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Abstract—Cloud computing solutions continue to grow in-
creasingly popular both in research and in the commercial IT
industry. With this popularity comes ever increasing challenges
for the cloud computing service providers. Semantic web is
another domain of rapid growth in both research and industry.
RDF datasets are becoming increasingly large and complex and
existing solutions do not scale adequately. In this paper, we
will detail a scalable semantic web framework built using cloud
computing technologies. We define solutions for generating and
executing optimal query plans. We handle not only queries with
Basic Graph Patterns (BGP) but also complex queries with
optional blocks. We have devised a novel algorithm to handle
these complex queries. Our algorithm minimizes binding triple
patterns and joins between them by identifying common blocks
by algorithms to find subgraph isomorphism and building a query
plan utilizing that information. We utilize Hadoop’s MapReduce
framework to process our query plan. We will show that our
framework is extremely scalable and efficiently answers complex
queries.

Index Terms—RDF; Hadoop; Cloud; Semantic Web;

I. INTRODUCTION

As large enterprises look to cut the costs of data infrastruc-

ture, cloud computing becomes increasingly popular. Cloud

computing technologies can use commodity class hardware to

manage and retrieve large amounts of data, creating solutions

that are affordable. Similarly, the semantic web is increas-

ingly popular as the framework for exchanging knowledge

efficiently. The semantic web technologies are governed by

the World Wide Web Consortium (W3C). The most prominent

standards are Resource Description Framework1 (RDF) and

SPARQL Protocol and RDF Query Language2 (SPARQL).

RDF is the standard for storing and representing data and

SPARQL is a query language to retrieve data from an RDF

store. The power of these Semantic Web technologies can be

successfully harnessed in a cloud computing environment to

provide the user with capability to efficiently store and retrieve

data for data intensive applications.

Scalability is the predominant challenge in the semantic

web as datasets continue to grow larger, and more datasets

1http://www.w3.org/TR/rdf-primer
2http://www.w3.org/TR/rdf-sparql-query

are integrated and linked. RDF graphs are becoming huge

and graph patterns are becoming more complex. At present,

existing semantic web frameworks are not sufficiently scalable.

A cloud computing solution can be built to overcome these

scalability and performance problems.

Companies pioneering cloud computing such as Sales-

force.com and Amazon have platforms such as EC23, S34,

Force.com5 etc. These are proprietary, closed source platforms.

However, Hadoop6 is an emerging Cloud Computing tool

which is open source and supported by Amazon, the leading

Cloud Computing hosting company. It is a distributed file

system where files can be saved with replication, and would

be an ideal candidate for building a storage system. Hadoop

features high fault tolerance and great reliability. In addition,

it also contains an implementation of the MapReduce [6]

programming model, a functional programming model which

is suitable for the parallel processing of large amounts of

data. By partitioning data into a number of independent

chunks, MapReduce processes run on these chunks, making

parallelization easier.

In this paper, we will describe our cloud computing so-

lution for RDF graphs. We will describe a schema to store

RDF data in Hadoop and a query answering system utilizing

MapReduce. We will show through experiments with popular

benchmark that our solution does achieve exceptional scala-

bility and performance.

SPARQL queries with OPTIONAL blocks pose significant

challenge while generating a query answering plan. Such

queries have more than one triple pattern7 blocks, potentially

with triple patterns repeated in more than one block. Listing

1 shows an example query with an optional block. The

query retrieves names of resources and optionally ages of the

corresponding resource if available. Table II shows the result

of the query when run on the data shown Table I.

3http://aws.amazon.com/ec2
4http://aws.amazon.com/s3
5http://www.salesforce.com/platform
6http://hadoop.apache.org
7http://www.w3.org/TR/rdf-sparql-query/#sparqlTriplePatterns
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Subject Object Predicate
http://utd.edu/s1 :name ”John Smith”
http://utd.edu/s1 :age ”24”
http://utd.edu/s2 :name ”John Doe”
http://utd.edu/s2 :age ”32”
http://utd.edu/s3 :name ”Jane Doe”

TABLE I
EXAMPLE DATA

?name ?age
”John Smith” ”24”
”John Doe” ”32”
”John Doe” ”Jane Doe”

TABLE II
EXAMPLE QUERY RESULT

Listing 1. Example query with OPTIONAL block
SELECT ?name , ? age , WHERE {
? x : name ?name . OPTIONAL { ? x : age ? age .}}

The resources http://utd.edu/s1 and http://utd.edu/s2 have

both name and age whereas the resource http://utd.edu/s3 does

not have any age. But because the age is optional, the name

of http://utd.edu/s3 is also part of the result even though its

age is not there in the data set.

