications in 2001 and 2003,
are used. These datasets include 29, 869 and 17, 085 records
respectively. For each dataset, LDA is performed using dif-
ferent K settings.

By studying the ACM metadata record of each document,
such as publication venue, author affiliation, etc, each doc-
uments is classified into one or several of 17 major com-
puter science research topic categories5. Each document di

is assigned with a 17-dimension topic vector zi. A soft-
classification approach is adopted by allowing a paper di

to belong to multiple topic categories. After clustering, we
use the scripts provided by LDA authors to generate top
N (N is set to be 100 in our analysis) representative key-
words for each cluster, which are manually compared with
ACM classification keywords and labeled in the same 17-
dimension topic space, i.e, each cluster Ci is assigned a topic
vector Zi. Based on the LDA cluster topic vectors and doc-
ument topic vectors, we define a metric ¯PCS for clustering
precision evaluation, which represents the topical precision
for the community discovery task. ¯PCS is also used in the

5http://www.acm.org/class/1998/overview.html
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evaluation section to compare community qualities.

HITi =
�

k:dik∈Ci

η(dik), where η(dik) =

�
1 if zik = Zi,

0 if zik �= Zi.

(1)

PCSi =
HITi

ni
, where ni is the size of Ci. (2)

In Equation 1 and 2, dik denotes the k-th document in Ci

and zik is the topic vector of dik. The topic of each docu-
ment is then compared with its affiliated cluster topic label.
The result is summarized in PCSi to represent the topical
precision of Ci. We average PCSi over all communities. The
result, denoted as ¯PCS, is used as our evaluation metrics.

Figure 1(b) presents the change of ¯PCS over K for the
two experiment datasets. It is observed that the two curves
display different patterns. LDA gets the best clustering pre-
cision when K is around 120 for the 2001 dataset and 180
for the 2003 dataset. This finding suggests that there is
not a best setting of K for all datasets. On the contrary,
it needs to be tested repeatedly and tuned to get the best
clustering precision, which is around 65% in the tests. Ad-
ditionally, it is found that both curves in Figure 1(b) do
not change monotonically with K. It is observed the ¯PCS
value decreases when K grows from 80 to 100 and starts
to increase when K continues to grow to 120 for the 2003
dataset. In summary, to better utilize LDA for topic clus-
tering, prior knowledge regarding the approximate number
of topics in the underlying dataset is required because the
clustering precision is very sensitive to the topic number.
Otherwise many trials and manual comparisons are needed
to infer the best K value. This is not applicable for real
datasets, considering the scalability issue of LDA.

4. COMMUNITY DISCOVERY PROCESS
In this section, we first propose a hierarchical commu-

nity model for textual datasets, based on which a solution
for community discovery is introduced. The proposed solu-
tion builds internal hierarchy of communities simultaneously
when it defines community boundary. This section is orga-
nized as follows. First, Section 4.1 illustrates the community
model conceptually. Section 4.2 gives an overview of the pro-
posed solution using an example. Afterwards, Section 4.3
introduces essential steps involved in community discovery.

4.1 Community Model
In the literature, there are definitions already given for

communities [4, 9, 15], most of which claim that a com-
munity consists of a set of relevant objects sharing similar
interests or topics. A study to Web communities [8] gives a
definition by comparing Web linkage with social groups and
classifies webpages into cores and fans. From both empir-
ical observation to real world communities and definitions
given by social sciences, we believe that a community con-
sists of a set of topically relevant members with similar at-
tributes and internal relations. Inside a community, there
exist core objects that are representative and influential in
scoping the topic of the community. Remaining members of
a community have their roles and ranks inside a community,
which forms a hierarchy. It is noted that an object can cross
the boundary of communities to make it an interdisciplinary
member.

Figure 2 gives an illustration of the proposed community
model, in which two communities (C1 and C2) are shown.

