Scalable Connectivity Processor for Computer Music Performance Systems
Rimas Avizienis, Adrian Freed, Takahiko Suzuki & David Wessel

Center for New Music and Audio Technologies (CNMAT)
University of California Berkeley
1750 Arch St., Berkeley, CA 94709
{rimas, adrian, takahiko, wessel} @cnmat.berkeley.edu, www.cnmat.berkeley.edu
Abstract

Standard laptop computers are now capable of sizeable quantities of sound synthesis and sound processing, but low-latency, high quality,
multichannel audio I/O has not been possible without a cumbersome external card cage. CNMAT has developed a solution using the
ubiquitous 100BaseT Ethernet that supports up to 10 channels of 24-bit audio, 64 channels of sample-synchronous control-rate gesture
data, and 4 precisely time-stamped MIDI I/O streams. Latency measurements show that we can get signals into and back out of Max/MSP
in under 7 milliseconds. The central component in the device is a field programmable gate array (FPGA). In addition to providing a
variety of computer interface capabilities, the device can function as a cross-coder for a variety of protocols including GMICS. This pa-
per outlines the motivation, design, and implementation of the connectivity processor.

1. Context and Prior Work

Hardware development for computer music performance sys-
tems has followed the standard pattern of technology evolution
passing through the first two phases of design focus, function
and price, to the final phase: usability. We have identified size
and connectivity as primary usability issues for computer music
performance systems. Laptop computers have recently become
available with fast signal processing capabilities at a moderate
cost and although their size makes them very attractive for musi-
cal performance, their constrained expansion capabilities limit
connectivity. Currently there are no commercially available,
low-latency, high-reliability, compact, multi-channel audio solu-
tions for laptop computers. Furthermore the architecture of cur-
rent laptops and most computers makes it impossible to syn-
chronize acquired gestural data and sound /O to satisfy the low
latency/jitter needed for satisfactory reactive performance sys-
tems: 10+1ms (Freed, et al., 1997). The 10 ms latency criterion
is not difficult to meet, but a maximum latency variation of
+1ms is difficult to achieve, especially when the stimulus gesture
is represented as a MIDI event or a low rate signal from a non-
sample-synchronous input source like a data acquisition card
rather than a sample-synchronized audio input signal. The only
computers with the requisite unified clock management and
operating systems support for such tight synchronization are
from Silicon Graphics. Unfortunately, even the smallest configu-
rations of their machines, the O2 and Octane are too large and
expensive for most performing musicians.

One of our key design goals was to eliminate virtually all latency
variation in low sample rate inputs like those from gestural input
devices.

2. Introduction

We introduce here a new connectivity processor which solves
the synchronization problem mentioned above and is readily
connected to a laptop or any computer system with a 100BaseT
Fast Ethernet port or digital audio port such as ADAT or
AES/EBU.

The conventional approach for building a system to integrate
gesture and sound is to combine a microcontroller, a DSP chip
with A/D and D/A converters, and network interface chips for

MIDI, Ethernet, AES/EBU, etc. Although this approach lever-
ages the strengths of each chip, each processor comes with its
own specialized low-level programming tools and development
systems which complicate development and ultimately add cost
as each chip has its own requirements for surrounding memory
and associated glue chips to integrate these components.

Our alternative, more flexible approach supports scalable im-
plementations from a few channels of audio and gestures to hun-
dreds of channels by integrating all digital functions on a single
field programmable gate array (FPGA). These functions are
determined by compiling high-level hardware descriptions in
VHDL into FPGA configurations (Skahill, 1996). VHDL is a
acronym for VHSIC Hardware Description Language where
VHSIC is an acronym for Very High Speed Integrated Circuits.
This approach allows the considerable investment in developing
the interface logic to each peripheral to be easily leveraged on a
wide variety of FPGA's from different vendors and of different
sizes up to millions of gates. FPGA’s are a better match in this
application than signal processors or general-purpose microproc-
essors because most of the communication protocols needed in
multimedia and gesture systems are bit-serial. Signal processors
and general-purpose processors operate on bytes and words and
are not as well adapted to high-speed bit-serial protocols.

