
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Reissner, Daniel, Conforti, Raffaele, Dumas-Menijvar, Marlon, La Rosa,
Marcello, & Armas Cervantes, Abel
(2017)
Scalable conformance checking of business processes.
In Panetto, H, Gaaloul, W, Paschke, A, Ardagna, C A, Debruyne, C,
Meersman, R, et al. (Eds.) On the Move to Meaningful Internet Sys-
tems - OTM 2017 Conferences: Confederated International Conferences:
CoopIS, C&TC, and ODBASE 2017, Proceedings, Part I (Lecture
Notes in Computer Science, Volume 10573).
Springer, Switzerland, pp. 607-627.

This file was downloaded from: https://eprints.qut.edu.au/105118/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1007/978-3-319-69462-7_38

https://eprints.qut.edu.au/view/person/Reissner,_Daniel.html
https://eprints.qut.edu.au/view/person/Conforti,_Raffaele.html
https://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
https://eprints.qut.edu.au/view/person/La_Rosa,_Marcello.html
https://eprints.qut.edu.au/view/person/Armas_Cervantes,_Abel.html
https://eprints.qut.edu.au/105118/
https://doi.org/10.1007/978-3-319-69462-7_38

Scalable Conformance Checking of Business Processes

Daniel Reißner1, Raffaele Conforti1, Marlon Dumas2, Marcello La Rosa1, and
Abel Armas-Cervantes1

1 Queensland University of Technology, Australia
{da.reissner, raffaele.conforti, m.larosa, a.armascervantes}@qut.edu.au

2 University of Tartu, Estonia
marlon.dumas@ut.ee

Abstract. Given a process model representing the expected behavior of a busi-
ness process and an event log recording its actual execution, the problem of busi-
ness process conformance checking is that of detecting and describing the differ-
ences between the process model and the log. A desirable feature is to produce a
minimal yet complete set of behavioral differences. Existing conformance check-
ing techniques that achieve these properties do not scale up to real-life process
models and logs. This paper presents an approach that addresses this shortcoming
by exploiting automata-based techniques. A log is converted into a deterministic
automaton in a lossless manner, the input process model is converted into another
minimal automaton, and a minimal error-correcting synchronized product of both
automata is calculated using an A* heuristic. The resulting automaton is used to
extract alignments between traces of the model and traces of the log, or statements
describing behavior observed in the log but not captured in the model. An evalua-
tion on synthetic and real-life models and logs shows that the proposed approach
outperforms a state-of-the-art method for complete conformance checking.

1 Introduction

Modern information systems maintain detailed business process execution trails. For
example, an enterprise resource planning system keeps records of key events related
to a company’s order-to-cash process, such as the receipt and confirmation of purchase
orders, the delivery of products, and the creation and payment of invoices. Such records
can be grouped into an event log consisting of sequences of events (called traces), each
consisting of all event records pertaining to one case of a process.

Conformance checking techniques exploit such event logs in order to determine
if and to what extent the actual behavior of a process conforms to a process model
capturing its expected behavior. A conformance checking technique takes as input an
event log and a process model, and returns a set of differences between the model and
the log. In real-life scenarios, the set of differences between an event log and a process
model can be large. Hence it is necessary to represent them in a way that is compact
and interpretable, yet complete, or as exhaustive as desired by the user.

State-of-the-art techniques for computing a complete set of differences include be-
havioral alignment [15] and (all-optimal) trace alignment [2]. The former computes a
set of statements describing behavioral relations that exist in the model but not in the

2 D. Reißner et al.

log. The latter computes minimal alignments between each trace in the log that cannot
be parsed by the model, and a corresponding trace that can be parsed by the model.
These techniques however do not scale up to large and noisy event logs. For example,
our experimental evaluation (reported later) shows that the all-optimal trace alignment
technique in [2] takes more than five minutes to compute an incomplete set of align-
ments over real-life and noisy logs and sometimes does not converge after hours. These
execution times make it impractical to use these techniques in an interactive setting, e.g.
when conformance checking is performed multiple times to iteratively repair a process
model so as to better fit the log. Additionally, scalability issues of conformance check-
ing techniques indirectly affect several process mining techniques, such as model repair
[25, 7] or process discovery [8, 17], which rely on conformance checking to justify the
quality of their outputs.

This paper aims to tackle this scalability issue by proposing an automata-based tech-
nique for conformance checking. In our approach, an event log is encoded as sequences
of words and compressed into a minimal Deterministic Acyclic Finite State Automaton
(DAFSA). Concomitantly, the process model is transformed into another automaton (its
reachability graph). The two automata are combined into an error-correcting product
automaton whose transitions correspond to either a synchronous move (on both au-
tomata) or an asynchronous move (i.e. a move on the automaton of the log that does not
exist in the model or vice-versa). The produced automaton contains a minimal number
of asynchronous moves. From this product automaton, we can extract either the optimal
alignments of each trace in the log and a corresponding trace in the model (as in [2]) or
a set of behavioral difference statements (as in [15]). Thus, our approach unifies these
two previous approaches, while achieving higher scalability, as shown by an evaluation
on synthetic and real-life process models and logs.

The next section discusses existing conformance checking techniques in more de-
tail. Section 3 introduces the proposed approach, while Section 4 presents its evaluation.
Section 5 summarizes the contributions and discusses improvement avenues.

2 Related Work

Conformance checking techniques detect two types of discrepancies between a process
model and a log: behavior observed in the log that is disallowed by the model (unfitting
behavior), and behavior allowed by the model but not observed in the log (additional
behavior). A simple approach to detect and measure unfitting behavior is token-based
replay [26]. The idea is to replay each trace against the model, represented as a Petri
net. The transitions in the model are fired following the order dictated by a given trace.
To fire, a transition needs to be enabled, i.e. it requires at least one token in each of its
incoming places. When a transition cannot fire because it is not enabled, the technique
determines which tokens need to be added to enable it. Once a trace has been replayed,
if there are any tokens left in a non-sink place of the Petri net, they are labeled as
remaining tokens. The fitness between the model and the log is quantified in terms of
the number of added and remaining tokens (replay errors). An extended version of this
approach, namely continuous semantics fitness [4], achieves higher performance at the
expense of incompleteness. Another extension [32] decomposes the model into single-

Scalable Conformance Checking of Business Processes 3

entry single-exit fragments, such that each fragment can be replayed independently.
Other extensions based on model decomposition are discussed in [23].