K1

K2

C1

C2

Figure 2: Inner structure of communities for rela-
tional data, in which Ci represents a community and
Ki represents the core members of Ci.

Definition 1 gives the formal definition of our community
model:

Definition 1. A community Ci is defined as a set of ob-
jects {di|i = 1, 2, ..., n, di =< Ai, Ri >}, in which Ai denotes
the attributes of di and Ri is the set of relations connecting
with di. The topics associated with Ci are denoted as Zi.
Within Ci, there exists a set of core members Ki that deter-
mines and thus best describes Zi. Affiliated members of Ci

are ranked by their relevance to Zi, which creates a hierarchy
within Ci.

4.2 Solution Overview
Based on the proposed community model in Definition 1,

we develop a solution to support scalable community dis-
covery on large document collection, utilizing text contents
as well as relations. The proposed solution first quickly de-
composes the data collection into smaller units by exploring
relations. Compared with textual attributes, relations be-
tween documents convey consistent topics because they are
constructed deliberately by their creators. Handling rela-
tions first may reduce the overhead in interpreting and sum-
marizing texts significantly so that the solution has a high
scalability regardless the dataset size. Through a relation
topology analysis, a set of preliminary community cores is
returned and later expanded into communities. To reduce
the effects of parameter setting used in the first step and
produce consistent communities, a core merge step is added
on the preliminary cores. Afterwards, attributes are used
within a community, whose size is much smaller compared
with the original data collection, to determine the relevance
of each community member that is included into the commu-
nity through relation propagation. Non-relevant documents,
although connected with the community, are eliminated.

Figure 3 illustrates the steps taken for community dis-
covery in the solution. In this figure, a given collection of
documents (da to dl) are represented by solid circles and
labeled from a to l. Directed relations are also given by
solid arrows. Basically, the algorithm consists of four steps,
namely:

1. Core Probing: In this step, the solution starts from
relation analysis to find cores, which are characterized
by documents that are frequently referenced. Each
core, denoted as Ki, will be taken as a community
seed in the following steps. This step is effective in
limiting the analysis scope and thus improves solution
scalability.

2. Core Merge: In this step, cores are merged based
on their topical similarity to reduce the sensitivity to
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Figure 3: Illustration of community discovery steps.

parameters used in core probing. In the figure, It is
found K3 and K4 are linked and relevant. They are
merged in this step to contain df , dh, and di.

3. Affiliation: After cores are constructed, relations are
used to expand cores into initial communities. Bold
solid circles in the subfigure of this step denote com-
munity boundaries.

4. Classification: Since linked documents may not be
topically relevant, a classification process is conducted
on each member of a community based on texts to
finalize the affiliation relationship. False hits are re-
moved, e.g., dd in C1 in the figure.

In the following section, we give algorithmic details to the
community discovery steps listed above.

4.3 Community Discovery Steps

4.3.1 Core Probing
Based on Definition 1, cores dictate the formation and top-

ics of communities. Previous approaches usually use simple
heuristics such as relation frequency to locate cores. We ar-
gue, however, finding core documents of a community via
simple relation count or content analysis does not necessar-
ily yield good results. As suggested in [16], hub objects tend
to have many outgoing relations, which usually cover many
communities and are thus too generic in topics. On the other
hand, attribute analysis can possibly find documents that
are typical in a specific topic but without actual influence,
which is both expensive in computation and inaccurate.

To obtain more topically coherent cores without incurring
high computational overhead, in our solution core candi-
dates are discovered by co-occurrence analysis. We believe
that when multiple objects are linked simultaneously by oth-
ers, they are more likely to be able to define a coherent topic
scope. Definition 2 specifies the community cores definition.

Definition 2. The core K of a community C is defined
as a set of members that are simultaneously linked by many
affiliated members in C. It is not required that objects in the
core of a community should be tightly linked to each other.