We have developed and tested VHDL descriptions for process-
ing serial audio data for the SSI, S/PDIF, AES/EBU, AES-3, and
ADAT industry standards. For gestural transductions we have
VHDL modules that communicate with multichannel A/D con-
verters, MIDI, and RS232 and RS422 serial ports. Although
others have previously developed hardware language descrip-
tions of many of these protocols for proprietary systems, our
library of modules represents the first complete, independent
suite available in VHDL. Our library also includes the glue to
conform the asynchronous clocks required by each module to a
unified synchronous sample rate clock. Our suite makes possible
some unusual cross-coding strategies such as embedding ges-
tural data in audio streams, thereby increasing temporal preci-
sion by exploiting isochronous data paths in the control proces-
SOr.

Your Laptop

100 baseT UDP
PHY
25 mega Hertz Crystal
Clock CS 8952 32 Kbytes SRAM
’ / 15 nano sec.
XILINX g Virtex FPGA by XILINX Clocks
XC9536 XCV - 100 <
‘ - 12.288,
; 100,000 gates 11.2896,
Socketed EPROM 16.000 mega Hertz
PHY Low - Rate || MIDII/O || Crystal 8427 | | Optical
Crystal || Conversion with PLL Tranceivers
CS 8952 System 4 In
40ut AES3-SPDIF ADAT In
Word Clock ~ ADAT Out
GIMICS Gesture
Sensors

We have developed a VHDL module which implements Fast
Ethernet from the hardware layer up through IP to the UDP
protocol of TCP/IP. This unusual module is of particular value in
our application because Fast Ethernet ports are available on all
modern laptops. Also, because of the commercial importance of
Internet performance, Fast Ethernet implementations are ex-
tremely reliable and finely tuned on all modern operating sys-
tems.

A block diagram of our system is shown above.
3. Hardware Description

The central component is an FPGA: Virtex XCV-100 from Xil-
inx, Inc. The physical layer of the Ethernet communications
protocol is handled by the Crystal Semiconductor CS 8952 PHY
chip. There are two such chips on our device: one for the
TCP/IP (in our case UDP) communications with the host com-
puter and another for the emerging Global Musical Instrument
Communication Standard (GMICS) (www.gmics.org). The low-
rate conversion system is located in an external box and inter-
faces to the Connectivity Processor via a 50-pin hi-density D-
Sub connector (most commonly used for SCSI II). Our initial
low-rate conversion subsystem services 32 channels of analog
input sampled at 1/8*(audio sampling rate) Hertz: 5512.5 Hertz
for an audio rate of 44100 Hertz and 6000 Hertz for an audio
rate of 48000 Hertz. Another more specialized I/O subsystem
was developed for the continuous keyboard work described
elsewhere in these proceedings (Freed and Avizienis, 2000).

The Connectivity Processor supplies a clock to the low-rate sub-
system. For MIDI I/O we decided to provide for 4 input streams
and 4 output streams. Each stream, of course, supports 16 MIDI
channels. We support AES-3, S/PDIF, and word clock as well
as ADAT Light-Pipe I/O. The connectors on the Connectivity
Processor are as follows:

* RJ45 for GMICS

* 50 Pin hi-density D-Sub female

* 4 MIDI in and 4 MIDI out

¢ Locking BNC’s for AES 3 and S/PDIF I/O

¢ Locking BNC’s for Word Clock I/0

¢ Alesis Light-Pipe I/O (ADAT compatible)

¢ RIJ45 for host computer 100baseT connection

¢ JTAG (not shown) on board for device programming

The support of the new GMICS protocol allows this box to
function as a protocol bridge or digital “break out box” for
GMICS-enabled devices.

IEEE-1394 shows promise as the basis for a multimedia connec-
tivity solution and many laptops now include IEEE1394 so we
are studying its implications, especially in light of Yamaha’s M-
LAN protocol.

4. Writing in VHDL

VHDL is a hardware description language. VHDL is widely
adopted and is being used not only for the synthesis of large
digital designs but also for documentation and design verifica-
tion.

We provide below a code fragment to give the reader a feel for
writing hardware behavior descriptions in VHDL. This VHDL
code fragment defines an object which decodes a bimark phase
encoded data stream like S/PDIF.