In [8], we first introduced our novel scheme to store RDF

data in the Hadoop Distributed File System and our algo-

rithm for answering SPARQL queries having only BGP using

Hadoop. This paper expands on that research. We will present

a novel solution for handling queries with optional blocks.

This allows queries to be efficiently answered that could not

be answered at all by our previous version. Our previously

reported algorithms can only handle SPARQL queries with

only Basic Graph Patterns8 (BGP). We will also introduce

a query rewriting algorithm. It can rewrite a query to an

equivalent simpler form which requires less time to answer

than the original one. We do this by leveraging our schema

and the ontology of the dataset, if available. We can rewrite the

query even if no ontology is available for the dataset. We also

perform more complete and thorough experimental analysis.

This includes experimental results with the SP2B benchmark

dataset [18] and new queries from its benchmark query set.

The remainder of this paper is organized as follows: in

Section II, we discuss relevant research. In Section III, we

discuss the system architecture and our data storage scheme.

In Section IV, we discuss how we answer a SPARQL query. In

Section IV-D3, we discuss our approach to handle queries with

OPTIONAL blocks. In Section V, we present the results of our

experiments. Finally, in Section VI, we draw some conclusions

and discuss probable areas which we have identified for

improvement in the future.

II. RELATED WORKS

MapReduce is a new technology that is rapidly growing in

popularity and usage. MapReduce solutions are being imple-

8http://www.w3.org/TR/rdf-sparql-query/#BasicGraphPatterns

mented in a wide variety of fields both within and outside of

the web. Within the web domain, Google uses MapReduce for

web indexing, data storage and social networking [3]. Yahoo!

uses MapReduce extensively in their data analysis tasks [15].

IBM has successfully experimented with a scale-up scale-out

search framework using MapReduce technology [11].

MapReduce has also been used to develop solutions for data

mining [12]. In [4], researchers rewrite well-known machine

learning algorithms to take advantage of multicore machines

by leveraging the MapReduce programming paradigm.

In [2], the authors propose to combine MapReduce with

existing relational database techniques. In [1], researchers

reported a vertically partitioned DBMS for storage and re-

trieval of RDF data. They observed performance improvement

with their scheme over traditional relational database schemes.

Researchers have also used MapReduce for inferencing RDF

data. In [22], they have proposed a solution to do scalable

distributed reasoning of RDF data using MapReduce. The

solution proposed in [23] can also be implemented by MapRe-

duce.

In the semantic web arena, there has not been much work

done with MapReduce technology.The BioMANTA9 project

performed some research working with large RDF data storage

in Hadoop. They proposed extensions to RDF Molecules and

implemented a MapReduce based Molecule store [14]. They

used MapReduce to answer the queries. They have queried a

maximum of 4 million triples. Our work is much more scalable

than their solution; we have queried billions of triples. Also,

our storage schema is specifically designed to improve query

execution performance for RDF data. We store RDF triples in

files based on the predicate of the triple and the type of the

object.

We have multiple algorithms to determine the best query

processing plan to answer a query based on a cost model or

heuristics. By generating such a plan, we can determine the

input files of a job and the order in which they should be run.

To the best of our knowledge, we are the first to come up with

a storage schema for RDF data using flat files in HDFS, and a

MapReduce job determination algorithm to answer a SPARQL

query.

There are many research projects proposing solution for

storing and querying RDF graphs. Historically, the most

popular such solution has been Jena. The Jena framework does

offer solutions for inference and optional blocks. However,

Jena is not able to provide scalability or query efficiency that

is even competitive with out solution.

RDF-3X [13] is widely considered the fastest semantic

web repository. RDF-3X uses query planning, histograms,

summary statistics, and other techniques to improve the perfor-

mance of queries. For some queries, particularly aggregation

queries or queries with objects bound to literals, RDF-3X

provides optimal efficiency. However, RDF-3X is not able to

even answers queries of billions of triples with low selectivity

joins. In our previous research [9], we have shown that we

9http://www.itee.uq.edu.au/ eresearch/projects/biomanta
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Fig. 1. The System Architecture

outperform RDF-3X for queries involving unbound objects,

inference and/or low selectivity joins.