Based on Definition 2, the co-occurrence relation analy-
sis can be used to find community cores for textual datasets.
We do not require that core members have many direct links
in between because it is often observed that several indepen-
dent topics eventually merge into one coherent new topic
over time. For each document di, the list of all outgoing
relations Rout

i = {rij} is generated. Thus, the problem of
finding core documents is reduced to a problem of calcu-
lating frequent itemsets in the associate rule algorithm [1].
Since finding all possible combinations of community mem-
bers is extremely expensive, we start from short itemsets,
which will be reused to find longer itemsets. By using re-
lation analysis, the probing step can efficiently find a set of
cores that is very small compared with the whole document
collection, which achieves very high scalability.

The core-discovery algorithm is based on the Apriori al-
gorithm but different in the following two aspects:

• Instead of using a fix filtering threshold to find pop-
ular patterns, variant filtering thresholds are used ac-
cording to the length of itemsets because long frequent
itemsets tend to have smaller supports than short ones.

• It is found that long itemsets generated by Apriori
algorithm are often supersets of other itemsets. In such
circumstances, if two frequent itemsets S1 and S2 are
found and S1 ⊂ S2, we do not keep S1.

The formal description of the core-probing algorithm is
outlined in Algorithm 1.

Algorithm 1 Extracting core members of a community.

Input: L1: a large 1-item set of objects {dj |dj is linked by
a document di in the corpus}
t: filtering threshold
Output: a set of cores, K

for m = 2; Lm−1 �= ∅; m + + do
Cm = apriori − gen(Lm−1);
for each candidate c ∈ Cm do

c.count = co-occurrence number of c;
end for
Lm = {c ∈ Cm|c.count ∗ m ≥ t};
for each candidate c ∈ Lm do

for each candidate c′ ∈ Lm−1 do
if c′ ⊂ c then

delete c′ from Lm−1;
end if

end for
end for

end for
return K =

�m
i=1 Li;

4.3.2 Improving Core Consistency
In Algorithm 1, a filtering threshold t needs to be pro-

vided, based on which cores are probed. Intuitively, a lower
t value can create more cores than a higher t value, which
places a similar problem as with LDA, which needs users to
supply the number of topics. To overcome this problem, a
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core merge process is introduced, which tries to analyze top-
ical similarity using textual analysis and reduce the effects
of improper t settings.

Remember that t stands for the number of co-occurrences
for frequent itemsets. It is observed that after applying two
different thresholds t1 and t2 (t1 < t2) every core returned
by t2 can find a corresponding core in the result returned by
t1, which can be formally summarized as:

Property 1. Given two core probing thresholds t1 and
t2 (t1 < t2), the core probing algorithm returns two sets

of core candidates respectively, namely K1 = {K(1)
i } and

K2 = {K(2)
j }. ∀K(2)

i ∈ K2, ∃K(1)
j ∈ K1, s.t. K(1)

j ⊇ K(2)
i .

Property 1 suggests that low t values can always find
a more complete core candidate set and the overhead re-
mains much lower than LDA. For example, if {d1, d2} is
returned in K2, there must be a core in K1 that is the su-
perset of {d1, d2}. However, the negative effect is that too
many candidates are returned by lower t values and many of
them contain overlapping members such as {d1, d2, d3} and
{d1, d2, d4}. For such cases, it is often found actually d3 and
d4 are really relevant documents. It would be good if these
two sets can be merged as {d1, d2, d3, d4}. Another problem
arises here: How can we decide when to merge these similar
cores? Simply relying on the overlapped entries in the two
sets cannot promise good results because d3 and d4 in the
above sets may discuss two totally different topics whereas
d1 and d2 are only two documents providing tools or back-
grounds. A core merge step is introduced to identify core
candidate sets that can be merged to generate more com-
plete and consistent cores. A hybrid policy is used, which
not only studies the overlapping level of cores but also uses
their topical distributions to determine when to merge cores.