Module description

library IEEE;

use IEEE.std_logic_1164.all;

-- declare inputs and outputs to this object
entity bimark_dec is

port (
clk: 1in STD_LOGIC; -- clock signal
reset: in STD_LOGIC; -- reset signal
din: in STD_LOGIC; -- data input
dout: out STD_LOGIC -- data output

)
end bimark_dec;

--describe the behavior of the object
architecture BEHAVIORAL of bimark_dec is
--state variables
signal last_dout, next_dout
begin process(DIN, CLK, RESET)
begin
if (CLK'event AND CLK = '1') then
if RESET = '1' then -- synchronous reset
NEXT_DOUT <= '0';
LAST_DOUT <= '0';
else
NEXT_DOUT <= LAST_DOUT;
LAST_DOUT <= DIN --remember input value
end if;
end if;
end process;

STD_LOGIC;

-- if previous input and current input are the

-- same, output 'l', otherwise output 'O’
DOUT <= NEXT_DOUT XOR LAST_DOUT;

end BEHAVIORAL;

5. Transmission Protocol

We multiplex the audio, low-rate, and MIDI data into a single
stream of UDP packets. This multiplexing strategy was devel-
oped in a previous project where we embedded low-rate data
into an AES or S/PDIF stream (Freed and Wessel, 1998). The
task of the software support for this protocol is to fish out upon
reception of the UDP stream, the audio signals, the low-rate
control signals, and MIDI events. Output transmission requires
the embedding of the different forms of data into the UDP
stream. The connectivity processor then unravels this stream
and supplies the various forms of data at their appropriate con-
nectors.

6. Software Support

We have developed custom drivers and objects for the Max/MSP
(Puckette and Zicarelli, 1998) (Zicarelli, 1998) programming
environment for the Power PC Macintosh Platform and the Open
Sound World (OSW) (Chaudhary, et al., 2000) programming
environment for Intel platforms.

We based the Max/MSP drivers on the ASIO specification de-
veloped by Steinberg. We chose in the initial implementation to
use “pseudo audio streams” as the mechanism to input low-rate
and MIDI data, representing these data as if they were audio for
the purpose of getting into Max/MSP via ASIO. We accom-
plished this using the standard dac~ and adc~ objects with
distinct channel numbers associated with these pseudo audio
streams.

For the low-rate gestural input data we have developed an MSP
object called Tow-rate-in~ that upsamples the low-rate data
to the audio-sampling rate. Languages such as CSOUND and
SuperCollider have both an audio sample rate and a lower con-
trol sample rate called the K-rate. We would expect to bring the
low-rate signals in to these languages directly as K-rate signals.
We have learned that future versions of MSP will provide for
multirate processing. OSW is fully multirate.

For MIDI we developed some rather unusual signal processing
objects for MSP. MIDI input event data is fished out of the
audio stream by mididecode~ and MIDI output is embedded
into an audio output stream by midiencode~. In MSP the
diacritical mark ~ used as a suffix indicates that object is a sam-
ple-synchronous data flow object whereas Max objects without
the ~ process discrete events. In the Max/MSP patch fragment
below we use midiencode~ to send MIDI data from Max to
the interface. We also show how mididecode~ is used to pass
the MIDI data from the interface into the event world of Max.

[60 64] Note On Note Off
|60 5 | Poly key pressure
|1 127| Control change

Program change

After touch
Pitch bend
|

The MIDI events are
sent to the connectivity
processor on pseudo
audio channel 11.

| midiformat 1

Start and stop signal flow

d

startwindow

The 11 indicates a
pseudo audio channel
on which MIDI data

H appear. mididecode~
|mididecode~| fishes events from

this channel.

[midiparse |

MIDI events are available at these
outlets in the normal Max manner.

7. The GMICS protocol

The impetus for the GMICS protocol was research carried out at
CNMAT to digitize the electric guitar. Our original motivation
was to provide a simple and robust encoding of multichannel
audio and related control data in a single cable at the guitar it-
self. The multichannel encoding was important because not only
did we want to provide for hexaphonic guitar effects where each
string is sensed and treated separately but we also wanted to
provide for more elaborate multi-dimensional sensing of each
string. After we finished a number of initial studies concerning
various protocols we handed our results off to our research spon-
sor Gibson Guitar Inc. Gibson’s development team elaborated
considerably on CNMAT’s early efforts and developed the
GMICS specification which is available at the following web
site (www.gmics.org). The physical layer of GMICS is
Ethernet. The connectivity processor described here gives a
GMICS equipped electric guitarist access to a large array of
hexaphonic effects that we have developed in Max/MSP all run-
ning on a very portable and easily set up system. It also provides
for cross coding of the GMICS protocol to ADAT, AES-3, and
S/PDIF.