In our previous works [8], [9], we have proposed an

exhaustive and a heuristics based algorithm to generate a

query processing plan for SPARQL queries. Those algorithms

have the limitation that they can only handle queries having

simple BGPs. In this work, we propose an algorithm which can

handle queries having OPTIONAL blocks. We also propose

a query rewriting algorithm which can rewrite many queries

to a simpler and efficient to answer equivalent form.

III. PROPOSED ARCHITECTURE

Our framework consists of two major components. The left

part of Figure 1 depicts the data preprocessing component,

and the right part shows the one which answers a query.

We have four subcomponents for data generation and pre-

processing. We convert data in RDF/XML10 or any other

format to N-Triples11 serialization format using our N-Triples

Converter component. The Prefix Generator component re-

places common prefixes with smaller strings. We save a lot

of space by getting rid of these long prefixes. Usually there is

not a lot of common prefixes in a data set. The PS component

takes the N-Triples data and splits it into predicate files. The

predicate based files are then fed into the POS component

which splits the predicate files into smaller files based on the

type of objects. These steps are described in Section III-B,

III-C and III-D.

Our MapReduce framework has four major subcomponents.

It takes the SPARQL query from the user and rewrites it, if

possible, using the Query Validator and Rewriter component.

This component leverages our schema (see Section III-B) us-

ing our query rewriting algorithm. The algorithm is presented

in Section IV-A. The query rewriting algorithm passes the

rewritten or, in case rewriting is not possible, the original query

to the Input Selector (see Section IV-B) and Plan Generator.

10http://www.w3.org/TR/rdf-syntax-grammar
11http://www.w3.org/2001/sw/RDFCore/ntriples

This component selects the input files, by using our algorithm

described in Section IV-D, decides how many MapReduce jobs

are needed and passes the information to the Join Executer

component which runs the jobs using MapReduce framework.

A. Data Generation and Storage

For the experiments of this work, we used the SP2B [18]

benchmark data set. It has a data generator which generates

DBLP12 like data in N-Triples serialization format. We do not

need to do any conversion with this dataset because this is

the format we use for later steps of the preprocessing phase.

However, our N-Triples converter is there to convert the input

data to N-Triples in case it is not in that format. The following

sections talk about the details.

B. File Organization

In Hadoop, a file is the smallest unit of input to a MapRe-

duce job and in absence of caching, a file is always read from

the disk each time a job is set up. Hence, to reduce the input

size of our jobs, we divide the data into multiple smaller files.

The splitting is done in two steps which we discuss in the

following sections.

C. Predicate Split (PS)

At first, We divide the data according to the predicates. In

real world RDF datasets, the number of distinct predicates is

not very large [19]. This division immediately enables us to

cut down the search space for any query which does not have

a variable13 predicate. For such a query, we can just pick a file

for each predicate and run the query on those files only. For

simplicity, we name the files with predicates, e.g. all the triples

containing a predicate p1:pred go into a file named p1-pred.

D. Predicate Object Split (POS)

1) Split Using Explicit Type Information of Object: In the

next step, we work with the rdf type file. The file is divided

into as many files as the number of distinct objects the rdf:type
predicate has. For example, if in the ontology the leaves of the

class hierarchy are c1, c2, ..., cn then we will create files for

each of these leaves and the file names will be like rdf-type c1,
rdf-type c2, ... , rdf-type cn. As the object values c1, c2, ..., cn
are no longer needed to be stored inside the file, we further

reduces the amount of space needed to store the data.

2) Split Using Implicit Type Information of Object: In the

final step, the remaining predicate files are divided according

to the type of the objects. Not all the objects are URIs,

some are literals. The literals remain in the file named by

the predicate. The type information of a URI object can be

retrieved from the rdf-type * files. The URI objects move into

their respective file named as predicate type. For example, if

a triple has the predicate p and the type of the URI object is

ci, then the subject and object appears in one line in the file

p ci. To do this division we need to join a predicate file with

the rdf-type * files to retrieve the type information.

12http://www.informatik.uni-trier.de/ ley/db
13http://www.w3.org/TR/rdf-sparql-query/#sparqlQueryVariables
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IV. MAPREDUCE FRAMEWORK

MapReduce Framework is the component which answers a

SPARQL query. The challenges we meet to solve a SPARQL

query are as follows: first, we must determine the jobs needed

to answer a query. Next, we need to minimize the size

of intermediate files so that data copying and network data

transfer is reduced. We run one or more MapReduce jobs to

answer one query. We use the map phase for selection and the

reduce phase for join.