Replay fitness methods fail to identify a minimum number of errors required to ex-
plain unfitting log behavior, thus overestimating the magnitude of differences. Trace
alignment fitness [2] addresses this limitation. For each trace in the log, this technique
identifies the closest trace reproducible by the model and aligns the two traces by high-
lighting the points where mismatches occur. This log-model alignment is achieved in
several steps. The first step consists in transforming every trace in the log into a Petri
net. The result is a sequence of transitions, one per event in the trace. Next, a product is
computed between the Petri net of the trace and the Petri net of the model. This is done
by pairing transitions of the two models that have matching labels. The product between
the two Petri nets is used to create a transition system representing all possible align-
ments, i.e. matches and mismatches. This transition system is explored, using the A⇤
search algorithm, to retrieve the alignments with the minimum number of mismatches.
An exhaustive and complete version of this technique, namely all-optimal alignments,
computes all minimal alignments between each log trace and the model. One-optimal
alignment is an alternative technique that achieves higher scalability at the expense of
incompleteness. This technique computes only one alignment for each log trace, hence
missing on some behavioral differences. Several heuristics-based approaches, such as
sequential prefix alignments [29] or decomposing trace replay technique [27], improve
on the scalability for identifying alignments. Those approaches, however, drop the guar-
antee to find the optimal alignments and thus trade accuracy for performance.

Approaches for identifying additional behavior include negative-events preci-
sion [31] and ETC precision [22]. The former adds negative events to the traces in
the log. Given a trace, an event is negative if it is never observed after a given trace pre-
fix. Additional behavior is identified by replaying these extended traces over the model.
Whenever a negative-event is successfully replayed, the approach marks it as additional
behavior. ETC precision generates a prefix automaton from the log, where each state
corresponds to a distinct trace prefix in the log. The states of the prefix automaton are
matched with the states of the model. When a state in the model enables a transition
that it is not enabled in the matching state of the automaton, it is marked as additional
behavior. The approach has been extended in [1] to handle tasks with duplicate labels
and unfitting traces by means of trace alignment. The technique proposed in this paper
is complementary the above ones, since it computes trace alignments that can be used
for example to speed up the technique in [1].

An approach for fast approximate computation of fitness and precision metrics is
presented in [18]. This technique computes these metrics over subsets of process tasks
and aggregates the results at a process level. This technique has been shown to be highly
scalable, however, it does not identify the behavioral differences between the model and
the log, but it merely computes the fitness and precision metrics. As part of this paper,
we are interested in a complete list of exact differences, hence a comparison with the
approach presented in [18] is out of scope.

Another conformance checking technique, namely behavioral alignment [15], ad-
dresses the problems of detecting unfitting behavior and additional behavior in a unified
setting. In this technique, both the input event log and the process model are transformed

4 D. Reißner et al.

into event structures. A minimal error-correcting product of these two event structures
is then computed. Based on this product, a set of statements are derived, which charac-
terize all behavioral relations between tasks captured in the model but not observed in
the log and vice-versa. While producing a complete set of differences, which is smaller
in number than the number of trace alignments, this technique suffers from similar scal-
ability requirements as the all-optimal alignment.

The approach herein presented uses automata as novel and memory-efficient repre-
sentation for event logs and process models. By mapping the problem of conformance
checking to that of synchronizing a DAFSA representing the event log, and a finite
state machine (FSM) representing the model, the proposal unifies the techniques pro-
posed in [15] and [2]. This allows us to extract both a set of optimal trace alignments
and a set of difference statements. Thus, the paper aims at improving the efficiency of
state of the art conformance checking techniques leveraging automata and memoization
techniques. Unlike [15] though, we only focus on detecting unfitting behavior.

3 Approach

Figure 1 outlines the steps of the proposed method and their respective inputs and out-
puts. First, the input process model is expanded into a reachability graph (1). In parallel,
the event log is compressed into a minimal DAFSA (2). The resulting reachability graph
and DAFSA are then compared (3) to create an error-correcting synchronized product
automaton (herein called a Partial Synchronized Product or PSP), wherein each state is
a pair of a state in the reachability graph and a state in the DAFSA. From this result, we
can directly enumerate a set of optimal trace alignments or derive a set of behavioral
difference statements via further analysis (4). The rest of this section introduces some
preliminary definitions, followed by a description of each of the steps.

Petri Net

compress
DAFSA

Reachability
Graph

PSP

Event Log

Optimal
Alignments

Difference
Statements

expand

compare

(1)

(2)

(3)

Fig. 1. Overview of the approach.

For illustration purposes, we will use the loan application process model displayed
in Fig. 2. The process starts when a credit application is received, then the credit history
and the income sources are checked. Then, once the application is assessed, either a
credit offer is made, the application is rejected or additional information is requested
(the latter leading to a re-assessment).

Scalable Conformance Checking of Business Processes 5

Make
credit offer

Check
credit
history

Assess
application

Credit
application
received

Credit
application
processed

A

B

C

D

I

granted E

Check
income
sources

Notify
rejection

F

Receive
additional information

H

outright
rejection

Request
additional information

G

Fig. 2. Example loan application process model adapted from [15].

3.1 Preliminaries

Our approach relies on the notion of finite state machine defined as follows.

Definition 1 (Finite State Machine (FSM)). Let L be a finite non-empty set of labels.
A finite state machine is a directed graph F = (N,A,s,R), where N is a finite non-
empty set of states, A✓ N⇥L⇥N is a set of arcs, s 2 N is an initial state, and R✓ N
is a set of final states.

An arc in a FSM is a triplet (ns, l,nt), where ns is the source state, nt is the target
state and l is the label associated to the arc. The set of incoming and outgoing arcs of a
state n is defined as In = {(ns, l,nt) 2 A | n = nt} and nI = {(ns, l,nt) 2 A | n = ns},
respectively. Finally, a sequence of (contiguous) arcs in a FSM is called a path.

3.2 From Event Log to DAFSA

Logs recording the execution of activities in a business process are called event logs.
These logs represent the executions of process instances as traces – sequences of activ-
ity occurrences (a.k.a. events). A trace can be represented as a sequence of labels, such
that each label signifies an event. Generally speaking an event log is a multiset of traces
containing several occurrences of the same trace. However, in the context of this paper,
we are only interested in the distinct executions of a business process and, therefore, we
define a log as a set of traces.

Definition 2 (Trace and event log). Let L be a finite set of labels. A trace is a finite
sequence of labels hl1, ..., lni 2 L⇤, such that li 2 L for any 1 i n. An event log L is
a set of traces.

Event logs can be represented as Deterministic Acyclic Finite State Automata
(DAFSA), which are acyclic and deterministic FSMs. A DAFSA can represent words,
in our context traces, in a compact manner by exploiting prefix and suffix compression.

Definition 3 (DAFSA). A DAFSA is an acyclic and deterministic finite state machine
D = (ND ,AD ,sD ,RD), where ND is a finite non-empty set of states, AD ✓ND⇥L⇥ND

is a set of arcs, sD 2 ND is the initial state, RD ✓ ND is a set of final states.

Daciuk et al. [11] presents an efficient algorithm for constructing a DAFSA from
a set of words, such that every word is a path from the initial state to a final state.
Conversely it holds, that every path from an initial state to a final state represents a

6 D. Reißner et al.

word present in the given set of words. We reuse this algorithm to construct a DAFSA
from an event log, where every trace in the log represents a word. The complexity of
building the DAFSA is O(|L| · logn), where L is the set of distinct event labels, and n is
the number of states in the DAFSA.

