
 Open access Journal Article DOI:10.1007/S00778-018-0534-5

Scalable computational geometry in MapReduce — Source link

Yuan Li, Ahmed Eldawy, Jie Xue, Nadezda Knorozova ...+2 more authors

Institutions: University of Minnesota, University of California, Riverside, University of Oxford

Published on: 16 Jan 2019 - Very Large Data Bases

Topics: Computational geometry and Closest pair of points problem

Related papers:

 CG_Hadoop: computational geometry in MapReduce

 Running genetic algorithms on Hadoop for solving high dimensional optimization problems

 Large-Scale Data Sets Clustering Based on MapReduce and Hadoop

 SpatialHadoop: towards flexible and scalable spatial processing using mapreduce

 Functional Models of Hadoop MapReduce with Application to Scan

Share this paper:

View more about this paper here: https://typeset.io/papers/scalable-computational-geometry-in-mapreduce-
1lr924weij

https://typeset.io/
https://www.doi.org/10.1007/S00778-018-0534-5
https://typeset.io/papers/scalable-computational-geometry-in-mapreduce-1lr924weij
https://typeset.io/authors/yuan-li-2eh29o6b4y
https://typeset.io/authors/ahmed-eldawy-563cdu14dh
https://typeset.io/authors/jie-xue-41f8kor9db
https://typeset.io/authors/nadezda-knorozova-3qnwzlkpto
https://typeset.io/institutions/university-of-minnesota-2bv8nbl3
https://typeset.io/institutions/university-of-california-riverside-c4zp8d5a
https://typeset.io/institutions/university-of-oxford-359i25ny
https://typeset.io/conferences/very-large-data-bases-hqmyzr0f
https://typeset.io/topics/computational-geometry-206fky4p
https://typeset.io/topics/closest-pair-of-points-problem-2pcl8dx7
https://typeset.io/papers/cg-hadoop-computational-geometry-in-mapreduce-4fcx91pe80
https://typeset.io/papers/running-genetic-algorithms-on-hadoop-for-solving-high-1o3gtcqf8g
https://typeset.io/papers/large-scale-data-sets-clustering-based-on-mapreduce-and-1vcwom8t7v
https://typeset.io/papers/spatialhadoop-towards-flexible-and-scalable-spatial-6o7182zdzc
https://typeset.io/papers/functional-models-of-hadoop-mapreduce-with-application-to-3qdqk9aiih
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/scalable-computational-geometry-in-mapreduce-1lr924weij
https://twitter.com/intent/tweet?text=Scalable%20computational%20geometry%20in%20MapReduce&url=https://typeset.io/papers/scalable-computational-geometry-in-mapreduce-1lr924weij
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/scalable-computational-geometry-in-mapreduce-1lr924weij
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/scalable-computational-geometry-in-mapreduce-1lr924weij
https://typeset.io/papers/scalable-computational-geometry-in-mapreduce-1lr924weij

The VLDB Journal

https://doi.org/10.1007/s00778-018-0534-5

REGULAR PAPER

Scalable computational geometry in MapReduce

Yuan Li2 · Ahmed Eldawy1 · Jie Xue2 · Nadezda Knorozova3 ·Mohamed F. Mokbel2 · Ravi Janardan2

Received: 12 February 2018 / Revised: 26 August 2018 / Accepted: 7 December 2018

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

Hadoop, employing the MapReduce programming paradigm, has been widely accepted as the standard framework for analyz-

ing big data in distributed environments. Unfortunately, this rich framework has not been exploited for processing large-scale

computational geometry operations. This paper introduces CG_Hadoop; a suite of scalable and efficient MapReduce algo-

rithms for various fundamental computational geometry operations, namely polygon union, Voronoi diagram, skyline, convex

hull, farthest pair, and closest pair, which present a set of key components for other geometric algorithms. For each computa-

tional geometry operation, CG_Hadoop has two versions, one for the Apache Hadoop system and one for the SpatialHadoop

system, a Hadoop-based system that is more suited for spatial operations. These proposed algorithms form the nucleus of a

comprehensive MapReduce library of computational geometry operations. Extensive experimental results run on a cluster of

25 machines over datasets of size up to 3.8B records show that CG_Hadoop achieves up to 14x and 115x better performance

than traditional algorithms when using Hadoop and SpatialHadoop systems, respectively.

Keywords Computational Geometry · MapReduce · Hadoop · Output-sensitive Algorithms · Distributed Systems

1 Introduction

Hadoop [4] is a framework designed to efficiently process

huge amounts of data in a distributed fashion. It employs the

MapReduce programming paradigm [14], which abstracts a

parallel program into two functions, map and reduce. The

map function maps a single input record to a set of interme-

diate key-value pairs 〈k, v〉, while the reduce function takes

all values associated with the same key and produces the

B Mohamed F. Mokbel

mokbel@umn.edu

Yuan Li

lixx2100@umn.edu

Ahmed Eldawy

eldawy@ucr.edu

Jie Xue

xuexx193@umn.edu

Nadezda Knorozova

knoro002@umn.edu

Ravi Janardan

janardan@umn.edu

1 University of California, Riverside, Riverside, USA

2 University of Minnesota, Twin Cities, Minneapolis, USA

3 Oxford University, Oxford, UK

final answer. The simplicity and flexibility of the MapReduce

paradigm allow Hadoop to be employed in several large-scale

applications including machine learning [21], tera-byte sort-

ing [41], and graph processing [22].

In recent years, there has been a tremendous increase

in devices and applications that generate enormous rates

of spatial data. Examples of such devices include smart

phones, space telescopes [7], and medical devices [40,49].

The enormous volume of such big spatial data calls points

to the need to take advantage of the MapReduce program-

ming paradigm [14] to perform various spatial operations

efficiently. Among the most important spatial operations

is the family of computational geometry algorithms that

are concerned with representing and working with geo-

metric entities in the spatial domain. Examples of such

operations include Voronoi diagram, convex hull, skyline,

polygon union, and farthest/closest pairs. Although there

exist well established computational geometry algorithms for

such problems [6,46], unfortunately, such algorithms do not

scale well to handle modern spatial datasets which can con-

tain, for instance, billions of points. For example, computing

a skyline for a dataset of 4B points using a traditional algo-

rithm took up to 90 min, while computing the union of a

dataset of 5M polygons took more than 1 h and failed with a

memory exception for larger datasets.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-018-0534-5&domain=pdf
http://orcid.org/0000-0002-6686-1757

Y. Li et al.

In this paper, we introduce CG_Hadoop, a suite of

scalable and efficient MapReduce algorithms for various fun-

damental computational geometry operations. CG_Hadoop

proposes a generic skeletal algorithm that describes how

several computational geometry operations can be imple-

mented in MapReduce. After that, it describes how to

use this skeleton to implement six computational geom-

etry operations, namely polygon union, Voronoi diagram,

skyline, convex hull, farthest pair, and closest pair, which

present a set of key components for other geometric algo-

rithms [6,46]. CG_Hadoop achieves orders of magnitude

better performance than traditional computational geome-

try algorithms when dealing with large-scale spatial data.

For each computational geometry operation, we introduce

two versions of CG_Hadoop. The first version is deployed

on the Apache Hadoop system [4], an open-source MapRe-

duce platform, which is widely used in various MapReduce

applications, e.g., see [11,21,22,30,31,41]. The second ver-

sion of CG_Hadoop is deployed on SpatialHadoop [18], a

Hadoop-based system equipped with spatial indexes and is

more suited for spatial operations.

The main idea behind all algorithms in CG_Hadoop

is to take advantage of the divide-and-conquer nature of

many computational geometry algorithms. The divide-and-

conquer property lends itself to the MapReduce environment,

where the bulk of work can be parallelized on multi-

ple nodes in a computational machine cluster. However,

CG_Hadoop has to adapt traditional computational algo-

rithms to work better in the MapReduce environment through

three fundamental changes. (1) Unlike traditional single

machine algorithms which usually divide the input in half

and do multiple rounds, CG_Hadoop has to use more scal-

able partitioning techniques [15] and adapt the algorithms

correspondingly. (2) While traditional divide-and-conquer

algorithms process all the data, CG_Hadoop introduces a

pruning step which early prunes partitions that do not con-

tribute to the final answer. (3) In traditional algorithms, a

single machine produces all the output in the final merge step,

whereas CG_Hadoop adds a pruning step which early flushes

parts of the output to keep the final merge step efficient.

CG_Hadoop forms the nucleus of a comprehensive

MapReduce library of computational geometry (CG) opera-

tions. The source code is available as part of SpatialHadoop

at http://spatialhadoop.cs.umn.edu/. Its open-source nature

will act as a research vehicle for other researchers to build

more CG algorithms that take advantage of the MapReduce

programming paradigm. An earlier version of this work [16]

had a major limitation since the output had to fit in a sin-

gle machine which ran the final merge step. We overcome

this limitation by adding new output-sensitive algorithms that

utilize a new pruning step to early flush parts of the output

in a distributed manner. We use this technique to enhance

the polygon union, skyline, convex hull operations and add

a novel algorithm for the new Voronoi diagram construction

operation. In addition, we improve the farthest pair oper-

ation by adding a more effective pruning step. Extensive

experiments on a cluster of 25 machines using both real and

generated datasets of sizes up to 3.8 billion records show

that CG_Hadoop achieves up to 14x and 115x better perfor-

mance than traditional algorithms when using Hadoop and

SpatialHadoop systems, respectively.

The rest of this paper is organized as follows. Section 2

gives a brief necessary background. Section 3 describes the

general skeleton of CG_Hadoop algorithms. The MapRe-

duce algorithms for the polygon union, Voronoi diagram,

skyline, convex hull, farthest pair, and closest pair operations

are given in Sects. 4–9. Section 10 gives an experimental eval-

uation. Related work is discussed in Sect. 11, while Sect. 12

concludes the paper.

2 Background

This section gives a background about Hadoop [4] and

SpatialHadoop [18], which are the two platforms used in

CG_Hadoop. It also discusses the set of computational geom-

etry operations incorporated in CG_Hadoop.

2.1 Hadoop

Hadoop [4] is an open-source framework for data processing

on large clusters. A Hadoop cluster consists of one mas-

ter node and several slave nodes. The master node stores

meta-data about files (e.g., name and access rights), while

slave nodes store the actual data in files (e.g., records). A file

is usually uploaded to the Hadoop Distributed File System

(HDFS) before it is processed, wherein the file is split into

chunks of 64 MB (called blocks). The master node keeps

track of how the file is split and where each block is stored,

while slave nodes store the data blocks. In analogy with a

regular file system, the master node stores the file allocation

table or INodes, while slave nodes store the data in files.

A MapReduce program [14] configures a MapReduce job

and submits it to the master node. A MapReduce job contains

a set of configuration parameters such as the map function

and the input file. The master node breaks this job into several

map tasks and reduce tasks and run each one on a slave node.

It also breaks the input into splits and assigns each split to a

slave node for a map task. The map task parses its assigned

split using the configured record reader and produces a set

of key-value pairs 〈k1, v1〉 which are sent to the map function

to produce a set of intermediate pairs 〈k2, v2〉. Intermediate

pairs are grouped by k2, and the reduce function collects all

intermediate records with the same key and processes them

to generate a set of final records 〈k3, v3〉 which are stored as

the job output in HDFS files.

123

http://spatialhadoop.cs.umn.edu/

Scalable computational geometry in MapReduce

MapReduce and Hadoop have been widely adopted by

major industry players, e.g., Google [14], Yahoo! [11],

Microsoft [27], Facebook [26,30], and Twitter [31]. It has

also been employed widely in several large-scale applica-

tions including machine learning [21], tera-byte sorting [41],

and graph processing [22].

2.2 SpatialHadoop

SpatialHadoop (or SHadoop for simplicity) [17,18] is a

comprehensive extension to Hadoop that enables efficient

processing of spatial operations. Mainly, it provides a two-

layered spatial index in the Hadoop indexing layer with

implementations of uniform grid, R-tree [25], Quad-tree [47],

K-d tree, and other indexes [15]. It also enriches the MapRe-

duce layer with new components that allow using the spatial

index structures within MapReduce programs. The built-in

indexes in SpatialHadoop help in building efficient algo-

rithms for several spatial operations. Specifically, the spatial

index in SpatialHadoop is organized as one global index and

multiple local indexes. The global index partitions data across

cluster nodes, while the local indexes organize data inside

each node. The new added components in the MapReduce

layer utilize both the global and local indexes to prune file

partitions and records, respectively, that do not contribute to

the answer. The pruning criteria are determined through a

user-defined filter function which is provided as part of the

MapReduce program.

2.3 Spatial partitioning techniques in HDFS

SpatialHadoop and other big spatial data systems support

a wide range of spatial partitioning techniques [1,15,19,34,

38,52] based on grid, R-tree, R+-tree, Quad-tree, K-d tree,

Z-curve, and Hilbert curve. Table 1 summarizes the spa-

tial partitioning techniques that we consider in this paper.

It also indicates which indexes produce disjoint partitions

as some of the algorithms we describe in this paper only

work with disjoint indexes. If the partitioned dataset con-

tains only points, STR and STR+ indexes become similar as

no records will need to be replicated to multiple partitions.

All the indexes can work with skewed data except for the uni-

form grid technique. For the six operations described later,

we primarily consider the uniform grid index when describ-

ing the main algorithm (for simplicity). Each operation is

followed by a section that describes how to generalize the

algorithm to work with other partitioning techniques.

2.4 Computational geometry operations

As indicated earlier, CG_Hadoop forms the nucleus of a com-

prehensive MapReduce library of computational geometry

operations. Currently, CG_Hadoop includes six fundamental

Table 1 Partitioning techniques

in SpatialHadoop Partitioning Disjoint

Grid �

Quad-tree �

STR Only with points

STR+ �

K-d tree �

Z-curve

Hilbert curve

(a) Input Polygons (b) Polygon Union

Fig. 1 Union operation in CG_Hadoop

operations, namely Union, Voronoi Diagram, Skyline, Con-

vex Hull, Farthest pair, and Closest Pair. Below, we give a

brief definition of each operation.

Union The union of a set S of polygons is the set of all such

points that lie in at least one of the polygons in S, where

only the perimeter of all points is kept and inner segments

are removed. Figure 1a gives a sample input to the polygon

union operation as a set of ZIP code areas, while Fig. 1b gives

the union result.