To answer a SPARQL query using the MapReduce frame-

work, we often require more than one job. The reason is that,

most of the time, more than one join is required to answer the

queries presented. One job is not sufficient to perform all the

joins as the MapReduce processes in Hadoop have no inter-

process communication. Hence, processing a piece of data

cannot be dependent on the outcome of any other processing,

which is essential for joins. This is why we may need more

than one job to answer a query. Each job may depend on the

output of the previous job, if there is any.

A. Query Rewriting

When a query is submitted by the user, we sometimes

can take advantage of our schema and rewrite the query in

equivalent simpler form. If a variable has its type information

in a triple pattern having that variable as the subject, the

predicate rdf:type and a bound object, which is the type

of the variable, we can eliminate this triple pattern if the

variable is used as an object in some other triple pattern.

We can do this because, as described earlier, we divide

the predicate files according to the type of the objects. So

if, for the triple pattern which has the variable as object,

we choose the predicate file having that specific type of

objects as input, we do not need the triple pattern having

the type information. An example illustrates it better. Listing

2 shows LUBM query 2 and Listing 3 shows its rewritten

form. Both the variables Y and Z have type information in

the second and third triple patterns. They are also used as

objects in the last three triple patterns. If we include the files

ub:memberOf Department, ub:subOrganizationOf University
and ub:undergraduateDegreeFrom University in the input file

set for the last triple patterns respectively, we can guarantee

that the values bound to the variables Y and Z in the query

result would be of type ub:University and ub:Department
respectively. This is possible because of the way we divide

our data (see Section III-D). The rewritten query has two less

triple patterns. As a result, it got rid of two joins on the variable

Y and two on the variable Z. This rewritten query runs

significantly faster than the original query because of having

four less joins. Here the rewritten query has predicates which

serve as a filename for our input selection phase described in

Section IV-B. Note that this type of rewriting is possible even

if there is no ontology associated with the dataset. This type of

rewriting is very useful because we observed that most of the

SPARQL queries have triple patterns with rdf:type predicates

describing the type of a variable. For example, all the queries

of LUBM dataset and all but two queries of SP2B dataset have

at least one such triple pattern.

Listing 2. Original LUBM Query 2
SELECT ?X, ?Y, ?Z WHERE {
?X r d f : t y p e ub : G r a d u a t e S t u d e n t .
?Y r d f : t y p e ub : U n i v e r s i t y .
?Z r d f : t y p e ub : Depar tment .
?X ub : memberOf ?Z .
?Z ub : s u b O r g a n i z a t i o n O f ?Y .
?X ub : u n d e r g r a d u a t e D e g r e e F r o m ?Y }

Listing 3. Rewritten LUBM Query 2
SELECT ?X, ?Y, ?Z WHERE {
?X r d f : t y p e ub : G r a d u a t e S t u d e n t .
?X ub : memberOf Department ?Z .
?Z ub : s u b O r g a n i z a t i o n O f U n i v e r s i t y ?Y .
?X ub : u n d e r g r a d u a t e D e g r e e F r o m U n i v e r s i t y ?Y}

However, if we have an ontology available we can do similar

rewriting by exploiting the range information of a predicate

which might result in further simplification. For example,

Listing 4 shows a slightly modified version of LUBM query 2.

It does not have the triple pattern having the type information

of the variable Y . However, the LUBM ontology says that

the range of the predicate undergraduateDegreeFrom is

University. Hence, we can rewrite the query as Listing

5. Here we reduce the input size because we can include

subOrganizationOfUniversity file in the input set instead

of all the files having the prefix subOrganizationOf . Note

that by getting rid of triple patterns we are reducing the number

of joins, not reordering them.

Listing 4. Original Example Query
SELECT ?X, ?Y, ?Z WHERE {
?X r d f : t y p e ub : G r a d u a t e S t u d e n t .
?Z r d f : t y p e ub : Depar tment .
?X ub : memberOf ?Z .
?Z ub : s u b O r g a n i z a t i o n O f ?Y .
?X ub : u n d e r g r a d u a t e D e g r e e F r o m ?Y }

Listing 5. Rewritten Example Query
SELECT ?X, ?Y, ?Z WHERE {
?X r d f : t y p e ub : G r a d u a t e S t u d e n t .
?X ub : memberOf Department ?Z .
?Z ub : s u b O r g a n i z a t i o n O f U n i v e r s i t y ?Y .
?X ub : u n d e r g r a d u a t e D e g r e e F r o m U n i v e r s i t y ?Y }

Hence, for queries, having type information of a variable

used as an object in any triple pattern and predicates having

range information, we can have rewritten queries which re-

duces input size and may eliminate few joins. Both of these

have significant impact on query runtime.