Given two cores Ki and Kj , it is required that they have
at least one member in common to make them qualified for
merging. Namely,

‖Ki ∩ Kj‖ > 0

Afterwards, the candidate cores are sent to study their
topical similarities by text analysis. LDA is applied on all
core candidate documents, whose size is much smaller than
that of the whole collection. LDA is used not to find com-
munities. On the other hand, it is used as a utility to reduce
the dimension of the feature space for documents. Although
the original term space can be used, this approach builds
a feature space that is as large as the size of the textual
vocabulary of the collection, which is expensive in compu-
tation. Moreover, the term-document matrix is very sparse.
Among all terms in the vocabulary, only a very small subset
has strong discrimination effect in topic clustering, which is
very difficult to capture without global-scale distributional
study. On the other hand, as proven in [3], LDA can effec-
tively reduce the dimensionality of text representation and
keep good discriminative information.

LDA is told to generate n′ topics, in which n′ should be
an integer that is large enough. The low-dimensional doc-
ument representation is used to discover the similarity be-
tween documents. n′ will not influence the merge results
very much, which will be shown by experiments in Section
5. After dimension reduction, each document in the dataset
is represented as a n′-tuple vector.

For each core Ki, in the low-dimension feature space, the

y

x

K1

K3

K2pmin
pmin

pmin

pmax

pmax

pmax

1p
2p

3p

(a) Original cores.

y

x

K3

pmin

pmin

pmax

pmax

3p

K12

1p
2p

(b) After merging K1 and K2.

Figure 4: Example core merge in a two-dimension
view.

following coordinates are calculated:

pmin
i =< vmin

ij |j = 1, 2, ..., n′, vmin
ij = min

d∈Ki

vj > (3)

pmax
i =< vmax

ij |j = 1, 2, ..., n′, vmax
ij = max

d∈Ki

vj > (4)

p̄i =< v̄ij |j = 1, 2, ..., n′, v̄ij =

�
d∈Ki

vj

‖Ki‖ > (5)

In the above formulae, vmin
ij and vmax

ij stand for the min-
imal and maximal value of feature dimension j for all docu-
ments that belong to the core Ki, respectively. Thus, pmin

i

and pmax
i generate a bounding box for each core in the fea-

ture space. For each pair of cores Ki and Kj , we calculate
their intersection, denoted as Rij , based on their pmin and
pmax. Notice that there is no need to calculate Rij if the
value of any dimension of pmin

i is larger than the correspond-
ing dimension value of pmax

j since they cannot overlap at all.
This initial condition is very helpful in eliminating unnec-
essary comparisons. Additionally, in our implementation,
two indices for pmin and pmax are maintained respectively
to facilitate the calculation.

If two cores overlap in the feature space (Rij �= ∅). The
significance of their overlapping is analyzed by checking if
either p̄i or p̄j is bounded by Rij . We select to merge Ki

and Kj if p̄i ∈ Rij or p̄j ∈ Rij . After two cores, Ki and Kj ,
are merged, the new core is formed as Kij = Ki ∪ Kj .

pmin and pmax of Kij are updated using Equation 3 and
Equation 4 respectively. However, instead of updating p̄ij

using the topic centroid of all members of Kij , the separate
topic centroids of Ki and Kj are kept. When it is found
any topic centroid of Kij falls in its intersection region with
other cores, the two cores can merge. Formally speaking, we
select to merge two core Ki and Kj if and only if:

∃p̄ ∈ p̄i ∪ p̄j , p̄ ∈ Ki ∩ Kj (6)

A stronger merge condition can be placed by requiring all
topic centroids of involved cores to fall into Ki ∩ Kj , which
is described as:

∀p̄ ∈ p̄i ∪ p̄j , p̄ ∈ Ki ∩ Kj (7)

From Equation 6 and Equation 7, the following property
of the core merge process can be found, in which the operator
”�” represents the core merge operation.

Property 2.