Given a path from the initial state to a state n2ND , we refer to the labels associated
to the arcs in the path as the prefix of n, and, analogously, given a path from n to a
final state, we refer to the labels associated to such path as a suffix of n. Note that the
prefix of the initial state is {hi}. By abuse of notation, the set of prefixes of a state
n is represented by pref (n) =

S
(ns,l,nt)2In{x� l | x 2 pref (ns)}, where � denotes the

concatenation operator. Similarly, the set of suffixes of n is represented by suff (n) =S
(ns,l,nt)2nI{l� x | x 2 suff (nt)}, and if n is a final state then {hi} 2 suff (n). Prefixes

and suffixes are said to be common iff they are shared by more than one trace.

Definition 4 (Common prefixes and suffixes). Let D = (ND ,AD ,sD ,RD) be a
DAFSA. The set of common prefixes of D is the set P = {pref (n) | n2ND ^ |nI|> 1}.
The set of common suffixes of D is the set S = {suff (n) | n 2 ND ^ |In|> 1}.

Log

hB,D,Ei
hC,B,D,Ei
hB,D,Ei
hC,B,D,Fi
hB,D,Fi

) s n1 n2

n3

fD
B

C B

D
E

F

Common Prefixes:
hB,Di, hC,B,Di

Common Suffixes:
hD,Fi, hD,Ei

Fig. 3. Example log for our loan application process, and its DAFSA representation.

Figure 3 depicts an example of an log containing activities of the loan applica-
tion process in Fig. 2 and its corresponding DAFSA representation. For the sake of
readability, Fig. 3 uses the letters next to the each of the tasks in Fig. 2 as task
labels. In this example there is only one final state fD, and all traces in the log
are paths from s to fD. For instance, the trace hB,D,Ei is represented by the path
h(s,B,n1),(n1,D,n2),(n2,E, fD)i. In this example, the prefixes of state n2 and the suf-
fixes of state n1 are common for all the traces.

3.3 From a process model to a FSM

Process models are normative descriptions of business processes and define the ex-
pected behavior of the process. Over the years, several business process modelling lan-
guages have been proposed, such as Petri nets, BPMN and EPC. In the context of this
work, business processes are modelled as (labelled) Petri nets.

Definition 5 (Labelled Petri net). A (labelled) Petri net is the tuple N = (P,T,F,l),
where P and T are disjoint sets of places and transitions, respectively, F ✓ (P⇥T)[
(T ⇥P) is the flow relation, and l : T ! L[{t} is a labelling function mapping tran-
sitions to the set of task labels L and to a special label t .

Scalable Conformance Checking of Business Processes 7

Note that t is a special label and it is used to represent invisible transitions, i.e. ac-
tions not recorded in the event log when executed. Places and transitions are conjointly
referred to as nodes. A node x is in the preset of a node y if there is a transition from
x to y and, conversely, a node z is in the postset of y if there is a transition from y to z.
Then, the preset of a node y is the set •y = {x 2 P[T |(x,y) 2 F} and the postset of y
is the set y•= {z 2 P[T |(y,z) 2 F}. A marking m is a multiset of places representing
a state during the execution of a system. A transition t 2 T is enabled at a marking m
iff •t ✓ m. An enabled transition t can fire and yield a new marking m0 = m� •t + t•.
The reachability graph [21] of a Petri net N with an initial marking m0 contains all
possible markings of N – denoted as M. Intuitively, a reachability graph is a determin-
istic FSM where states denote markings, and arcs denote the transitions fired to go from
one marking to another. The complexity of constructing a reachability graph is at worst
exponential on the size of the Petri net [19], i.e. O(2|P[T |).

Definition 6 (Reachability graph). The reachability graph of a Petri net N is a de-
terministic finite state machine R = (M,AR ,m0,Mf), where M is the set of reachable
markings, AR is the set of arcs AR = {(m1,l (t),m2)2M⇥L⇥M | m2 = m1�•t+ t•}
and Mf = {m 2M | @t 2 T , such that • t ✓ m}.

Algorithm 1: Remove Tau Transitions
input: Reachability Graph R

1 s hm0i;
2 W {m0};
3 while s 6= hi do
4 m head s 1;
5 s tail s 2;
6 Y {a = (m1, l,m) 2Im | l = t ^m /2Mf };
7 for a 2Y do replaceTau(a,m,{m}) ;
8 AR AR \Y ;
9 for (m, l,m2) 2 mI | m2 /2W do

10 s s �m2;
11 W W [{m2};

12 X {m 2M | (Im =?^m 6= m0)_ (mI=?^m /2Mf)};
13 while X 6=? do
14 for m 2 X do A A\ (Im[mI) ;
15 M M \X ;
16 X {m 2M | (Im =?^m 6= m0)_ (mI=?^m /2Mf)};

17 return R;
18 Function replaceTau((m1,t,mt) 2 A,m 2M,Q 2 2M)
19 for (m, l,m2) 2 mI do
20 if l 6= t _m2 2Mf then AR AR [{(m1, l,m2)} ;
21 else if m2 /2Q then
22 Q Q [{m2};
23 replaceTau((m1,t,mt),m2,Q);

A large amount of t-transitions in a Petri net can lead to large reachability graphs.
In principle, we assume that the Petri nets have a minimal number of t-transitions, e.g.,

1 head in Z notation [14] to obtain the first element of a sequence.
2 tail in Z notation [14] to obtain a subsequence after the first element of a sequence.

8 D. Reißner et al.

resulting from the application of reduction rules in [24]. However, oftentimes some t-
transitions cannot be removed because they represent the “skip” or parallel execution
of transitions. In this regard, we propose a further t-reduction over the reachability
graph that does not modify the underlying behavior. Algorithm 1 shows the top-down
approach for the proposed reduction. Intuitively, for each arc a = (m1,t,m2) referring
to a t-transition, the algorithm replaces a with a0 = (m1, l,m3) for each outgoing arc of
m2, such that (m2, l,m3) 2 AR . This replacement is repeated until all arcs referring to
t-transitions are removed. If all incoming arcs of a state m are replaced, then m and its
outgoing arcs are removed. The algorithm refrains from removing t transitions targeting
final markings to ensure proper completion. Fig. 4 shows the t-less reachability graph
of the loan application process aside. Observe that the arc [p5, p4]! [p6] is replaced
by [p5, p4]! [p7] with label D, and the state [p3, p2] is removed.

[p1] [p2,p3]tau

[p5,p3]
B

[p4,p2]

C
[p4,p5]

C

B
[p6]tau

[p7]
D

[p10]
F

E

[p8]
F

[p9]

I
G

[p1]

[p2,p4]
C

[p5,p3]

B
[p5,p4]

B

C
[p7]D

[p10]
F

E

[p8]
F

[p6]D

[p9]I
G

[p1]

[p5,p3]

[p5,p4]

[p4,p2]

B C

C B

F

E
F

G
I

D

D

[p7]
[p8] [p9]

[p10]

[p6]

⟹

⟹

Remove Tau Transitionstau

p1

D

p2

E

p3

F

p4

I

p5

Gp6

p7

p8

p9

p10

tau

F

B C

p10

"

p8

E F

p7

p4

C

p3p2

B

p5

p6

p1

D

I

p9

G

Petri Net

F

"

[p3,p2]

[p5,p3]

[p4,p2]

[p5,p4] [p6]

[p7]
[p8]

[p10]

[p9][p1]

B

C

C

B

"
D F

G
I

Reachability Graph

E

"

Fig. 4. Petri net obtained from the BPMN model in Fig. 2, and its tau-less reachability graph.