We also do a trivial optimization by substituting a variable

with a bound value found in a FILTER14 clause for that

variable. For example, Listing 6 shows SP2B query 3a. We

can rewrite it as Listing 7. In this case, we can get rid of the

FILTER because once the ?property variable is substituted,

the FILTER becomes useless.

Listing 6. SP2B Query 3a

14http://www.w3.org/TR/rdf-sparql-query/#scopeFilters
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SELECT ? a r t i c l e WHERE {
? a r t i c l e r d f : t y p e bench : A r t i c l e .
? a r t i c l e ? p r o p e r t y ? v a l u e
FILTER ( ? p r o p e r t y =swrc : pages ) }

Listing 7. Rewritten SP2B Query 3a
SELECT ? a r t i c l e WHERE {
? a r t i c l e swrc : p a g e s A r t i c l e ? v a l u e }

B. Input Files Selection

Before determining the jobs, we select the files that need to

be inputted to the jobs. We take the query submitted by the

user or, if possible, a rewritten one and iterate over the triple

patterns. For each triple pattern there are several cases we

need to consider. If in a triple pattern, both the predicate and

object are variables and the object has not type information

available or if the object is concrete, we select all the files in

the dataset as input to the jobs and terminate the iteration. If

the predicate is a variable but the object has type information

available, we select all predicate files having object of that type

and add them to the input file set. If the predicate is concrete

but the object is variable without any type information, we add

all files for the predicate to the input set. If the query has the

type information of the object, we add the predicate file which

has objects of that type to the input set. If a type associated

with a predicate is not a leaf in the ontology tree, we add all

subclasses which are leaves in the subtree rooted at the type

node in the ontology.

C. Cost Estimation for Query Processing

We run Hadoop jobs to answer a SPARQL query and in

many cases more than one job may be needed. Therefore, to

generate an optimal plan involving more than one job, we need

to estimate cost of the plan. We have discussed this in details

in our previous work in [8].

D. Query Plan Generation

Listing 8. LUBM Query 12
SELECT ?X WHERE {
?X r d f : t y p e ub : C h a i r .
?Y r d f : t y p e ub : Depar tment .
?X ub : worksFor ?Y .
?Y ub : s u b O r g a n i z a t i o n O f <h t t p : / / www. U0 . edu>}

As we discussed earlier, there may be more than one job

necessary to answer a query. Hence, there may be multiple

ways a SPARQL query can be answered. These ways are

typically called query plans. Each of the possible plans to

answer a query has different performance in terms of time

and space. So, there is a need to find the plan which would

provide the best performance. An example can illustrate the

issue better. Listing 8 shows LUBM query 12. Recall that a

triple pattern cannot take part in two joins on two variables

in a job. So the query can not be answered by a single job

because of the third triple pattern (?X ub:worksFor ?Y). We

can see that there are multiple ways to answer the query. One

plan can be to join triple patterns 1 (?X rdf:type ub:Chair)

and 3 (?X ub:worksFor ?Y) on variable X in first job, join

triple patterns 2 (?Y rdf:type ub:Department) and 4 (?Y

ub:subOrganizationOf ¡http://www.U0.edu¿) on variable Y in

second job and join the outputs of these two Jobs on variable

Y in the third and final job. Another plan can be to join triple

patterns 2, 3 and 4 on variable Y in first Job and join triples

pattern 1 and the output of first job on variable X in the second

and final job. Intuitively, we can say that the more the number

of jobs, the slower the answering time is. This is because a

job has a setup time and it reads and writes data from and to

disk several times. So the first plan is slower than the second

one. Hence we can see that there is a need to determine the

best query plan before answering a SPARQL query.

2) Heuristics Based Plan Generation: There are a couple

of approaches to generate a query plan for a SPARQL query:

greedy approach, exhaustive approach [8] etc. The greedy

approach is a simple one and generates a plan very quickly.

At each step, it selects a variable on which maximum number

of joins can be done. But it is not guaranteed that this

approach will always generate the best plan. The exhaustive

approach generates the best plan by enumerating each possible

plan. It uses a cost function to determine the best plan.