(Ki � Kj) � Kl = Ki � (Kj � Kl)

Based on Property 2, it is found the sequence of selecting
the core candidates for merge does not have any effect on
the final results, which is denoted as Associativity of the core
merge operation. So the algorithm will start from arbitrary
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pairs of core candidates and apply the merge procedure on
them. This process is performed iteratively until no merge
is available.

The process can be illustrated with Figure 4, in which
there are originally three core candidate sets (K1, K2, and
K3) in Figure 4(a). The pmin and pmax values are shown as
small solid circles on the corners of bounding boxes. Also,
the topic centroid of each core is plotted in the figure with
a small triangle. It is evident that p̄2 lies within the in-
tersection area of K1 and K2, which makes them qualified
for merge according to Equation 6. On the other hand, al-
though K2 and K3 have an intersection area in the figure,
they cannot be merged because neither have its topic cen-
troid in the shadowed intersection region. After merge, the
newly constructed core K12 is then compared again with K3

(Figure 4(b)). It is found there is none of p̄1, p̄2 and p̄3 is
in the shadow region of Figure 4(b). So the merge process
terminates. Otherwise, if we choose the policy described in
Equation 7, K1 and K2 cannot be merged either.

The whole process is specified in Algorithm 2.

Algorithm 2 Merging core candidates.

Input: S: initial core candidates returned by core probing
Output: a refined set of cores S′

S0 = φ;
while S0 �= S do

S0 = S;
for each pair of cores Ki and Kj in S do

if ‖Ki ∩ Kj‖ > 0 then
calculate pmin, pmax, and p̄ using Equation 3,
Equation 4, Equation 5 respectively;
if the intersection of Ki and Kj , Rij , is not empty
then

if either p̄i ∈ Rij or p̄j ∈ Rij then
add Ki ∪ Kj into S;
remove Ki and Kj from S;

end if
end if

end if
end for

end while
return S′ = S;

By applying the core merge step to the initial cores, more
succinct yet complete cores can be generated for later ex-
pansion. More importantly, this step guarantees that lower
t values can generate a collection of cores that include all
cores that would be returned by using a higher t values. In
the core probing process, for each core Ki we can record
its frequency fi of co-occurrences in the collection and rank
communities based on fi. The following property stands for
the community ranking:

Property 3. Given two core probing thresholds t1 and
t2 (t1 < t2), the core merge algorithm returns two sets

of core candidates respectively, namely K1 = {K(1)
i } and

K2 = {K(2)
j }. Cores in K1 and K2 are ranked according

to their co-occurrence frequencies respectively and recorded

in the ranking sequence. ∀K(2)
i ∈ K2, ∃K(1)

j ∈ K1, s.t.

K(1)
j ⊇ K(2)

i and K(1)
j .rank = K(2)

i .rank.
According to Property 3, the frequency-based community

ranking is consistent regardless t values. For K1 and K2

(t1 < t2), the top-k (k = ‖K2‖) rankings of communi-
ties based on their co-occurrence frequencies are consistent.

Higher t values can promise to return a small set of rep-
resentative cores and lower t values can generate a larger
size of cores with representative cores promoted. Therefore,
Property 3 guarantees a high consistency of returned cores
regardless the initial clustering setting.

4.3.3 Affiliation Propagation
After finding cores K of a community C, all remaining

documents {di|di ∈ C −K} are taken as affiliated members,
whose affiliation relationship can be determined through re-
lation propagation. C is initialized to be K. Iteratively, for
each document di in C, we find all documents in the cor-
pus that link to di and add them to C. To avoid infinity
loops caused by relation circles, we can limit the number
of iterations. The propagation process terminates if no new
documents are added to C in an iteration.

Among affiliated members, interdisciplinary members D
can be identified by checking the common member sets be-
tween any two communities. If it is found that a member
belongs to multiple communities, it is identified as interdis-
ciplinary member of C.