Voronoi diagram The Voronoi diagram of a set P of points,

also called sites, is a tessellation of the space into regions,

each associated with a site, such that any point inside each

region is closer to the associated site than to any other site.

For example, the Voronoi diagram of the sites in Fig. 2a is

shown in Fig. 2b.

Skyline Consider the set P of points in Fig. 2a. Point pi ∈ P

dominates point p j ∈ P if each of the coordinates of pi is

greater than or equal to the corresponding coordinate of p j ,

with strict inequality in at least one dimension. The skyline of

P consists of those points of P that are not dominated by any

other point of P (see Fig. 2c). In the computational geome-

try literature, the skyline points are usually called maximal

points [46].

Convex hull The convex hull of a set P of points is the smallest

convex polygon that contains all the points in P , as shown in

Fig. 2d. The output of the convex hull operation is the set of

points forming the hull in clockwise order.

Farthest pair Given a set P of points, the farthest pair is a

pair of points at the largest Euclidean distance from each

other. As shown in Fig. 2d, the two points contributing to the

farthest pair have to lie on the convex hull.

123

Y. Li et al.

(a) Input Points (Sites) (b) Voronoi Dia-

gram

(c) Skyline
Convex Hull

Closest Pair

Farthest Pair

(d) Other Operations

Fig. 2 Computational geometry operations covered by CG_Hadoop

Closest pair Given a set P of points, the closest pair is a

pair of points at the smallest L2-distance from each other

(Fig. 2d).

3 Generic MapReduce computational
geometry framework

This section describes the general idea that CG_Hadoop uses

to implement all the scalable MapReduce algorithms for the

above computational geometry operations in MapReduce.

The next sections will describe how this skeletal framework

is used to implement each of the computational geometry

operations supported by CG_Hadoop. The basic idea behind

the generic framework is the divide-and-conquer (D&C)

approach which partitions the input data into several parti-

tions, processes each one independently, and then combines

the results to produce the final answer. The D&C approach

lends itself to the MapReduce programming paradigm as

mappers process partitions in parallel while reducers merge

the results of the mappers. Unfortunately, the standard divide-

and-conquer algorithms would perform poorly if applied

as-is in MapReduce due to the following limitations.

(1) Standard D&C algorithms typically run in log n itera-

tions to minimize the computation time. A straightfor-

ward MapReduce implementation would run in log n

rounds, i.e., MapReduce jobs, which is extremely inef-

ficient. In MapReduce, there is a significant overhead in

starting each job and the goal is to minimize the num-

ber of rounds to achieve the best performance [23]. We

overcome this challenge by employing efficient spatial

partitioning techniques [15] which allow the algorithms

to run in only one MapReduce round.

(2) Traditional algorithms process all the input data under

the assumption that all the data are already in main mem-

ory. In MapReduce, data is partitioned in blocks among

multiple machines and there is an overhead of access-

ing each partition. Applying the traditional algorithm

as-is would read every partition which adds a signif-

icant overhead. CG_Hadoop overcomes this limitation

by employing an appropriate filtering step for some algo-

rithms which can early eliminate partitions that do not

contribute to the final answer.

(3) In the traditional D&C algorithms, the final output is all

produced by a single process. In MapReduce, this means

that all the output is generated by a single machine that

runs the final merge step. If the output is too large, that

last reducer will always fail. For example, the Voronoi

Diagram and Delaunay Triangulation algorithms always

produce an output that is several times larger than the

input. CG_Hadoop resolves this issue by introducing a

pruning step that allows the processes to early flush parts

of the output leaving only a small amount of data to be

processed in the final step. This part is one of the new

contributions introduced in this paper as compared to

our earlier work [16].

Based on the three key ideas above, we propose the fol-

lowing five-step framework to handle scalable computational

geometry operations in MapReduce. In the rest of this sec-

tion, we describe the high-level idea of the generic idea. In the

following sections, we show how this generic idea is applied

to the six computational geometry operations. The frame-

work has five steps, partitioning, filtering, local processing,

pruning, and merging, which are described briefly below.

1. Partitioning In this step, the input is partitioned into fixed-

size blocks with a default size of 64 MB each. The goal is

to allow each machine to process these blocks in parallel

and ensure that each one will fit in the main memory dur-

ing processing. The challenge in this step is to find the

best partitioning technique that minimizes the process-

ing time. We consider both non-spatial partitioning that

is supported by default in Hadoop and several spatial

partitioning techniques that are introduced in Spatial-

Hadoop [15].

2. Filtering This optional step early filters out some parti-

tions that do not contribute to the final answer. This step

is applicable only when a spatial partitioning technique

is used as the filtering logic relies on the partition bound-

aries. In addition, it is only applicable to some algorithms

that can eliminate chunks of the input without affecting

the final answer, e.g., skyline and convex hull.

3. Local processing In this step, the mappers run in parallel

to process all the blocks that were produced by the par-

titioning step and not eliminated by the pruning step.

As implied by its name, this step requires only local

processing without any communication across different

123

Scalable computational geometry in MapReduce

Table 2 Summary of the six operations supported by CG_Hadoop w.r.t. the five steps discussed in Sect. 3

Partitioning Filtering Local process Pruning Merging

Hadoop union Any – Polygon union – Polygon union

SHadoop union Any spatial

Enhanced union Disjoint spatial Prune segments outside

partition MBR

–

Hadoop VD [2] On x-axis – VD – VD merge

SHadoop VD Disjoint spatial Flush safe VD regions

Hadoop skyline Any – Skyline – Skyline

SHadoop skyline Any spatial Filter partitions that are dominated

by other partitions

Enhanced skyline Disjoint spatial Prune points that are

dominated by the

global SKY

–

Hadoop CH Any – Convex hull – Convex hull

SHadoop CH Any spatial Filter partitions that are dominated

by the four possible skylines

Enhanced CH Disjoint spatial Prune partitions based

on Theorem 3

Closest pair Disjoint spatial – Closest pair Prune all points within a

buffer of size δ

Closest pair

Farthest pair Any spatial Prune any pair of partitions with a

maximum distance less than the

minimum distance of another pair

Farthest pair – Select max

machines, which allows this step to scale out perfectly

on the available processing nodes.

4. Pruning In this optional step, each machine identifies

parts of the output of the local processing step that are

not needed for the next merging step and prunes them.

The pruned parts are either written to disk as part of the

output or are removed if they are no longer needed. The

goal of this step is to minimize the size of the data that

will be processed in the final merging step which usually

runs on a single machine.

5. Merging This final step runs in the reduce function and

takes the output of the previous step, which is produced by

several machines, and combines them together to produce

the final answer. If the output of all the machines is small

enough to be processed by a single machine, this step can

run on one machine. Otherwise, this step runs in several

rounds, where each round runs on several machines with

the goal of reducing the data size until it can fit on a

single machine. In our experiments, we found that two

rounds are enough in practice to process all the inputs

we were testing. This allows us to run the first round in

parallel in the reduce function and the second round as a

post-processing step on a single machine.

Table 2 summarizes the operations introduced in

CG_Hadoop and shows how they are all implemented in

terms of the five functions described above. The rest of this

paper will describe each of these operations in more details.

Application to different partitioning techniques This part

describes how the proposed idea applies to different types

of partitions. There are three types of partitioning tech-

niques that we consider in this paper, namely non-spatial

partitioning, overlapping spatial partitioning, and spatial dis-

joint partitioning. (1) Non-spatial partitioning is the default

one used in Hadoop and it is partitioning the data with-

out considering the spatial location, e.g., hash partitioning.

(2) The overlapping spatial partitioning assigns each record

to one partition based on its spatial attribute but the parti-

tions might overlap, especially when partitioning polygons,

e.g., STR and Z-curve-based partitioning. (3) The disjoint

spatial partitioning produces non-overlapping partitions at

the cost of replicating some records to multiple partitions,

e.g., quad-tree-based partitioning. Table 1 indicates the spa-

tial partitioning techniques supported by SpatialHadoop [15]

and shows which ones are disjoint.

Some of the algorithms we propose in this paper require a

specific type of partitioning technique in order to work. The

second column in Table 2 indicates the type of partitioning

technique that is required by each algorithm. We can classify

the algorithms based on their applicability to different par-

titioning techniques into three classes. (1) The first class of

algorithms can work with the three types of partitioning tech-

niques described above. These algorithms are denoted in the

second column as any. (2) The second class of algorithms

requires the use of a spatial partitioning technique (either

overlapping or disjoint) to work, and these are denoted as any

123

Y. Li et al.

(a) (b)

Fig. 3 Polygon union on a single machine

spatial in the table. These algorithms typically apply a filter-

ing step and use the minimum bounding rectangle (MBR)

of the partitions in the filtering step. (3) The third class of

algorithms requires a disjoint spatial partitioning technique

to work, and they are denoted as disjoint spatial. These algo-

rithms typically apply a pruning step to early produce a partial

result and require disjoint partitions to ensure that the partial

result will not be affected by other overlapping partitions.

4 Union

A traditional algorithm for the polygon union operation [6]

computes the union of two polygons by computing all edges

intersections, removing all inner segments, and leaving only

segments on the perimeter. For more than two polygons, we

start with one polygon, add other polygons to it one by one

and compute the union with each polygon added. In Post-

GIS [45], this operation can be carried out using the following

SQL query where the column geom stores polygon informa-

tion of each ZIP code.

SELECT ST_Union(zip_codes.geom)

FROM zip_codes;

In this section, we introduce four polygon union algo-

rithms as one for a single machine, one for Hadoop and two

for SpatialHadoop. We use the input dataset in Fig. 1a as a

running example. For ease of illustration and without loss of

generality, the example has non-overlapping polygons.

4.1 Union in a single machine

In this section, we describe a simple single machine algo-

rithm for computing the union of a set of polygons. This

algorithm acts as a baseline in our experiments. It is also used

as a building block in subsequent Hadoop and SpatialHadoop

algorithms. The algorithm applies two simple heuristics that

improve its performance with real data. The two heuristics

are applied in two steps of the algorithm, namely grouping

and merging.

In the grouping step, polygons are split into groups of

overlapping polygons such that there is no overlap between

two polygons in two different groups. This step is illustrated

in Fig. 3a where the input polygons are split into three groups.

This step breaks down the input set into smaller subsets where

the union of each group can be computed independently. It

also allows the use of multi-core CPUs which gains further

speed-ups. To perform this grouping, we start with a forest of

sets where each set includes a single polygon. Then, we carry

out a self-spatial-join operation to find all pairs of overlap-

ping polygons. For each overlapping pair, we union the two

sets in which they are contained. We use the disjoint-set data

structure [12] which merges two sets in almost a constant

time. At the end of this step, each resulting set will contain

all overlapping polygons in one group.

In the merging step, the polygon union of each group

is computed separately. We use the popular Java Topology

Suite (JTS) [28] which recommends the use of the buffer

operation to compute the union. All polygons in one group

are combined into a multi-polygon, and the buffer opera-

tion is applied to that multi-polygon to keep only the outer

boundary of the union result and remove all internal seg-

ments. Figure 3b illustrates the merging step where internal

line segments, which are removed, are marked in dotted

lines.

4.2 Union in Hadoop

The main idea of our Hadoop polygon union algorithm is

to allow each machine to accumulate a subset of the poly-

gons and then let a single machine combine the results from

all machines and compute the final answer. Our algorithm

works in three steps: partitioning, local union, and merging,

as detailed below.

The partitioning step distributes the input polygons into

smaller subsets, each handled by a machine. This step is per-

formed by the Hadoop load file command which splits

the file into chunks of 64 MB, each stored on a slave node.

In the local union step, each machine computes the union

of its own chunk using a traditional in-memory polygon

union algorithm where it retains the line segments at the

boundaries and removes internal line segments (see Fig. 4a).

As each chunk is at most of size 64 MB, the in-memory algo-

rithm works fine regardless of the size of the input file. This

step is implemented in Hadoop as part of the mapper which

runs locally in each machine. After this step is done, each

machine ends up with a set of polygons that represent the

union of all polygons assigned to it.

The final merging step is implemented in Hadoop as a

reduce function, which runs on a single machine to compute

the final answer. The reduce function takes the output of

all local unions, combines them into one list, and computes

their union using the traditional in-memory algorithm. Each

machine ends up with only few polygons, making it possible

to do the union using the in-memory algorithm.

123

Scalable computational geometry in MapReduce

(a) (b)

Fig. 4 Polygon union in Hadoop

By taking advantage of a set of parallel machines,

rather than performing all the work in a single machine,

our proposed algorithm achieves significant performance

improvement over that of traditional single machine algo-

rithms. Although there is an overhead in partitioning the

data to multiple machines and then collecting the answer

from each machine, such overhead is offset by the time

saved over parallel machines, which can be seen in large-

scale spatial datasets. As shown in Fig. 4a, the local

union step removes some line segments which reduces the

work needed at the global union step. The pseudo-code

of the polygon union algorithm in Hadoop is described in

Sect. 4.3.

Figure 4a gives the partitioning and local union steps of the

input dataset of Fig. 1a over four cluster computing nodes,

where each polygon is assigned to one of the four nodes.

The decision of which node belongs to which partition is

made by the default HDFS partitioner, where it basically

assigns polygons to nodes randomly. As a result, and as can

be seen in the figure, some polygons assigned to one node

might remain completely disjoint after computing the union.

In this case, the local union algorithm combines them in one

multi-polygon record and writes it to the output. Then, all

nodes send their output to a single machine which runs the

merging step as shown in Fig. 4b which combines all the

multi-polygons generated by the local union step and com-

putes the union of all of them.

4.3 Union in SpatialHadoop

Our first-cut polygon union algorithm in SpatialHadoop has

the same three steps as our algorithm in Hadoop. The only

difference is that the partitioning step in SpatialHadoop uses

a spatial partitioning rather than the default non-spatial par-

titioning as depicted in Fig. 5, where adjacent polygons are

assigned to the same machine. The main advantage here is

that when adjacent polygons are processed by the same node,

there is a higher chance of removing interior edges which

produces simpler and smaller polygons as a result of the

local union step. Any spatial partitioning technique can be

(a) (b)

Fig. 5 Polygon union in SpatialHadoop

used such as the STR technique [15], which produces near

equi-sized partitions of 64 MB each.