However, as the search space is exponential in size, the runtime

of the algorithm is also exponential. Our latest algorithm,

Relaxed-Bestplan, is another greedy one which uses a heuristic

[9]. In our heuristics based algorithm, we consider only the

variables which take part in joins. At each step we determine

the elimination count for each variable, i.e. the number of

variables left in the triple patterns left in the resultant triple

pattern after a join is done on that variable. Then we sort the

variables in ascending order of their elimination counts and

choose as many full or partial joins as possible. This results

in a plan having the least number of jobs. The details of the

algorithm can be found in [9].

3) Queries with Optional Blocks: We devise an algo-

rithm which can generate efficient plans for queries with

OPTIONAL blocks. Our approach to handle these queries

is to build individual plans for each block and answer the

query with the help of an operator graph. The concept of

operator graph is not new. [17], [20] discuss a similar operator

graph approach and there are many others in the literature.

For example, the example query we show in Listing 1 would

produce the operator graph shown in Figure 2 (a). The figure

shows a simple operator graph which has a join operator.

Block1 consists of the first triple pattern of the query (Listing

1) and Block2 consists of the triple pattern in the optional

block. The join operator in the graph does a right outer join.

However, the example query shows in Listing 1 is too

simple. Real world queries tend to be more complex than

that. One such variation is queries having optional blocks with

filters. Listing 9 shows a modified version of the example

query. It has a filter in the optional block which basically

gets rid of the second tuple of the result set shown in Table

II. Figure 2 (b) shows the operator graph for this query.

The difference between the operator graph shown in Figure

2 (a) and the one in Figure 2 (b) is the filter below Block2.
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Fig. 2. Operator Graph for (a) Example Query, (b) Modified Example Query

The join operator does right outer join as before. However, we

observed that the OPTIONAL blocks frequently repeats triple

patterns found in the BGP of the query and there might be

filters in the optional blocks which relate to the BGP by using

a variable found there. For example, the SP2B Query 6 shown

in Listing 10 has such an OPTIONAL block.

Listing 9. Example query having OPTIONAL block with FILTER
SELECT ?name , ? age , WHERE { ? x : name ?name .
OPTIONAL { ? x : age ? age . FILTER ( ? age < 30)}}

Listing 10. SP2B Query 6
SELECT ? yr ?name ? document WHERE {

? c l a s s r d f s : s u b C l a s s O f f o a f : Document .
? document r d f : t y p e ? c l a s s .
? document d c t e r m s : i s s u e d ? y r .
? document dc : c r e a t o r ? a u t h o r .
? a u t h o r f o a f : name ?name
OPTIONAL {

? c l a s s 2 r d f s : s u b C l a s s O f f o a f : Document .
? document2 r d f : t y p e ? c l a s s 2 .
? document2 d c t e r m s : i s s u e d ? yr2 .
? document2 dc : c r e a t o r ? a u t h o r 2
FILTER ( ? a u t h o r =? a u t h o r 2 && ? yr2<?y r )

} FILTER ( ! bound ( ? a u t h o r 2 ) ) }

We can see that the OPTIONAL block repeats 4 of the 5

triple patterns found in the BGP. If we bind values for both

the blocks separately, we would be reading the same data

twice off the file system. This is certainly not desirable. To

handle this type of query efficiently, first we need to identify

the common group of triple patterns, which we call common

blocks from now on. Identifying the common blocks is actually

the well known problem of subgraph isomorphism. Subgraph

isomorphism is proved to be NPC long time ago [5]. Research

has already been done to solve this problem in most efficient

manner. Ullmann (1976) describes a recursive backtracking

procedure for solving the problem in [21] which is deemed

to be the most efficient solution found so far. In general, the

running time of the algorithm is exponential but in some cases,

the running time reduces to linear time. We use Ullmann’s

algorithm as a subroutine in our algorithm. Algorithm 1 shows

the pseudo-code of our algorithm:

Algorithm 1 parses and separates the blocks in line 1. Lines

3 to 10 find common blocks between all possible pairs of the

blocks and build a collection of common blocks. Line 5 uses

Ullmann’s algorithm as a subroutine to find the common block

between two blocks. Lines 11 and 12 gets rid of duplicates

from the common blocks collection. Once we find the common

blocks, we build an operator graph, in lines 13 and 14, which

Algorithm 1 GENERATEPLAN(query)
1: blocks← getBlocks(query)
2: commonBlocks← φ
3: for i = 1 to |blocks| do
4: for j = i+ 1 to |blocks| do
5: commonBlock ← ullmannSI(blocks[i], blocks[j])
6: if notEmpty(commonBlock) then
7: commonBlocks← ∪commonBlock
8: end if
9: end for