3.4 Error-correcting synchronised product

The computation of similar and deviant behavior between an event log and a process
model is based on an error-correcting synchronized product (a.k.a. PSP) [5]. Intuitively,
the traces represented in the DAFSA are “aligned” with the executions of the model by
means of three operations: (1) synchronized move (match), the process model and the
event log can execute the same task/event w.r.t. label; (2) log operation (lhide), an event
observed in the log cannot occur in the model; and (3) model operation (rhide), a task
in the model can occur, but the corresponding event is missing in the log.

Both a trace in a log and an execution represented in a reachability graph are totally
ordered sets of events (sequences). Then, an alignment aims at matching events from
both sequences that represent the same tasks w.r.t. their labels, such that the order be-
tween the matched events is preserved. For example, given a trace in a log hB,D,Ei and
an execution in a model hD,B,Ei, it is possible to match the events with label E, and
either the events with label B or the events with label D, but not both. An event that is
not matched has to be hidden using the operation lhide if it belongs to the log, or rhide
if it belongs to an execution in the model.

Scalable Conformance Checking of Business Processes 9

In our context, the alignments are computed over a pair of finite state machines, a
DAFSA and a reachability graph, therefore the three operations: match, lhide and rhide,
are applied over the arcs of both FSMs. An operation applied over a pair of arcs (one
in the DAFSA and one in the reachability graph) is called a synchronization. Note that
lhide and rhide are applied only over one arc, thus we use ? to denote the absence of
the other element in the triplet.

Definition 7 (Synchronization). Let AD and AR be the arcs in the DAFSA and in the
reachability graph, respectively. A synchronization b is a triplet b ✓ op⇥AD ⇥AR ,
where op 2 {match, lhide,rhide}. The set of all synchronizations is denoted as S.

All possible alignments between the traces represented in a DAFSA and the execu-
tions represented in a reachability graph can be computed inductively as follows. The
construction starts by pairing the initial states of both FSMs and then applying the three
defined operations over the events that can occur in the DAFSA and in the reachabil-
ity graph – each application of the operations (synchronization) yield a new pairing of
states. Note that the alignments between (partial) traces and executions are implicitly
computed as sequences of synchronizations. Then, an alignment is defined as follows.

Definition 8 (Alignment). Given a set of synchronizations S, an alignment is defined
as e = hb1, ...,bni with bi 2 S,1 i n. All the possible alignments are denoted as C .

Given an alignment e = hb1,b2, . . . ,bmi, we use ê to denote the aligned trace in
the log, i.e., ê = hl1, l2, . . . , lni, such that for any li, l j, where 1  i < j  n, there exist
bx = (opx,(bs, li,bt),a2) and by = (opy,(bv, l j,bw),a3) in e , where 1 x< ym, opx 2
{match, lhide} and opy 2 {match, lhide}. In case there exists bx but no by, ê = hlxi, and
in case there exists no bx, ê is the empty sequence hi. Thus, ê is a sequence of log task
labels, that have been aligned in e with match or lhide operations.

All alignments can be collected in a finite state machine called PSP [5]. Every state
in the PSP is a triplet (n,m,e), where n is a state in the DAFSA, m is a state in the
reachability graph and e is the (partial) alignment of the events occurred at n and m;
every arc is a synchronization; the pairing of the initial states is the initial state; and the
finial states are those with no outgoing arcs.

Definition 9 (PSP). Given a DAFSA D and a reachability graph R, their PSP P is
a finite state machine P = (NP ,AP ,sP ,RP), where NP ✓ ND ⇥M⇥C is the set
of nodes, AP = NP ⇥ S⇥NP is the set of arcs, sP = (sD ,m0,hi) 2 NP is the initial
node, and RP = {f 2 NP | fI=?} is the set of final nodes.

The PSP contains all possible alignments, however we are interested in those con-
taining the minimum amount of hides for each trace in the log. These alignments are
called optimal. The computation of all optimal alignments can become infeasible when
the search space is too large. Thus, we use an A⇤ algorithm [16] to consider the most
promising paths in the PSP first, i.e., those minimizing the number of hides. Given an
event log L , the resulting PSP is complete and minimal, since it contains only the
optimal alignments for every trace c 2 L . The cost function for our A⇤ algorithm is
r(x,c) = g(x)+h(x,c), where x is a node in the PSP and c is a trace in the log.

10 D. Reißner et al.

Algorithm 2: Construct the PSP
input: Event Log L , DAFSA D , Reachability Graph R

1 for c 2L do
2 s {(sP ,r(sP ,c))};
3 rmax | c |+ minModelSkips;
4 while s 6=? do
5 choose a tuple (nact = (nD ,m,e),r) 2 s , such that @(n0P ,r 0) 2 s : r > r 0;
6 s s \{(nact ,r)};
7 if nD 2 RD ^m 2 RR ^ ê = c then
8 if r(nact ,c)< rmax then
9 rmax r(nact ,c);

10 Opt ?;
11 s {(n,r(n,c)) 2 s | r(n,c) rmax}
12 Opt Opt[{nact};
13 else
14 nnew ?;
15 for aD = (nD , lD ,nt) 2 nDI | lD = c(|{b = (op,aD ,aR) 2 e | op 6= rhide}|+1)4 do
16 nnew nnew [{(nt ,m,e� (lhide,aD ,?))};
17 for aR = (m, lR ,mt) 2 mI | lR = lD do
18 nnew nnew [{(nt ,mt ,e� (match,aD ,aR))}

19 for aR = (m, lR ,mt) 2 mI do nnew nnew [{nD ,mt ,e� (rhide,?,aR))} ;
20 s s [{(nnext ,r(nnext ,c)) | nnext 2 nnew ^r(nnext ,c) rmax};

21 for f 2 Opt do InsertIntoPSP(f ,c,P) ;

22 return P;

The current cost function of a state x = (n,m,e) is g(x) =
|{(op,a1,a2) 2 e | op 6= match}\{(rhide,?,(bs, l,bt)) 2 e | l = t}|, i.e., the num-
ber of hide operations in an alignment without the operations over the ts. The
heuristics function h(x,c) = min{

��FLog(x,c)\ fModel
�� +

�� fModel \FLog(x,c)
��}, such

that fModel 2 FModel(x), gives an optimistic approximation of the least amount of
hide operations required to match the remaining labels in a trace c. In this formula
FLog(x,c) represents the future task labels of a trace, such that given x = (n,m,e), then
FLog(x,c) = MultiSet(c) \MultiSet(ê), i.e., the multiset representation of c minus the
labels of the trace matched or hidden so far.3 The future labels in the model FModel(n)
are computed with a bottom-up traversal on the strongly connected components of the
reachability graph, where the multisets of task labels are collected and stored in each
node of the graph. Observe that h assumes that all events with the same label in FLog
and fModel are matched, this is clearly an optimistic approximation, since some of the
those matches might not be possible; then the optimistic approximation computed by h
signifies an admissible heuristics for the A⇤-search, which guarantees the optimality of
the computed alignments.