In Fig. 5a, the partitioning step uses SpatialHadoop parti-

tioning which assigns a set of nearby records to each node.

This allows the local union step to remove more internal

edges as shown in the figure. As a result, the global union

step has only a little work to do as most of the internal line

segments have already been removed by the local union step.

In this particular example, the number of polygons resulting

from the local union step drops from 32 polygons in Hadoop

to only seven polygons in SpatialHadoop, thus making the

whole algorithm significantly faster.

Algorithm 1 gives the pseudo-code of the polygon union

operation for both Hadoop and SpatialHadoop. Line 1 loads

the input file into the cluster using either Hadoop or Spa-

tialHadoop loader. The local union step is implemented as a

map function (lines 2–7), which computes the union of a set

of polygons and, for each polygon p in the result, it emits an

intermediate pair 〈1, p〉. Using a constant key k = 1 ensures

that all polygons are sent to a single reducer that computes the

union of all of them. The global union step is implemented

as a reduce function (lines 8–13), which is very similar to

the map function except that it writes the resulting polygons

directly to the final output. It is clear from the pseudo-code

that, if the local union step running as a combiner function

does not reduce the size of the input, the global union step

running as a reduce function will end up processing the whole

input on a single machine.

4.4 Enhanced union in SpatialHadoop

Although the union algorithm mentioned above overcomes

some of the limitations of the Hadoop implementation, the

algorithm has a severe bottleneck in the merging step as it

runs in the main memory of a single machine. The memory

and processing overhead on that single machine can greatly

limit the overall performance of the algorithm. It can even

cause the algorithm to fail if the final output size is too large

to fit in the main memory of a single machine.

The enhanced union algorithm in SpatialHadoop over-

comes the above limitation by employing a novel union

computation algorithm which is completely distributed and

eliminates the final merging step. It adds a pruning step that

123

Y. Li et al.

(a) (b)

Fig. 6 Pruning step in the enhanced union algorithm in SHadoop

early detects the line segments that would be eliminated by

the final merging step and clips them without actually run-

ning that expensive final step.

Algorithm 1 Union operation in Hadoop/SpatialHadoop

1: Load the input file using Hadoop/SpatialHadoop file loader

2: function Map(k, P: Set of polygon) ⊲ The key k is not used

3: Compute the union of the set of polygons P

4: for Each polygon p in the union result do

5: Emit an intermediate pair 〈1, p〉

6: end for

7: end function

8: function Reduce(1, P : Set of polygons)

9: Compute the union of the set of polygons P

10: for Each polygon p in the union do

11: Write p to the output

12: end for

13: end function

Figure 6 illustrates the main idea of the enhanced union

algorithm which runs in three steps, partitioning, local union,

and pruning. The first two steps are exactly the same as

the regular SpatialHadoop union algorithm described in

Sect. 4.3. The third step replaces the merging step and runs

in a distributed manner as part of the map function. Thus, the

enhanced algorithm does not require a reduce function.

In the pruning step, the result of the local union step

is refined by clipping useless parts of the result as shown

in Fig. 6. The clipped portions, shown in dotted lines, are

defined as all line segments that lie outside the partition

boundaries. If only a part of a line segment is outside the

partition boundaries, that segment is broken at the bound-

aries and only the portion that is inside the boundaries is

retained. The line segments that are removed by the pruning

step are either (a) not part of the final result, or (b) are part

of the final result but are generated by another machine. For

example, in Fig. 6, the clipped parts by nodes 3 and 4 are

removed as they are not part of the final answer. Referring

back to Fig. 5b, if the merging step were applied, it would

remove these parts. Also in Fig. 6, although some lines, which

belong to the final answer, are clipped by Node 1, they are re-

generated by Node 2 to ensure correctness. The pruning step

does not identify the removed line segments as either case

(a) or (b), but it applies one rule, which removes all parts that

are outside the partition boundaries.

The pruning step is crucial to the enhanced union algo-

rithm as it has two main objectives. First, it reduces the

output size by removing all unnecessary line segments from

the result of the union step. Second, it allows the enhanced

union algorithm to skip the merging step as it ensures that

each line segment in the answer is produced by exactly one

node. While we could run a post-processing phase which

stitches all line segments into one big polygon, it is not nec-

essary and can be inapplicable if the size of the resulting

polygon is too large to fit in a single machine.

Algorithm 2 gives the pseudo-code of the enhanced union

algorithm in SpatialHadoop. Unlike Algorithm 1, we only

use the SpatialHadoop file loader as this algorithm is not

applicable to the default Hadoop loader. The two remaining

steps are implemented in the map function, and no reduce

function is required. In line 3, the local union step computes

the union of all polygons P in one partition. For each polygon

p in the union result, the pruning step in line 5 prunes p to the

boundaries of the partition which is given to the map function

as the key k. The result of the pruning step is directly written

to the final output.

5 Voronoi diagram

Given a set S of distinct points, also called sites or generators,

in the Euclidean plane, we associate all locations in that space

with the closest member s ∈ S of the point set with respect

to the Euclidean distance. The result is a tessellation of the

plane into a set of regions associated with members of the

point set. This tessellation is called a planar Voronoi diagram

generated by the point set, and the regions constituting the

Voronoi diagram are called the Voronoi regions.

A traditional in-memory Voronoi diagram algorithm uses

a divide-and-conquer approach [24,46]. The divide step par-

titions the set S into two smaller subsets S1 and S2 based on

a vertical line and computes Voronoi diagrams for both sub-

sets. The merge step merges the two Voronoi diagrams into

a final Voronoi diagram by suitably editing Voronoi regions

that are close to the cut line.

Algorithm 2 Enhanced polygon union in SpatialHadoop

1: Load the input file using SpatialHadoop file loader

2: function Map(k: Rectangle, P: Set of polygon)

3: Compute the union of the set of polygons P

4: for Each polygon p in the union do

5: q ← Prune p to the boundaries of the partition k

6: Write q to the final output

7: end for

8: end function

123

Scalable computational geometry in MapReduce

Traditional Voronoi diagram algorithms that work on a

single machine fall short in processing very large datasets

due to two fundamental challenges, memory usage and lim-

ited processing. The standard representation of a Voronoi

diagram is approximately 29 times bigger than the original

input [46] which renders all traditional algorithms limited in

constructing a Voronoi diagram for terabytes of data. In addi-

tion, the limited processing capability of a single machine

makes it very inefficient for building a Voronoi diagram for

very large datasets.

5.1 Voronoi diagram in Hadoop

The parallel processing power of Hadoop is used to construct

the Voronoi diagram (VD) more efficiently using a MapRe-

duce job where the map phase implements the divide step

over multiple machines, while the reduce phase carries out

the merge step on a single machine [2]. That algorithm fits

with our skeletal algorithm proposed in Sect. 3 where it runs

in three steps, partitioning, local processing, and merging.

The partitioning step partitions the data into vertical strips

based on the x-coordinate, assuming that the input is sorted.

The local processing step computes the VD for each vertical

strip. Finally, the merging step combines all the local VDs

into one final VD using the traditional divide-and-conquer

merge strategy [24,46]. Although this algorithm can speed

up the construction process to some limit, it has a bottle neck

in the merging step which always runs on a single machine.

Since the size of the generated Voronoi diagram is larger in

size as compared to the input, the algorithm becomes inap-

plicable for very large input sizes.

5.2 Voronoi diagram in SpatialHadoop

In this section, we propose a novel algorithm for construct-

ing the Voronoi diagram that overcomes the limitation of the

state-of-the-art algorithm in Hadoop [2]. First, the proposed

algorithm utilizes the spatial partitioning techniques in Spa-

tialHadoop which makes the Voronoi diagram construction

more efficient than one-dimensional splitting [46]. Second,

we add a pruning step which saves the memory consumption

by early flushing final parts of the partial Voronoi diagrams to

the output. In other words, the algorithm early detects parts

of the Voronoi diagram that will not be affected by any future

merge step and writes them directly to the output. Only the

portions of the Voronoi diagrams that may be needed in the

merge step are transferred from mappers to reducers which

greatly reduces the network overhead between mappers and

reducers, as well as the memory consumption and computa-

tional overhead of the merge step. This allows our algorithm

to operate efficiently on very large datasets.

Figure 7 illustrates the pruning technique employed in our

Voronoi diagram algorithm. This figure shows four partial

Fig. 7 Pruning safe Voronoi regions (shaded) in the local VD step

Voronoi diagrams which are constructed for four partitions

of the input file. These four partitions should be merged to

produce the final answer as shown in Fig. 8c. Instead of trans-

ferring the four complete partial Voronoi diagrams to one

machine to merge them, each node detects the final regions,

i.e., the ones that will not be modified by the subsequent

merge operation, prunes those regions and flushes them to the

final output. This means the subsequent merge steps, shown

in Fig. 8a, b, process only a small fraction of the Voronoi

regions.

The Voronoi diagram construction algorithm runs in four

steps, namely partitioning, local VD, pruning, and merging.

The partitioning step uses SpatialHadoop partitioner to par-

tition the input dataset into 64 MB blocks each defined by

a boundary rectangle (MBR) and is assigned all points con-

tained in that rectangle.

The local VD step constructs the VD for each partition sep-

arately using any traditional divide-and-conquer in-memory

algorithm [24,46]. This step runs in the map phase where

each mapper processes one partition of at most 64 MB, as

shown in Fig. 7.

The pruning step applies the VD pruning rule, described

later, to classify each Voronoi region as either a final or a non-

final region. Final regions are removed from the VD and are

directly flushed to the final output. The remaining non-final

regions are transferred to the next merging step. This step

is crucial as it allows us to reduce the amount of data trans-

ferred to the final merging step. Typically, the data structure

required to represent local VDs is several times bigger than

the original input. Thus, without our pruning technique, for

a large dataset, it will be impossible to merge all of the sub-

diagrams into the final diagram on one machine. In reality,

however, for two sub-diagrams being merged together, only

a small fraction of Voronoi regions, those near the partition

boundaries, will actually be involved in the merge, and most

123

Y. Li et al.

(a)

(c)

(b)

Fig. 8 Steps of computing the Voronoi diagram in SpatialHadoop

of the regions will remain unmodified. Thus, the pruning step

detects the final regions that are safe from the merging step

and flushes them to the output.

The merging step uses the regular divide-and-conquer

merging technique to combine the partial VDs resulting from

the pruning step to produce the final result. Although the

merging step processes only small portions of the original

VDs, as a result of the pruning step, the final answer will still

be correct because our proposed pruning rule removes only

the regions that do not affect the merging step. If there are

only a few partitions, e.g., tens of partitions, the merging step

can be carried our by a single machine. Otherwise, if there are

hundreds or thousands of partitions, the merging step runs in

two rounds, vertical merge (V-merge) and horizontal merge

(H-merge.) The V-merge step merges partitions vertically, as

shown in Fig. 8a and applies the pruning rule again to early

flush final regions which are not affected by the next H-merge

step. The H-merge step, shown in Fig. 8a, merges the vertical

strips horizontally to produce the final answer. No pruning

step is needed after the H-merge step because all the regions

are final and there are no subsequent merge steps.

Figure 8c gives the final output of the VD operation as

the combination of all final regions produced in the three

steps, local VD, V-merge, and H-merge. In the figure, regions

are color coded in either green, blue, or black according to

whether they are generated by the local VD, V-merge, H-

merge, respectively.

Algorithm 3 gives the pseudo-code of the Voronoi diagram

operation in CG_Hadoop. Line 1 loads the file using Spatial-

Hadoop loader. The local VD step is implemented as a map

function in lines 2–8. Line 3 applies the traditional single

Algorithm 3 Voronoi diagram (VD) in SpatialHadoop

1: Load the input file using SpatialHadoop file loader

2: function Map(k: Rectangle, S: Set of points)

3: Compute the V (S) using the in-memory D&C algorithm [24]

4: Use the pruning rule to find all safe regions in V (S)

5: Remove safe regions from V (S) and write them to the output

6: ci ← the column number that contains the partition k

7: Emit the intermediate key 〈ci , V (S)〉

8: end function

9: function Reduce(ci , V: Set of partial VDs) ⊲ Vertical Merge

10: Sort V by y-coordinate

11: Merge partial diagram in V one by one into one VD Vci

12: Use the pruning rule to find and output the safe regions in Vci

13: Write Vci
to the intermediate output

14: end function

15: function CommitJob ⊲ Horizontal Merge

16: Read back all written Voronoi diagrams

17: Sort Voronoi diagrams by x and merge them into the final VD

18: Write the resulting VD to the final output

19: end function

machine divide-and-conquer algorithm to compute VD for

all points in one partition. Line 4 applies the pruning rule to

the computed Voronoi diagram which prunes all final Voronoi

regions and writes them to the final output. Line 7 emits the

remaining regions in the VD with a key ci , which represents

the id of the vertical strip that contains that partition (e.g., the

column number in the grid index).

The V-merge step is implemented as a reduce function in

lines 9–14. Line 10 sorts Voronoi regions in the column ci

along the y-axis according to the MBRs of the VDs. Since the

MBRs are disjoint, sorting by any point in them will result

in the same consistent final order. Line 11 merges the local

VDs one by one by their sort order to produce one Voronoi

diagram Vci
associated with that column. Line 12 applies the

pruning rule which detects final Voronoi regions and writes

them to the final output. The remaining part of Vci
is written

to an intermediate output to be merged by the H-merge step.

The H-merge step is implemented as a CommitJob func-

tion, in lines 15–19, which the MapReduce framework calls

after all reducers are done. Line 16 reads back all intermedi-

ate VDs written by the V-merge step. Line 17 sorts them by

x and merges them into one final VD in sorted order. Line 18

writes the resulting VD to the final output without applying

the pruning rule as there are no subsequent merge steps.

The pruning rule The Voronoi diagram pruning rule tests a

region in the Voronoi diagram against the boundaries of the

corresponding partition to determine whether the region is

safe or not. A safe region will never be altered by future merge

steps. The pruning rule is derived from the basic definition

of the Voronoi diagram, i.e., each region covers all locations

that are closer to one site than any other site.