10: end for
11: uniqueBlocks←
12: getUniqueBlocks(query, commonBlocks)
13: operatorGraph←
14: getOperatorGraph(query, commonBlocks)
15: for i = 1 to |uniqueBlocks| do
16: uniqueBlockP lans←
17: Relaxed−Bestplan(uniqueBlocks[i])
18: end for
19: plan←
20: generateP lan(operatorGraph, uniqueBlockP lans)
21: return plan

shows the interactions between the common blocks and how

we will get the result using joins and other necessary operators

(e.g. Filters). Once the operator graph is built, we find query

plans for the common blocks using our Relaxed-Bestplan

algorithm in lines 15 to 18. Finally, by combining the query

plans for each block with the operator graph in lines 19 and

20, we get the complete plan for the whole query.

An example illustrates the details better. Figure 3 (a) shows

the operator graph we build for SP2B Query 6 shown in Listing

10. Our algorithm determines two common blocks. Block1
contains all the triple patterns of the BGP except the last one

and Block2 contains the last triple pattern of that BGP. Block1
is repeated in the OPTIONAL block. In Figure 3 (a), we see

the operator graph. Block2 and Block1 are to be joined to get

the bound values for the BGP. The bound values for Block1
are used to get values for both the BGP and the OPTIONAL

block. The join output of Block2 and Block1 are then joined

with Block1 again because the filter inside the OPTIONAL

block needs to compare values bound for variables which come

from both the BGP and the OPIONAL block. The second

filter applied is the one outside the OPTIONAL block. After

applying this filter operator, we get the query results.

We can handle any query with OPTIONAL blocks this

way. A query might have nested OPTIONAL blocks and our

approach can handle those queries too. We use Hadoop jobs to

do the joins and apply the operators (e.g. Filter) in the query

operator graph. However, the number of Hadoop jobs needed

to do these operation is not necessarily equal to the number

of operators. For the example operator graph shown in Figure

3 (a), we would need two jobs to do the joins and the filters.

We can apply the filters in the same job which does the 2nd
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Fig. 3. Operator Graph for (a) SP2B Query 6, (b) SP2B Query 7

join. In general only join operators need separate Hadoop jobs.

Other operators can be applied in the job doing the join which

produces the output to be worked on by the operators.

An optional block might have multiple nested optional

blocks inside it. Our approach can handle any number of such

nesting in the optional blocks. Listing 11 shows SP2B Query

7 which has a nested optional block inside the first optional

block. Our algorithm identifies two unique blocks from the

query. Block1 contains the third triple pattern of the BGP

?doc dc : title ?title. Block2 contains the rest four triple

patterns of the BGP. Block2 is repeated twice in the optional

blocks. The operator graph we build for this query is shown

in Figure 3 (b). We can see that Block2 is input three times,

hence we can avoid reading from the disk thrice. Instead we

only read data from the disk once for the block and reuse it

three times. This significantly improves query running time.

Listing 11. SP2B Query 7
SELECT DISTINCT ? t i t l e
WHERE {

? c l a s s r d f s : s u b C l a s s O f f o a f : Document .
? doc r d f : t y p e ? c l a s s .
? doc dc : t i t l e ? t i t l e .
? bag2 ? member2 ? doc .
? doc2 d c t e r m s : r e f e r e n c e s ? bag2
OPTIONAL {

? c l a s s 3 r d f s : s u b C l a s s O f f o a f : Document .
? doc3 r d f : t y p e ? c l a s s 3 .
? doc3 d c t e r m s : r e f e r e n c e s ? bag3 .
? bag3 ? member3 ? doc
OPTIONAL {

? c l a s s 4 r d f s : s u b C l a s s O f f o a f : Document .
? doc4 r d f : t y p e ? c l a s s 4 .
? doc4 d c t e r m s : r e f e r e n c e s ? bag4 .
? bag4 ? member4 ? doc3

} FILTER ( ! bound ( ? doc4 ) )
} FILTER ( ! bound ( ? doc3 ) ) }

Due to space constraint, we do not show the details of the

trivial algorithm which builds the operator graph. These are

commonly found in the relational database literature.