Algorithm 2 shows the procedure to build the PSP, where an A⇤ search is applied
to find the optimal alignments for each trace in a log. The algorithm chooses a node
with minimal cost r , such that if it represents the alignment of a complete trace and the
pairing of two final states (one in the DAFSA and one in the reachability graph), then it
is marked as an optimal alignment. Otherwise, the search continues by applying lhide,
rhide and match. As shown in [15], the complexity for constructing the PSP is in the

3 MultiSet retrieves the multiset representing the labels in a trace or the labels of a set of arcs.
4 c(i) is the operator in Z notation [14] to obtain the ith element in a sequence.

Scalable Conformance Checking of Business Processes 11

Algorithm 3: Construct the PSP with Prefix- and Suffix Memoization
. replace line 2 with the following block:

. Reuse common prefix alignments
for i = 1! |c| do s s [{(nnext ,r(nnext ,c)) | nnext 2 PrefixTable(c for i)}5;
if s =? then s s [{(sP ,r(sP ,c)} ;

. replace line 14 with the following block:

. Reuse common suffix alignments
suff act c after |{b = (op,aD ,aR) 2 e | op 6= rhide}|6;
nnew {(fD , fR ,e�gsuff) | (fD , fR ,gsuff) 2 SuffixTable(nD ,m,suff act)};
s s [{(nnext ,r(nnext ,c)) | nnext 2 nnew};
if nnew 6=? then continue ;

order of O(3|ND |·|M|) where ND is the set of states in the DAFSA and M is the set of
reachable markings of the Petri net.

In order to cope with the complexity of the computation of the PSP, we propose an
optimization based on two memoization tables: prefix and suffix memoization tables.
Both tables store a set of partial trace alignments for common prefixes and suffixes that
have been aligned previously. The tables are constructed incrementally by identifying
common prefixes/suffixes after the alignment of each trace and storing the correspond-
ing partial trace alignments. The integration of these tables requires the modification of
Algorithm 2, as shown in Algorithm 3. For each trace c, the algorithm starts by checking
if there is a common prefix for c in the prefix memoization table. If this is the case, the
A⇤ starts from the nodes after all partial trace alignments for this common prefix instead
of the initial node. In the case of common suffix memoization, the algorithm checks at
each iteration whether the current pair of nodes and the current suffix is stored in the
suffix memoization table. If this is the case, the algorithm appends nodes to the A⇤
search for each pair of memoized final nodes and appends all partial suffix alignments
to the current alignment instead of continuing the regular search procedure. By reusing
the information stored in these tables, the search space for the A⇤ is reduced.

The approach illustrated so far produces a PSP containing all optimal alignments.
Nevertheless, if only one optimal alignment is required, then the algorithm can be easily
modified to stop as soon as the first alignment is found. Overall, the complexity of the
proposed approach consists of the construction of the DAFSA, the construction of the
reachability graph and the computation of the PSP, therefore it is exponential in the
worst case, i.e. O(|L| · logn+2|P[T |+3|ND |·|M|). The technique presented in this paper
does not intend to lower the complexity class for the problem of trace alignment, but
rather to implement a more efficient solution within the same complexity class.

Figure 5 shows the PSP obtained by synchronizing the DAFSA of the loan ap-
plication process in Fig. 3 and the t-less reachability graph of Fig. 4, we remind the
reader that a PSP represents the synchronization of the whole log. To understand its
construction let us consider the sample trace hB,D,Ei. Starting from the source node we
have g(n) = 0, FLog(n,c) = {B1,D1,E1}, and FModel(n) = {B1,C1,D1,E1}. The A⇤ will

5 for in Z notation [14] to obtain the first i elements of a sequence.
6 after in Z notation [14] to obtain the elements after the first ith elements of a sequence.

12 D. Reißner et al.

Nodes: (0 ; [p1])
Alignment:

< >

Nodes: (4 ; [p4,p2])
Alignment:

< (match,C) >

Nodes: (5 ; [p3,p5])
Alignment:

< (match,B) >

Nodes: (0 ; [p4,p2])
Alignment:

< (rhide,C) >

Nodes: (5 ; [p4,p5])
Alignment:

< (match,C), (match,B)
>

Nodes: (5 ; [p4,p5])
Alignment:

< (rhide,C), (match,B)
>

Nodes: (6 ; [p7])
Alignment:

< (match,C), (match,B),
(match,D) >

Nodes: (6 ; [p7])
Alignment:

< (match,B) , (rhide,C) ,
(match,D) >

Nodes: (6 ; [p7])
Alignment:

< (rhide,C) , (match,B) ,
(match,D) >

Nodes: (3 ; [p10])
Alignment:

< (match,C) , (match,B) ,
(match,D) , (match,F) >

Nodes: (3 ; [p10])
Alignment:

< (match,C), (match,B), (match,D),
(match,E) >

< match : C >

< match : B
>

< rhide : C
>

< match : B
>

< rhide : C
>

< match : B
>

< match : D >

< match : D >

< match : D >

Nodes: (5 ; [p4,p5])
Alignment:

< (match,B), (rhide,C)
>

Nodes: (3 ; [p10])
Alignment:

< (match,B) , (rhide,C) , (match,D)
, (match,E) >

Nodes: (3 ; [p10])
Alignment:

< (rhide,C), (match,B), (match,D),
(match,F) >

Nodes: (3 ; [p10])
Alignment:

< (rhide,C) , (match,B) , (match,D)
, (match,E) >

Nodes: (3 ; [p10])
Alignment:

< (match,B) , (rhide,C) , (match,D)
, (match,F) >

Fig. 5. The PSP for our loan application process example.

compute the cost of performing the following possible synchronizations: (match,B),
(lhide,B) (rhide,B), and (rhide,C). Out of these four possibilities it will only explore
(match,B)7 and (rhide,C) which have a cost of one. Both (rhide,B)8 and (lhide,B)
will never be explored since they have a cost of three and there exist nodes with a lower
cost. The A⇤ will continue exploring the possible synchronizations until all optimal
alignments are discovered, which are found in nodes f3 and f5 for the trace hB,D,Ei .

3.5 Extracting Behavioral Mismatch Statements

In the previous section, we presented a scalable approach to discover a complete set of
optimal alignments between an event log and a Petri net. While it is general practice
to assess these alignments one-by-one or to aggregate them into a single metric [2],
Garcı́a-Bañuelos et al. [15] showed that practitioners prefer to reason in terms of natural
language statements when investigating behavioral issues.