During the affiliation propagation process, internal hier-
archy of a community is built simultaneously. We evaluate
the relevance of a member to the affiliated community with
its closeness to a community core. The closer a member is
to K, the higher its rank is. In the community propaga-
tion process, every time a new document is inserted into a
community, the iteration value is recorded to represent its
distance to the cores.

4.3.4 Intra-Community Classification
Finding communities solely based on relation propagation

can generate false hits because of weak relations with topi-
cal ambiguity. After the relation study, in this stage, com-
munities are refined by filtering out these false hits from
community candidates using attribute analysis.

Theoretically, this pruning process can be viewed as a spe-
cial classification task. Given a community Ci = {di1, di2, ..., din}
with its core Ki, we want to classify Ci into two collections

C′
i and C̄i so that Ci = C′

i ∪ C̄i and Ki ⊆ C′
i . In such a set-

ting, each document dj in the core Ki is taken as a positive
example, which suggests dj belongs to Ci. We also sample
documents from other community cores, which have dra-
matic different latent topic distributions, as negative exam-
ples. LDA is applied to the dataset to reduce dimensionality
(n′). After clustering, each document in Ci as well as all
sampled documents will have a feature vector to represent
its topical position in the feature space, which is denoted as
zi =< v1, v2, ..., vn′ >. The absolute value of the LDA re-
sult is not used as a document’s actual topic because we do
not tune n′ in this process. On the other hand, the vector
representation of each document is taken as features used
in the classification process to reveal the topical similarity
between documents.

After dimension reduction, the training set, including Ki

and documents from other communities, is supplied to Sup-
port Vector Machine (SVM) to train a binary classifier. All
documents in Ci are classified and negative labeled docu-
ments are removed from Ci.

From the previous introduction to the community discov-
ery process it is observed that the necessary attributes we
defined in Definition 1 (internal ranking, interdisciplinary
members, and community cores) are constructed during the
process, which do not require a second run to the dataset.
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5. EVALUATION
In this section, we perform an empirical evaluation of our

proposal. Section 5.1 describes the experiment settings and
the testing methods. Section 5.2 reports our experiment
results as well as analysis.

5.1 Experiment Settings
We conduct our evaluations based on an academic dataset

extracted from the CiteSeer computer science digital library6.
Papers and their associated citations are extracted for com-
munity discovery. For each paper di, its abstract, title, au-
thor, venue, as well as citation relations are collected. Table
2 gives the summary of the dataset as well as the default
settings of parameters, which are used unless explicitly spec-
ified.

Number of papers 575, 598
Number of references 1, 438, 596
Size of vocabulary 238, 028
Filtering threshold (t) 14
Propagation iteration (n) 5
LDA parameter (n′) 10

Table 2: Dataset summary for experiments.

We use two metrics, namely mining time overhead and
¯PCS, both discussed and used in Section 3. For each ob-

tained result set, 10% of communities are randomly sampled.
The topic label of a community (Zi) is obtained manually
by checking the metadata records of its core papers.

5.2 Experiment Results

5.2.1 Scalability Study
First, to test the scalability of proposed algorithm, we

vary the size of datasets and filtering thresholds.
Figure 5, which plots the time cost corresponding to dif-

ferent sizes of datasets ranging from 50, 000 documents to
500, 000 documents, shows that the algorithm finished the
community discovery task quickly despite of dataset sizes. It
takes about 1, 200 seconds for the complete dataset (500, 000
documents) and only around 400 seconds for a dataset of
50, 000 papers. Compared with LDA which takes about
20, 000 seconds to process the dataset of 50, 000 documents
(as shown in Figure 1(a)), the proposed algorithm is much
faster (i.e., in more than two orders of magnitude). Re-
gardless the dataset size, our algorithm can quickly focus
itself on a small subset of core documents and make textual
analysis on them. Based on the trends of curves in these
two figures, we also find our proposal is much more scalable
than LDA. More importantly, when applied to the complete
testing dataset, our algorithm does not suffer from mem-
ory limitation whereas LDA fails to return any result in our
testing platform.