V. RESULTS

In this section we present our performance with SP2B

dataset. Note that we have presented performance comparison

between our framework and Jena, BigOWLIM and RDF-

3X in [9]. We tested our approach on SP2B dataset on a

cluster of 10 nodes with POS schema. Each node had the

same configuration: Pentium IV 2.80 GHz processor, 4 GB
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main memory and 640 GB disk space. We have selected

some SELECT queries which are representative of all the

types of structures the query set has with SELECT queries

with FILTERS. Table III shows times to answer queries

1, 2, 3a, 5a and 6 by executing plans generated by Relaxed-
BestPlan and GeneratePlan algorithms on different number

of Triples. Queries 2 and 6 have OPTIONAL15 blocks. We

used GeneratePlan algorithm to generate plans for them. For

the rest three queries, we used Relaxed-Bestplan algorithm

to generate plans. The first column represents the number of

triples in the range between 0.1 billion to 1 billion. Columns

2 to 6 of Table III represent the five selected queries from

the SP2B dataset [18]. Query answering time is in seconds.

As expected, as the number of triples increased, the time to

answer a query also increased. For example, Query 1 for 0.1

billion triples took 82.738 seconds whereas for 1 billion triples

it took 436.817 seconds. Query 1 is simple and has only one

joining variable, thus it took the least amount of time among

all the queries. However, it has a three-way join. Query 2

also has ten triple patterns but only one joining variable. It

has an OPTIONAL block having only one triple pattern.

Although it has a ten-way join, i.e. a star join between ten

triple patterns, the performance of our framework is very good

for this query. We can see this if we compare its running

times with that of query 1. Query 1 has three-way join but the

ten-way join of query 2 is much more complex. Compared

to query 1, the running time of query 2 did not increase as

much as the increase of complexity of the joins. For query 3a,

we actually run the rewritten query shown in Listing 7. Our

rewriting algorithm efficiently gets rid of all the complexities

of the original query and to answer the query we don’t have

to do any join. We just read the input file, bind the project

variable and output it. Query 5a has six triple patterns and

one FILTER. Query 6 shows the efficiency of the plan

generated by GeneratePlan algorithm. Even though query 6

has more triple patterns and filters than query 5a, because of

15http://www.w3.org/TR/rdf-sparql-query/#OptionalMatching
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TABLE III
QUERY RUNTIMES FOR SP2B QUERIES

Triples SP2B DATASET
Billions Q-1 Q-2 Q-3a Q-5a Q-6

0.1 82.74 590.87 85.16 543.34 537.35
0.2 124.38 851.02 133.43 973.31 980.27
0.3 156.62 1229.64 159.5 1534.79 1438.1
0.4 198.21 1697.17 188.82 2170.64 1872.5
0.5 229.25 2119.41 225.07 2757.87 2353.04
0.6 276.24 2643.51 260.7 3233.01 2876.72
0.7 314.32 3084.08 293.89 3972.62 3506.52
0.8 351.25 3528.28 331.64 4530.18 4056.44
0.9 384.70 4031.74 366.67 4984.35 4407.3
1 436.82 4578.66 402.61 5462.65 4914.38

identifying common blocks by the algorithm, its running times

are comparable to that of query 5a.

Figure 4 shows the running times of the queries in a graph.

The X axis represents number of triples in billions and the Y

axis represents the time in seconds. As expected, the size of

the dataset grows, the increase in time to answer a query does

not grow proportionately. The increase in time is always less

than the dataset size growth.

VI. CONCLUSIONS AND FUTURE WORKS

We have presented a distributed framework which can

handle huge RDF graphs in a scalable and efficient manner.

Our framework inherits scalability and fault tolerance from

Hadoop, which it is based on. Our framework easily scales

horizontally, because to increase capacity of our system all that

needs to be done is to add new nodes to the Hadoop cluster. We

have proposed a schema to store RDF data in plain text files, a

query rewriting algorithm, a heuristics based greedy algorithm,

Relaxed-Bestplan, to determine the best processing plan to

answer a SPARQL query and the GeneratePlan algorithm

to generate the best plan for queries having OPTIONAL
blocks. Our experiments demonstrate that our system is highly

scalable. If we add data, the delay introduced to answer a query

does not increase as much as the increment in the data size.

In the future, we would extend the work in few directions.

First, we will run more experiments to compare our frame-

work with other state-of-the-art frameworks for queries having

OPTIONAL blocks. Next, we will devise algorithm with

other types of SPARQL queries e.g. ASK queries.
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