First of all, any Voronoi region that does not lie completely

inside the partition P is non-safe. This can be easily realized

as another site in a neighboring partition can lie inside the

123

Scalable computational geometry in MapReduce

Fig. 9 Voronoi diagram pruning rule

region and the region should be modified accordingly. This,

by definition, includes all open regions that are on the bound-

aries of the Voronoi diagram. In the next part, we are only

concerned with closed regions that lie completely inside the

partition boundaries.

Figure 9 shows an example of a closed Voronoi region

associated with generator (site) g1. We define a dangerous

zone as the union of the circles that are centered at every

vertex of the region (i.e., c1..c5), passing through the two

neighboring sites. The pruning rule basically tests if the dan-

gerous zone falls completely inside the boundaries of the

partition P . If it lies completely inside P , then the Voronoi

region is safe/final; otherwise, it is non-safe/non-final. The

following theorem proves the correctness.

Theorem 1 A closed Voronoi region is safe and will remain

unchanged if and only if there are no new sites added inside

the dangerous zone.

Proof We will prove the theorem by looking at its dual ver-

sion, i.e., Delaunay Triangulation. Let v be any vertex on the

closed Voronoi cell (region) c of some generator g, and let gα

and gβ be the two endpoints of the arc centered at v. By the

duality of Voronoi Diagram and Delaunay Triangulation, g,

gα , and gβ must form a Delaunay triangle, and the generator

g must be on the circumcircle of g, gα , and gβ . By the prop-

erty of Delaunay Triangulation, there are no sites inside it.

On the other hand, if there is any generator inside the circle,

then g, gα , and gβ will not form a Delaunay triangle, and

consequently, the corresponding Voronoi cell c will change.

If there is a new site added inside the dangerous zone,

then that site will lie inside some circumcircle, and thus,

cell c must be affected; otherwise, all the involved Delaunay

triangles will remain unchanged, and consequently, cell c

will not change also. ⊓⊔

Based on Theorem 1, we have the following corollary.

Corollary 1 A Voronoi region c associated with generator g

is safe if its dangerous zone falls completely inside the bound-

aries of partition P where g ∈ P.

Proof Since the partitions are disjoint and the dangerous zone

falls completely inside P , no new sites can be added inside

the dangerous zone and c can be declared safe. ⊓⊔

Notice that the condition in Corollary 1 is a necessary but

not a sufficient condition for the safety of a region c. In other

words, the dangerous zone might cross the boundaries of the

partition P , but there might not be other sites inside the dan-

gerous zone, and thus, c is still safe. However, the proposed

algorithm uses the weaker condition because it allows each

machine to work completely independently without having

to check the sites stored in neighboring partitions. It is also

much faster as it tests against a fixed rectangle (i.e., parti-

tion boundaries) instead of a large set of sites in neighboring

partitions.

Efficient application of the pruning rule This part describes

two optimization techniques that CG_Hadoop employs to

apply the pruning rule more efficiently. A straightforward

implementation of the pruning step is to apply the pruning

rule on every region in the Voronoi diagram. However, this

would be very inefficient given the complexity of computing

the dangerous zone and the large number of Voronoi regions

in a diagram. From Fig. 7, one sees that all non-safe regions

are very close to partition boundaries. This means that we

can significantly speed up the pruning step by searching only

close to the partition boundaries. We formalize this by stating

the following two simple observations:

1. All Voronoi regions overlapping the partition boundaries

are non-safe.

2. Any non-safe region has to be adjacent to another non-

safe region.

It is easy to prove the correctness of the first observation.

The proof of the correctness of the second observation is

given in Appendix A. These two observations imply that all

non-safe regions form one contiguous block that intersects

with the partition boundary. Thus, we can find all non-safe

regions by traversing the regions, e.g., using a breadth-first

search, starting from the regions that overlap the partition

boundaries, and expanding the traversal only to neighboring

non-safe boundaries. All non-visited regions automatically

become safe. The list of regions to be visited is initialized

with all boundary regions, i.e., the regions that overlap with

the MBR of the partition. Then, for each region, the pruning

rule is applied to find whether the region is safe or not. If it is

safe, no further action is taken for that region. Otherwise, if

the region is non-safe, all adjacent regions are added to the

list of regions to be visited. Two regions are adjacent if they

share at least one edge. As a result of applying this technique,

the pruning step takes 50 msec on a diagram of 1.4M regions,

where the rule is applied on only 7K regions.

123

Y. Li et al.

Fig. 10 Merging in Quad-tree

5.3 Application to different partitioning techniques

The proposed Voronoi diagram algorithm requires a disjoint

partitioning technique for the pruning step to work under the

assumption that no additional points can be within the bound-

aries of the partition. Furthermore, the V-merge and H-merge

steps require the two merged partitions to be separable by a

straight line. This can be easily enforced in both grid parti-

tioning and STR partitioning by merging partitions vertically

and then horizontally. However, other partitioning techniques

require careful considerations to merge as illustrated by the

two examples below.

Figure 10 illustrates an example where the input contains

seven partitions based on a Quad-tree. If partition 1 is merged

with partition 3, for example, the result can no longer be

merged with partition 4 as they are not separated by a straight

line. Preferably, we should follow the merge order of the

Quad-tree as shown in the figure. Simply put, two partitions

are merged together only if they are siblings in the Quad-

tree, e.g., partitions 3, 4, 5 and 6 are all siblings. After those

four partitions are merged together, the resulting partition is

a sibling of partitions 1, 2, and 7, and they can all be merged

together. The same idea can be followed in a K-d tree where

two partitions are only merged if they are siblings in the K-d

tree.

Figure 11 gives another example of a valid R-tree-based

partitioning where the partitions are disjoint. This situation

is impossible to merge because merging any two partitions

would result in a bigger partition that overlaps one of the two

existing partitions and the merge step would fail afterward.

6 Skyline

A traditional in-memory two-dimensional skyline algo-

rithm [46] uses a divide-and-conquer approach where all

points are initially sorted by their x coordinates and divided

into two subsets of equal size separated by a vertical line.

Then, the skyline of each half is computed recursively, and

the two skylines are merged to compute the final skyline. To

merge two skylines, the points of the left skyline are scanned

in a non-decreasing x order, which implies a non-increasing

Fig. 11 A valid R-tree partition

where the VD merge process

fails

y order, and each one is compared to the leftmost point of

the right skyline. Once a point on the left skyline is domi-

nated, it is removed along with all subsequent points on the

left skyline and the two lists of remaining points from both

skylines are concatenated together. The skyline operator is

not natively supported in database management systems. Yet,

it is of considerable interest in the database literature, where

the focus is mainly on disk-based algorithms (e.g., see [8,43])

with a non-standard SQL query.

SELECT * FROM points

SKYLINE OF d1 MAX, d2 MAX;

In this section, we introduce our two skyline algorithms for

Hadoop and SpatialHadoop, while using the input dataset in

Fig. 2a as an illustrative example.

6.1 Skyline in Hadoop

Our Hadoop skyline algorithm is a variation of the traditional

divide-and-conquer skyline algorithm [46], where we divide

the input into multiple (more than two) partitions, such that

each partition can be handled by one machine. This way, the

input needs to be divided across machines only once ensuring

that the answer is found in one MapReduce iteration. Similar

to our Hadoop polygon union algorithm, our Hadoop skyline

algorithm works in three steps, partitioning, local skyline,

and global skyline. The partitioning step divides the input set

of points into smaller chunks of 64 MB each and distributes

them across the machines. In the local skyline step, each

machine computes the skyline of each partition assigned to

it, using the traditional algorithm, and outputs only the non-

dominated points. Finally, in the global skyline step, a single

machine collects all points of local skylines, combines them

in one set, and computes their skyline. Notice that skylines

cannot be merged using the technique used in the in-memory

algorithm as the local skylines are not separated by a vertical

line, and may actually overlap. This is a result of Hadoop

partitioning which distributes the points randomly without

taking their spatial locations into account. The global skyline

step computes the final answer by combining all the points

from local skylines into one set and applying the traditional

skyline algorithm.

This algorithm significantly speeds up the skyline com-

putation compared to the traditional algorithm by allowing

multiple machines to run independently and in parallel to

reduce the input size significantly. For a uniformly distributed

dataset of size n, the expected number of points on the skyline

is O(log n) [5]. In practice, for a partition of size 64 MB with

around 700K points, the skyline only contains a few tens of

123

Scalable computational geometry in MapReduce

points for both real and uniformly generated datasets. Given

this small size, it becomes feasible to collect all those points

in a single machine that computes the final answer.

Algorithm 4 Skyline in Hadoop/SpatialHadoop

1: Load the input file using Hadoop/SpatialHadoop file loader

2: if File is spatially partitioned then

3: function Filter(C : Set of cells)

4: Initialize the set S of selected cells to {}

5: for each cell c in C do

6: if c is not dominated by any cell in S then

7: Add c to S

8: Remove all cells S dominated by c

9: end if

10: end for

11: end function

12: end if

13: function Map(p: Point) ⊲ Identity map function

14: output⇐ 〈1, p〉

15: end function

16: function Combine, Reduce(1, P: Set of points)

17: Apply skyline to P to find non-dominated points

18: for each non-dominated point p do

19: output⇐ 〈1, p〉

20: end for

21: end function

6.2 Skyline in SpatialHadoop

Our proposed skyline algorithm in SpatialHadoop is very

similar to the Hadoop algorithm described earlier, with two

main changes. First, in the partitioning phase, we use the Spa-

tialHadoop partitioner when the file is loaded to the cluster.

This ensures that the data are partitioned according to an R-

tree instead of random partitioning, which means that local

skylines from each machine are non-overlapping. Second,

we apply an extra filtering step right before the local skyline

step. The filtering step, which runs on the master node, takes

as input the minimal bounding rectangles (MBRs) of all par-

titioned R-tree index cells, and filters out those cells that have

no chance of contributing any point to the final skyline result.

The main idea of the new filtering step is that a cell ci

dominates another cell c j if there is at least one (data) point

in ci that dominates all (data) points in c j , in which case c j

is pruned. For example, in Fig. 12, cell c1 is dominated by

c5 because the bottom-left corner of c5 dominates the top-

right corner of c1. The transitivity of the skyline dominance

relation implies that any point in c5 dominates all points in c1.

Similarly, c4 is dominated by c6 because the top-left corner of

c6 dominates the top-right corner of c4. This means that any

point along the top edge of c6 dominates the top-left corner of

c6 and hence dominates all points in c4. As the boundaries of a

cell are minimal (because of R-tree partitioning), there should

be at least one point of P on each edge. We can similarly show

that cell c3 is also dominated by c2. So, our pruning technique

in the filter step is done through a nested loop that tests every

Fig. 12 Skyline in SpatialHadoop

pair of cells ci and c j . We compare the top-right corner of

c j against three corners of ci (bottom-left, bottom-right, and

top-left). If any of these corners dominate the top-right corner

of c j , we prune c j out from all our further computations and

do not assign it to any node. Hence, we will not compute its

local skyline, nor consider it in the global skyline step.

It is important to note that applying this filtering step in

Hadoop will not have much effect, as the partitioning scheme

used in Hadoop will not necessarily yield such separated

MBRs for different cells. The SpatialHadoop skyline algo-

rithm has much better performance than its corresponding

Hadoop algorithm as the filtering step prunes out many cells

that do not need to be processed.

Algorithm 4 gives the pseudo-code for the skyline MapRe-

duce algorithm for both Hadoop and SpatialHadoop. Similar

to the union algorithm, line 1 loads the data into the cluster

using either Hadoop or SpatialHadoop loader. The filtering

step in lines 3–11 is applied only for SpatialHadoop where

it iterates over each cell of the partitioned file and adds it

to the list of selected (non-dominated) cells in lines 7 if it

is not dominated by any other selected cells. When a cell

is added (line 8), all previously selected cells that are dom-

inated by the newly added cell c are removed from the set

of selected cells because they are no longer non-dominated.

The map function in lines 13–15 emits each point with a con-

stant key to ensure they are all reduced by one reducer. The

combine function in lines 16–21 computes the local skyline

and outputs each selected point. The same function is used

as a reduce function to compute the global skyline.

6.3 Output-sensitive skyline in SpatialHadoop

The algorithm described in Sect. 6.2 has a major limitation

of producing all the output in a single machine which carries

out the final merging step. The algorithm will fail if the out-

put is too large to fit in a single machine. In this section, we

introduce an output-sensitive skyline algorithm in Spatial-

Hadoop that scales well even if the output is too large to fit

in one machine. Basically, it relies on the spatial partitioning

of the input data to locally identify the points that belong to

the final output in a completely distributed setting without

having to combine the partial answers in a single machine.

Below, we describe a key idea, called the dominance power

rule, of our enhanced algorithm. Then, we give a detailed

123

Y. Li et al.

(a) (b)

Fig. 13 Illustrating the concept of dominance power

description of the algorithm. Finally, we provide a formal

proof of the dominance power rule and the runtime analysis.

The dominance power rule Figure 13a illustrates the domi-

nance power rule which is the key idea behind the output-

sensitive skyline algorithm. It relies on the disjoint parti-

tioning of the input set of points using one of the spatial

partitioning techniques supported by SpatialHadoop. Since

the partitions are enclosed in orthogonal disjoint rectangles,

we can always find an orthogonal line, either horizontal or

vertical, that separates any two partitions. Figure 13a shows

an example of two partitions separated by a vertical line. This

means that any point in c2 dominates all points in c1 along

the x- axis, i.e., any point in c2 has a higher value on the

x-axis. Consequently, this means that the point in c2 with the

highest y value, i.e., any point along the top edge, has the

highest dominance power over c1 among all the points in c2.

If the MBR of c2 is known, its top-left corner can be used

as the point with the highest dominance power. This means

that we need to compare the points in c1 only to the top-

left corner of MBR(c2) to find all dominated points. We can

similarly show that if the two partitions are separated by a

horizontal line, the bottom-right corner of the MBR of c2 will

have the highest dominance power. This key finding means

that we can abstract each partition into two points only, the

top-left and right-bottom corners of the MBR, and use only

those two points from all partitions to prune the points that

are not on the final skyline. We call these two points for a cell

c the dominance power set DP(c). We also call the skyline

of all DP sets, the global dominance power set (SKY), i.e.,

SKY = sky(
⋃

DP(ci)).