The follow-up study checks the algorithmic cost in find-
ing communities for different filtering threshold settings on
the complete dataset. The results are plotted in Figure 6.
In this test, the filtering threshold t is varied from 11 to
134. Basically, a low threshold can create more commu-
nity core candidates for the later merge process. Thereafter,
the overhead in discovering communities with low thresholds
is expected to be higher, which is confirmed in the figure.

6http://citeseer.ist.psu.edu/oai.html
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Figure 5: Scalability test to dataset sizes.

However, for the lowest t value in the figure, the overall
mining time is only 1, 502 seconds. Figure 6 also shows the
overhead in each of the four steps in community discovery.
The step-wise comparison reveals the major cost difference
is caused by the core probing phase and core merge phase.
After merging, the overheads of the algorithm under differ-
ent threshold settings are similar, suggesting the consistency
in merged communities for different parameter settings.
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Figure 6: Time overhead to discover communities
with different filtering thresholds.

5.2.2 Quality Study
In this section, we try to compare our proposed algorithm

with several typical textual data clustering approaches. Namely,
we choose LDA as the representative of textual attribute
clustering technique, which has been introduced in Section 3.
Meanwhile, we choose a relational clustering model, Concentric-
Circle Model [23], which identifies cores of communities only
via relation study. Due to the scalability problem of LDA,
we use the document set containing all 29, 869 papers pub-
lished in 2001 as the test dataset. The proposed algorithm,
together with the Concentric-Circle Model, uses the default
parameter setting listed in Table 2. As of LDA, we use the
topic number that generates best community topic precision
in our tests in Section 3, 120, as the input parameter.

Our experimental results are given in Figure 7. From
Figure 7(a), we find our proposed solution (labeled as Ours)
generates the best quality communities. Its ¯PCS is better
than the other two approaches for more than 15%. One
of the reasons for high ¯PCS can be found in Figure 7(b),
which suggests the proposed solution creates communities
with smallest sizes. On the other hand, LDA predefined the
number of topics whereas the Concentric Model includes too
many non-relevant documents in communities because no
attribute analysis is performed in its clustering process.

5.2.3 Parameter Sensitivity Study
In this section, we perform a sensitivity test of the re-

turned community quality (in terms of topic precision) against
various parameter settings.

First of all, we conduct an experiment to see the effect of
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Figure 7: Algorithm comparison.

the filtering threshold t on the community quality as well as
the effect of the merge process. Figure 8 gives the compari-
son results. As shown, although different filtering threshold
t values result in different number of communities and differ-
ent community precisions, the ¯PCS values are very stable,
achieving over 80% for most cases. Figure 8 also shows that
the core merge process is very effective in reducing the nega-
tive effects of filtering threshold settings. For example, after
merging, the number of cores is reduced from 4, 264 to 2, 209
(t = 14) and from 3, 144 to 1, 839 (t = 16). The gap between
the sizes of the core collections returned by these two tests
is greatly narrowed, suggesting that a very consistent com-
munity discovery regardless the initial t settings. Compared
with the experiment on LDA (as shown in Section 3), our
community discovery solution provides a larger sweet zone
for its input parameters. On the other hand, if an improper
filtering threshold is set, our algorithm can still promise a
high consistency in popular communities due to Property 3
in Section 4.3.2.
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Meanwhile, it can be observed that the merge process may
lower the topic precision slightly because documents that
are originally assigned to different communities may be put
into one community after merge. The topic coverage is thus
larger and the distance of outlier documents to the commu-
nity centroid is extended.