8. Extensibility

The connectivity processor is programmable. New functionality
can be easily added. In fact, since our current suite of VHDL
modules only occupies about 50% of the FPGA we have room
for more modules. For in system programmability we have
provided a JTAG connector on the board of the connectivity
processor so that the device can be interfaced to a computer
running a VHDL development environment. Using an EPROM
burner, new programs can be stored permanently in an EPROM
memory and placed on the board. In fact, we have already be-
gun experiments implementing bit serial signal processing algo-
rithms on the FPGA. One such experiment was carried out by
Norbert Lindlbauer, a visiting scholar to CNMAT. Lindlbauer
implemented a bank of sinusoidal oscillators for a MIDI con-
trolled additive synthesizer on the FPGA.
(www.cnmat.berkeley.edu/~norbert)

There are a number of extensions to our environment that we
plan to explore. When working with sensors one can envision a
number of data conditioning algorithms that could be imple-
mented in the FPGA itself. And, indeed, additional protocols to
the ones we have implemented may be easily included.

9. Analog Subsystems

Our first analog subsystem whose digital output is connected to
the Connectivity Processor via the D-Sub connector allows for
32 channels of input. The sample rates we support in this initial
device are 44100/8=5512.5 Hertz and 48000/8=6000 Hertz. We
roll off our anti-aliasing filter at 2000 Hertz.

Adrian Freed developed another subsystem for his continuous
position keyboard controller that is reported upon elsewhere in
these proceedings.

As the FPGA is programmable we can adapt the connectivity
processor to send multichannel low-rate data to external devices.

10. Applications

We are especially excited about the very high degree of control
intimacy we can obtain by having the low-rate gesture data syn-
chronized so tightly with the audio.

Indeed, applications abound. And with the increased control
intimacy many of the previous controller strategies like gloves,
wands, force-sensing resistor systems, accelerometer systems,
etc. should attain a new level of musicality. One area of par-
ticular interest here at UC Berkeley involves musical applica-
tions of micro electronic mechanical systems MEMS. We are
working with members of Kris Pister’s group on a new unobtru-
sive sensor system for the hands based on MEM accelerometers
(Perng, et al., 1999).

11. Conclusions

The connectivity processor is a flexible and programmable piece
of hardware that addresses many problems facing the performing
musician. It uses the ubiquitous 100 BaseT Ethernet, is com-
pact, provides for multi-channel audio I/O, low-rate gestural data
input, MIDI I/O, and GMICS, and allows for cross coding
among these formats. Furthermore, these data sources are tightly
synchronized by the audio-rate sample clock, providing for a
high degree of control intimacy. Latency is under 7 ms for the
Max/MSP environment with jitter in the sub-nanosecond range.

12. Acknowledgments

This work was supported by a grant from the Digital Media In-
novation Program and Gibson Guitar, Inc. We also received
support in the form of equipment and software from Xilinx, Inc.,
We would also like to thank David Zicarelli of Cycling 74 for
his advice and assistance. Additional thanks to Ahm Lee, Nate
Yeakel, Matthew Wright, and Amar Chaudhary.

13. References

A. Chaudhary, A. Freed, and M. Wright (2000), “An Open Ar-
chitecture for Real-time Music Software,” proceedings of the
International Computer Music Conference, Berlin, Germany.

A. Freed and R. Avizienis (2000), “A New Music Keyboard
featuring Continuous Key-position Sensing and High-speed
Communication Options,” proceedings of the International
Computer Music Conference, Berlin, Germany.

A. Freed, A. Chaudhary, and B. Davila (1997), “Operating Sys-
tems Latency Measurement and Analysis for Sound Synthesis
and Processing Applications,” proceedings of the Proceedings of
the International Computer Music Conference, Thessaloniki,
Hellas.

A. Freed and D. Wessel (1998), “Communication of Musical
Gesture using the AES/EBU Digital Audio Standard,” proceed-
ings of the International Computer Music Conference, Ann Ar-
bor, Michigan.

J. K. Perng, B. Fisher, S. Hollar, and K. Pister (1999), “Accel-
erator Sensing Glove (ASG),” proceedings of the ISWC Interna-
tional Symposium on Wearable Computers, San Francisco.

M. Puckette and D. Zicarelli (1998), “MAX - An Interactive
Graphic Programming Environment (V3.5.9),” , 3.5.9 ed: Op-
Code Systems.

K. Skahill (1996), VHDL for Programmable Logic. Reading,
Mass.: Addison-Wesley.

D. Zicarelli (1998), “An Extensible Real-Time Signal Processing
Environment for Max,” proceedings of the International Com-
puter Music Conference, Ann Arbor, Michigan.