Algorithm details Based on the dominance power rule, we

propose our output-sensitive skyline algorithm which runs

as a single map-only job in four steps, namely partitioning,

filtering, local processing, and pruning.

In the partitioning step, a disjoint spatial partitioning is

used to partition the data into blocks where the MBRs of

the blocks are disjoint. In addition, the global dominance

power set (SKY) is computed as the skyline of the top-left

and bottom-right corners of the MBRs of all partitions which

is then broadcast to all nodes to be used in the filtering step.

In the filtering step, the skyline filtering rule described

in Sect. 6.2 is applied. Notice that in a worst-case scenario,

where all input points are part of the skyline, the filtering step

will not be able to filter out any partitions.

As in the SpatialHadoop algorithm described in Sect. 6.2,

the local processing step runs in the map function and

computes the local skyline of each partition using any sin-

gle machine algorithm. Since the size of each partition is

bounded by the HDFS block capacity, any main-memory

single machine algorithm is guaranteed to work.

The pruning step is introduced in this output-sensitive

algorithm, and it allows each machine to write a part of the

final skyline without the need of an additional merge step.

This step compares the points on the local skyline, computed

in the local processing step, against the global dominance

power set (SKY) received from the master node in the par-

titioning step. If any of the local points is dominated by any

point in SKY, the local point is pruned as it cannot be part

of the final answer. Otherwise, if the local point is not domi-

nated by any point in SKY, the local point is directly written

to the output as part of the final answer.

No merging step is required here as the output of the prun-

ing step in all machines comprises the final output as shown

in the following proof.

Proof of the dominance power rule First, let us start off with

some definitions.

– Let p be a point, and let cp denote the cell containing it.

– Given two points p and q, we use notion p ≺ q to denote

that q dominates p.

– Let sky(·) be the skyline of a set of points. With some

abuse of notation, let sky(c) be the local skyline in a cell

c.

– Let DP(c) be the set with the highest dominance power

in a cell c. It consists of the top-left and bottom-right

corners of its minimum bounding rectangle (MBR). For

simplicity, we write p ≺ DP(c) if point p is dominated

by at least a point in DP(c).

We then have the following important lemma.

Lemma 1 If p and q are two points such that p ≺ q and

p /∈ cq , then p ≺ DP(cq).

Proof Let dom(p) be the dominance region of some point p,

namely dom(p) = {p′ | p′ ≺ p}. For a contradiction, assume

that p is not dominated by any point in DP(cq). Then, we

must have p ∈ D, where D = dom(q) \
⋃

s∈DP(cq) dom(s).

It is clear that D ⊆ cq , which implies that p ∈ cq , contra-

dicting the fact that p /∈ cq . See Fig. 13b for an example.

⊓⊔

Let G consists all the cells stored in SpatialHadoop, and

define SKY = sky
(
⋃

c∈G DP(c)
)

. We then have the fol-

lowing sufficient and necessary condition for a point to be

final/non-final for outputting.

Theorem 2 A point p is not on the final skyline of the dataset

iff p is dominated by at least a point on SKY or sky(cp).

123

Scalable computational geometry in MapReduce

Proof (⇒) If p is dominated by a point of sky(cp), then

we are done. Otherwise, p belongs to sky(cp), but does not

belong to the final skyline. Then, p must be dominated by

some other point q that is in a different cell. Since all the cells

are guaranteed to be disjoint in SpatialHadoop, by Lemma 1,

we have p ≺ DP(cq). Since both points in DP(cq) are

elements of SKY, or are dominated by other point(s) on SKY,

p is dominated by point(s) on SKY.

(⇐) This direction is trivial. If p is dominated by some

point, it definitely cannot be on the final skyline. ⊓⊔

Communication cost The communication cost of the algo-

rithm described above is O(|G|2), where |G| is the total

number of partitions. This can be easily proven because, in

worst case, the SKY dataset can contain 2|G| points and the

dataset is replicated to each machine and there can be up to

|G| machines. In Appendix B, we provide an optimization

that reduces the communication cost to only O(|G|) which

can be a significant improvement for very large files.

7 Convex hull

The convex hull shown in Fig. 2d can be computed as the

union of two chains using Andrew’s Monotone Chain algo-

rithm [3]. First, it sorts all points by their x coordinates and

identifies the leftmost and rightmost points. Then, the upper

chain of the convex hull is computed by examining every

three consecutive points p, q, r , successively, from left to

right. If the three points make a non-clockwise turn, then the

middle point q is skipped as it cannot be part of the upper

chain and the algorithm then considers the points p, r , s,

where s is the successor of r ; otherwise, the algorithm con-

tinues by examining the next three consecutive points q, r , s.

Once the rightmost point is reached, the algorithm continues

by computing the lower chain in a similar way by checking

all points of P from right to left and doing the same check.

Using PostGIS [45], the convex hull can be computed by

a single SQL query using the function ST_ConvexHull.

Since this function takes one record as argument, points have

to be first combined in one line string using the function

ST_Makeline.

SELECT ST_ConvexHull(ST_Makeline(points.

coord)) FROM points;

In this section, we introduce two convex hull algorithms

for Hadoop and SpatialHadoop, using the input dataset in

Fig. 2a as an illustrative example.

7.1 Convex hull in Hadoop

Our Hadoop convex hull algorithm is very similar to our

Hadoop skyline algorithm, where we start by a partition-

ing phase to distribute the input data into small chunks such

that each chunk fits in memory. Then, the local convex hull

of each subset is calculated using the traditional in-memory

algorithm [3], and only those points forming the convex hull

are retained. The points from all convex hulls in all machines

are combined in a single machine that computes the global

convex hull, using the traditional in-memory convex hull

algorithm. Similar to skyline, the number of points on the

convex hull is expected to be O(log n) [13] for uniform data,

making this algorithm very efficient in pruning most of the

points when computing the local hull and allowing the global

hull to be computed in one node.

7.2 Convex hull in SpatialHadoop

The convex hull algorithm in Hadoop processes more file

partitions than necessary. Intuitively, the parts of the file that

are toward the center do not contribute to the answer. In Spa-

tialHadoop, we improve the convex hull algorithm by early

pruning those partitions that do not contribute to answer. The

key idea is that any point on the convex hull must be part of at

least one of the four skylines of the dataset (max–max, min–

max, max–min, and min–min) [46]. Here a max–min skyline

is one where the maximum (resp. minimum) points in the x

(resp. y) dimension are preferred. Similarly for the other sky-

lines, this property allows us to reuse the skyline filtering step

in Sect. 6.2. As given in Fig. 14, we apply the skyline algo-

rithm four times to select the partitions needed for the four

skylines and take the union of all these partitions as the ones

to process. Clearly, a partition that does not contribute to any

of the four skylines will never contribute to the final con-

vex hull. Once the partitions to be processed are selected, the

algorithm works similar to the Hadoop algorithm in Sect. 7.1

by computing the local convex hull of each partition and then

combining the local hulls in one machine, which computes

the global convex hull. The gain in the SpatialHadoop algo-

rithm comes from the spatially aware partitioning scheme

that allows for the pruning in the filtering step and hence the

cost saving in both local and global convex hull computa-

tions.

Algorithm 5 for computing the convex hull in Hadoop

and SpatialHadoop is very similar to the skyline algorithm.

The filter function in lines 3–9 applies the skyline filter four

times and returns the union of all cells selected. The com-

bine/reduce function in lines 14–19 computes the convex hull

of a set of points and returns all points found to be on the

hull.

7.3 Amore efficient algorithm in SpatialHadoop

In this part, we propose a novel and more efficient way to

compute the convex hull in SpatialHadoop. This method fully

exploits the convex hull property to prune as many points as

123

Y. Li et al.

(a) (b) (c)

(d) (e) (f)

Fig. 14 Convex hull in SpatialHadoop

possible and thus has a better scalability. Our algorithm runs

as a single map-reduce job in three steps, i.e., partitioning,

local-pruning (map), and merging (reduce).

Algorithm 5 Convex hull in Hadoop/SpatialHadoop

1: Load the input file using Hadoop/SpatialHadoop file loader

2: if File is spatially indexed then

3: function Filter(C : Set of cells)

4: Initialize the set S of selected cells to {}

5: for each of the four skylines do

6: Apply the skyline filter function to select a subset of C

7: Add all selected cells to S

8: end for

9: end function

10: end if

11: function Map(p: Point) ⊲ Identity map function

12: output⇐ 〈1, p〉

13: end function

14: function Combine, Reduce(1, P: Set of points)

15: Apply convex hull to P to find points on the convex hull

16: for each selected point p do

17: output⇐ 〈1, p〉

18: end for

19: end function

In the partitioning step, the dataset S is partitioned into

disjoint blocks, S1, . . . , Sm , where we assume that node i

has only the access to Si . In addition, let B1, . . . , Bm be the

MBRs for S1, . . . , Sm . We broadcast them to all nodes to be

used in the next step.

In the local-pruning step, each node i locally computes

CH(Si). Let Vi be the set of vertices of CH(Si). Then, each

node prunes Vi by removing the points which definitely

cannot be a vertex of the final hull CH(S), using the infor-

mation of CH(Si) and B1, . . . , Bm . (We will explain this part

shortly.) Finally, node i writes the resulting set V ′
i to the disk

with a unique key w.r.t. the master node.

In the merging step, the master node reads in all V ′
i , com-

putes the convex hull of
⋃m

i=1 V ′
i , and writes the final result

into the disk.

The crucial part is the local-pruning step. With CH(Si)

and B1, . . . , Bm in hand, how can we determine whether a

vertex of CH(Si) is definitely not a vertex of CH(S)? We need

the following property. (Here, for convenience, we assume

all points in S are in general position. This assumption can

be easily removed in practice.)

Theorem 3 Let X be a set of points in Rd and x ∈ X be a

point. Then, x is a vertex of CH(X) if and only if there is a

d-dim unit vector (or, a direction) v satisfying that 〈x, v〉 >

〈y, v〉 for any y �= x in X. Here, 〈·, ·〉 denotes the inner

product.

Visually, Theorem 3 is equivalent of saying that vertex x

lies on the convex hull if and only if there exists a direction

such that the projection of x on this direction is ahead of

the projections of the remaining vertices; see Fig. 15a. How-

ever, such a direction cannot be chosen arbitrarily due to the

existence of other points; see Fig. 15b for an example. We

can compute the union of all infeasible directions won by

some other point and consider its complement. If the com-

plement is not empty, x ∈ CH(X); otherwise, x /∈ CH(X).

Let Ix = {v : 〈v, x〉 ≤ 〈v, y〉 for some y ∈ X} denote the

infeasible directions for vertex x .

Fix some node i . Assume the local convex hull CH(Si)

and B1, . . . , Bm are available. Let t be a vertex of CH(Si).

We will show how to (approximately) compute It . For each

j �= i , by using the information of B j , we investigate the

2-dim unit vectors v which definitely satisfy the condition

〈t, v〉 ≤ 〈r , v〉 for some r ∈ S j . These vectors can be found

by first finding the visible region from vertex t to the box B j

and then identifying the two directions that are perpendicular

to the boundaries. We use U j (t) to denote all the directions in

between these two, inclusively. As such, U j (t) is connected

and can be represented as an angle; see Fig. 16a. Clearly,

U j (t) can be computed in O(1) time since |B j | = 4.

It is worth noting that the way we construct U j (t) does not

exactly follow the definition since node i has no information

at all about the local hull CH(S j) computed by node j . If

CH(S j) is available, an accurate (and usually wider) U j (t)

can be found, as shown in Fig. 16b. But this way, U j (t) can

no longer be computed in O(1) time as |CH(S j)| is generally

not a constant. Furthermore, an all-to-all broadcast of all the

local hulls must be done, which is obviously too expensive.

Thus, we have to make certain trade-offs. Approximating

U j (t) using the bounding box B j could allow some points

that are not on the final hull to survive the local-pruning step,

but it should be faster and more scalable in practice.

Previously, U j (t) is defined only for j �= i . We now look

at the case when i = j and consider the points in Si . With

CH(Si) in hand, we can precisely determine all the infeasible

123

Scalable computational geometry in MapReduce

(a) (b)

Fig. 15 Figures illustrating Theorem 3

(a) (b)

Fig. 16 Illustrating the computation of the infeasible regions

Fig. 17 Illustrating how to

compute Ui w.r.t. t and CH(Si).

Again, we have at ⊥ ct and

bt ⊥ dt

directions for t w.r.t. Si \{t}. We define Ui (t) = {v : 〈t, v〉 ≤

〈r , v〉 for some r ∈ Si }, which is also connected and can be

represented as an angle; see Fig. 17. We can compute Ui (t)

in constant time by giving the two vertices of CH(Si) that

are adjacent to t .

Finally, we set It =
⋃m

i=1 Ui (t), where the union can be

efficiently computed in O(m log m) time via a polar-angle

sort. If the complement of It is empty, it is safe to discard

vertex t ; otherwise, collect t into V ′
i . We perform the above

procedure for all points in CH(Si) and then write V ′
i into

the disk. This completes all the details required by the local-

pruning step.

8 Farthest pair

A nice property of the farthest pair (shown in Fig. 2d) is

that the two points forming the pair must lie on the convex

hull of all points [46]. This property is used to speed up the

processing of the farthest pair operation by first computing

the convex hull, then finding the farthest pair of points by

scanning around the convex hull using the rotating calipers

method [46]. In this section, we introduce our farthest pair

algorithms for Hadoop and SpatialHadoop.

8.1 Farthest pair in Hadoop

A Hadoop algorithm for the rotating calipers method [46]

would complete the convex hull first as discussed in Sect. 8.1.

Then, a single machine would need to scan all the points in

the convex hull, which may be a bottleneck based on the

number of points in the convex hull. In that case, it may be

better to develop a Hadoop algorithm based on parallelizing

the brute-force approach of the farthest pair algorithm, which

calculates the pairwise distances between every possible pair

of points and select the maximum. The brute-force approach

will be expensive for very large input files, yet it may be used

if it is not feasible for one machine to calculate the farthest

pair from the points in the convex hull as in the rotating

calipers method. Overall, both the brute-force and rotating

calipers methods have their own drawbacks when realized in

Hadoop.