Next, we continue to study the impact of different merge
policies to determine the best strategy in merging cores. In
the experiment, four different core merge policies are put
into comparison, which are (1) OR Policy, as introduced
in Equation (6); (2) AND Policy, which requires both topic
centroids of target cores to be within the overlapping topic
area, as described in Equation (7); (3) Overlap Policy,
which solely based on the co-occurrence of common mem-
bers between two candidate cores and neglect the attributes.
Two cores are merged as long as they have any common
member; and (4) Distance-Based Policy, which check
the distance d̄ij between the two topic centroids of cores.
To avoid introducing new distance threshold, we find a pair
of documents from Ki and Kj respectively which have the
longest distance between each other, denoted as dmax

ij . If d̄ij

is less than half of dmax
ij , the two cores are taken as relevant

and are merged afterwards. The experimental results are
given in Figure 9.

0.65

0.7

0.75

0.8

0.85

10 15 20 25 30 35 40

PC
S

Filtering Threshold

OR

AND

Overlap

Distance

(a) ¯PCS.

0

500

1000

1500

2000

2500

3000

3500

4000

10 15 20 25 30 35 40

Co
re

 N
um

be
r

Filtering Threshold

OR

AND

Overlap

Distance

(b) Number of cores.

Figure 9: Compare different merge policies.
From Figure 9(a) and Figure 9(b), it is observed that the

AND-policy is the strongest, sacrificing the merge opportu-
nities for higher precision. On the other hand, the Overlap-
policy is the weakest policy and its overall topic precision
is thus the lowest. The OR-policy and the Distance-based
policy yields similar results. However, the Distance-based
policy requires pair-wise distance computation between doc-
uments in cores, which is very expensive for high dimension
feature spaces. Thereafter, since the OR-policy is very sim-
ple and effective, it is used as the default merge policy in
the following experiments.

In the core merge process, as described in Section 4.3.2,
each core document is transformed into a vector in a low-
dimension feature space using LDA. Thus, a new variable,
n′, is introduced. A natural question arises correspondingly,
”Will the selection of n′ greatly impact the final community
precision like what we already see in the LDA clustering
analysis in Section 3?” To answer this question, a series of
experiments are performed, using different n′ values to test
the community precision. The results are given in Figure
10.
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Figure 10: Effects of n′ to community precision.

In this experiment, n′ is varied from 5 to 50 to observe its
impact on the precision of returned communities. Basically,
as shown in the figure, the difference is very small and thus
is negligible. Extremely small n′ values (n′ = 5) can lower

¯PCS by 5%. For remaining tests, the community quality
remains stable regardless n′ values. It is also observed that
higher n′ does not necessarily generate better community
results in terms of ¯PCS.

Finally, we show the effects of the member classification
phase in community discovery. Figure 11 gives the change
of ¯PCS as well as the average size of communities. It is
found the classification phase is very effective in promoting
the topic consistency of a community by eliminating topi-
cally non-relevant documents. A significant improvement in
the ¯PCS value is found for each test (about 10%). From
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the average community size distribution in Figure 11, the
average community size increases as the filtering threshold
increases, whether it’s before or after classification. This is
because a higher filtering threshold can find hot community
topics that attract many followers. However, after classifi-
cation, the average size of communities becomes relatively
stable for each test.
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Figure 11: Effects of classification.

6. CONCLUSION
In this paper, we exploit the problem of current cluster-

ing techniques for community discovery on textual datasets.
A new hierarchical community model is proposed to cap-
ture the observation that a community typically consists of
a set of tightly relevant members with common latent top-
ics. Based on this model, a community discovery solution
is developed to discover communities from large-scale docu-
ment corpus. Our solution overcomes the scalability issue by
limiting analysis scope to a small subset using relation analy-
sis. A core merge step is employed to make the solution less
sensitive to initial parameter settings. Evaluation results
validate our ideas and show that our solution outperforms
existing community discovery techniques. The sensitivity
tests further demonstrate our approach works very well in
discovering useful and accurate communities, with low costs.
In the future, we plan to study the dependency of communi-
ties and their causality, which can be used to predict future
trends and transitions.
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