Garcı́a-Bañuelos et al. [15] defined nine mismatch patterns over the PSP for the
generation of natural language statements, which characterize behavior present in the
log and missing in the model and vice versa. Out of these nine mismatch patterns we
only support the seven patterns related to unfitting behavior. The detection of patterns
related to additional model behavior is out of the scope of this paper.

Differences related to unfitting behavior can be divided into relation mismatch pat-
terns and event mismatch patterns. On the one hand, relation mismatch patterns com-
prise cases when a pair of events in the log has a different behavior relation (sequence,
concurrency, conflict) than the corresponding events in the model. E.g., it is possible to
obtain statements such as: In the log, after “A”, “B” occurs before “C”, while in the
model they are concurrent or In the model, after “A”, “B” occurs before “C”, while

7 In case of (match,B) we have a current cost of zero since it is a match (i.e. g(n) = 0), and a
future cost of one (i.e. h(n,c) =

��{D1,E1}\{C1,D1,E1}
��+

��{C1,D1,E1}\{D1,E1}
��= 1).

8 In case of (rhide,B) we have a current cost of one since it is a hide (i.e. g(n) = 1), and a future
cost of two (i.e. h(n,c) =

��{B1,D1,E1}\{C1,D1,E1}
��+

��{C1,D1,E1}\{B1,D1,E1}
��= 2).

Scalable Conformance Checking of Business Processes 13

in the log they are mutually exclusive”. On the other hand, event mismatch patterns
characterize all other cases of unfitting behavior; e.g., In the log, after “A”, “B” is op-
tional or In the model, “A” occurs after “B” instead of “C”. In the running example,
we return the statement In the model, “C” occurs after “B” and before “D”. A detailed
description of each pattern and their verbalization can be found in [15].

Given that our technique uses the same PSP as in [15], we adapt their algorithm for
the generation of behavioral mismatch statements. Similar to the original approach, we
rely on an oracle for the computation of concurrency relations between events in a log.
We use the local concurrency oracle presented in [6], however other oracles can be used,
e.g, a+ relations [13]. The approach in [6] helps to alleviate the generalisation of the
behavior while computing potential concurrent behavior from a log. Roughly speaking,
the local concurrency oracle delimits the scope of a concurrency relation between pairs
of events to a pair of execution states. Thus, during the generation of statements, the
oracle requires a pair of events, as well as an execution state, and outputs true if the
given events can occur concurrently at that particular state, or false otherwise.

4 Evaluation

The presented approach was implemented as a standalone tool.9 Given a log in XES
or MXML format and a model in BPMN or PNML format, the tool returns a list of
one or all-optimal alignments, and the list of behavioral mismatch statements. Other
structures, such as the DAFSA, reachability graph and PSP, can be also retrieved.

The conducted set of experiments measure the quality and time performance of our
approach in comparison with the trace alignment approach. Our approach was com-
pared against the ProM [33] plugin “Replay a Log on Petri Net for Conformance Check-
ing”10 [3] for one-optimal trace alignment, and against “Replay a Log on Petri Net for
All Optimal Alignments” [3] for the case of all-optimal. This latter plugin relies on
different baseline algorithms, but only the “Tree-based state space replay for all opti-
mal alignments” algorithm actually aims at generating all-optimal alignments; however
it also returns non-optimal results. Therefore, non-optimal results were filtered out in
a post-processing step, i.e., those with bigger cost than the optimal computed by the
one-optimal trace alignment (this step was not included in the performance measure).
The behavioral alignment approach based on event structures was not included in the
evaluation, since this approach showed to be generally slower than trace alignment [15].

The performance was measured in terms of execution time (ms) and quality of the
results (number of optimal alignments). The alignments are considered optimal when
they have the same cost as one optimal trace alignment. Given that the computation of
all-optimal trace alignments oftentimes ran for hours before running out of memory,
we use two bounds in the experiments: a time bound of 5 minutes (after 10 minutes the
alignment will also continue for 12 hours [23]) and a state exploration bound of 100,000
states. Hence, we report on all optimal alignments found for each approach until one of
the bounds is reached or until termination. The experiments were conducted on a 6-core
Xeon E5-1650 3.50Ghz with 128GB of RAM running JVM 8.

9 Available from http://apromore.org/tools

10 “A* Cost-based Fitness Express with ILP, assuming at most 32,767 tokens in each place”.

14 D. Reißner et al.

4.1 Datasets

The experiments use three model-log pairs. The first pair is a (publicly available) dataset
of a real-life Italian road fines management process (hereafter RTFMP) [12], its norma-
tive description is presented in [20], whereas its model is presented in [15].

The second dataset is the real-life log “closed problems” of the BPI Challenge 2013
(hereafter BPIC13 cp.) [28] This log originates from an IT incident and problem man-
agement system used at Volvo. From this log, the model was discovered using Struc-
tured Miner [8]. The log was preprocessed with a noise filter [9]. The resulting model
is sound (a requirement for both approaches11). In this case the model generated by the
Structured Miner has high precision, in contrast to the model discovered by other tech-
niques, such as Inductive Miner [17] that generates an over-generalized model, causing
state space explosion when computing all alignments.

The third dataset is the SAP R/3 collection [10], a repository of 604 EPCs doc-
umenting the reference model to customize the R/3 ERP product. The models were
converted into Petri nets and those with behavioral issues (i.e. unsound models) were
filtered out. The event logs were generated from the remaining models using the ProM
plugin “Generate Event Log from Petri Net” [30]. This plugin produces unique traces
for each possible execution in the model. Next, we filtered out all logs with less than ten
unique traces, since such small logs are not useful to measure scalability. This resulted
in 120 pairs of real-life models and logs. Additional event logs were created with dif-
ferent levels of noise (2.5%,5%,7.5%,10%). For that, we duplicated each unique trace
in the logs tenfold to maintain the original behavior and used the noise generator tool in
[9] to create the noisy logs. This tool inserts events into randomly chosen traces, such
that new directly-follows dependencies are created until the noise threshold is reached.
The reason for inserting noise is because otherwise there is a perfect fit between the log
and the model, and hence the output of the conformance checking is empty, which does
not help to test for scalability.

Table 1 provides descriptive statistics of the datasets. The size of the models and
of their reachability graphs (R) correspond to the number of places and transitions,
and nodes and arcs, respectively. For the SAP R/3 collection, we report the average
and standard deviation for the event logs and models, for each noise level. The last
column reports on the time required for constructing the reachability graph plus that for
removing tau transitions for the given models.

Dataset Events Unique events Traces Unique traces Model size R size R time (ms)
RTFMP 561,470 12 150,370 231 35 33 16
BPIC13 cp. 6,660 5 1,487 183 28 9 96
SAP R/3 2.5% 37,580 (±116,515) 15 (±5) 2,795 (±7,897) 1,062 (±3,192) 49 (±16) 128 (±79) 4 (±3)
SAP R/3 5% 38,569 (±119,581) 15 (±5) 2,795 (±7,897) 1,551 (±4,830) 49 (±16) 128 (±79) 4 (±3)
SAP R/3 7.5% 39,612 (±122,813) 15 (±5) 2,795 (±7,897) 2,075 (±6,147) 49 (±16) 128 (±79) 4 (±3)
SAP R/3 10% 40,712 (±126,225) 15 (±5) 2,795 (±7,897) 2,342 (±6,966) 49 (±16) 128 (±79) 4 (±3)

Table 1. Descriptive statistics of the event logs and models.