8.2 Farthest pair in SpatialHadoop

Our SpatialHadoop algorithm works similar to our skyline

and convex hull algorithms in that we have four steps, parti-

tioning, filtering, local farthest pair, and global farthest pair.

In the partitioning step, we mainly use the SpatialHadoop

partitioning scheme.

In the filtering step, we apply a specialized filtering rule

for the farthest pair operation. The main idea of the farthest

pair pruning rule is that two partitions that are very close to

each other cannot possibly produce the farthest pair. In other

words, that farthest pair has to come from two partitions that

are far away of each other. To formalize the pruning rule, we

define upper and lower bounds for the farthest pair that is

produced from two partitions c1 and c2.

Figure 18a shows the upper and lower bounds of the far-

thest pair for two partitions. The upper bound indicates the

maximum possible distance between two points in the two

partitions. Since all points in the two partitions have to be

contained in the two MBRs, we calculate the upper bound as

the maximum distance between the corners of the two MBRs.

On the other hand, the lower bound is a value for which we

are guaranteed to find a pair between the partitions whose

distance is at least that value. In an earlier version of this

algorithm [16], we used the minimum distance between the

two partitions as a lower bound; however, we can obtain a

tighter bound by using the fact that the two MBRs are in fact

minimal. This means that there should be at least one point

on each of its four sides. Therefore, there has to be at least

one pair of points on the two farthest horizontal sides, and,

similarly, a pair of points on the two farthest vertical sides.

Figure 18a is an example of these two distances, where d1

and d2 are the maximum horizontal and vertical distances,

respectively. The higher of these two values is used as the

lower bound for the farthest pair distance between c1 and c2.

123

Y. Li et al.

(a) (b)

Fig. 18 Farthest pair algorithm in SpatialHadoop

By using these two definitions, we can devise a simple

pruning rule for pairs of partitions. Figure 18b gives an exam-

ple of two pairs of cells C1 = 〈c1, c2〉 and C2 = 〈c3, c4〉. We

say that C1 dominates C2 if the lower bound of C1 is greater

than the upper bound of C2. In this case, the pair C2 can be

pruned as it can never produce a farther pair than the one pro-

duced by C1. This is depicted in Fig. 18b, where the farthest

pair of C1 must have a distance greater than the farthest pair

of C2. In this case, the pair of cells 〈c3, c4〉 will never con-

tribute to the final answer and hence will not be considered

further for any processing.

The pruning rule can be easily applied in two passes. The

first pass iterates over all partition pairs and computes the

greatest lower bound as the maximum of all lower bounds of

all pairs. This value indicates the smallest possible distance

between the two points in the final answer. This means that

any pair of partitions that cannot produce a higher value that

can be pruned. The second pass iterates again over all pairs

of partitions and compares the upper bound of each pair, to

the greatest lower bound computed in the first round. If the

upper bound is less that the greatest lower bound, that pair

is pruned.

Once all dominated cell pairs are pruned, the algorithm

computes the local farthest pair for each selected pair of cells

by finding the local convex hull, then applying the rotating

calipers algorithm on the result [46]. Note that it is feasible

here to use the in-memory algorithms for local convex hull

as the size of each pair is bounded by twice the HDFS block

capacity, e.g., 128 MB. Finally, the algorithm computes the

global farthest pair by collecting all local farthest pairs and

selecting the one with largest distance.

Algorithm 6 gives the pseudo-code of the farthest pair

algorithm in SpatialHadoop. The file has to be loaded using

the spatial file loader in line 1. Then, the filter function in

lines 2–15 scans all cell pairs and returns only non-dominated

pairs. Notice that unlike previous algorithms where the fil-

ter function returns a set of cells, the filter function in this

algorithm returns a set of pairs of cells as the map func-

tion processes a pair of cells. The filter function runs two

passes where the first pass, in lines 4–8, computes the great-

est lower bound (GLB) on the farthest pair, and the second

pass, in line 10–13, selects all pairs that can possible produce

an answer greater than or equal to GLB.

Algorithm 6 Farthest pair in SpatialHadoop

1: Load the input file using SpatialHadoop file loader

2: function Filter(C : Sets of cells (partitions))

3: // Pass 1: Compute a lower bound (LB) of the answer

4: Initialize the greatest lower bound GLB to 0

5: for each pair of cells 〈c1, c2〉 ∈ C × C do

6: LB ← the lower bound between c1 and c2

7: Update GLB if LB > GLB

8: end for

9: // Pass 2: Select all pairs that can produce a pair with distance >

GLB

10: Initialize the set S of selected cell pairs to {}

11: for each pair of cells 〈c1, c2〉 ∈ C × C do

12: Add 〈c1, c2〉 to S if the upper bound of c1 and c2 ≥ GLB

13: end for

14: return S

15: end function

16: function Map(P1, P2: Two sets of points)

17: P ← P1 ∪ P2

18: Compute the convex hull of P using Andrew’s monotone chain

algorithm

19: Compute the farthest pair of points p1, p2 using rotating calipers

method

20: Emit the intermediate pair 〈key = 1, value = 〈p1, p2〉〉

21: end function

22: function Reduce(1, P: Set of point pairs)

23: Scan P and return the pair with the largest distance

24: end function

The map function in lines 16–21 is called once for each

selected pair of cells. The map function takes as input two

sets of points corresponding to all points in the two cells

in a selected pair and computes the farthest pair of points

in the two sets. It uses a traditional technique which com-

bines all points together (line 17, computes their convex hull

(line 18) and finally applies the rotating calipers method to

get the farthest pair of points (line 19). Line 20 emits this pair

of points to the intermediate output with a constant key=1,

which ensures that all selected pairs of points go to a single

reducer. Finally, the reduce function in lines 22–24 scans the

list of all pairs returned by the map phase to choose the pair

with the largest distance.

9 Closest pair

The closest pair (Fig. 2d) in any dataset can be found using

a divide-and-conquer algorithm [46]. The idea is to sort all

points by x coordinates, and then based on the median x

coordinate, we partition the points into two subsets, P1 and

P2, of roughly equal size and recursively compute the closest

pair in each subset. Based on the two distances of the two

closest pairs found, the algorithm then continues to compute

the closest pair of points p1 ∈ P1 and p2 ∈ P2. Finally, the

algorithm returns the closest pair among the three pairs found.

In this section, we introduce our closest pair algorithms for

Hadoop and SpatialHadoop.

123

Scalable computational geometry in MapReduce

9.1 Closest pair in Hadoop

Applying the divide-and-conquer algorithm described above

in Hadoop as is will be fairly expensive. First, it requires

a presort for the whole dataset which requires, by itself,

two rounds of MapReduce [41]. Furthermore, the merge step

requires random access to the list of sorted points which is

a well-known bottleneck in HDFS [32]. On the other hand,

using the default Hadoop loader to partition the data and

compute the local closest pair in each partition (as in the far-

thest pair algorithm) may produce incorrect results. This is

because data are partitioned randomly, which means that a

point in one partition might form a closest pair with a point in

another partition. Finally, as we mentioned with the farthest

pair problem in Sect. 7.1, the brute-force approach would

work but it requires too much computation for large files.

9.2 Closest pair in SpatialHadoop

Our closest pair algorithm in SpatialHadoop is an adap-

tation of the traditional closest pair divide-and-conquer

algorithm [46]. The algorithm works in three steps, parti-

tioning, local closest pair, and global closest pair. In the

partitioning step, the input dataset is loaded using Spatial-

Hadoop loader which partitions the data into cells as shown

in Fig. 19. As the size of each partition is only 64 MB, the

algorithm computes the local closest pair in each cell using

the traditional divide-and-conquer algorithm and returns the

two points forming the pair. In addition, the algorithm must

also return all candidate points that can possibly produce a

closer pair when coupled with points from neighboring cells.

Looking at Fig. 19, let us assume that the closest pair found

in c1 has the distance δ1. We draw an internal buffer with

size δ1 measured from the boundaries of c1 and return all

points inside this buffer (shown as solid points) as the can-

didate points while all other points are pruned. Notice that

the two points forming the closest pair were returned ear-

lier and are not affected by this pruning step. As shown in

this example, each cell ci may have a different buffer size

δi based on the closest pair found inside this cell. While the

minimum of all δ’s would be a better and tighter value to

compute all buffers, it cannot be used because the MapRe-

duce framework enforces all map tasks to work in isolation

which gives the framework more flexibility in scheduling

the work. Finally, in the global closest pair step, all points

returned from all cells are collected in a single machine which

computes the global closest pair 〈 p̂, q̂〉, by the traditional

divide-and-conquer algorithm, to the set of all points returned

by all machines.

For this algorithm to be correct, the cells must be non-

overlapping, which is true for the cells induced by Spatial-

Hadoop partitioning. This ensures that when a point p is

pruned, there are no other points in the whole dataset P that

Fig. 19 Closest pair in SpatialHadoop

are closer than the ones in its same cell. Otherwise, if cells

are overlapping, a point p near the overlap area might be

actually very close to another point q from another cell, and

thus, none of them can be pruned.

Algorithm 7 Closest pair algorithm in SpatialHadoop

1: Load the input file using SpatialHadoop file loader

2: function Map(P: Set of points)

3: Compute the closest pair 〈p, q〉 of P using the divide-and-

conquer algorithm

4: output ⇐ 〈1, p〉

5: output ⇐ 〈1, q〉

6: Let δ be the distance between p and q

7: Draw a buffer with size δ inside the MBR of P and return all

points in the buffer

8: end function

9: function Reduce(1, P : Set of points)

10: Compute and return the closest pair 〈 p̂, q̂〉 of P using the divide-

and-conquer algorithm

11: end function

Algorithm 7 gives the pseudo-code for the closest pair

algorithm in SpatialHadoop. In line 1, the file is initially

loaded using the SpatialHadoop loader. No filtering is

required for this operation because all cells have to be pro-

cessed. The map function takes a set P of points in one cell

and computes their closest pair using a traditional divide and

conquer algorithm. The two points forming the closest pair

are returned in lines 4 and 5. Then, all points with distance

less than δ from the boundaries are also returned by the map

function. All these points from all mappers are combined in

one reducer to compute their closest pair using a traditional

in-memory algorithm.

10 Experiments

In this section, we give an experimental study to show the

efficiency and scalability of CG_Hadoop. Both Hadoop and

SpatialHadoop clusters are based on Apache Hadoop 1.2.1

and Java 1.6. All experiments were conducted on an internal

university cluster of 25 nodes. The machines are heteroge-

neous with HDD sizes ranging from 50 to 200 GB, memory

123

Y. Li et al.

ranging from 2 to 8 GB, and processor speeds ranging from

2.2 to 3 GHz. Single machine experiments are conducted on

a more powerful machine with 1TB RAM and an eight-core

3.4 GHz processor. Although all datasets we use fit in 1TB

of memory, some algorithms fail due to the limitation of the

array size in Java to 231 entries. While we could use multiple

arrays and treat them as one longer array, it would have com-

plicated the algorithms and it would not change the results

in this paper.

Experiments were run on three datasets: (1) OSM1: A

real dataset extracted from OpenStreetMap [42] containing

up to 164M polygons from the map (e.g., lakes and parks)

with a total size of 80 GB. (2) OSM2: A real dataset also

extracted from OpenStreetMap and containing up to 2.7B

points from all around the world (e.g., street intersections and

points of interest) with a total size of 92 GB. (3) SYNTH: A

synthetic dataset of points generated randomly in an area of

1M×1M using one of the distributions: uniform, Gaussian,

correlated, reversely correlated, and circular (see Fig. 20).

Uniform and Gaussian represent the two most widely used

distributions for modeling many real life systems. Correlated

and reversely correlated represent the best and worst cases

for skyline. The circular data are used specifically for the

farthest pair operation to generate the worst-case scenario

where the convex hull size is very large. The largest dataset

generated is of size 128 GB and contains 3.8B points.

We use total execution time as the our main metric. Some-

times, the results of single machine experiments are omitted if

the operation runs out of memory or the numbers are so large

that they would hide the performance difference between

other algorithms. Experimental results for the six proposed

operations are given in Sects. 10.1–10.5.

10.1 Polygon union

Figure 21 gives the total processing time for the polygon

union operation on the OSM real dataset while varying

input size. We obtain five subsets from the OSM dataset

corresponding to Minnesota (MN), US south region, North

America (NA), Asia, and Europe, which contain 0.35,

4.31, 20.18, 20.24, and 135 million polygons, respectively.

We process each dataset using four algorithms: a single

machine in-memory algorithm, Hadoop algorithm, Spatial-

Hadoop algorithm, and enhanced SpatialHadoop algorithm,

as described in Sect. 4. We further obtain two datasets, com-

plex and simple. The complex dataset contains the original

polygons with all their vertices, while the simple dataset con-

tains a simplified version by taking the convex hull of each

polygon.

Figure 21a gives the running time for the four algorithms

on the complex OSM dataset. The single machine polygon

union algorithm does not scale and quickly fails for large

datasets, while CG_Hadoop scales to very large datasets with

(a) (b) (c) (d) (e)

Fig. 20 Synthetic data distributions

(a) (b)

Fig. 21 Polygon union experiments

an order of magnitude speedup. The Hadoop union algorithm

does not scale to large datasets as it uses the default Hadoop

partitioner which partitions records randomly. As the input

size increases, there is only a small chance that two adjacent

polygons are assigned to the same partition which reduces

the amount of line segments being removed the local union

step. In fact, it fails with the 4.3M polygons dataset while

the single machine with 1TB of memory can process it. The

SpatialHadoop union algorithm makes use of the constructed

index to remove more line segments in the local union step

as more adjacent polygons are assigned to the same partition.

However, it still fails with the 20M polygons dataset due to

the overhead of the final global union step. The enhanced

SpatialHadoop union algorithm is very scalable compared to

all other algorithms as it runs completely distributed with-

out the need for a final merge step which runs on a single

machine. This allows it to process very large datasets which

other algorithms fail to process.

Figure 21b shows the performance of the union algorithm

with the simple dataset. The single machine and Hadoop algo-

rithms still fail with the 20M polygons dataset and higher.

However, the SpatialHadoop union algorithm is able to pro-

cess all the sizes of the dataset where it failed with their

complex versions. The enhanced union algorithm is still much

faster with up to 20x speedup.

10.2 Voronoi diagram

Figure 22 shows the performance of the Voronoi diagram

algorithm running on the OSM real dataset. We use random

sampling to obtain subsets of sizes 270M, 536M, 1B, and

2.7B points. Due to the huge size of the Voronoi diagram,

the single machine algorithm runs out of memory with the

2.7 billion datasets even though it has 1TB of memory. On the

other hand, the CG_Hadoop algorithm is much more scalable

123

Scalable computational geometry in MapReduce

(a) (b)

Fig. 22 Voronoi diagram experiments on OSM dataset

(a) (b)

Fig. 23 Voronoi diagram experiments on SYNTH dataset

as it (1) computes local VDs for partitions in parallel, (2) early

prunes final Voronoi regions in local VDs, and (3) merges the

local VDs in parallel to compute the final VD. This results in

up to 30x speedup in running time and allows CG_Hadoop

to process the datasets which the single machine with 1TB

memory has failed to process.

Figure 22b further illustrates the power of the pruning rule

by showing the percentage of sites that remain after the local

VD step and after the vertical merge step. The local VD step

is able to prune almost 99% of the sites which leave only 1%

of the sites to process in the merge step. Furthermore, the

vertical merge step, which merges the partitions vertically,

leaves less than 0.5% of the input sites to be merged in the

final horizontal merge step.

Figure 23a, b shows the performance of the Voronoi dia-

gram algorithm on synthetic data of uniform and Gaussian

distributions, respectively. In Fig. 23a, we vary the input size

from 4 to 64 GB of uniformly generated data and measure

the runtime. We observe similar trends to the real dataset

where the single machine fails with the 1B dataset while

CG_Hadoop scales very nicely with an order of magnitude

speedup over the single machine algorithm.

10.3 Skyline

Figure 24 compares the performance of the skyline algo-

rithms on a single machine and CG_Hadoop with real OSM

dataset. This single machine algorithm is able to scale to

input sizes beyond the Java array limit of 231 by comput-

ing the skyline as soon as the array fills up. This allows it

to cut down the array size and keeps it below the limit. As

the input size increases from 268M points to 2.7B points,

(a) (b)

Fig. 24 Skyline on OSM dataset

(a) (b)

(c) (d)

Fig. 25 Skyline experiments on SYNTH dataset

the performance of the single machine algorithm degrades

and fails the largest dataset while both CG_Hadoop algo-

rithms are much more scalable with 14x and 115x speedup

when running on Hadoop and SpatialHadoop, respectively.

When running on Hadoop, CG_Hadoop achieves one order

of mangitude speedup over the single machine algorithm as

it parallelizes the work over the machines increasing both the

loading time of the input file and the processing time. On Spa-

tialHadoop, CG_Hadoop achieves up to 115x speedup over

the single machine algorithm as it prunes unnecessary parti-

tions in addition to the parallelized loading and processing.

Figure 24b further clarifies the speedup of SpatialHadoop

over Hadoop by showing the number of partitions that each

technique processes. The number, which the skyline Hadoop

algorithm processes, increases with the input size as it has

to process the whole input file. On the other hand, the sky-

line SpatialHadoop algorithm applies the pruning function

which utilizes the index to prune unnecessary partitions and

processes at most 3 partitions in this experiment.

Figure 25 gives the performance of the skyline oper-

ation on generated dataset of four different distributions,

namely uniform, Gaussian, correlated, and reversely corre-

lated. When CG_Hadoop is deployed in standard Hadoop,

it consistently achieves an order of magnitude performance

gain, on all data distributions, due to the parallelization of

the computation over the cluster machines. The local skyline

123

Y. Li et al.

(a)

(c)

(b)

Fig. 26 Output-sensitive skyline algorithm (SkylineOS)

(a) (b)

Fig. 27 Convex Hull on OSM dataset

step is very efficient in pruning most of the points leaving

only a little work for the global skyline step. CG_Hadoop

can achieve up to two orders of magnitude performance gain

when deployed in SpatialHadoop. This performance boost

is due to the filter step which prunes partitions that do not

contribute to the final output, and thus minimizes the total

number of processed blocks.

Finally, Fig. 26 compares performance between the reg-

ular skyline and the output-sensitive skyline algorithms in

SpatialHadoop with disjoint indexes. The output-sensitive

algorithm is slightly worse under uniform and Gaussian data

because it runs two phases, while the regular algorithm runs

one phase and can work fine. However, for the worst-case

dataset (i.e., reversely correlated), the regular algorithm takes

a long time as it cannot prune any data locally, and it fails

with very big datasets that cannot fit into the memory of a

single machine. The output-sensitive algorithm, on the other

hand, scales very well in this case.

10.4 Convex hull

Figure 27 shows the running time of the convex hull algo-

rithms on a single machine and in CG_Hadoop on the real

dataset OSM. Similar to skyline, the single machine convex

hull algorithm is able to scale beyond the Java array limit

by computing the convex hull as soon as the array fills up

(a) (b)

Fig. 28 Convex Hull on SYNTH dataset

which reduces the array size. The performance of the sin-

gle machine algorithm quickly degrades due to the limited

capabilities of a single machine including loading time from

disk and processing the whole data in the main memory.

CG_Hadoop achieves up to 14x and 109x speedup when run-

ning on Hadoop and SpatialHadoop, respectively. Figure 27b

shows the power of the pruning function in reducing number

of partitions that the SpatialHadoop convex hull algorithm

processes. While the number of partitions quickly increases

for the Hadoop algorithm, which processes the whole file,

the number of partitions processed by SpatialHadoop is no

more than 12, even for the 2.7B points file.

Figure 28 gives the running times of the convex hull oper-

ation on generated datasets of up to 128 GB with 3.8B points.

The convex hull algorithm in CG_Hadoop, described in

Sect. 7.1, runs much faster than the single machine algorithm

as the hull is computed through distributed processing in the

cluster. CG_Hadoop is even more efficient in SpatialHadoop

as the filter step allows it to minimize the total process-

ing by early pruning of partitions that do not contribute to

the answer. Although not shown here for clarity of the fig-

ure, CG_Hadoop, deployed in SpatialHadoop, achieves 260x

speedup for the 128 GB dataset compared to the traditional

system.

10.5 Farthest pair

Figure 29 gives the performance of the farthest pair algo-

rithm. Since the farthest pair of points have to be on the

convex hull, the farthest pair operations compute the con-

vex hull as a preprocessing step to reduce the size of the

data. In Fig. 29a–c, we show the running times on OSM

real dataset, uniformly distributed and Gaussian generated

datasets, respectively. In these three cases, the size of the

convex hull is very small which causes the running time to

be dominated by the convex hull step. Figure 29d shows the

worst- case scenario, when the farthest pair runs on the circu-

lar dataset, where the size of the convex hull is maximized. In

this case, we apply the algorithm described in Sect. 8.2 which

prunes pairs of partitions that do not contribute to the answer

and calculate pairwise distances in remaining pairs. Unlike

other operations, in which CG_Hadoop performs faster than

123

Scalable computational geometry in MapReduce

(a) (b)

(c) (d)

Fig. 29 Farthest pair experiments

the single machine, this operation performs slightly better

on a single machine than it does on CG_Hadoop. The reason

is that the single machine algorithm performs the rotating

calipers algorithm on the array of points in the main mem-

ory which is very efficient as the points are stored in a sorted

array. One must keep in mind, though, that the single machine

has 1TB of memory, while SpatialHadoop runs on a cluster

of machines with much less memory capacities. (Even the

collective memory of all machines in the cluster is less than

1TB.) This makes the SpatialHadoop algorithm widely appli-

cable to larger datasets on commodity machines.

10.6 Closest pair

Figure 30 gives the running time of the closest pair algo-

rithm on the OSM real dataset. Due to the huge overhead of

the Hadoop closest pair algorithm, as described in Sect. 9.1,

we only apply the single machine and SpatialHadoop algo-

rithms. The performance of the single machine algorithm

quickly degrades due to the limited capabilities of a single

machine. However, CG_Hadoop nicely scales out with at

least one order of magnitude speedup. Although the clos-

est pair algorithm in CG_Hadoop has to process the whole

dataset, as it does not apply an early pruning step, it can still

achieve up to 27x performance speedup due to the paralleliza-

tion of the work over a cluster of machines. Furthermore, it

manages to process the 2.7B points dataset while it fails on

a single machine with 1TB of memory.

Figure 30b shows the power of the pruning technique

in SpatialHadoop closest pair algorithm. As the input size

increases, this figure shows the number of intermediate points

produced by the local closest pair step and processed by

the global closest pair step. It shows that only about one-

millionth of the input points make it to the global closest pair

step, which runs on a single machine, while all other points

are early pruned by the local closest pair step, which runs in

(a) (b)

Fig. 30 Closest pair on OSM dataset

(a) (b)

Fig. 31 Closest pair on SYNTH dataset

parallel on all machines. This explains the order of magni-

tude speedup in SpatialHadoop algorithm as compared to the

single machine algorithm.

Results of the closest pair experiments on synthetic data

are shown in Fig. 31 for different input sizes. Similar to the

real dataset, the traditional single machine algorithm can-

not scale to large files as it has to load the whole dataset in

memory first. In the experiments shown, the traditional algo-

rithm fails when the input size reaches 64 GB. CG_Hadoop

achieves much better performance for two reasons. First, the

closest pair computation is parallelized on cluster machines

which speeds up the whole algorithm. Second, each machine

prunes many points that no longer need to be considered for

closest pair. As shown, CG_Hadoop is much more scalable,

and it does not suffer from memory problems because each

machine deals with only one partition at a time, thus limiting

the required memory usage to a block size.

11 Related work

There has been significant recent interest in taking advantage

of Hadoop and similar big data systems to support spatial

query processing. Existing work can be broadly classified

into three categories: (1) solving specific spatial operations,

(2) providing a framework for spatial data, and (3) solving

computational geometry operations.

Specific spatial operations Existing work in this cate-

gory has mainly focused on implementing specific spatial

operations as MapReduce jobs in Hadoop. Examples of

this work have focused on R-tree construction [9], range

queries over spatial points [55], range queries over trajectory

123

Y. Li et al.

data [36], k-nearest-neighbor (kNN) queries [2,20,39,55],

all nearest-neighbor (ANN) queries [50], reverse nearest-

neighbor (RNN) queries [2], spatial join [55], exact kNN

Join [35], approximate kNN Join [53], and optimal location

selection/searching algorithms [10,48]. In all these algo-

rithms, the underlying Hadoop system is used as-is, and the

spatial query processing is provided by implementing the

spatial query processing as map and reduce functions.

Unified framework for spatial operations In this approach,

spatial query processing is provided by injecting spatial

query awareness inside an existing system. There exist six

systems that are closely related to CG_Hadoop. (1) Hadoop-

GIS [1] is a spatial data warehousing system, which extends

Hive with a grid-based index, and uses it to support range

query and self-spatial-join. (2) Parallel-Secondo [33] is a

parallel spatial DBMS which uses Hadoop as a distributed

task scheduler, while all storage and spatial query process-

ing are done by spatial DBMS instances running on cluster

nodes. (3) MD-HBase [37] extends HBase to support mul-

tidimensional indexes, based on Z-Curve ordering, which

allows for efficient retrieval of points using range and kNN

queries. (4) SpatialHadoop [17,18] extends Hadoop with

spatial indexes [15], based on grid, R-tree, R+-tree, and

Quad-tree [47], and provides new MapReduce components

that allow using the indexes in spatial MapReduce programs.

(5) ESRI Tools for Hadoop [52] implements the PMR-Quad-

tree in Hadoop and uses it to support range query and kNN

queries. (6) GeoMesa [19] extends a key-value store, called

Accumulo, with geohash-based index, and provides efficient

interactive queries on top of it such as range kNN queries. It is

also interesting to notice that [51] builds a CPU-GPU Hybrid

system to accelerate pathology image data cross-comparison.

Computational geometry operations The use of MapReduce

in the computational geometry field was discussed from a

theoretical perspective [23] to suggest simulating the bulk-

synchronous parallel (BSP) in MapReduce and use it to solve

some computational geometry problems such as convex hull.

However, no actual implementations were provided and it

was not shown how to implement other algorithms that do

not follow the BSP model. Only two computational geometry

operations have been implemented in MapReduce, skyline,

and Voronoi diagram (VD) construction. The skyline opera-

tion [54] was first implemented in MapReduce by following

an angle-based partitioning from the origin which allows effi-

cient pruning of points. It was then studied in [29] using

hyperplane projections, and finally, both skyline and reverse

skyline queries were investigated again in [44] using MapRe-

duce. The Voronoi diagram is constructed in MapReduce [2]

by directly mapping the traditional divide-and-conquer algo-

rithm to map and reduce functions. However, it does not scale

due to the bottleneck in the merge operation.

Our work in this paper, CG_Hadoop, lies in between the

second and third categories above. First, it does not focus

on one computational geometry operation, rather it covers

a set of six different and fundamental computational geom-

etry operations and describes efficient implementations for

each of them using various spatial indexes. Second, it does

not provide a new system. Instead, it utilizes the extensi-

bility of SpatialHadoop and the efficient spatial indexes in

it to implement the six computational geometry operations

efficiently. In an earlier version of this work [16], we pro-

posed five fundamental computational geometry operations.

In this paper, we further show its applicability to computa-

tional geometry operations by providing five new algorithms:

four improved algorithms for polygon union, skyline, con-

vex hull, and farthest pair and a novel algorithm for the

new Voronoi diagram construction operation. The open-

source nature of CG_Hadoop will act as a research vehicle

for other researchers to build more computational geometry

algorithms that take advantage of the MapReduce paradigm.