11 Strictly speaking, trace alignment requires easy-soundness while our approach requires safe-
ness. However both requirements are satisfied by soundness.

Scalable Conformance Checking of Business Processes 15

4.2 Results

Table 2 reports the number of optimal alignments and execution times for each con-
formance checking approach (for the SAP R/3 datasets, we report on the average and
the upper bound of the 95% confidence interval for these measurements). To ensure
comparability of the results we only count the alignments for our approach (shortened
as DAFSA in the table) with the same cost as trace alignment, i.e. the same number of
asynchronous moves. However, our approach did not detect any additional non-optimal
alignments.

In the case of one-optimal, our approach always returned the same number of align-
ments as trace alignment. Both approaches are expected to find one-optimal alignment
per unique trace of an event log, thus the number of alignments and the number of
unique traces is the same. However, there is no intuitive expectation for all-optimal
alignments. In this regard, our approach found many more optimal alignments than trace
alignment within the same state space and time bounds. For example, on the RTFMP
log, our approach found 467 alignments instead of 338 returned by trace alignment.
This difference increases substantially in the other datasets: in logs with high noise
levels (SAP R/3 7.5 and 10%), our approach returned up to five times the number of
all-optimal alignments than trace alignment. This is due to the reuse of partial trace
alignments (prefix and suffix memoization). Our approach scaled well to the number of
unique traces and to the amount of unfitting behavior observed in the logs. Additionally,
(all-optimal) trace alignment suffers from reporting non-optimal results that have to be
filtered in a preprocessing step12 (unfiltered results are reported in square brackets).
Thus, our approach was capable of finding a more complete set of alignments.

Comparing the execution times for the all-optimal variants, our approach outper-
forms the tree-based trace alignment approach by 1-2 orders of magnitude. For example,
our approach took 125 milliseconds to compute all alignments for the RTFMP dataset,
as opposed to 52 seconds for trace alignment. Additionally, trace alignment times out
in 207 out of 480 cases for the SAP dataset, while our approach only timed out in two
cases (trace alignment also timed out in these two cases). Our one-optimal variant per-
forms 1.5 to nearly 40 times faster (trace alignment timed out in 2 cases for the SAP
datasets, while our approach never timed out). Only in the BPIC13 cp. dataset the trace
alignment outperformed our approach by nearly a factor two. The process model in this
dataset contains a large state space due to the presence of nested loops, which can lead
to a combinatorial state space to be explored by the A⇤ algorithm. Thus, when the esti-
mation of our heuristics is imprecise due to complex loop structures, the memory and
time requirements increase. Conversely, trace alignment uses a more accurate heuristic
function, which leads to outperforms our approach in the BPIC13 cp. dataset. In short,
the execution times positively correlate with the number of unique traces in a log, both
approaches, DAFSA and trace alignment, apply an A⇤ algorithm for each unique trace.
Our approach scales better in the case of more complex SAP R/3 logs, which exhibit
a very high number of unique traces compared to the RTFMP and BPIC13 cp., as per
Table 1. Our approach calculates all optimal alignments in less than ten seconds, while

12 An alignment was filtered if it had a higher cost than that computed by one-optimal alignment
or if it represented the swap of the label of an invisible task with that of a visible one.

16 D. Reißner et al.

Optimal alignments
(upper bound of 95% confidence interval)

Execution time (ms)
(upper bound of 95% confidence interval)

All optimal One optimal All optimal One optimal
Dataset DAFSA Trace align. [#unfiltered] DAFSA Trace align. DAFSA Trace align. DAFSA Trace align.
RTFMP 467 338 [1,898,182] 231 231 125 52,041 56 1,844
BPIC13 cp. 28,656 22,259 [1,904,057] 183 183 5,360 50,160 453 260

SAP R/3 2.5% 4,253
(22,675)

1,233 [1,067,533]
(6,470 [1,929,629])

1,062
(7,319)

1,062
(7,319)

1,102
(7,778)

127,013
(300,000)

814
(6,132)

1,800
(12,891)

SAP R/3 5% 7,672
(41,133)

1,751 [1,224,079]
(9,178 [2,199,248])

1,551
(11,019)

1,551
(11,019)

2,832
(28,040)

150,017
(300,000)

1,718
(18,696)

3,415
(25,857)

SAP R/3 7.5% 11,652
(61,504)

2,154 [1,283,583]
(14,207 [3,039,240])

2,075
(14,122)

2,075
(14,122)

3,208
(19,502)

163,593
(300,000)

2,083
(12,912)

4,967
(58,961)

SAP R/3 10% 15,754
(84,167)

2,809 [1,286,568]
(22,883 [3,302,068])

2,342
(15,996)

2,342
(15,996)

8,204
(75,643)

173,438
(300,000)

3,480
(25,371)

7,365
(66,003)

Table 2. Evaluation results.

trace alignment reaches the time bound of five minutes on average in every second
model-log pair for the same dataset.

In our approach, a trade-off between the execution time and number of alignments
is observed from the comparison of the results of one-optimal versus all-optimal. It is
more obvious when the amount of unfitting behavior increases. E.g., in the logs SAP R/3
with 10% noise level, our approach took, on average, five seconds longer for computing
all-optimal alignments than one-optimal, but returns ten times more alignments.

The extraction of behavioral mismatch statements shows that a large number of
alignments can be represented by a significantly smaller, yet interpretable, number of
statements. E.g., 3,295 all-optimal alignments in the BPIC13 cp. dataset can be summa-
rized with only 14 statements, and reduced to eight statements in the case of one-optimal
alignment. In the RTFMP dataset, 120 statements were computed from 467 all-optimal
alignments, whereas only 69 statements were computed for the one-optimal variant.
Some example statements are:

– In the log, after “Insert Fine Notification”, “Payment” occurs before task “Add
penalty”, while in the model they are mutually exclusive.

– In the log, after “Add penalty”, “Payment” is substituted by “Send Appeal to Pre-
fecture”.

5 Conclusion

We showed that the problem of conformance checking can be mapped to that of com-
puting a minimal error-correcting product between an automaton representing the event
log (its minimal DAFSA) and an automaton representing the process model (its reach-
ability graph). The resulting product automaton can be used to produce sets of optimal
alignments between each trace in the log and a corresponding trace in the model, or even
statements capturing behavioral relations (e.g. conflict relations) observed in a state of
the DAFSA but not captured in the corresponding state in the model.

The use of a DAFSA to represent the event log allows us to benefit from both pre-
fix and suffix compression of the traces in the log. This is a distinctive feature of the
proposal with respect to trace alignment, which computes an alignment between each
trace in the log and the model, without any reuse across traces. Due to this distinctive
feature, our approach addresses some of the scalability issues of existing conformance

Scalable Conformance Checking of Business Processes 17

checking techniques allowing more interactivity in redesigning process models with
conformance issues. The approach can be employed to assess the quality of automated
process model discovery techniques, as well as used as the cornerstone technique for
process model repair.

The empirical results show that the execution times of our approach are one to two
orders of magnitude faster than those of the all-optimal trace alignment method. When
restricted to the problem of computing one alignment per trace (one-optimal alignment),
our approach generally but not always outperforms the baseline [2]. This is attributable
to the fact that the latter uses a tight heuristic function, whereas the heuristic function we
use over-approximates in some cases. Designing a better heuristic function is a direction
for future work. The ideas in [2] are not directly transposable as the heuristic function
in our approach needs to compute a bound starting from a state of the whole log (the
DAFSA), while [2] does so for one trace at a time.

In this paper, we focused on the problem of identifying unfitting log behavior. A
possible avenue for future work is to extend the approach to detect additional model
behavior, by adapting the ideas proposed in [15] in the context of event structures.

Finally, the empirical evaluation, while based on synthetic and real-life models and
logs, is limited in that it only covers models with sizes of up to 50 tasks and logs with
up to ca. 2.5K distinct traces. Conducting a more thorough evaluation with even larger
process models and event logs is another avenue for future work.

Acknowledgments. This research is partly funded by the Australian Research Council
(grant DP150103356) and the Estonian Research Council (grant IUT20-55).

References

1. A. Adriansyah, J. Muñoz-Gama, J. Carmona, B.F. van Dongen, and W.M.P. van der Aalst.
Measuring precision of modeled behavior. ISeB, 13(1):37–67, 2015.

2. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Conformance checking using
cost-based fitness analysis. In Proc. of EDOC, pages 55–64. IEEE, 2011.

3. A. Adriansyah, B.F. van Dongen, and W.M.P. van der Aalst. Memory-efficient alignment of
observed and modeled behavior. BPM Center Report, 2013.

4. A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, TU/e, 2006.
5. A. Armas-Cervantes, P. Baldan, M. Dumas, and L. Garcı́a-Bañuelos. Diagnosing behav-

ioral differences between business process models: An approach based on event structures.
Information Systems, 56, 2016.

6. A. Armas-Cervantes, M. Dumas, and M. La Rosa. Discovering local concurrency relations
in business process event logs. eprint # 102438, QUT, 2016.

7. A. Armas-Cervantes, M. La Rosa, M. Dumas Menjivar, L. Garcı́a-Bañuelos, and N.R. van
Beest. Interactive and incremental business process model repair. eprint # 106611, QUT,
2017.

8. A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno. Automated discovery of
structured process models: Discover structured vs. discover and structure. In Proc. of ER,
LNCS 9974. Springer, 2016.

9. R. Conforti, M. La Rosa, and A.H.M. ter Hofstede. Filtering out infrequent behavior from
business process event logs. IEEE TKDE, 29(2):300–314, 2016.

10. T. Curran and G. Keller. SAP R/3 Business Blueprint: Understanding the Business Process
Reference Model. Upper Saddle River, 1997.

18 D. Reißner et al.

11. J. Daciuk, S. Mihov, B.W. Watson, and R.E. Watson. Incremental construction of minimal
acyclic finite-state automata. Computational linguistics, 26(1):3–16, 2000.

12. M. de Leoni and F. Mannhardt. Road traffic fine management process, 2015.
13. Ana Karla A de Medeiros, Wil MP van der Aalst, and AJMM Weijters. Workflow mining:

Current status and future directions. In Proc. of OTM, pages 389–406. Springer, 2003.
14. A. Diller. Z: An introduction to formal methods. John Wiley & Sons, Inc., 1990.
15. L. Garcı́a-Bañuelos, N. van Beest, M. Dumas, M. La Rosa, and W. Mertens. Complete and

interpretable conformance checking of business processes. IEEE TSE, 43, 2017. In press.
16. P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of

minimum cost paths. IEEE TSSC, 4(2):100–107, 1968.
17. S. Leemans, D. Fahland, and W. van der Aalst. Discovering block-structured process models

from event logs - a constructive approach. In Proc. of Petri Nets, LNCS. Springer, 2013.
18. Sander JJ Leemans, Dirk Fahland, and Wil MP van der Aalst. Scalable process discovery

and conformance checking. Software & Systems Modeling, pages 1–33, 2016.
19. Richard Lipton. The reachability problem requires exponential space. Research Report 62,

Department of Computer Science, Yale University, New Haven, Connecticut, 1976.
20. F. Mannhardt, M. de Leoni, H.A. Reijers, and W.M.P. van der Aalst. Balanced multi-

perspective checking of process conformance. Computing, 98:407–437, 2016.
21. E.W. Mayr. An algorithm for the general petri net reachability problem. SIAM Journal on

computing, 13(3):441–460, 1984.
22. J. Muñoz-Gama and J. Carmona. A fresh look at precision in process conformance. In Proc.

of BPM, pages 211–226. Springer, 2010.
23. J. Muñoz-Gama, J. Carmona, and W.M.P. van der Aalst. Single-entry single-exit decomposed

conformance checking. Inf. Syst., 46:102–122, December 2014.
24. Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,

77(4):541–580, 1989.
25. A. Polyvyanyy, W.M.P. Van Der Aalst, A.H.M. Ter Hofstede, and M.T. Wynn. Impact-

driven process model repair. ACM Transactions on Software Engineering and Methodology
(TOSEM), 25(4):28, 2016.

26. A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes based on moni-
toring real behavior. Inf. Syst., 33(1):64–95, 2008.

27. W. Song, X. Xia, H.A. Jacobsen, P. Zhang, and H. Hu. Efficient alignment between event
logs and process models. IEEE Transactions on Services Computing, 10(1):136–149, 2017.

28. W. Steeman. Bpi challenge 2013, closed problems, 2013.
29. B. van Dongen, J. Carmona, T. Chatain, and F. Taymouri. Aligning modeled and observed

behavior: a compromise between complexity and quality. In Proc. of CAiSE. Springer, 2017.
30. S. vanden Broucke, J. De Weerdt, J. Vanthienen, and B. Baesens. An improved process event

log artificial negative event generator. Technical Report KBI 1216, KU Leuven, 2012.
31. S.K.L.M. vanden Broucke, J. De Weerdt, J. Vanthienen, and B. Baesens. Determining

process model precision and generalization with weighted artificial negative events. IEEE
TKDE, 26(8):1877–1889, 2014.

32. S.K.L.M. vanden Broucke, J. Munoz-Gama, J. Carmona, B. Baesens, and J. Vanthienen.
Event-based real-time decomposed conformance analysis. In Proc. of OTM, pages 345–363.
Springer, 2014.

33. HMW Verbeek, JCAM Buijs, BF Van Dongen, and Wil MP van der Aalst. Prom 6: The
process mining toolkit. Proc. of BPM Demonstration Track, 615:34–39, 2010.