12 Conclusion and future work

This paper has introduced CG_Hadoop, a suite of scalable

and efficient MapReduce algorithms for various fundamental

computational geometry operations, namely polygon union,

Voronoi diagram, skyline, convex hull, farthest pair, and clos-

est pair. For each operation, CG_Hadoop has two versions,

one for the Apache Hadoop system and one for the Spa-

tialHadoop system. All algorithms in CG_Hadoop deploy

a form of divide-and-conquer that leverages the distributed

parallel environment in both Hadoop and SpatialHadoop and

hence achieves much better performance than their corre-

sponding traditional algorithms. Moreover, SpatialHadoop

algorithms significantly outperform Hadoop algorithms as

they take advantage of the spatial indexing and compo-

nents within SpatialHadoop. Overall, CG_Hadoop forms the

nucleus of a comprehensive MapReduce library of compu-

tational geometry operations. Extensive experimental results

on a cluster of 25 machines with datasets up to 128 GB show

that CG_Hadoop achieves up to 29x and 260x better perfor-

mance than traditional algorithms when using Hadoop and

SpatialHadoop systems, respectively.

CG_Hadoop, in this paper, mainly focuses on two-

dimensional data, which already cover many everyday appli-

cations. For future work, it would be interesting to see

whether it is extensible to big data in higher dimensions. For

instance, kNN queries are often used in machine learning

to compute the similarity between two (high-dimensional)

vectors. However, the complexities of most operations in

CG_Hadoop increase drastically with respect to the dimen-

sionality, so new ideas must be further explored to design

efficient and scalable solutions. Potential directions here

include building more efficient spatial indexing/partitioning

methods and attempting approximation algorithms.

123

Scalable computational geometry in MapReduce

Fig. 32 Example of shared disks in dangerous zones

A Voronoi diagram proofs

This appendix lays out the proofs related to the Voronoi dia-

gram construction algorithm (Sect. 5.2).

Proof of contiguity of non-safe Voronoi regions

Lemma 2 Let c be a closed cell and denote all its direct

neighbor cells as NN(c). Also, define Z(·) be the dangerous

zone of c. Then, the dangerous zone of c is a subset of the

union of the dangerous zones of its neighbors, that is, Z(c) ⊆
⋃

c′∈NN(c) Z(c′).

Proof The dangerous zone Z(c) essentially consists of the

union of several disks centered at the vertices of c. One just

notices that each of these disks is also part of the dangerous

zone of (at least one of) its neighbor cells. Therefore, it sim-

ply follows that Z(c) ⊆
⋃

c′∈NN(c) Z(c′). (Fig. 32 gives an

example where the disk centered at c5 is shared among the

Voronoi regions of g1, g5, and g6.) ⊓⊔

Lemma 2 naturally implies that the following corollary.

Corollary 2 Any non-safe cell must be adjacent to another

non-safe cell if there is more than one such cell.

Proof For a contradiction, assume a cell c is surrounded by

all safe cells, but c itself is non-safe. Then, there must exist

a new site, say g, introduced inside Z(c) that causes c to be

non-safe. By Lemma 2, g must be in the dangerous zone of at

least one of c’s direct neighbors, making that cell non-safe,

which is a contradiction. ⊓⊔

B Reducing communication cost in the
output-sensitive Skyline

The output-sensitive skyline algorithm described in Sect. 6.3

has a communication cost of O(|G|2) where |G| is the

number of partitions. This communication cost is due to

broadcasting the set SKY of all points with the highest dom-

ination power to each node. Here, we show an improved

algorithm that can reduce the communication cost to O(|G|)

by applying a more efficient technique that can selectively

send a fixed number of points to each node. Below, we show

how to select this subset and prove that it has the same dom-

ination power as the whole set SKY. Recall that sky(c) is the

local skyline in a cell c.

Fig. 33 An example illustrating Theorem 4

Theorem 4 For any cell c ∈ G and a point set S, define

sky(c) ⋓ S = {p ∈ sky(c) | ∄q ∈ S s.t . p ≺ q}. Then there

exists a subset, SKY(c), of SKY satisfying (i) |SKY(c)| ≤ 4

and (ii) sky(c)⋓SKY = sky(c)⋓SKY(c), that is, SKY(c) has

the same dominance power as SKY.

Proof Let c denote the region [x1, x2] × [y1, y2]. Then, it

is clear that only the points in [x1,∞) × [y1,∞) can affect

sky(c). We divided it into four parts as illustrated in Fig. 33:

R1 = (x2,∞) × (y2,∞), R2 = [x1, x2] × (y2,∞), R3 =

[x1, x2] × [y1, y2], and R4 = (x2,∞) × [y1, y2].

If R1 ∩SKY �= ∅, then the entire local skyline in c will be

dominated. Adding any point of R1 ∩ SKY to SKY(c) will

satisfy both conditions, i.e., |SKY(c)| = 1 and that point

will guarantee that sky(c) ⋓ SKY = sky(c) ⋓ SKY(c) = ∅.

It is worth mentioning that this case is equivalent to our pre-

filtering step.

When R1 ∩ SKY = ∅, we construct SKY(c) = (R3 ∩

SKY) ∪ {l, r}, where l (resp., r) is the leftmost (resp.,

rightmost) point in R4 ∩ SKY (resp., R2 ∩ SKY). And if

R4 ∩ SKY = ∅ (resp., R2 ∩ SKY = ∅), we simply ignore

l (resp., r). The reason for selecting only the extreme points

r and l in the second and fourth quadrant, respectively, is

straightforward, i.e., they dominate, respectively, the most

area in the interior of c compared to other points. This suf-

fices to prove the second condition. To show condition (i),

one just notices that |R3 ∩ SKY| ≤ 2 since c can only send

the master machine at most two points for computing SKY.

Therefore, SKY(c) ≤ 2 + 2 = 4. ⊓⊔

References

1. Aji, A., Wang, F., Vo, H., Lee, R., Liu, Q., Zhang, X., Saltz, J.:

Hadoop-GIS: a high performance spatial data warehousing system

over MapReduce. In: VLDB (2013)

2. Akdogan, A., Demiryurek, U., Banaei-Kashani, F., Shahabi, C.:

Voronoi-based geospatial query processing with MapReduce. In:

CLOUDCOM (2010)

3. Andrew, A.M.: Another efficient algorithm for convex hulls in two

dimensions. Inf. Process. Lett. 9(5), 216–219 (1979)

4. Apache. Hadoop. http://hadoop.apache.org

5. Bentley, J.L., Kung, H., Schkolnick, M., Thompson, C.D.: On the

average number of maxima in a set of vectors and applications. J.

ACM: JACM 25(4), 536–543 (1978)

123

http://hadoop.apache.org

Y. Li et al.

6. Berg, M.D., Cheong, O., Kreveld, M.V., Overmars, M.: Compu-

tational Geometry: Algorithms and Applications. Springer, Berlin

(2008)

7. Borne, K.D., Baum, S.A., Fruchter, A., Long, K.S.: The hubble

space telescope data archive. In: Astronomical Data Analysis Soft-

ware and Systems IV, vol. 77 (1995)

8. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In:

ICDE (2001)

9. Cary, A., Sun, Z., Hristidis, V., Rishe, N.: Experiences on process-

ing spatial data with MapReduce. In: SSDBM, pp. 302–319. New

Orleans, Louisiana (2009)

10. Choudhury, F.M., Culpepper, J.S., Bao, Z., Sellis, T.: Finding the

optimal location and keywords in obstructed and unobstructed

space. VLDB J. 27, 445–470 (2018)

11. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A.,

Bohannon, P., Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.:

PNUTS: Yahoo!’s hosted data serving platform. PVLDB 1(2),

1277–1288 (2008)

12. Cormen, T.H., Leisorson, C.E., Rivest, R.L., Stein, C.: Introduction

to Algorithms. MIT Press, Cambridge (2009)

13. Dalal, K.: Counting the onion. Random Struct. Algorithms 24(2),

155–165 (2004)

14. Dean, J., Ghemawat, S.: MapReduce: simplified data processing

on large clusters. Commun. ACM 51, 107–113 (2008)

15. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning tech-

niques in SpatialHadoop. In: PVLDB, pp. 1602–1605. Kohala

Coast, HI (2015)

16. Eldawy, A., Li, Y., Mokbel, M.F., Janardan, R.: CG_Hadoop:

computational geometry in MapReduce. In: SIGSPATIAL, pp.

284–293. Orlando, FL (2013)

17. Eldawy, A., Mokbel, M.F.: A demonstration of SpatialHadoop: an

efficient MapReduce framework for spatial data. In: VLDB (2013)

18. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce frame-

work for spatial data. In: ICDE (2015) (to appear)

19. Fox, A., Eichelberger, C., Hughes, J., Lyon, S.: Spatio-temporal

indexing in non-relational distributed databases. In: BigData, pp.

291–299. Santa Clara, CA (2013)

20. García-García, F., Corral, A., Iribarne, L., Vassilakopoulos, M.,

Manolopoulos, Y.: Enhancing SpatialHadoop with closest pair

queries. In: East European Conference on Advances in Databases

and Information Systems, pp. 212–225. Springer, Berlin (2016)

21. Ghoting, A., Krishnamurthy, R., Pednault, E., Reinwald, B., Sind-

hwani, V., Tatikonda, S., Tian, Y., Vaithyanathan, S.: SystemML:

declarative machine learning on MapReduce. In: ICDE (2011)

22. Giraph. http://giraph.apache.org/

23. Goodrich, M.T., Sitchinava, N., Zhang, Q.: Sorting, searching, and

simulation in the MapReduce framework. In: ISAAC (2011)

24. Guibas, L.J., Stolfi, J.: Primitives for the manipulation of general

subdivisions and the computation of Voronoi diagrams. In: STOC,

pp. 221–234. Boston, MA (1983)

25. Guttman, A.: R-Trees: A dynamic index structure for spatial search-

ing. In: SIGMOD (1984)

26. Huai, Y., Chauhan, A., Gates, A., Hagleitner, G., Hanson, E.N.,

O’Malley, O., Pandey, J., Yuan, Y., Lee, R., Zhang, X.: Major

technical advancements in apache hive. In: ACM SIGMOD, pp.

1235–1246 (2014)

27. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: dis-

tributed data-parallel programs from sequential building blocks. In:

EuroSys (2007)

28. Java Topology Suite. http://hadoop.apache.org/

29. Köhler, H., Yang, J., Zhou, X.: Efficient parallel skyline processing

using hyperplane projections. In: ACM SIGMOD, pp. 85–96. ACM

(2011)

30. Lakshman, A., Malik, P.: Cassandra: a decentralized structured

storage system. Oper. Syst. Rev. 44(2), 35–40 (2010)

31. Lee, G., Lin, J., Liu, C., Lorek, A., Ryaboy, D.V.: The unified

logging infrastructure for data analytics at Twitter. PVLDB 5(12),

1771–1780 (2012)

32. Liao, H., Han, J., Fang, J.: Multi-dimensional index on Hadoop

distributed file system. In: ICNAS, pp. 240–249 (2010)

33. Lu, J., Guting, R.H.: Parallel secondo: boosting database engines

with Hadoop. In: ICPADS (2012)

34. Lu, P., Chen, G., Ooi, B.C., Vo, H.T., Wu, S.: ScalaGiST: scalable

generalized search trees for MapReduce systems. PVLDB 7(14),

1797–1808 (2014)

35. Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient processing of k

nearest neighbor joins using MapReduce. PVLDB 5, 1016–1027

(2012)

36. Ma, Q., Yang, B., Qian, W., Zhou, A.: Query processing of massive

trajectory data based on MapReduce. In: CLOUDDB (2009)

37. Nishimura, S., Das, S., Agrawal, D., Abbadi, A.E.: MD-HBase: A

scalable multi-dimensional data infrastructure for location aware

services. In: MDM (2011)

38. Nishimura, S., Das, S., Agrawal, D., El Abbadi, A.: MD: design

and implementation of an elastic data infrastructure for cloud-scale

location services. DAPD 31(2), 289–319 (2013)

39. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*-diagram:

a query-dependent approach to moving knn queries. Proc. VLDB

Endow. 1(1), 1095–1106 (2008)

40. Oliver, D., Steinberger, D.J.: From geography to medicine: explor-

ing innerspace via spatial and temporal databases. In: SSTD (2011)

41. O’Malley, O.: Terabyte sort on Apache Hadoop. Yahoo! (2008)

42. OpenStreetMap. http://www.openstreetmap.org/

43. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline com-

putation in database systems. TODS 30(1), 41–82 (2005)

44. Park, Y., Min, J., Shim, K.: Parallel computation of skyline and

reverse skyline queries using mapreduce. Proc. VLDB Endow.

6(14), 2002–2013 (2013)

45. PostGIS. Spatial and Geographic Objects for PostgreSQL. http://

postgis.net/

46. Preparata, F., Shamos, M.I.: Computational Geometry: An Intro-

duction. Springer, Berlin (1985)

47. Samet, H.: The Quadtree and related hierarchical data structures.

ACMCS 16(2), 187–260 (1984)

48. Sun, Y., Qi, J., Zhang, R., Chen, Y., Du, X.: Mapreduce based

location selection algorithm for utility maximization with capacity

constraints. Computing 97(4), 403–423 (2015)

49. Tauheed, F., Biveinis, L., Heinis, T., Schürmann, F., Markram, H.,

Ailamaki, A.: Accelerating range queries for brain simulations. In:

ICDE (2012)

50. Wang, K., Han, J., Tu, B., Dai, J., Zhou, W., Song, X.: Accelerating

spatial data processing with MapReduce. In: ICPADS, pp. 229–

236. Shanghai, China (2010)

51. Wang, K., Huai, Y., Lee, R., Wang, F., Zhang, X., Saltz, J.: Accel-

erating pathology image data cross-comparison on cpu-gpu hybrid

systems. Proc. VLDB Endow. 5(11), 1543–1554 (2012)

52. Whitman, R.T., Park, M.B., Ambrose, S.A., Hoel, E.G.: Spatial

indexing and analytics on Hadoop. In: SIGSPATIAL. Dallas, TX

(2014)

53. Zhang, C., Li, F., Jestes, J.: Efficient parallel kNN joins for large

data in MapReduce. In: EDBT (2012)

54. Zhang, J., Jiang, X., Ku, W.S., Qin, X.: Efficient parallel skyline

evaluation using MapReduce. TPDS PP(99), 1–14 (2015)

55. Zhang, S., Han, J., Liu, Z., Wang, K., Feng, S.: Spatial queries

evaluation with MapReduce. In: GCC (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-

dictional claims in published maps and institutional affiliations.

123

http://giraph.apache.org/
http://hadoop.apache.org/
http://www.openstreetmap.org/
http://postgis.net/
http://postgis.net/

